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Abstract
We study the problem of solving linear programs of the form Ax ≤ b, x ≥ 0 with differential
privacy. For homogeneous LPs Ax ≥ 0, we give an efficient (ϵ, δ)-differentially private algorithm
which with probability at least 1 − β finds in polynomial time a solution that satisfies all but
O( d2

ϵ
log2 d

δβ

√
log 1

ρ0
) constraints, for problems with margin ρ0 > 0. This improves the bound of

O( d5

ϵ
log1.5 1

ρ0
poly log(d, 1

δ
, 1

β
)) by [Kaplan-Mansour-Moran-Stemmer-Tur, STOC ’25]. For general

LPs Ax ≤ b, x ≥ 0 with potentially zero margin, we give an efficient (ϵ, δ)-differentially private
algorithm that w.h.p drops O( d4

ϵ
log2.5 d

δ

√
log dU) constraints, where U is an upper bound for the

entries of A and b in absolute value. This improves the result by Kaplan et al. by at least a factor
of d5. Our techniques build upon privatizing a rescaling perceptron algorithm by [Hoberg-Rothvoss,
IPCO ’17] and a more refined iterative procedure for identifying equality constraints by Kaplan et al.
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1 Introduction

Linear programming is a fundamental tool for modeling and solving problems in computer
science. Consider the standard feasibility problem of finding x ∈ Rd subject to Ax ≤ b, x ≥ 0,
where the constraints Ax ≤ b are input from users. The input can contain sensitive
information such as the users’ private health data or private transactions, which the users
may wish to be protected. For the algorithm designer, this is where differential privacy
proves its usefulness. Differential privacy protects sensitive information by requiring that the
algorithm must have approximately the same output upon receiving similar input.

The study of solving linear programs with differential privacy was initiated by [9] and
has subsequently been studied under different contexts along with other related problems.
Notably, privately solving linear programs is closely related to private learning of subspaces
and halfspaces, which are fundamental problems in learning theory. In particular, a line of
work by [3, 1, 11, 7, 2] showed reductions from learning halfspaces to the problem of finding
a point in a convex hull, which in turn can be solved via linear programing. This means that
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65:2 Solving Linear Programs with Differential Privacy

the existence of an efficient private solver for linear programs implies an upper bound for the
sample complexity of efficient private learners for halfspaces, and any improvement for the
former problem implies an improvement for the latter.

Imposing differential privacy when solving a linear program comes with the impossibility
to ensure all constraints are satisfied. Indeed, in the extreme case, the addition of one
more constraint can change the problem from feasible to infeasible. Therefore, to guarantee
differential privacy, it is required that a number of constraints must be dropped. It was known
(by folklore) that for a linear program whose feasible region is of positive volume, privatizing
the algorithm by [4] results in a solution that violates poly(d) constraints, where d is the
dimension of the problem. The recent work by [10] formalized this claim and generalized it
to all linear programs. Their algorithm, however, suffered from a high degree polynomial
dependence on d (at least d9 dependence), whereas the lower bound (from learning theory)
is linear in d. Closing this gap remains a challenging open question.

In our work, we make progress in this direction, and propose new algorithms for solving
linear programs with differential privacy. Our algorithms are efficient and they achieve
significantly improved guarantees on the number of violated constraints.

1.1 Our contribution
Our first contribution is a new algorithm for privately solving linear programs with positive
margin with guarantee stated in Theorem 1. Here the margin of the problem is the radius of
the largest ball that fits in the intersection of the feasible region and the unit ball, which we
define in Section 2.

▶ Theorem 1. Let ϵ, δ, β ≥ 0 be given an input. There exists an efficient (ϵ, δ)-differentially
private algorithm for finding a feasible solution to the linear program Ax ≥ 0, x ≠ 0 such
that whenever the margin of the system is at least ρ0, with probability at least 1 − β, the
algorithm outputs a solution x that satisfies all but O

(
d2

ϵ

√
log 1

ρ0
log2 d

βδ

)
constraints.

In terms of the dependence on the dimension d, our algorithm significantly improves over
the prior work by [10], which drops O

(
d5 log1.5 1

ρ0
poly log

(
d, 1

δ , 1
β

))
constraints.

For general linear programs with potentially zero margin, we give an iterative private
algorithm with the following guarantee.

▶ Theorem 2. Let ϵ, δ, β ≥ 0 be given an input. There exists an efficient (ϵ, δ)-differentially
private algorithm for finding a feasible solution to the linear program Ax ≤ b; x ≥ 0 with
integer entries such that with probability at least 1− (β + δ), the algorithm outputs a solution
x that satisfies all but O

(
d4

ϵ

√
log dU log2.5 d

βδ

)
constraints, where U is an upper bound on

the absolute values of the entries in A and b.

The algorithm by [10] requires to drop Õ(d9) constraints to guarantee privacy. To improve
this, one can use the algorithm from Theorem 1 as a subroutine in the algorithm by [10] to
reduce to the number of dropped constraints to Õ(d5). Our algorithm with a more refined
analysis goes one step further to remove another factor d and achieves Õ(d4) dependence.
Our bound is a significant improvement towards the lower bound Ω(d).

1.2 Our techniques
Our technique for showing Theorem 1 is based on privatizing a rescaling perceptron algorithm
for solving linear programs of the form Ax ≥ 0, x ̸= 0 with positive margin. Instead of using
the algorithm by [4] as in [10], we develop an algorithm based on the work of [8].
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A rescaling perceptron algorithm consists of two phases: the Perceptron Phase to find a
new solution and the Rescaling Phase to find a direction to rescale the input. To privatize
the Perceptron Phase, the algorithm of [10] uses the NoisyAvg mechanism by [13] to construct
a noisy average of the constraints that are violated by the current solution, and then updates
the solution in the same direction. In the Rescaling Phase, the non-private algorithm by [4]
and the privatized version by [10] use another perceptron-style procedure to find a rescaling
direction. This approach requires Õ(d2) updates and each call to the Rescaling Phase requires
to drop Õ(d2.5) constraints.

The main difference between our work and [10] lies in the rescaling phase. We use the
following technique by [14] and [8]. During the perceptron phase, the algorithm maintains a
weight vector λ for tracking which constraints are violated by the solution in each iteration.
Using a random Gaussian vector, the algorithm produces a rescaling direction by a convex
combination weighted by λ of the rows satisfied by the random vector. [14] and [8] show
that with a constant probability, rescaling the input matrix along that direction increases
the volume of the feasible region inside the unit ball by a constant factor.

The benefit of using the weight vector to rescale is that, since we only need O(log 1
β ) steps

to boost the success probability, the amount of noise needed to make this phase private is
much smaller. Further, we can keep all constraints around until we find a good solution and
only discard constraints once at the end of the algorithm. We discard only O(d2) constraints
in total.

For general linear programs with potentially zero margin, we use the standard technique
of adding a small perturbation to the constraints that does not change the feasibility of
the problem. This perturbation increases the problem margin and allows the application
of the private perceptron algorithm. Similar to [10], our algorithm iteratively identifies
tight (equality) constraints in the LP, privatizes these equality constraints and uses them
to eliminate variables. The approach by [10] needs to account for the blow-up of the input
entries after performing the variable elimination steps, which can quickly diminish the margin.
The cost of this shows up as an extra factor d in the number of dropped constraints. By
contrast, our algorithm always returns to the initial LP after identifying tight constraints.
We show that in this way the margin reduces at a slower rate, saving the factor d.

1.3 Related work
Rescaling Perceptron algorithms. To find a solution x ̸= 0 that satisfies Ax ≥ 0, one can
use the classic perceptron algorithm which convergences after at most 1/ρ2 iterations on
problems with positive margin ρ, where the margin is the radius of the largest ball that fits in
the intersection of the feasible region and the unit ball. [4] show a modification of the classic
algorithm with an additional rescaling procedure that runs in time Õ(nd4 log 1

ρ ), for problems
with ρ > 0. The rescaling procedure by [4] is another variant of the perceptron algorithm
which finds a rescaling direction by moving a random unit vector along the direction of a
violated constraint. Subsequent works by [14, 8] explore different rescaling operations. In
particular, our work relies on the technique by [8] in which the rescaling direction is found
by a convex combination of rows whose corresponding constraints are satisfied by a random
Gaussian vector.

Solving linear programs with privacy. Solving linear programs with differential privacy has
been the focus of several prior works. Under various notions of neighboring inputs (such
as input differing by a row or a column), [9] give algorithms that approximately satisfy
most constraints. [12] show an algorithm that satisfy most constraints exactly, but only
considering neighboring inputs to be differing on the right hand side scalars. [11] provide an

APPROX/RANDOM 2025
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algorithm to solve the general feasibility problem Ax ≥ b, but requires a running time that
is exponential in the dimension. Most relevant for our work is the work of [10], which studies
the same setting. We provide a detailed comparison of the results and techniques in sections
1.1 and 1.2.

Beyond solving linear programs. Solving linear programs is closely related to private
learning subspaces and halfspaces [3]. [1] show a reduction from learning halfspaces to the
problem of finding a point in the convex hull, where an efficient algorithm for the latter
problem implies an upper bound for the sample complexity of efficient algorithms for the
former. Subsequent works by [11, 7, 2] have targeted this question. [10] build techniques
for solving this problem via privately solving LPs and achieve the first algorithm that has
polynomial dependence on the dimension and polylogarithmic dependence on the domain
size. Our algorithm can be used as a subroutine to improve the runtime of the algorithm
by [10].

2 Preliminaries

Notation. We let ∥·∥1 be the ℓ1-norm and ∥·∥2 be the ℓ2-norm. When it is clear from
context, ∥·∥ also denotes the ℓ2norm. For a matrix A, we denote by ai the i-th row of A.
For a vector a, we let a be the normalized vector a = a

∥a∥2
. We also use A to denote the

matrix A with normalized rows. We denote by Lap(b) the Laplace distribution with density
f(x) = 1

2b exp(− |x|
b ); N(0, σ2) the Gaussian distribution with mean zero and variance σ2

and N(0, σ2I) the multivariate Gaussian distribution with mean zero and covariance σ2I.
The dimension will be clear from context.

Linear programs. We consider the problem of finding a feasible solution to a linear program
in general standard form Ax ≤ b, x ≥ 0, where A has dimension n × d, b is a vector of
dimension n and the entries of A and b are integers. Following [4], we refer to the problem
of finding a solution satisfying Ax ≥ 0, x ≠ 0 as a homogeneous LP. A homogeneous LP
Ax ≥ 0, x ̸= 0 is characterized by a quantity ρ(A), namely, the margin (or roundness)
parameter, given as

ρ(A) = max
∥x∥2≤1

min
i
⟨ai, x⟩ .

Geometrically, ρ(A) is the radius of a ball that fits into the intersection between the
feasible region and the unit ball. The classic perceptron algorithm for LPs with ρ(A) > 0
converges with 1/ρ(A)2 iterations. Rescaling algorithms such as [4, 14, 8] have total runtime
poly(n, d) log 1/ρ(A).

Homogenization. [4] give a simple reduction (called homogenization) from a general LP

Ax ≤ b, x ≥ 0 to a homogeneous LP A′x ≥ 0, x ̸= 0 by setting A′ =
[
−A | b

I

]
and

x = (x | x0)⊤. We refer to the homogeneous LP constructed via this reduction as the
homogenized LP.

Differential privacy. We use the notation (A, b) as shorthand for the LP Ax ≤ b, x ≥ 0. We
say that two LPs (A, b) and (A′, b′) are neighbors is they differ by only one constraint (one LP
has an extra constraint). A randomized algorithm A is said to be (ϵ, δ)-differentially private
(DP) if for all neighboring LPs (A, b) and (A′, b′) and every subset of possible outcomes O,

Pr [A(A, b) ∈ O] ≤ eϵ Pr [A(A′, b′) ∈ O] + δ.
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In the case δ = 0, we say the algorithm is ϵ-DP. Two commonly used mechanisms for
achieving differential privacy are the Laplace mechanism and the Gaussian mechanism. Let
f be a function whose output has dimension d. We say f has ℓ1 sensitivity k if on any two
neighboring inputs x and x′, ∥f(x)− f(x′)∥1 ≤ k, and f has ℓ2 sensitivity k if on any two
neighboring inputs x and x′, ∥f(x)− f(x′)∥2 ≤ k.

▶ Theorem 3 (Laplace mechanism [6]). Let f be a function of ℓ1 sensitivity k. The mechanism
A that on an input x adds independently generated noise with the Laplace distribution Lap( k

ϵ )
to each of the d coordinates of f(x) is ϵ-DP.

▶ Theorem 4 (Gaussian mechanism [5]). Let f be a function of ℓ2 sensitivity k. The
mechanism A that on an input x adds noise generated with the Gaussian distribution N(0, σ2)
where σ ≥ k

ϵ

√
2 ln 2

δ to each of the d coordinates of f(x) is (ϵ, δ)-DP.

3 Private Perceptron Algorithm for Positive Margin LPs

3.1 Algorithm

Algorithm 1 Private Perceptron.

1: Input: Matrix A ∈ Rn×d, parameters ρ0, ϵ, δ, β

2: Let B = I

3: for t = 1 . . . τ = O
(
d log 1

ρ0

)
:

4: Run c← PrivatePerceptronEpoch(A, ϵ, δ, β)
5: if c is a solution:
6: return Bc

7: else if c is a rescaling direction:
8: A← A

(
I − 1

2 c · c⊤); B ←
(
I − 1

2 c · c⊤)B

9: else:
10: abort; return ⊥
11: return ⊥

Algorithm 2 PrivatePerceptronEpoch(A, ϵ, δ, β).

1: x(1) = (0, . . . , 0) ∈ Rd

2: λ(1) = (0, . . . , 0) ∈ Rn

3: ν = Θ
(√

d
ϵ

log1.5 T τ
βδ

)
, σ2 = 8 log 4T

δ
ν2ϵ2 , θ2 = 8

d2ϵ2ν2 log
4000 log τ

β

δ

4: for t = 1 . . . T = Θ(d2): Perceptron Phase
5: S(t) =

{
i ∈ [n],

〈
ai, x(t)〉 ≤ 0

}
, m(t) =

∣∣S(t)
∣∣

6: Let m̂(t) = m(t) + Lap
(

1
ϵ

)
− 1

ϵ
log

2000T log 1
β

δ
. If m̂(t) ≤ ν then return solution x(t).

7: u(t) = 1
m(t)

∑
i∈S(t) ai, û(t) = u(t) + η(t) where η(t) ∼ N(0, σ2I)

8: x(t+1) = x(t) + û(t)

9: λ
(t+1)
i = λ

(t)
i + 1

m(t) for all i ∈ S(t) λ(t) are kept private
10: Let λ = λ(T )

T

11: for s = 1, . . . , 1000 log τ
β

: Rescaling Phase
12: Take a gaussian vector g(s) ∼ N(0, I) and compute P (s) =

{
i :
〈
ai, g(s)〉 ≥ 0

}
13: Let c(s) =

∑
i∈P (s) λiai and ĉ(s) =

∑
i∈P (s) λiai + γ(s) where γ(s) ∼ N(0, θ2I)

14: if
∥∥ĉ(s)

∥∥ ≥ 3
16

√
πd

, return ĉ(s)

15: Output ⊥

APPROX/RANDOM 2025



65:6 Solving Linear Programs with Differential Privacy

We describe our Private Perceptron algorithm in Algorithm 1. Given a matrix A ∈ Rn×d,
margin parameter ρ0, privacy parameters ϵ, δ, and failure probability β, the algorithm
runs at most τ = O(d log 1

ρ0
) and makes calls to PrivatePerceptronEpoch procedure given in

Algorithm 2. Algorithm 2 has three possible outcomes. If it outputs a solution, Algorithm 1
terminates and returns this solution with a suitable rescaling. If it outputs a rescaling
direction, Algorithm 1 rescales the input matrix A and repeats. Otherwise, Algorithm 1
terminates and returns ⊥.

Our main novel contribution lies in Algorithm 2. This algorithm consists of two phases:
the Perceptron Phase in which the algorithm attempts to find a solution to the LP and the
Rescaling Phase in which the algorithm finds a good direction to rescale the input if the
solution from the Perceptron Phase is not satisfactory. In each phase, we add maintain the
privacy by adding appropriate noise. During the Perceptron Phase, the algorithm maintains
a solution and updates it along the direction of a noisy average of the violated constraints.
The algorithm also maintains a weight vector λ(t) which picks up the constraints violated
by the current solution. We keep λ(t) private, and use the average value λ to determine the
rescaling direction. To determine the rescaling direction, during the Rescaling Phase, the
algorithm takes a random gaussian vector and computes a noisy sum of all rows satisfied
by this vector weighted by λ. We will show that with a constant probability, this noisy
sum provides a good rescaling direction, and the algorithm repeats the process a number of
iterations to boost the success probability.

In the next subsections, we show the privacy and utility guarantees of our algorithm.

3.2 Privacy analysis
Throughout, we let (A, b) and (A′, b′) be two neighboring LPs. The corresponding computed
terms in Algorithm 2 for (A′, b′) are denoted with the extra prime symbol (for example, S(t)

and S(t)′).

▶ Proposition 5. Algorithm 1 is (ϵ′, δ′)-DP for ϵ′ = 2d3 log 1
ρ0

ϵ2 +
√

2d3ϵ2 log 1
ρ0

log 1
δ and

δ′ = (d + 1)δ.

To show this Proposition, we show the following lemmas.

▶ Lemma 6. Each iteration of the Perceptron Phase is (ϵ, δ
2T )-DP.

The following claim follows similarly to the proof of the NoisyAvg algorithm by [13]. We
include the proof in the appendix.

▷ Claim 7. For all t ∈ [T ], m(t) has ℓ1 sensitivity 1, and u(t) has ℓ2 sensitivity 2
m(t) .

Proof of Lemma 6. For the purpose of analysis, in each iteration of the Perceptron Phase,
we define the output of the algorithm to be either the solution x(t) or the new update vector
û(t). Let O, O′ be the outputs of the iteration on (A, b) and (A′, b′) respectively, and let F

be an arbitrary subset of Rd. First, due the the privacy of the Laplace mechanism,

Pr
[
O = x(t)

]
= Pr

[
m̂(t) ≤ ν

]
≤ eϵ Pr

[
m̂(t)′ ≤ ν

]
= eϵ Pr

[
O′ = x(t)

]
Next, consider the case where the output is an update vector û(t). If m(t) < ν:

Pr
[
O = û(t)

]
≤ Pr

[
m̂(t) > m(t)

]
≤ Pr

[
Lap

(
1
ϵ

)
>

1
ϵ

log 2T

δ

]
≤ δ

2T
.



A. Ene, H. Le Nguyen, T. D. Nguyen, and A. Vladu 65:7

If m(t) ≥ ν, then σ2 ≥ 8 log 4T
δ

(m(t))2
ϵ2

, and due to the privacy of the Gaussian mechanism,

Pr
[
O = û(t) ∧ û(t) ∈ F

]
≤ δ

2T
+ eϵ Pr

[
O′ = û(t) ∧ û(t) ∈ F

]
. ◀

▶ Lemma 8. Each iteration of the Rescaling Phase is (dϵ, δ
2000 log τ

β
)-DP.

To show this lemma, first, we show the sensitivity of c(s) in the following claim, whose proof
is deferred to the appendix.

▷ Claim 9. Let m = mint∈[T ] m(t). The ℓ2 sensitivity of c(s) is 2
m .

Proof of Lemma 8. If m < ν, the Rescaling Phase only happens when for all t ∈ [T ],
m̂(t) > ν. Hence, for any set of outcomes F ⊆ Rd, by union bound

Pr [Rescaling happens ∧ĉ ∈ F ] ≤ Pr
[
m̂(t) > ν,∀t ∈ T

]
≤ Pr

[
m̂(t) > m,∀t ∈ T

]
≤
∑

t∈[T ]

Pr
[
m̂(t) > m(t)

]
≤
∑

t∈[T ]

Pr
[
Lap

(
1
ϵ

)
>

1
ϵ

log
2000T log τ

β

δ

]
≤ δ

2000 log τ
β

.

Next, consider the case m ≥ ν. Since θ2 ≥ 8
d2ϵ2ν2 log 4000 log τ

β

δ by the privacy guarantee of
the Gaussian mechanism

Pr [ĉ ∈ F ] ≤ δ

2000 log τ
β

+ edϵ Pr [ĉ′ ∈ F ] . ◀

Proof of Proposition 5. The algorithm is (ϵ′, δ′)-DP, following directly from advanced com-
position. ◀

3.3 Utility analysis
To analyze the runtime and utility of Algorithm 1 we let B be the unit ball and P be
the feasible region defined by Ax ≥ 0. We will show the following proposition about the
guarantee on the output of Algorithm 1.

▶ Proposition 10. With probability at least 1− 5β, Algorithm 1 outputs a solution x that
satisfies all but O

(√
d

ϵ log1.5 d
βδ

)
constraints.

We outline the proof of Proposition 10. First, if in an iteration, Algorithm 1 finds a solution
outputted by Algorithm 2, we show that this solution must be correct with probability
≥ 1− β.

▶ Lemma 11. If Algorithm 2 terminates in the Perceptron Phase and outputs a solution x,
then with probability at least 1− β, x satisfies all but O

(√
d

ϵ log1.5 d
βδ

)
constraints.

If Algorithm 1 finds a rescaling vector c by the output of Algorithm 2, we show that the
volume of the feasible region inside the unit ball is increased by a constant factor with high
probability. To start with, assuming the initial margin parameter is at least ρ0, [14] give a
lower bound on the volume of the initial feasible region inside the unit ball:

▶ Lemma 12 (Lemma 3 [14]). Suppose maxx∈P∩B mini ⟨ai, x⟩ ≥ ρ0 then vol (P ∩ B) =
Ω
(
ρd

0
)

vol(B).

APPROX/RANDOM 2025



65:8 Solving Linear Programs with Differential Privacy

Note that the rescaling operation A← A
(
I − 1

2 c · c⊤) is equivalent to a linear map F : Rd →
Rd such that, Fc(c) = 2c and Fc (x) = x for all x⊥c. [8] show the following lemma.

▶ Lemma 13 (Lemma 4 [14]). Suppose that c satisfies 1
∥c∥ maxx∈P∩B ⟨c, x⟩ ≤ 2

3
√

d
, then

vol (F (P) ∩ B) ≥ 1.02 · vol (P ∩ B).

Next, we show that the rescaling vector c outputted by Algorithm 2 satisfies the condition of
Lemma 13 with high probability.

▶ Lemma 14. If Algorithm 2 does not return a solution, then with probability at least 1− 4β
τ ,

it outputs a rescaling vector c that satisfies 1
∥c∥ maxx∈P∩B ⟨c, x⟩ ≤ 2

3
√

d
.

Equipped with Lemma 11 - 14, we are now ready prove Proposition 10.

Proof of Proposition 10. The algorithm fails if either it outputs a solution that does not
satisfy more than Ω

(√
d

ϵ log1.5 d
βδ

)
constraints, or it fails to output a rescaling vector that

satisfies the condition of Lemma 13. This happens with probability at most β + τ · 4β
τ = 5β.

Otherwise, in each iteration, either the algorithm outputs a satisfactory solution, or the
volume of the feasible region inside the unit ball is increased by a factor at least 1.02, by Lemma
13. Therefore, by Lemma 12, the algorithm stops after O

(
log 1

ρd
0

)
= O

(
d log 1

ρ0

)
. ◀

The remaining work is to prove Lemmas 11 and 14.

Proof of Lemma 11. If Algorithm 2 terminates in iteration t of the Perceptron Phase, we
have m̂(t) ≤ ν where ν = O

(√
d

ϵ log1.5 d
βδ

)
. That is

m(t) ≤ ν − Lap
(

1
ϵ

)
+ 1

ϵ
log

2000T log 1
β

δ

Here, m(t) is the number of constraints not satisfied by the solution, and we have

Pr
[

m(t) ≥ ν +
log 1

β

ϵ
+ 1

ϵ
log

2000T log 1
β

δ

]
≤ Pr

[
Lap

(
1
ϵ

)
≤ −

log 1
β

ϵ

]
≤ β. ◀

To show Lemma 14 we start with the following claim:

▷ Claim 15. Pr
[∥∥x(t)

∥∥ ≤ 10
√

t, ∀t ≤ T
]
≥ 1− 2β

τ .

To show Claim 15, we use the following facts about Gaussian random variables.

▶ Fact 16. If X ∼ N(0, σ2) then for a ≥ 0, Pr [X ≥ σa] ≤ exp
(
−a2/2

)
. If X ∼ N(0, σ2I) ∈

Rd then for u ∈ Rd, ⟨u, X⟩ follows N(0, σ2 ∥u∥2) and 1
σ2 ∥X∥2 follows χ-squared distribu-

tion with d degrees of freedom. Furthermore, for a ≥ 0, Pr
[

1
σ2 ∥X∥2 ≥ d + 2

√
da + 2a

]
≤

exp (−a).

Proof of Claim 15. We give an outline of this proof. First, notice that, by the update of x(t),
we have with high probability (proof will follow):∥∥∥x(t+1)

∥∥∥2
≤
∥∥∥x(t)

∥∥∥2
+ 2

〈
x(t), η(t)

〉
+ 3.

Then, the main task is to bound
∑

s

〈
x(s), η(s)〉. However, x(s) is not a bounded variable,

so we cannot directly apply concentration inequalities. Instead, we will define a bounded
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sequence (Y (s)) that behaves like (
〈
x(s), η(s)〉) and proceed to bound

∑t
s=1 Y (s). Finally, we

will show that with high probability (Y (s)) behaves like (
〈
x(s), η(s)〉) and from there we can

bound
∥∥x(t)

∥∥.
For each iteration t of Algorithm 2, consider the following event, called Mt that both of the

following happen: 1)
〈
u(t), η(t)〉 ≤ σ

√
2 log 2T τ

β ≤ 1
2 , and 2)

∥∥η(t)
∥∥2

2 ≤ 5σ2d log 2T τ
β ≤ 1

log 2T
β

≤

1. Since u(t) is the average of unit length vectors,
∥∥u(t)

∥∥ ≤ 1. Then because η(t) ∼ N(0, σ2I),〈
u(t), η(t)〉 follows a N(0, κ2) with κ2 ≤ σ2 (Fact 16). Additionally, 1

σ2

∥∥η(t)
∥∥2 follows a

χ-squared distribution with d degrees of freedom (Fact 16). Therefore, by Fact 16,

Pr [Mt] ≥ 1−
(

Pr
[〈

u(t), η(t)
〉

> σ

√
2 log 2Tτ

β

]
+ Pr

[∥∥∥η(t)
∥∥∥2

> 5σ2d log 2Tτ

β

])

≥ 1− β

Tτ
.

We define the following random variable:

Y (t) =
{〈

x(t), η(t)〉 if ∩t
s=0 Mt happens and

∥∥x(t)
∥∥ ≤ 10

√
t

0 otherwise

Due to the symmetry of η(t), E
[
Y (t) | Ft−1

]
= 0. If ∩t

s=1Mt happens and
∥∥x(t)

∥∥ ≤ 10
√

t we
have∣∣∣Y (t)

∣∣∣ =
∣∣∣〈x(t), η(t)

〉∣∣∣ ≤ ∥∥∥x(t)
∥∥∥ ∥∥∥η(t)

∥∥∥ ≤ 10
√

t

log 2T τ
β

Then (Y (t)) forms a bounded martingale difference sequence. By Azuma’s inequality,for all t

Pr
[∣∣∣∣∣

t∑
s=1

Y (s)

∣∣∣∣∣ ≥ 40t

]
≤ 2 exp

− (40t)2

2
∑t

s=1

(
20
√

s
log 2T τ

β

)2


≤ 2 exp

(
−

1600t2 log 2T τ
β

800t2

)
≤ β

Tτ
.

Thus by union bound we have with probability 1−2β/τ , Mt happens and
∣∣∣∑t

s=1 Y (s)
∣∣∣ ≤ 40t,

for all t, simultaneously. When this happens we show by induction that
∥∥x(t)

∥∥ ≤ 10
√

t. This
is true for t = 1. Suppose that we have

∥∥x(s)
∥∥ ≤ 10

√
s for all s ≤ t. We have∥∥∥x(t+1)

∥∥∥2
=
∥∥∥x(t) + u(t) + η(t)

∥∥∥2

≤
∥∥∥x(t)

∥∥∥2
+
∥∥∥u(t)

∥∥∥2
+
∥∥∥η(t)

∥∥∥2
+ 2

〈
x(t), u(t)

〉
+ 2

〈
u(t), η(t)

〉
+ 2

〈
x(t), η(t)

〉
≤
∥∥∥x(t)

∥∥∥2
+ 2

〈
x(t), η(t)

〉
+ 3.

where in the last inequality, conditioned on Mt, we have
∥∥η(t)

∥∥2 ≤ 1 and
〈
u(t), η(t)〉 ≤ 1

2 .
Since u(t) = 1

m(t)

∑
i∈S(t) ai, and S(t) =

{
i ∈ [n],

〈
ai, x(t)〉 ≤ 0

}
, we have

∥∥u(t)
∥∥2 ≤ 1 and〈

x(t), u(t)〉 ≤ 0. Continuing expanding this recursion, we have∥∥∥x(t+1)
∥∥∥2
≤
∥∥∥x(1)

∥∥∥2

︸ ︷︷ ︸
=0

+2
t∑

s=1

〈
x(s), η(s)

〉
+ 3t.

APPROX/RANDOM 2025
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Due to the induction hypothesis
∥∥x(s)

∥∥ ≤ 10
√

s for all s ≤ t, and Mt happens for all t we have
then Y (s) =

〈
x(s), η(s)〉 for all s ≤ t. It follows that 2

∑t
s=1

〈
x(s), η(s)〉 ≤ 2

∑t
s=1 Y (s) ≤ 40t.

Therefore∥∥∥x(t+1)
∥∥∥2
≤ 2 · 40t + 3t ≤ 100(t + 1). ◁

▷ Claim 17. With probability at least 1− 3β
τ ,
∥∥λA

∥∥ ≤ 11√
T

, where for convenience we define
λA = diag(λ)A and diag(λ) is the diagonal matrix obtained from λ.

Proof. First, with probability at least 1− β
τ ,we have

∥∥∥∑T
s=1 η(s)

∥∥∥2

2
≤ 5σ2Td log T τ

β ≤ T . By

Claim 15 and union bound, we have, with probability at least 1− 3β
τ ,
∥∥∥∑T

s=1 η(s)
∥∥∥ ≤ √T

and
∥∥x(T )

∥∥ ≤ 10
√

T . We have that(
λ(t+1) − λ(t)

)
A = u(t) = û(t) − η(t) = x(t+1) − x(t) − η(t)

Henceλ(T )A = x(T ) −
∑T −1

s=1 η(s). Thus
∥∥λ(T )A

∥∥ ≤ ∥∥x(T )
∥∥ +

∥∥∥∑T −1
s=1 η(T )

∥∥∥ ≤ 11
√

T . The

claim follows due to λ = λ(T )

T . ◁

▷ Claim 18. Conditioned on
∥∥λA

∥∥ ≤ 11√
T

, with probability at least 10−3, we have
∥∥ĉ(s)

∥∥ ≥
3

16
√

πd
, in which case 1

∥ĉ(s)∥ maxx∈P∩B
〈
ĉ(s), x

〉
≤ 2

3
√

d
.

In order to prove Claim 18, we need Lemma 6 from [8].

▶ Lemma 19 (Lemma 6 [8]). Let λ ∈ Rn ≥ 0 and A ∈ Rn×d be such that
∑

i λi = 1 and
∥Ai∥ = 1. Take a random gaussian vector g ∼ N(0, I) ∈ Rd and let J = {i : ⟨Ai, g⟩ ≥ 0}.
With probability at least 5 · 10−3,

∥∥∑
i∈J λiAi

∥∥ ≥ 1
4

√
πd

.

Proof. For simplicity, we drop the superscript s. The proof follows similarly to [8]; however,
we need to take into account the noise component γ. Since γ ∼ N

(
0, θ2I

)
with θ2 =

8
d2ϵ2ν2 log 4000 log τ

β

δ ≤ O

(
1

d3 log T d
βδ

)
, 1

θ2 ∥γ∥2 follows a χ-squared distribution of d degrees of

freedom (Fact 16). By Fact 16, for sufficiently large constant in ν, Pr
[
∥γ∥ ≤ 1

16
√

πd

]
≥ 1− β

τ .
Further, by Lemma 19, with probability ≥ 5 · 10−3 we have

∥∥∑
i∈P λiai

∥∥ ≥ 1
4

√
πd

.
The two events:

∥∥∑
i∈P λiai

∥∥ ≥ 1
4

√
πd

and ∥γ∥ ≤ 1
16

√
πd

are independent. With probability
at least (1− β

τ ) · 5 · 10−3 ≥ 10−3, both events happen. Then,

∥ĉ∥ =

∥∥∥∥∥∑
i∈P

λiai + γ

∥∥∥∥∥ ≥
∥∥∥∥∥∑

i∈P

λiai

∥∥∥∥∥− ∥γ∥ ≥ 3
4

∥∥∥∥∥∑
i∈P

λiai

∥∥∥∥∥ ≥ 3
16
√

πd
.

To complete the proof, we now show that, conditioned on the two events
∥∥∑

i∈P λiai

∥∥ ≥ 1
4

√
πd

and ∥γ∥ ≤ 1
16

√
πd

happening, we have 1
∥ĉ(s)∥2

maxx∈P∩B
〈
ĉ(s), x

〉
≤ 2

3
√

d
. Since ∥ĉ∥ ≥ 3

16
√

πd

and ∥γ∥ ≤ 1
16

√
πd
≤ 1

3 ∥ĉ∥, we have
∥∥∑

i∈P λiai

∥∥ ≥ ∥ĉ∥ − ∥γ∥ ≥ 1
8

√
πd

and
∥∥∑

i∈P λiai

∥∥ ≤
∥ĉ∥+ ∥γ∥ ≤ 4

3 ∥ĉ∥. This gives us
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1
∥ĉ∥

max
x∈P∩B

⟨ĉ, x⟩ = 1
∥ĉ∥

max
x∈P∩B

〈∑
i∈P

λiai + γ, x

〉

≤ 4
3
∥∥∑

i∈P λiai

∥∥ max
x∈P∩B

〈∑
i∈P

λiai, x

〉
+ 16

√
πd

3 ∥γ∥ ∥x∥

≤ 4
3

∥∥λA
∥∥∥∥∑

i∈P λiai

∥∥ + 16
√

πd

3
1

16
√

πd

≤ 4 · 11 · 8
√

πd

3
√

T
+ 1

3
√

d
≤ 2

3
√

d
.

The third inequality is due to ∥γ∥ ≤ 1
16

√
πd

and ∥x∥ ≤ 1 since x ∈ B. Besides, since Ax ≥ 0
for x ∈ P, we also have

max
x∈P∩B

〈∑
i∈P

λiai, x

〉
≤ max

x∈P∩B

〈∑
i∈[n]

λiai, x

〉
≤ max

∥x∥≤1

〈∑
i∈[n]

λiai, x

〉
=
∥∥λA

∥∥ ,

The last inequality holds for large enough T = Θ(d2). ◀

Proof of Lemma 14. The proof of Lemma 14 follows immediately from Claims 17 and 18
when we repeat O(log τ

β ) times in the for-loop (Line 11 of Algorithm 2). ◀

3.4 Putting it all together

Proof of Theorem 1. Theorem 1 follows from Propositions 5 and 10 where we set δ ← δ
d

and ϵ = Θ
(√

1
d3 log 1

ρ0
log d

δ

)
. ◀

4 When the LP is Not Fully Dimensional

Algorithm 1 can only guarantee the number of dropped constraints is Õ(d2) when the LP has
a strictly positive margin. In case the LP has zero margin, i.e, tight (equality) constraints, we
can use a standard perturbation technique to create a margin without changing the feasibility
of the problem. However, the challenge is to output a solution that satisfies the original
constraints. The main idea to handle this case, due to [10], is to iteratively identify tight
constraints based on the following observation. An LP with integer entries bounded by U in
the absolute value has the same feasibility as that of a relaxed LP with η = 1

2(d+1)((d+1)U)d+1

slackness added to each constraint and, if a solution to the relaxed LP violates a constraint
in the initial LP, that constraint must be tight. This suggests that we can solve the relaxed
LP which has a positive margin, then identify tight constraints and recurse at most d times
(we can stop after identifying d linearly independent tight constraints).

Our improvement over the algorithm of [10] is two-fold. First, we use Algorithm 1
as the solver in each iteration, which improves the number of dropped constraints from
Õ( d5

ϵ log1.5 1
ρ0

) to O
(

d2

ϵ

√
log 1

ρ0
log2 d

βδ

)
. Second, we avoid the fast decrease of the margin

during the course of the algorithm, which saves another factor d.

APPROX/RANDOM 2025
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4.1 Synthetic systems of linear equations
During its course, the algorithm needs to identify the set of tight constraints and privatize
them for the subsequent use. To this end, we will use the algorithm from [10] for privately
generating (or sanitizing) synthetic systems of linear equations, stated in the following result.

▶ Theorem 20 (Theorem C [10]). There exists an (ϵ, δ)-DP algorithm such that for any
system of linear equations I, with probability at least 1− δ, the algorithm outputs a system
of linear equations O which satisfies
1. Any solution to I is a solution to O, and
2. Each solution to O satisfies all but O

(
d2

ϵ log d
δ

)
equations in I.

Note that for the analysis we also use the fact that this algorithm first privately selects a
set of tight constraints in the original LP, then outputs a canonical basis for the subspace
defined by these tight constraints.

4.2 Algorithm
The algorithm is as follows. The algorithm runs at most d iterations. In each iteration, the
algorithm solves the LP Ax ≤ b + η1 with a set E of sanitized equality constraints that were
identified in previous iterations. First, the algorithm selects k = |E| independent columns
in E to eliminate k variables then solves the LP without equality constraints using the
Algorithm 1 (after homogenizing the LP via the reduction from Section 2). The algorithm
terminates if it has found d tight constraints or if the number of constraints violated by the
solution is small. Otherwise, the algorithm sanitizes the set of constraints violated by the
solution and adds them to E then recurses. Our algorithm is described in Algorithm 3.

Algorithm 3 Private solver for Ax ≤ b.
1: Input A, b whose entries are integers bounded by U in absolute value, ϵ, δ, β

2: Let η = 1
2(d+1)((d+1)U)d+1 , ρ = η3

3: Let E = ∅ be the set of tight (equality) constraints
4: for t = 1, . . . , d:
5: Use k = |E| independent columns in E to eliminate k variables of Ax ≤ b + η1 and

use PrivatePerceptron to solve with margin parameter ρ, obtain solution x(t)

6: Let J1 be the subset of constraints j such that
〈
aj , x(t)〉 ≤ bj and J2 be the subset

of constraints j such that bj <
〈
aj , x(t)〉 ≤ bj + η

7: if |J2|+ Lap
(

1
ϵ

)
≤ d2

ϵ
+ log 1

δ
return x(t)

8: else:
9: Let Cx = g be the system obtained by sanitizing AJ2 x = bJ2 and let s be its

dimension
10: if s = d or |J1|+ Lap

(
1
ϵ

)
< d2

ϵ
log2 d

βδ

√
log 1

ρ
+ log 1

δ
, return a solution of

Cx = g

11: else:
12: E ← E ∪ {Cx = g}; A← AJ1 ; b← bJ1

13: return ⊥

4.3 Analysis
For the privacy guarantee, we have the following lemma.

▶ Proposition 21. The algorithm is (ϵ′, δ′)-DP for ϵ′ = 3dϵ2 +
√

3dϵ2 log 1
δ ; δ′ = (3d + 1)δ.

Proof. This comes directly from advanced composition over d iterations, each of which uses
three (ϵ, δ) private mechanisms. ◀
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Next, for the utility guarantee, we first show that during the iterations, the entries of the
LP (after variable elimination) does not blow up by a factor more than Ud and thereby, we
can lower bound the margin of the relaxed LP.

▶ Lemma 22. For each step t of Algorithm 3, consider the LP Ax ≤ b, x ≥ 0 with the entries
of A, b bounded by U in the absolute value and let E be the set of k equality constraints Cx = g

where C has rank k. We can use k independent columns in C and Gaussian elimination
to eliminate k variables to obtain an LP Ãx ≤ b̃, x ≥ 0 with integer entries and d − k

variables such that the entries of Ã, b̃ are bounded by k2(k − 1)!Uk+1. Furthermore, if the
LP {Ax ≤ b; Cx = g, x ≥ 0} is feasible then the LP resulting from the same elimination from
{Ax ≤ b + η1; Cx = g, x ≥ 0} has margin parameter ρt ≥ η

((d+1)U)2(d+1) .

Proof. See Appendix. ◀

Equipped with Lemma 22, we can show the bound for the number of dropped constraints.

▶ Proposition 23. With probability at least 1− d(β + δ), Algorithm 3 outputs a solution that
satisfies all but O( d3.5

ϵ log2 d
βδ

√
log(dU)) constraints.

Proof. See Appendix. ◀

4.4 Proof of Theorem 2
Proof. The proof of Theorem 2 follows from Propositions 21 and 23 where we select δ ← δ

d ,
ϵ← 1√

d
√

log 1
δ

and β ← β
d . ◀
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A Missing Proofs from Section 3

A.1 From Section 3.2
As a reminder, we let (A, b) and (A′, b′) be the neighboring LPs. The corresponding computed
terms in Algorithm 2 for V ′ are denoted with the extra prime symbol (for example, S(t) and
S(t)′).

Proof of Claim 7. Fix two neighboring LPs V and V ′. Suppose V ′ has one extra constraint.
S(t)′ can have at most one more constraint so it is immediate that m(t) has ℓ2 sensitivity 1.
We consider the case S(t)′ has one extra constraint a,

u(t) − u(t)′ =

 1
m(t)

∑
i∈S(t)

ai

−
 a

m(t) + 1
+ 1

m(t) + 1
∑

i∈S(t)

ai


=

∑
i∈S(t) ai

m(t)(m(t) + 1)
− a

m(t) + 1
.

Then by triangle inequality∥∥∥u(t) − u(t)′
∥∥∥ ≤ ∑

i∈S(t) ∥ai∥
m(t)(m(t) + 1)

+ ∥a∥
m(t) + 1

= 2
m(t) + 1

≤ 2
m(t) .

When V ′ has one less constraint, we proceed similarly.

u(t) − u(t)′ =

 a

m(t) + 1
m(t)

∑
i∈S(t)′

ai

−( 1
m(t) − 1

∑
i∈S

ai

)
=

∑
i∈S(t)′ ai

m(t)(m(t) − 1)
+ a

m(t) .

Then by triangle inequality∥∥∥u(t) − u(t)′
∥∥∥ ≤ ∑

i∈S(t)′ ∥ai∥
m(t)(m(t) − 1)

+ ∥a∥
m(t) = 2

m(t) . ◁

Claim 9. For simplicity, we drop the superscript s for iteration s. Consider the case where
V ′ and P ′ have one extra constraint ak. For all t ∈ [T ], for i ̸= k we have

0 ≤ λ
(t)
i − λ′

i
(t) ≤ 1

m(t) −
1

m(t) + 1
= 1

m(t)
(
m(t) + 1

) ≤ λ′
i
(t)

m(t) ≤
λ

(t)
i

m
.
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Hence
∣∣∣λi − λ

′
i

∣∣∣ ≤ λi

m . Besides, we also have λ
′
k ≤ 1

m . For coordinate j,

cj − c′
j =

∑
i∈P

λiai,j −
∑
i∈P

λ
′
iai,j − λ

′
kak,j =

∑
i∈P

(
λi − λ

′
i

)
ai,j − λ

′
kak,j .

Then, to compute the ℓ2 sensitivity of c, we take
∑

j

(
cj − c′

j

)2.

∑
j

(
cj − c′

j

)2 =
∑

j

∑
i∈P

(
λi − λ

′
i

)
︸ ︷︷ ︸

≥0

ai,j − λ
′
kak,j


2

≤
∑

j

(∑
i∈P

(
λi − λ

′
i

)
|ai,j |+ λ

′
k |ak,j |

)2

≤
∑

j

(
1
m

∑
i∈P

λi |ai,j |+
1
m
|ak,j |

)2

≤ 2
m2

∑
j

(
n∑

i=1
λi |ai,j |

)2

︸ ︷︷ ︸
Jensen inequality:

∑
i

λi=1

+ 2
m2

∑
j

|ak,j |2︸ ︷︷ ︸
=1

≤ 2
m2

∑
j

∑
i

λi |ai,j |2 + 2
m2 = 2

m2

∑
i

λi

∑
j

|ai,j |2︸ ︷︷ ︸
=1

+ 2
m2 = 4

m2 .

Similarly, consider the case where V and P have one extra constraint ak compared with the
neighbor V ′. For all t ∈ [T1], for i ̸= k we have

0 ≤ λ′
i
(t) − λ

(t)
i ≤

1
m(t) − 1

− 1
m(t) = 1

m(t)
(
m(t) − 1

) ≤ λ′
i
(t)

m(t) .

Hence
∣∣∣λi − λ

′
i

∣∣∣ ≤ λ
′
i

m . Besides, we also have λk ≤ 1
m . For coordinate j

cj − c′
j =

∑
i∈P ′

λiai,j −
∑
i∈P ′

λ
′
iai,j + λkak,j =

∑
i∈P ′

(
λi − λ

′
i

)
ai,j + λkak,j .

Then

∑
j

(
cj − c′

j

)2 =
∑

j

∑
i∈P ′

(
λ

′
i − λi

)
︸ ︷︷ ︸

≥0

ai,j + λkak,j


2

≤
∑

j

(∑
i∈P ′

(
λ

′
i − λi

)
|ai,j |+ λk |ak,j |

)2

≤
∑

j

(
1
m

∑
i∈P ′

λ
′
i |ai,j |+

1
m
|ak,j |

)2

≤ 2
m2

∑
j

(
n∑

i=1
λ

′
i |ai,j |

)2

︸ ︷︷ ︸
Jensen inequality:

∑
i

λ
′
i=1

+ 2
m2

∑
j

|ak,j |2︸ ︷︷ ︸
=1
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≤ 2
m2

∑
j

∑
i

λ
′
i |ai,j |2 + 2

m2 = 2
m2

∑
i

λ
′
i

∑
j

|ai,j |2︸ ︷︷ ︸
=1

+ 2
m2 = 4

m2 . ◁

B Missing Proofs from Section 4

Proof of Lemma 22. Recall that the equality constraint Cx = g is obtained from sanitizing
a set of equality constraints with the entries bounded by U in the absolute value. In particular,
there is a set of tight constraints A′x = b′ in the original LP with entries bounded by U in
the absolute value that spans the same subspace as Cx = g – that is, there is an invertible
matrix M ∈ Rk×k such that [C | g] = M [A′ | b′].

Let CK be k independent columns of C, where we let K be the set of indices of the columns
we selected; the set K corresponds to the set of variables that we will eliminate. Eliminating
the variables in K in Ax ≤ b using Cx = g means switching to the new linear constraints(
A−AKC−1

K C
)

x ≤ b − AKC−1
K g. Eliminating the same variables using A′x = b′ would

get the result
(
A−AKA′−1

K A′)x ≤ b−AKA′−1
K b′. Notice that C−1

K C = (MA′
K)−1

MA′ =
A′−1

K A′ and C−1
K g = (MA′

K)−1
g = A′−1

K b′ so the two results are identical.
Therefore, we can think of using A′x = b′ for variable elimination instead of using Cx = g.

Note that the entries of A, b, A′, b′ are bounded by U and the entries of (A′
K)−1 are fractions

with denominator det (A′
K), so to maintain the integrality during the elimination, we can

multiply each row of A with det(A′
K). Therefore, the resulting LP has entries bounded by

k2(k − 1)!Uk+1.
We now show the second claim. First, let us show that the LP {Ax ≤ b; Cx = g, x ≥

0} = {Ax ≤ b; A′x = b′, x ≥ 0} has a solution x such that xi ≤ ((d + 1)U)d+1 for all i. Let x

be any vertex solution. By Cramer’s rule, xi is the ratio of two determinants with integer
entries ≤ U . We can bound the numerator of this ratio by ((d + 1)U)d+1 and lower bound
the denominator by 1.

Next, consider the LP with added slack {Ax ≤ b + η1, A′x = b′, x ≥ 0}. After performing
the variable elimination as described above, we obtain an LP

{
Ãx ≤ b̃ + η1, x ≥ 0

}
. Finally,

we bound the margin of the vertex solution x (restricted to the variables that were not
eliminated) for the homogenized version of the latter LP . Since Ã, b̃ have entries bounded by
k2(k − 1)!Uk+1 and x has entries bounded by ((d + 1)U)d+1, the margin of the homogenized
LP is at least

η

∥(x | 1)∥ ·maxi

∥∥[−Ãi | b̃i]
∥∥ ≥ η

(d + 1) (k2(k − 1)!Uk+1) · ((d + 1)U)d+1

≥ η

((d + 1)U)2(d+1) . ◀

To show Lemma 23, we restate the following lemma from [10] shows that tightness in the
relaxed system implies tightness in the original system.

▶ Lemma 24 (Lemma 36 [10]). For matrices A1, A2 with dimension m1 × d, m2 × d and
b1, b2 being vectors of length m1, m2. The entries are integers with upper bound U in the
absolute value. For η2 ≥ 0 being a vector of length m2 such that the entries of η2 are bounded
by 1

2(d+1)((d+1)U)d+1 . Then if the system

A1x ≤ b1

A2x = b2 + η2

x ≥ 0
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is feasible then the system

A1x ≤ b1

A2x = b2

x ≥ 0

is feasible.

Proof of Lemma 23. In each iteration, the algorithm solves the LP Ãx ≤ b̃ + η1 with a set
of equality constraints Cx = g, where Ãx ≤ b̃ is a subset of the constraints of the original
LP Ax ≤ b. Note that, by construction, Cx = g is equivalent to a set of tight constraints
A′x = b′ in the original LP. Solving this LP gives us a solution that satisfies

A1x ≤ b1

A2x = b2 + η2

A′x = b′

for a vector η2 ≤ η1, where A1x ≤ b1 and A2x ≤ b2 are constraints in the original LP. Since
all entries of the above LP are bounded by U and η = 1

2(d+1)((d+1)U)d+1 , Lemma 24 implies
that the LP

A1x ≤ b1

A2x ≤ b2

A′x = b′ equivalently, Cx = g

is feasible. The PrivatePerceptron algorithm succeeds with probability 1− β and the sanitiza-
tion step succeeds with probability 1− δ. Therefore, after each iteration, with probability at
least 1− (β + δ) the set of tight (equality) constraints is increased by at least 1. Hence, with
probability at least 1− d(β + δ) the algorithm must terminate after at most d iterations.

By Lemma 22, in the homogenized LP after variable elimination, the margin is at least
η

((d+1)U)2(d+1) ≥ η3 = ρ. Therefore, with probability ≥ 1 − β, the number of dropped
constraints when using PrivatePerceptron in Line 5 is at most

O

(
d2

ϵ
log2 d

βδ

√
log 1

ρ

)
= O

(
d2.5

ϵ
log2 d

βδ

√
log(dU)

)
.

If in iteration t, the algorithm returns at Line 7, the number of dropped constraints in J2 is
at most d2

ϵ with probability at least

1− Pr
[
Lap

(
1
ϵ

)
< − log 1

δ

]
≥ 1− δ.

If the algorithm returns at Line 10, again, the number of dropped constraints is at most
O
(

d2

ϵ log2 d
βδ

√
log 1

ρ

)
with probability ≥ 1 − δ. By Theorem 20, the number of dropped

constraints by sanitization in each iteration is at most O
(

d2

ϵ log d
δ

)
with probability ≥ 1− δ.

Combining these, over all iterations, with probability at least 1− d(β + δ), the number of
dropped constraints is at most O

(
d3.5

ϵ log2 d
βδ

√
log(dU)

)
. ◀
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