
On Sums of INW Pseudorandom Generators
William M. Hoza #Ñ

Department of Computer Science, The University of Chicago, IL, USA

Zelin Lv # Ñ

Department of Computer Science, The University of Chicago, IL, USA

Abstract
We study a new approach for constructing pseudorandom generators (PRGs) that fool constant-width
standard-order read-once branching programs (ROBPs). Let X be the n-bit output distribution
of the INW PRG (Impagliazzo, Nisan, and Wigderson, STOC 1994), instantiated using expansion
parameter λ. We prove that the bitwise XOR of t independent copies of X fools width-w programs
with error nlog(w+1) · (λ · log n)t. Notably, this error bound is meaningful even for relatively large
values of λ such as λ = 1/O(log n).

Admittedly, our analysis does not yet imply any improvement in the bottom-line overall seed
length required for fooling such programs – it just gives a new way of re-proving the well-known
O(log2 n) bound. Furthermore, we prove that this shortcoming is not an artifact of our analysis,
but rather is an intrinsic limitation of our “XOR of INW” approach. That is, no matter how many
copies of the INW generator we XOR together, and no matter how we set the expansion parameters,
if the generator fools width-3 programs and the proof of correctness does not use any properties
of the expander graphs except their spectral expansion, then we prove that the seed length of the
generator is inevitably Ω(log2 n).

Still, we hope that our work might be a step toward constructing near-optimal PRGs fooling
constant-width ROBPs. We suggest that one could try running the INW PRG on t correlated seeds,
sampled via another PRG, and taking the bitwise XOR of the outputs.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases INW generator, pseudorandomness, space-bounded computation, XOR
Lemmas

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2025.67

Category RANDOM

Related Version Full Version: https://eccc.weizmann.ac.il/report/2025/050/ [20]

Acknowledgements We thank Huacheng Yu for collaboration during the early stages of this project.
We thank Gil Cohen and Dean Doron for valuable discussions. We thank Aaron Potechin for valuable
discussions and helpful comments on a draft of this paper.

1 Introduction

1.1 Pseudorandom generators for space-bounded computation
Randomness can be considered a type of “fuel” for computation. We prefer to use as little
randomness as possible, just like we prefer to minimize consumption of other types of “fuel.”
A pseudorandom generator (PRG) is a way of decreasing the number of random bits used in
computation.

▶ Definition 1 (PRG). Let X be a distribution over {0, 1}n and let f : {0, 1}n → {0, 1}. We
say that X fools f with error ε if

|E[f(X)] − E[f ]| ≤ ε.

© William M. Hoza and Zelin Lv;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2025).
Editors: Alina Ene and Eshan Chattopadhyay; Article No. 67; pp. 67:1–67:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:williamhoza@uchicago.edu
https://williamhoza.com
https://orcid.org/0000-0001-5162-9181
mailto:zlv@uchicago.edu
https://people.cs.uchicago.edu/~zlv/
https://orcid.org/0009-0003-3204-7620
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2025.67
https://eccc.weizmann.ac.il/report/2025/050/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


67:2 On Sums of INW Pseudorandom Generators

Here E[f ] is a shorthand for E[f(U{0,1}n)], where, in general, UR denotes the uniform
distribution over the finite set R. A pseudorandom generator (PRG) is a function G : R →
{0, 1}n for some finite set R. We say that G fools f with error ε if G(UR) fools f with error
ε. The seed length of the PRG is the quantity log |R|.1

In this paper, we study PRGs in the context of space-bounded computation. If we wish
to simulate a randomized space-bounded algorithm, then we ought to use a PRG that fools
standard-order read-once branching programs (ROBPs), defined next.

▶ Definition 2 (Standard-order ROBP). A width-w length-n standard-order read-once branch-
ing program (ROBP) is a directed acyclic multigraph. The vertices are arranged in n + 1
layers V0, V1, . . . , Vn, each consisting of w vertices. Each vertex in Vi where i < n has two
outgoing edges leading to Vi+1 labeled 0 and 1. One vertex v0 ∈ V0 is designated as the
start vertex, and each vertex v ∈ Vn is labeled with an output value qv ∈ {0, 1}. Each input
x ∈ {0, 1}n selects a walk through the program, defined by starting at v0 and traversing the
outgoing edge with label xi in step i. This walk ends at some vertex v ∈ Vn. The program
computes the function f given by f(x) = qv.

Polynomial-width standard-order ROBPs describe what log-space randomized algorithms
do on a fixed input as a function of their random bits. In this paper, we focus on the
constant-width case. There isn’t necessarily a clear connection between constant-width
ROBPs and uniform models of computation such as randomized Turing machines, but
constant-width ROBPs still constitute an extremely interesting nonuniform model of space-
bounded computation. The width-2 case is well-understood [44, 4, 19, 29]. In particular,
Saks and Zuckerman showed in the 1990s that there is an explicit PRG that fools width-2
branching programs with seed length O(log n) [44], which is optimal. Decades later, Meka,
Reingold, and Tal showed that there is an explicit PRG that fools width-3 standard-order
ROBPs with seed length Õ(log n) [35]. However, the best seed length bound for width-4
programs is O(log2 n), which is a special case of the following classic theorem.

▶ Theorem 3 ([38]). For every w, n ∈ N and every ε ∈ (0, 1), there exists an explicit PRG that
fools width-w length-n standard-order ROBPs with error ε and seed length O(log(wn/ε)·log n).

The original proof of Theorem 3 is due to Nisan [38]. There is an alternative proof
due to Impagliazzo, Nisan, and Wigderson [26] that is more relevant to the present paper.
Impagliazzo, Nisan, and Wigderson inductively defined a sequence of PRGs G0, G1, . . . ,
where Gj : Rj → {0, 1}2j , as follows.
1. Base case: Let R0 = {0, 1} and G0(x) = x.
2. Inductive step: Assume we have already constructed Gj−1. Let Hj be a Dj-regular

undirected multigraph on the vertex set Rj−1. Define Rj = Rj−1 × [Dj ] and

Gj(x, y) = (Gj−1(x), Gj−1(Hj [x, y])).

Here Hj [x, y] denotes the y-th neighbor of the vertex x in Hj .
Impagliazzo, Nisan, and Wigderson’s original analysis [26] shows that if λ(Hj) ≤ λ for every
j, then Glog n fools width-w length-n standard-order ROBPs with error λ · w · n. Here λ(Hj)
denotes the spectral expansion parameter of Hj , which can be defined as the second largest
eigenvalue of its transition probability matrix in absolute value. There are numerous explicit

1 Usually we want the domain to have the form R = {0, 1}s for some s ∈ N, but in this work we allow
arbitrary domains.



W. M. Hoza and Z. Lv 67:3

constructions of expander graphs Hj such that λ(Hj) ≤ λ and deg(Hj) ≤ poly(1/λ). (See,
for example, Vadhan’s pseudorandomness survey [47].) If we use such expander graphs, then
the seed length of Glog n is O(log n · log(1/λ)). Choosing λ = ε

wn completes the proof of
Theorem 3.

1.2 Instantiating the INW PRG with relatively mild expanders
It is a major open problem to design PRGs that fool constant-width standard-order ROBPs
with seed length o(log2 n). A natural thing to try is to simply increase the parameter
λ in the INW construction. Indeed, even when λ is relatively large, it turns out that
the INW generator still does a good job of fooling so-called “regular” and “permutation”
ROBPs [8, 15, 28, 45, 22]. More generally, one can try using different values of λ at the
different levels of the recursion, say λ1, . . . , λlog n. For example, Rozenman and Vadhan
showed how to use the INW generator, with λj = Ω(1) for most but not all j, to solve the
undirected s-t connectivity problem in deterministic log-space [43], re-proving Reingold’s
famous theorem [42].

Unfortunately, it turns out that no matter how we set the expansion parameters, the
INW generator is provably too weak to fool constant-width standard-order ROBPs with seed
length o(log2 n) [9, 23]. Making this statement precise is a little subtle, because “the” INW
generator is actually a whole family of PRGs, even after we fix the expansion parameters
λ1, . . . , λlog n. After all, the definition of the PRG does not specify which specific expander
graphs to use. For a vector λ⃗ = (λ1, . . . , λlog n), let us define INW(λ⃗) to be the set of all
PRGs Glog n that can be constructed via the INW template using graphs H1, . . . , Hlog n

satisfying λ(Hj) ≤ λj for every j. As a shorthand, let us also write INW(λ) for the special
case λ1 = λ2 = · · · = λlog n = λ when n is clear from context. (See Definition 23 for a more
detailed definition.) Then we have the following theorem due to Brody and Verbin [9], with
details filled in by Hoza, Pyne, and Vadhan [23]:

▶ Theorem 4 (Limitations of the INW generator [9, 23]). Let λ⃗ = (λ1, . . . , λlog n) ∈ [0, 1]log n.
If every PRG in the family INW(λ⃗) fools width-3 standard-order ROBPs with error 0.99,
then λj ≤ 1/nΩ(1) for Ω(log n) values of j, and moreover every PRG in the family INW(λ⃗)
has seed length Ω(log2 n).

Theorem 4 can be interpreted as saying that if one wishes to use the INW template
to construct a PRG that fools width-3 standard-order ROBPs with seed length o(log2 n),
then the proof of correctness would have to exploit some property of the specific graphs
H1, . . . , Hlog n beyond their spectral expansion. It is not clear what property would be
helpful.

1.3 A possible way forward: Unpredictability and Yao’s XOR Lemma
In this paper, we propose a new approach for constructing a near-optimal PRG fooling
constant-width standard-order ROBPs. The approach is based on the classic notion of
unpredictability. Specialized to the setting of standard-order ROBPs, unpredictability can be
defined as follows.

▶ Definition 5 (Unpredictability). Let X be a distribution over {0, 1}n. We say that X is
δ-unpredictable for width-w standard-order ROBPs if, for every i ∈ [n] and every width-w
length-(i − 1) standard-order ROBP f : {0, 1}i−1 → {0, 1}, we have

Pr[f(X1, X2, . . . , Xi−1) = Xi] ≤ 1
2 + δ.

If X = G(UR) where G : R → {0, 1}n, then we also describe G itself as being δ-unpredictable
for width-w standard-order ROBPs.

APPROX/RANDOM 2025



67:4 On Sums of INW Pseudorandom Generators

Interestingly, even though INW(1/ polylog n) does not fool width-3 programs (Theorem 4),
it turns out that INW(1/ polylog n) is unpredictable for constant-width programs. More
precisely, Fefferman, Shaltiel, Umans, and Viola showed that every PRG in the family INW(λ)
is O(w · λ · log n)-unpredictable for width-w standard-order ROBPs [16].2

How can we leverage the unpredictability of the INW generator to construct a PRG that
actually fools constant-width ROBPs? Fefferman, Shaltiel, Umans, and Viola suggested
combining the INW generator with a randomness extractor [16]. We propose a different
approach, inspired by Yao’s XOR Lemma in circuit complexity. Yao’s XOR Lemma is about
the average-case hardness of computing a Boolean function, or more generally the hardness
of guessing a Boolean random variable Y ∈ {0, 1} given some correlated random variable
X ∈ {0, 1}n. Let (X(1), Y (1)), . . . , (X(t), Y (t)) be t independent copies of (X, Y ). Roughly
speaking, Yao’s XOR Lemma says that if it is “somewhat hard” to guess Y given X, then it
is “very hard” to guess Y (1) ⊕ · · · ⊕ Y (t) given X(1), . . . , X(t). Here “somewhat hard” means
that all small circuits have, e.g., a constant failure probability, and “very hard” means that
all small circuits have a failure probability very close to 1/2.

Maurer and Tessaro observed that Yao’s XOR Lemma implies that the bitwise XOR
operation amplifies cryptographic unpredictability [34]. In more detail, let X be a distribution
that is δ-unpredictable for small circuits for a relatively large value of δ such as δ = 0.1.
Let X ′ = X(1) ⊕ · · · ⊕ X(t), where X(1), . . . , X(t) are independent copies of X. Yao’s XOR
Lemma implies that if a small circuit attempts to guess the i-th bit of X ′ given the first i − 1
bits of each copy X(1), . . . , X(t), then its success probability will be very close to 1/2. If the
circuit is only given the first i − 1 bits of X ′, then the prediction task becomes even more
difficult. Thus, X ′ is δ′-unpredictable for small circuits where δ′ ≪ δ.

Intuitively, we expect the same phenomenon to occur in the ROBP setting. If X ′ is
the bitwise XOR of t independent copies of some distribution X that is δ-unpredictable for
constant-width standard-order ROBPs, then we expect X ′ to be δ′-unpredictable for such
programs, where δ′ ≈ δt. By Yao’s so-called “distinguisher-to-predictor lemma,” this would
imply that X ′ actually fools such programs with error δ′ · n. Based on these considerations,
we propose the following two-step approach for constructing near-optimal PRGs fooling
constant-width standard-order ROBPs.

Step 1: Let G ∈ INW(1/ polylog n) be a PRG with seed length s = Õ(log n). Prove that
if we sample t ≈ log n seeds Z(1), . . . , Z(t) independently and uniformly at random, then
the bitwise XOR G(Z(1)) ⊕ · · · ⊕ G(Z(t)) fools constant-width standard-order ROBPs.
Step 2: Derandomize the proof of Step 1. That is, prove that G(Z(1))⊕· · ·⊕G(Z(t)) fools
constant-width standard-order ROBPs even if the seeds Z(1), . . . , Z(t) are not independent,
but rather they are generated in some pseudorandom manner using only Õ(log n) truly
random bits.

To be clear, “Step 1” is not in any way trivial, even if we ignore “Step 2.” Taking a
bitwise XOR of several independent samples from a distribution does not always improve
its pseudorandomness properties. For example, if X is k-wise uniform and uniform over a
subspace of Fn

2 (see Section 2.8), then the bitwise XOR of many copies of X has the same
distribution as a single copy of X. See also Theorem 10.

2 One way to prove this statement is to use the notion of weight introduced by Braverman, Rao, Raz, and
Yehudayoff [8]. For any next-bit predictor f : {0, 1}i−1 → {0, 1}, we can define a test g : {0, 1}i → {0, 1}
that checks whether f succeeds: g(x1, . . . , xi) = f(x1, . . . , xi−1) ⊕ xi. If f can be computed by a
width-w standard-order ROBP, then g can be computed by a width-w standard-order ROBP with
weight two. From here, Braverman, Rao, Raz, and Yehudayoff’s analysis shows that INW(λ) fools g
with error O(w · λ · log n) [8].



W. M. Hoza and Z. Lv 67:5

1.4 Sums of INW generators fool constant-width ROBPs
One of the main results of this paper is to accomplish “Step 1” described above. To state
our results more precisely, let us make the following definition.

▶ Definition 6 (XOR of INW generators). Let n, t ∈ N where n is a power of two, and let
Λ ∈ [0, 1]t×log n. Let INW⊕t(Λ) denote the set of all PRGs G : R1 × · · · × Rt → {0, 1}n of
the form

G(z(1), . . . , z(t)) = G(1)(z(1)) ⊕ · · · ⊕ G(t)(z(t)),

where G(i) ∈ INW(Λi) for every i ∈ [t]. Here Λi denotes the i-th row of Λ. As a shorthand,
we also write INW⊕t(λ) if every entry of Λ is equal to λ and n is clear from context.

We prove the following.

▶ Theorem 7 (INW⊕t fools constant-width ROBPs). Let n, w, t ∈ N where n is a power of
two, and let Λ ∈ [0, 1]t×log n. Every PRG in the family INW⊕t(Λ) fools width-w length-n
standard-order ROBPs with error

nlog(w+1) ·
t∏

i=1

log n∑
j=1

Λi,j .

For example, Theorem 7 implies that there is a value t = Θ( log w·log n+log(1/ε)
log log n ) such that

INW⊕t(1/ log2 n) fools width-w length-n standard-order ROBPs with error ε. By plugging in
explicit expanders of degree poly(1/λ), we get an explicit PRG that fools width-w length-n
standard-order ROBPs with error ε and seed length

O(log2 n · log w + log n · log(1/ε)),

re-proving Theorem 3 in the case w = O(1). For context, prior to our work, there were already
several different known ways to construct PRGs that fool constant-width standard-order
ROBPs (and more general models) using a seed of length O(log2 n) [38, 26, 2, 41, 18, 7] or
Õ(log2 n) [17]. Our Theorem 7 adds to this list.

We hope that there is value in having yet another proof of the O(log2 n) bound, but of
course the real goal is to construct a PRG with seed length o(log2 n). As discussed previously,
we believe that the most promising approach (“Step 2” in our proposal) is to “derandomize”
Theorem 7, i.e., prove that a similar error bound holds even if the t seeds for the INW
generators are chosen in some pseudorandom manner instead of sampling them independently.
So far, we have not figured out how to make such an approach work. However, we would like
to point out several “success stories” describing cases in which prior researchers managed to
solve similar problems:

There are known derandomized versions of Yao’s XOR Lemma [25, 27, 12].
The first asymptotically optimal “small-bias” generator, due to Naor and Naor [37], works
by plugging several correlated seeds into a weak initial generator and taking the bitwise
XOR of the results [37].
There are several constructions of low-error “weighted pseudorandom generators” and
“hitting set generators” for space-bounded computation that work by plugging several
correlated seeds into a “moderate-error” initial PRG and then combining the results in
some manner [24, 40, 14, 21, 5, 11, 10, 13].

We find these success stories encouraging.

APPROX/RANDOM 2025



67:6 On Sums of INW Pseudorandom Generators

1.5 Summing fewer copies of the INW generator does not work
Instead of analyzing correlated seeds, we can also consider a different and more straightforward
approach for improving the seed length of our PRG. What happens if we take an XOR of
fewer copies of the INW generator while still using relatively mild expander graphs? For
example, what if we try INW⊕2(1/ polylog n)?

We are inspired to ask this question because of a line of work on the bitwise XOR of
small-bias distributions. Recall that by definition, a distribution X over {0, 1}n is ε-biased
if, for every nonempty set S ⊆ [n], we have | Pr[⊕i∈SXi = 0] − Pr[⊕i∈SXi = 1]| ≤ ε. A
sequence of works has shown that the bitwise XOR of d independent small-bias distributions
fools degree-d polynomials over F2, whereas the XOR of only d − 1 small-bias distributions
does not (unless the bias parameter is extremely small) [6, 32, 48, 33]. This demonstrates
that a bitwise XOR of a small number of “weak” PRGs can sometimes be quite strong.
Indeed, the XOR of just two small-bias distributions has been proposed as a candidate PRG
for ROBPs [36, 31].

Unfortunately, we prove that INW⊕2(1/ polylog n) is not capable of fooling width-3
standard-order ROBPs. More generally, no matter how many or how few copies of the INW
generator we XOR together, and no matter how we set the expansion parameters, if the
resulting PRG fools width-3 programs, then the seed length is inevitably Ω(log2 n):

▶ Theorem 8 (Limitations of INW⊕t). Let n be a power of two, let t ∈ N, and let Λ ∈
[0, 1]t×log n. If every PRG in the family INW⊕t(Λ) fools width-3 standard-order ROBPs with
error 0.99, then every PRG in the family INW⊕t(Λ) has seed length Ω(log2 n).

1.6 Increasing t vs. decreasing λ: Two incomparable PRG paradigms
Motivated by Theorems 7 and 8, we wish to better understand how our new INW⊕t generator
compares to the classic INW generator. To be more precise, suppose that for some relatively
large value of λ, it turns out that INW(λ) is too weak to fool some class of functions. To
strengthen the PRG, one could try using INW⊕t(λ) for some t > 1, or one could try using
INW(λ′) for some λ′ < λ. Which approach is better?

We prove that these two approaches are in fact incomparable in general. There are cases
in which one approach is better, and there are cases in which the other approach is better.
We state these results precisely in the following two theorems. The first theorem describes a
case in which summing multiple generators is the better approach.

▶ Theorem 9 (A case where XORing is cheaper than using heavy-duty expanders).
1. For every λ ∈ (0, 1), every PRG in INW⊕2(λ) fools quadratic polynomials over F2 with

error O(
√

λ).
2. Let λ⃗ ∈ [0, 1]log n where n is a power of two. If every PRG in INW(λ⃗) fools quadratic

polynomials over F2 with error 0.49, then λj ≤ 2−Ω(2j) for every j ≥ 4, and moreover
every PRG in INW(λ⃗) has seed length Ω(n).3

Item 1 in the theorem above is an immediate consequence of prior work [28, 15, 45, 6, 32,
48]. The main content of the theorem is Item 2. Theorem 9 demonstrates the strength of the
“XOR of INW” paradigm. We hope that future researchers can capitalize on the strengths

3 We remark that the distinguishers we construct are read-once quadratic polynomials, and hence they
can be computed by width-4 ROBPs that read their input bits in some nonstandard order. This is an
example showing that the INW generator does not fool arbitrary-order ROBPs. Tzur previously showed
that Nisan’s PRG has this same weakness [46], but to the best of our knowledge, ours is the first such
example regarding the INW generator. We thank Adin Gitig for pointing out this gap in the literature.



W. M. Hoza and Z. Lv 67:7

of the INW⊕t generator to develop better PRGs for ROBPs. Next, let us discuss a case in
which summing multiple INW generators is worse than simply using one INW generator
with a slightly smaller λ value.

▶ Theorem 10 (A case where using heavy-duty expanders is cheaper than XORing). Let n be a
power of two and let λ ∈ ( 1000

n , 1
2 ). There exist λ′ = Ω(λ2) and f : {0, 1}n → {0, 1} such that

the following hold.
1. Every PRG in INW(λ′) fools f with error 0.01.
2. Let t ∈ N. If every PRG in INW⊕t(λ) fools f with error 0.99, then t ≥ Ω(λ · n/ log n),

and moreover every PRG in INW⊕t(λ) has seed length Ω(n · λ · log(1/λ)).

Theorem 10 is valuable because it helps us to interpret Theorem 7. As a reminder,
Theorem 7 says that constant-width ROBPs are fooled by a sum of INW(1/ polylog n)
generators. In a sense, Theorem 10 shows that Theorem 7 “could have been false” and
was not “inevitable.” Indeed, Theorem 10 shows that in general, the fact that a function
is fooled by INW(1/ poly(n)) does not automatically imply that it is fooled by a sum of
INW(1/ polylog n) generators. Consequently, Theorem 7 reveals a new weakness of the
constant-width ROBP model, above and beyond the well-known weakness of being fooled
by INW(1/ poly(n)). We hope that future researchers can further exploit the weaknesses of
such programs to fool them with a shorter seed.

It might be instructive to compare INW⊕t(λ) with a different family of PRGs. Let Gt(λ)
denote the set of generators one can construct by the following recursive paradigm:

G0(x) = x

Gi+1(x, y) = (Gi(x), Gi(Ht
i+1[x, y])),

where Hi+1 is a graph satisfying λ(Hi+1) ≤ λ. This is the same as the definition of the
INW generator, except that we use a t-th power of an expander graph instead of using a
generic expander graph. Then Gt(λ) ⊆ INW(λt), so a theorem saying “Every PRG in Gt(λ)
fools width-w length-n standard-order ROBPs with error λt · w · n” would be true but not
interesting. In contrast, Theorem 10 implies that INW⊕t(λ) ̸⊆ INW(λt), and we believe that
Theorem 7 is saying something new and interesting.

1.7 Proof techniques

1.7.1 Our proof that INW⊕t(λ) fools ROBPs, even if λ is relatively
large

In this section, we give a brief informal overview of our proof of Theorem 7, our positive
result on using INW⊕t(Λ) to fool constant-width standard-order ROBPs. For simplicity’s
sake, let us focus on the case that Λi,j = λ for every i, j, and let us assume that we take the
XOR of t copies of the same generator in INW(λ). The analysis is based on the following
alternative, equivalent description of the resulting PRG. We inductively define a sequence of
PRGs G0, G1, G2, . . . , where Gi : Rt

i → {0, 1}2i , as follows.
1. Base case: Let R0 = {0, 1} and let G0(x1, . . . , xt) = x1 ⊕ · · · ⊕ xt.
2. Inductive step: Assume we have already constructed Gj−1. Let Hj be a Dj-regular

expander graph on the vertex set Rj−1 satisfying λ(Hj) ≤ λ. Define Rj = Rj−1 × [Dj ]
and

Gj((x1, y1), . . . , (xt, yt)) = (Gj−1(x1, . . . , xt), Gj−1(Hj [x1, y1], . . . , Hj [xt, yt])). (1)

APPROX/RANDOM 2025



67:8 On Sums of INW Pseudorandom Generators

In effect, Equation (1) says that at each stage of the recursion, we use a tensor product of
expander graphs (Hj ⊗ · · · ⊗ Hj) to recycle the seed (x1, . . . , xt). Note that tensoring does
not improve expansion: λ(Hj ⊗ · · · ⊗ Hj) = λ(Hj).

Our job is to show that Gj fools width-w standard-order ROBPs. For simplicity’s sake,
let us focus on showing that the last bit of the output of Gj is δ-unpredictable for such
programs where δ = wj · (jλ)t. Let f be a width-w program that attempts to predict the
last bit of the output of Gj , given all the previous bits. The idea is to write the transition
probability matrix of Hj ⊗ · · · ⊗ Hj in the form

(J + E) ⊗ (J + E) ⊗ · · · ⊗ (J + E).

Here J is the transition matrix of the complete graph with self-loops, and E is an “error
matrix” with operator norm at most λ. After expanding, we get a sum of terms, each of
which has the form J⊗k ⊗ E⊗(t−k) (after reordering if necessary).

To analyze such a term, we can first consider any fixing of the last t − k parts of the
seed, allowing us to focus on the J⊗k factor. This J⊗k factor corresponds to running
INW(λ)⊕k twice, on two independent seeds, and concatenating the results. Since f is trying
to predict the last bit, the first copy of INW(λ)⊕k is completely irrelevant; it does not give
f any advantage whatsoever. Meanwhile, by induction, the second copy is ε-unpredictable
where ε = wj−1 · ((j − 1) · λ)k. Meanwhile, the matrix E⊗(t−k) has operator norm at most
λt−k. As it turns out, this has the effect of dampening the inductive advantage bound
by a factor of w · λt−k, so that overall the advantage from the J⊗k ⊗ E⊗(t−k) term is at
most wj · (j − 1)k · λt. Summing over all terms, we get an overall advantage bound of
wj · λt ·

∑t
k=0

(
t
k

)
(j − 1)k = wj · (jλ)t.

In the full proof, in order to optimize parameters and to make the proof as simple as
possible, we ultimately do not formally use the notion of unpredictability, but the idea
remains the same.

1.7.2 Our proof that sums of INW PRGs with seed length o(log2 n) do
not fool ROBPs

Next, let us discuss our proof that if the entries of Λ are large enough that there exists a
generator in INW⊕t(Λ) with seed length o(log2 n), then the entries of Λ are so large that
there exists a generator in INW⊕t(Λ) that does not fool width-3 programs (Theorem 8). For
simplicity’s sake, let us focus on the case t = 2. The proof builds on the works of Brody
and Verbin [9], Hoza, Pyne, and Vadhan [23], and Lee and Viola [31]. We construct our
INW⊕2 generator using Cayley graphs over the group Fn

2 , i.e., expander graphs of the form
H[x, y] = x ⊕ G(y) where G is a small-bias generator. By using both Cayley graphs and
complete graphs where appropriate, we ensure that the output of our INW⊕2 generator has
many substrings of the form

(x ⊕ x′, x ⊕ x′ ⊕ G(y) ⊕ G(y′)),

where x, x′, G(y), G(y′) ∈ {0, 1}m for some m = Θ(log n).
We instantiate G using a small-bias generator constructed by Lee and Viola [31]. Their

generator outputs noisy codewords, i.e., the output is a + b where a is a random element of a
subspace C⊥ ⊆ Fm

2 and b is a random vector of low Hamming weight. Crucially, Lee and
Viola observe that the sum of two noisy codewords is another noisy codeword. Consequently,
letting z = x ⊕ x′, the output of our INW⊕2 generator has many substrings of the form

(z, something close to C⊥ ⊕ z).



W. M. Hoza and Z. Lv 67:9

The specific parameters ensure that the description above is nontrivial, i.e., there is some
v∗ such that such a substring is never equal to (0m, v∗). Our width-3 distinguisher checks
all the relevant regions of its input and accepts if it ever sees the specific substring (0m, v∗).
With some tweaks, it turns out that this approach is strong enough to prove Theorem 8.

1.7.3 Our proof that INW with small λ is incomparable with INW⊕t

with large λ

Next, let us briefly explain how we construct an INW generator G that does not fool quadratic
polynomials over F2 (Item 2 in Theorem 9). The construction is based on the inner product
function IP. We construct an expander graph H = (V, E) such that IP(x, y) = 0 for every
(x, y) ∈ E. The construction is essentially E = IP−1(0), except that we must redirect a few
edges to ensure that the graph is regular. Using this expander graph H, we can construct an
INW generator whose output is always rejected by IP. In contrast, E[IP] = 1/2 − o(1) under
the uniform distribution.

Finally, let us briefly discuss the proof of Theorem 10 (a case where INW⊕t(λ) performs
poorly, but INW(λ′) performs well when λ′ is slightly smaller than λ). We use Cayley graphs
to construct an INW⊕t(λ) generator that has many (2m)-bit substrings of the form(

t⊕
i=1

xi,

t⊕
i=1

(xi ⊕ Gi(yi)),
t⊕

i=1
x′

i,

t⊕
i=1

(x′
i ⊕ Gi(y′

i))
)

,

where G1, . . . , Gt are small-bias generators, and, crucially, we ensure that y1 and y′
1 disagree

somewhere in their last log(1/λ) bits.
Our distinguisher begins by canceling out the x’s to compute the sums

⊕t
i=1 Gi(yi) and⊕t

i=1 Gi(y′
i). Next, the distinguisher inverts these sum-of-small-bias generators to compute

the underlying seeds y1, . . . , yt, y′
1, . . . , y′

t. (We use a probabilistic argument to show that
there exist small-bias generators G1, . . . , Gt for which this inversion procedure is possible.)
Finally, the distinguisher rejects if the last log(1/λ) bits of y1 agree with the last log(1/λ)
bits of y′

1, and otherwise it accepts.
By construction, the distinguisher accepts every output of our INW⊕t(λ) generator. In

contrast, we show that it has low acceptance probability under any INW(λ′) generator, where
λ′ is just a little smaller than λ. The proof is based on two ideas.

In later rounds of the INW recursion, we can use standard techniques based on “commu-
nication bottlenecks” to argue that the expander graph in the INW construction does
not introduce much error. In particular, after processing

⊕
i xi and

⊕
i(xi ⊕ Gi(yi)), the

distinguisher only needs to remember the last log(1/λ) bits of the computed seed y1. As
a result, the acceptance probability is close to what it would be if we used independent
seeds instead of correlated seeds in these later rounds of the INW construction.
Our remaining task is to bound our distinguisher’s acceptance probability under a
concatenation of many independent INW(λ′) generators, each of which outputs m bits.
We are not able to say anything about the distribution of the distinguisher’s computed y1
seed. However, simply because they are independent and identically distributed, there is
a noticeable chance that the distinguisher’s computed y1 and y′

1 seeds happen to agree in
their last log(1/λ) bits. By doing O(1/λ) independent trials, we ensure that the overall
acceptance probability is low.

The proofs of Theorems 9 and 10 are omitted from this extended abstract, but they can be
found in the full version of this paper [20].

APPROX/RANDOM 2025



67:10 On Sums of INW Pseudorandom Generators

1.8 Additional related work
Assadi and N established a general XOR lemma for streaming algorithms [3] (see also work
by Lee, Pyne, and Vadhan [30]). However, their XOR lemma does not imply anything
about INW⊕t, because they focus on the scenario in which the streaming algorithm sees t

instances of a problem in sequence, one after another, instead of seeing the bitwise XOR of
the instances.

Several prior works have proved limitations on the power of sums of small-bias distributions
to fool various types of tests [6, 33, 36, 4, 31]. Our negative result about using INW⊕t to fool
ROBPs (Theorem 8) is in a similar spirit, and indeed the proof builds on Lee and Viola’s
work [31] as mentioned previously.

2 Preliminaries

2.1 Read-once evaluation programs (ROEPs)
Ultimately, the model of computation we are interested in is the standard-order ROBP model
(Definition 2). At intermediate stages of our argument, we will use a slight generalization
of the ROBP model called the “read-once evaluation program” (ROEP) model, introduced
by Braveman, Rao, Raz, and Yehudayoff [8]. An ROEP is simply an ROBP with fractional
output values:

▶ Definition 11 (Standard-order ROEP [8]). A width-w length-n standard-order read-once
evaluation program (ROEP) is defined just like a width-w length-n standard-order ROBP
(Definition 2), except that the output values qv are permitted to be any values in [0, 1]. Thus,
the program computes a function f : {0, 1}n → [0, 1]. We say that a distribution X over
{0, 1}n fools f with error ε if |E[f(X)] − E[f ]| ≤ ε.

2.2 Graphs
For any graph H, we use V (H) to denote the vertex set of H. As discussed in the introduction,
we use the notation H[x, y] to denote the y-th neighbor of the vertex x in the graph H. This
is well-defined provided that H is a labeled graph, defined as follows.

▶ Definition 12 (Graph labeling). Let H = (V, E) be a D-regular directed multigraph. We say
that H is labeled if for every vertex x, the outgoing edges are labeled 1, . . . , D. In this case,
we write H[x, y] to denote the vertex reached from x by traversing the outgoing edge labeled
y. If H is a D-regular undirected multigraph, then we identify H with the symmetric digraph
obtained by replacing each undirected edge {x, x′} with two directed edges: (x, x′) and (x′, x).
If we say that H is “labeled,” we allow the two edges (x, x′) and (x′, x) to have distinct labels.

We write KR to denote the complete graph on R vertices without self-loops, and we
write JR to denote the complete graph on R vertices with self-loops. We write J or J∗ if the
number of vertices is clear from context. Several occurrences of “J∗” in a single equation
might represent complete graphs on several different numbers of vertices.

If H is a D-regular undirected multigraph on R vertices, its transition probability matrix
is the matrix M ∈ [0, 1]R×R defined by letting Mu,v = e(u,v)

D , where e(u, v) denotes the
number of edges from u to v. We often abuse notation by identifying a graph H with its
transition probability matrix. For example, we use JR to denote the R × R matrix in which
every entry is equal to 1/R.



W. M. Hoza and Z. Lv 67:11

2.3 Spectral expansion
For a matrix M ∈ RR×R, we use the notation ∥M∥op to denote the operator norm of M , i.e.,

∥M∥op = max
x∈RR

∥x∥2=1

∥xM∥2.

▶ Definition 13 (Expansion parameter). Let H be a regular undirected multigraph. The
expansion parameter λ(H) is defined as

λ(H) = ∥H − J∥op.

Equivalently, one can define λ(H) to be the second-largest eigenvalue of H in absolute value.

For example, λ(J) = 0. The complete graph without self-loops also has quite a good
expansion parameter:

▶ Fact 14 (Expansion parameter of the complete graph without self-loops). For every R ∈ N,
we have λ(KR) = 1/(R − 1).

Proof sketch. The following R vectors are linearly independent eigenvectors of KR:
The all-ones vector, which has eigenvalue 1;
Vectors of the form (1, 0, 0, . . . , 0, −1, 0, 0, . . . , 0), each of which has eigenvalue −1/(R −
1). ◀

Cayley graphs are a more interesting class of expanders. The general definition is as
follows.

▶ Definition 15 (Cayley graph). Let V be a group, let R be a finite set, and let G : R → V

be a function. The Cayley graph Cay(V, G) is a labeled |R|-regular directed multigraph on
the vertex set V defined by

Cay(V, G)[x, y] = x · G(y), (2)

where · is the group operation.

We will only use this definition in the special case that V = Fn
2 , so Equation (2) becomes

Cay(Fn
2 , G)[x, y] = x ⊕ G(y).

It is well-known that if G is a small-bias generator, then Cay(Fn
2 , G) is an expander. We

include the proof for completeness’ sake.

▶ Lemma 16 (Expanders from small-bias generators). Let n ∈ N and let G : R → Fn
2 be a

λ-biased generator. Then λ(Cay(Fn
2 , G)) ≤ λ.

Proof. Let A be the 2n × 2n transition probability matrix of Cay(Fn
2 , G). Then

A = 1
|R|

∑
y∈R

A(y),

where A
(y)
x,x′ = 1 if x′ = x ⊕ G(y) and 0 otherwise.

The 2n eigenvectors of A(y) are the character functions χa (viewed as vectors indexed by
Fn

2 ). Indeed,

(χaA(y))x =
∑
x′

χa(x′) A
(y)
x′,x = χa(x ⊕ G(y)) = χa(x) · χa(G(y)),

APPROX/RANDOM 2025



67:12 On Sums of INW Pseudorandom Generators

because the only x′ for which A(y)(x′, x) is nonzero is x′ = x ⊕ G(y). Hence χa is an
eigenvector of A(y) with eigenvalue χa(G(y)), and by linearity χa is an eigenvector of A with
eigenvalue

λa = 1
|R|

∑
y∈R

χa(G(y)) = Ey∈R[χa(G(y))].

Then we have all 2n eigenvalues of A. When a = 0, one finds λ0 = 1, and so

λ
(
Cay(Fn

2 , G)
)

= max
a̸=0

∣∣Ey∈R[χa(G(y))]
∣∣.

Since G is an λ-biased generator,
∣∣Ey∼R

[
χa(G(y))

]∣∣ ≤ λ, for all nonzero a ∈ Fn
2 . ◀

2.4 Lower bound on the degree of expander graphs
To prove our seed length lower bounds, we rely on the following standard fact.

▶ Proposition 17 (Expander graph degree lower bound). Let H be an undirected D-regular
graph on R vertices. Then

λ(H) ≥
√

1
D

· R − D

R − 1 .

In particular, D ≥ min{1/(2 · λ(H)2), (R + 1)/2}, and if D = 1, then λ(H) = 1.

A proof of Proposition 17 can be found in the full version of this paper [20].

2.5 Tensor products
▶ Definition 18 (Tensor product of graphs). Given a pair of labeled graphs H1, H2 on R1,
R2 vertices with degrees D1, D2 respectively, define the tensor product H1 ⊗ H2 to be the
(D1 ·D2)-regular graph on R1 ·R2 vertices with neighbor relation (H1 ⊗H2)[(u1, u2), (e1, e2)] =
(H1[u1, e1], H2[u2, e2]).

▶ Proposition 19 (Spectral expansion of a tensor product). Let H1, H2 be undirected regular
graphs. Then λ(H1 ⊗ H2) = max(λ(H1), λ(H2)).

We also use the notation M ⊗ M ′ to denote the tensor product of matrices, aka the
Kronecker product.

▶ Fact 20 (Operator norm of tensor product). For any two matrices M, M ′, we have

∥M ⊗ M ′∥op = ∥M∥op · ∥M ′∥op.

2.6 Expander mixing lemma
We will use the following weak version of the famous “expander mixing lemma.”

▶ Lemma 21 (Expander mixing lemma). Let H = (V, E) be a regular undirected multigraph.
Let f, g : V → {0, 1}. Sample a uniform random vertex X, then sample a uniform random
neighbor Y of X. Then

|E[f(X) · g(Y )] − E[f ] · E[g]| ≤ λ(H).

For a proof, see, e.g., Vadhan’s pseudorandomness survey [47].



W. M. Hoza and Z. Lv 67:13

2.7 INW generators
We now present a more precise definition of the INW generator, in case the informal definition
in the introduction was not sufficiently clear.

▶ Definition 22 (Permissible families of graphs). Let n be a power of two, let D1, . . . , Dlog n ∈ N,
let Hi be a labeled Di-regular undirected multigraph for every i ∈ [log n], and let H⃗ =
(H1, . . . , Hlog n). We say that H⃗ is permissible if V (H1) = [2] and V (Hi+1) = V (Hi) × [Di]
for every i ∈ [log n − 1], where V (H) denotes the vertex set of H.

More generally, suppose H is a t × log n matrix of labeled regular undirected multigraphs:

H =

H1,1 . . . H1,log n

...
. . .

...
Ht,1 . . . Ht,log n

 .

We say that H is permissible if each row is permissible.

▶ Definition 23 (INW generators). Let H⃗ = (H1, . . . , Hlog n) be a permissible family of labeled
regular undirected multigraphs. We define INWH⃗ : V (Hlog n) → {0, 1}n recursively by the
formulas

INW()(x) = x

INW(H1,,̇Hj)(x, y) = (INW(H1,...,Hj−1)(x), INW(H1,...,Hj−1)(Hj [x, y])).

More generally, let H be a t × log n matrix of labeled regular undirected multigraphs, say

H =

H1,1 . . . H1,log n

...
. . .

...
Ht,1 . . . Ht,log n

 ,

and assume that H is permissible. We define INW⊕t
H : V (H1,log n)×· · ·×V (Ht,log n) → {0, 1}n

by the formula

INW⊕t
H (x1, . . . , xt) = INWH1(x1) ⊕ · · · ⊕ INWHt

(xt),

where H1, . . . , Ht are the rows of H.
For a vector λ⃗ ∈ [0, 1]log n, we define

INW(λ⃗) =
{

INWH⃗ : H⃗ is a 1 × log n permissible family and λ(Hj) ≤ λj for all j
}

.

When n is clear from context, we use INW(λ) as a shorthand for the case that λj = λ for
every j. Similarly, for a matrix Λ ∈ [0, 1]t×log n, we define

INW⊕t(Λ) = {INWH : H is a t × log n permissible family and λ(Hi,j) ≤ Λi,j for all i, j} .

When n is clear from context, we use INW⊕t(λ) as a shorthand for the case that Λi,j = λ

for every i, j.

2.8 Binary linear code
In this section we briefly review the basic concepts of the coding theory.

APPROX/RANDOM 2025



67:14 On Sums of INW Pseudorandom Generators

▶ Definition 24 (Binary Linear Code). A binary linear code C of block length m is a subspace
of Fm

2 , where F2 is the field with two elements. The minimum distance d of C is the smallest
Hamming weight among all nonzero codewords in C.

▶ Definition 25 (Binary Entropy Function). For 0 ≤ δ ≤ 1, the binary entropy function is
defined as

H(δ) = −δ log2(δ) − (1 − δ) log2(1 − δ),

with the convention that 0 log2 0 = 0.

▶ Theorem 26 (GV bound for binary linear codes). For every m, k ∈ N such that k ≤ m/2,
there exists a binary linear code of block length m with minimum distance k +1 and dimension
at least ⌊(1 − H(k/m)) · m⌋.

▶ Corollary 27. For every δ ∈ (0, 1/2), there is a subspace C⊥ ⊆ Fm
2 of dimension at most

⌈H(δ) · m⌉ such that the uniform distribution over C⊥ is (δm)-wise uniform distribution,
which means every ⌊δm⌋ bits of this distribution are uniform over {0, 1}⌊δm⌋.

The proofs of Theorem 26 and Corollary 27 can be found in the full version of this
paper [20].

3 Proof that sums of INW generators fool constant-width ROBPs

In this section, we present the proof of Theorem 7, which says that INW⊕t(Λ) fools width-w
programs with error nlog(w+1) ·

∏t
i=1
∑log n

j=1 Λi,j . The proof is based on the notion of a robust
PRG. Roughly speaking, a robust PRG is a multi-seed PRG that still works even if some
seeds are fixed to arbitrary values, with an error bound that depends on the number of
random seeds. The precise definition is as follows.

▶ Definition 28 (Robust PRG). Let R1, . . . , Rt be finite sets, let G : R1 × · · · × Rt → {0, 1}n,
let W ≥ 0, let ε⃗ = (ε1, . . . , εt) ∈ (0, 1)t, and let f : {0, 1}n → R. We say that G robustly
(W, ε⃗)-fools f if the following holds. For every A ⊆ [t] and every x[t]\A ∈

∏
i∈[t]\A Ri, if we

sample xA ∈
∏

i∈A Ri uniformly at random, then∣∣∣∣ExA

[f(G(x1, . . . , xt))] − E[f ]
∣∣∣∣ ≤ W ·

∏
i∈A

εi.

For example, if R1 = · · · = Rt = {0, 1} and G(x1, . . . , xt) = x1 ⊕· · ·⊕xt, then G robustly
(1, 0⃗)-fools every function f : {0, 1} → [0, 1]. This example will serve as the base case of our
analysis of INW⊕t. The inductive step will be based on the following lemma, which shows
how to double the output length of a robust PRG fooling ROEPs.

▶ Lemma 29 (Inductive step in the analysis of INW⊕t). Let n, w ∈ N where n is even.
Let R1, . . . , Rt be finite sets. Let G : R1 × · · · × Rt → {0, 1}n/2. Let W ≥ 0 and ε⃗ ∈
(0, 1)t, and assume that G robustly (W, ε⃗)-fools all width-w length-(n/2) standard-order
ROEPs. For each i ∈ [t], let H(i) be a Di-regular multigraph on the vertex set Ri. Let
λ⃗ = (λ(H(1)), . . . , λ(H(t))). Define G′ : (R1 × [D1]) × · · · × (Rt × [Dt]) → {0, 1}n by the
formula

G′((x1, y1), . . . , (xt, yt)) = (G(x1, . . . , xt), G(H(1)[x1, y1], . . . , H(t)[xt, yt])).

Then G′ robustly (W · (w + 1), ε⃗ + λ⃗)-fools all width-w length-n standard-order ROEPs.



W. M. Hoza and Z. Lv 67:15

Proof. Let f : {0, 1}n → [0, 1] be a width-w length-n standard-order ROEP. Fix any set
A ⊆ [t]. For every i ∈ [t] \ A, let xi, x′

i ∈ Ri be arbitrary fixed values. We also write
Xi = xi and X ′

i = x′
i for every i ∈ [t] \ A. Meanwhile, for every i ∈ A, sample Xi ∈ Ri

and Yi ∈ [Di] independently and uniformly at random, and let X ′
i = H(i)[Xi, Yi]. Let

X = (X1, . . . , Xt) and X ′ = (X ′
1, . . . , X ′

t). Our goal is to show that (G(X), G(X ′)) fools f

with error W · (w + 1) ·
∏

i∈R(εi + λi).
For each vertex u in the middle layer of f , define f→u : {0, 1}n/2 → {0, 1} by letting f→u(z)

indicate whether f reaches u when it reads z. Furthermore, define fu→ : {0, 1}n/2 → [0, 1] by
letting fu→(z) be the label of the vertex reached in the final layer if we start at u and read
z. Let µu→ = E[fu→] and f̄u→ = fu→ − µu→. Then for any z, z′ ∈ {0, 1}n/2, we have

f(z, z′) =
∑

u∈[w]

f→u(z) · fu→(z′) =

∑
u∈[w]

f→u(z) · f̄u→(z′)

+

∑
u∈[w]

f→u(z) · µu→

 .

The second sum above is computable by a width-w standard-order ROEP fleft : {0, 1} n
2 →

[0, 1] that ignores the second half of its input. By assumption, (G(X), G(X ′)) fools fleft with
error W ·

∏
i∈R εi.

Now consider a single term in the first sum, f→u(z) · f̄u→(z′). Under the uniform
distribution, we have

E[f→u · f̄u→] = E[f→u] · E[f̄u→] = E[f→u] · (µu→ − µu→) = 0.

Now we analyze the expectation under the pseudorandom distribution (G(X), G(X ′)). We
begin by writing the expectation as a sum. For convenience, for any set S ⊆ [t], let us use
the notation RS to denote the Cartesian product

∏
i∈S Ri. Furthermore, let us identify the

graph H(i) with its transition probability matrix. Then we have

E[f→u(G(X)) · f̄u→(G(X ′))]

=
∑

xA,x′
A

∈RA

Pr[X = x and X ′ = x′] · f→u(G(x)) · f̄u→(G(x′))

=
∑

xA,x′
A

∈RA

(∏
i∈A

Hxi,x′
i

|Ri|

)
· f→u(G(x)) · f̄u→(G(x′)),

where the notation x denotes the vector x = (x1, . . . , xt), and similarly x′ = (x′
1, . . . , x′

t).
Next, we use the decomposition H(i) = J|Ri| + E(i), where J|Ri| has 1/|Ri| in every entry
and E(i) is some matrix with operator norm λi. Applying this decomposition entrywise, we
get

E[f→u(G(X)) · f̄u→(G(X ′))]

=
∑

xA,x′
A

∈RA

∏
i∈A

 1
|Ri|2

+
E

(i)
xi,x′

i

|Ri|

 · f→u(G(x)) · f̄u→(G(x′))

=
∑

A=S⊔T

∑
xT ,x′

T
∈RT

∏
i∈T

E
(i)
xi,x′

i

|Ri|

 E
xS ,x′

S
∈RS

[f→u(G(x)) · f̄u→(G(x′))],

where the outer sum is over all partitions of A into two disjoint sets, S and T . The product∏
i∈T E

(i)
xi,x′

i
is exactly the (xT , x′

T ) entry in the tensor product matrix
⊗

i∈T E(i). Meanwhile,
the expectation

E
xS ,x′

S
∈RS

[f→u(G(x)) · f̄u→(G(x′))]

APPROX/RANDOM 2025



67:16 On Sums of INW Pseudorandom Generators

splits as a product of expectations. Thus, we get

E[f→u(G(X)) · f̄u→(G(X ′))]

=
∑

A=S⊔T

1
|RT |

·
∑

xT ,x′
T

∈RT

(⊗
i∈T

E(i)

)
xT ,x′

T

· E
xS∈RS

[f→u(G(x))] · E
x′

S
∈RS

[f̄u→(G(x′))].

We can think of the first expectation, ExS∈RS
[f→u(G(x))], as a single entry axT

in a
long vector a ∈ RRT . Similarly, we think of the second expectation, ExS∈RS

[f̄u→(G(x′))], as
a single entry bx′

T
in a long vector b ∈ RRT . In this way, the inner sum above becomes a

vector-matrix-vector product:

|E[f→u(G(X)) · f̄u→(G(X ′))]| =

∣∣∣∣∣ ∑
A=S⊔T

1
|RT |

· aT · E⊗T · b

∣∣∣∣∣
≤

∑
A=S⊔T

1
|RT |

· ∥a∥2 ·

∥∥∥∥∥⊗
i∈T

E(i)

∥∥∥∥∥
op

· ∥b∥2

≤
∑

A=S⊔T

∥a∥∞ · ∥b∥∞ ·
∏
i∈T

∥E(i)∥op

=
∑

A=S⊔T

∥a∥∞ · ∥b∥∞ ·
∏
i∈T

λi.

The function f→u is {0, 1}-valued, so ∥a∥∞ ≤ 1. Meanwhile, for any fixing of x′
T ∈ RT ,

the entry bx′
T

is precisely the error when we sample x′
S ∈ RS uniformly at random and try

to use G(x′) to fool fu→, a width-w length-(n/2) standard-order ROEP. By assumption,
∥b∥∞ ≤ W ·

∏
i∈S εi. Therefore,

|E[f→u(G(X)) · f̄u→(G(X ′))]| ≤ W ·
∑

A=S⊔T

(∏
i∈S

εi

)
·

(∏
i∈T

λi

)
= A ·

∏
i∈A

(εi + λi).

Consequently, summing up all the errors, we get

|E[f(G(X), G(X ′))]−E[f ]| ≤

∑
u∈[w]

W ·
∏
i∈A

(εi + λi)

+W ·
∏
i∈A

εi ≤ W (w+1)·
∏
i∈A

(εi+λi).◀

Proof of Theorem 7. Let Glog n be any PRG in the family INW⊕t(Λ). We will prove by
induction on n that Glog n robustly (W, ε⃗)-fools width-w length-n standard-order ROEPs,
where W = (w + 1)log n and εi =

∑log n
j=1 Λi,j . For the base case, if n = 1, then there

is exactly one PRG in the family INW⊕t(Λ), namely G0 : {0, 1}t → {0, 1} is given by
G0(x) = x1 ⊕ · · · ⊕ xt. This PRG indeed robustly (1, 0⃗)-fools all functions f : {0, 1} → [0, 1].
Now, for the inductive step, suppose n > 1. By definition of INW⊕t(Λ), the PRG Glog n has
the form Glog n(a1, . . . , at) = G

(1)
log n(a1) ⊕ · · · ⊕ G

(t)
log n(at), where G

(i)
log n ∈ INW(Λi) for every

i. By definition of INW(Λi), the seed ai is a pair (xi, yi), and the generator G
(i)
log n has the

form

G
(i)
log n(xi, yi) = (G(i)

log n−1(xi), G
(i)
log n−1(H(i)[xi, yi]))

for some G
(i)
log n−1 ∈ INW((Λi,1, . . . , Λi,log n−1)) and some Λi,log n-spectral expander H(i).

Define a PRG Glog n−1 by the rule

Glog n−1(x1, . . . , xt) = G
(1)
log n−1(x1) ⊕ · · · ⊕ G

(t)
log n−1(xt).



W. M. Hoza and Z. Lv 67:17

Then Glog n−1 ∈ INW⊕t(Λ′), where Λ′ consists of all but the last column of Λ. By induction,
Glog n−1 robustly ((w + 1)log n−1, α⃗)-fools width-w length-n standard-order ROEPs, where
αi =

∑log n−1
j=1 Λi,j . Working through the definitions, we see that the PRG Glog n can be

written as

Glog n((x1, y1), . . . , (xt, yt)) = (Glog n−1(x1, . . . , xt), Glog n−1(H(1)[x1, y1], . . . , H(t)[xt, yt])).

Applying Lemma 29 completes the inductive step.
Finally, since Glog n robustly (W, ε⃗)-fools width-w length-n standard-order ROEPs, it

follows that Glog n fools width-w length-n standard-order ROBPs with error ε, where

ε = W ·
t∏

i=1
εi = nlog(w+1) ·

t∏
i=1

log n∑
j=1

Λi,j . ◀

4 Seed length lower bound for fooling ROBPs

In this section, we prove Theorem 8, which states that no matter how many (or how few)
copies of the INW generator we XOR together, and regardless of how we set the expansion
parameters, if the resulting PRG fools width-3 programs, then the seed length is inevitably
Ω(log2 n).

4.1 Sums of small-bias distributions
We begin by analyzing a family of a small-bias distributions introduced by Lee and Viola [31].
This construction guarantees that summing independent samples from these distributions
does not substantially increase the overall number of distinct strings.

▶ Definition 30 (Sum of sets). For S, T ⊆ {0, 1}m, S + T = {s ⊕ t | s ∈ S, t ∈ T}.

▶ Lemma 31 (Small-bias distributions with a small sum set). For every m, t ∈ N and every
ε1, . . . , εt ∈ (0, 1] such that ⌈ln(1/ε1)⌉ + · · · + ⌈ln(1/εt)⌉ < 1

625 · m, there exist distributions
D1, . . . , Dt over {0, 1}m such that Di is εi-biased for every i, and

| Supp(D1) + · · · + Supp(Dt)| < 2 · 2m/2.

Furthermore, the probability mass function of each Di only takes on rational values.

Proof. For each i ∈ [t], we construct Di by taking the bitwise XOR X ⊕ Yi, where X is
distributed uniformly over C⊥ which is ( m

25 )-wise uniform constructed by Corollary 27, and
Yi is an independent “noise vector” constructed as follows. Repeat the following process ri

times independently, where ri = ⌈25 ln (1/εi)⌉: choose a position uniformly at random from
[m], and set it to a uniform bit. The remaining bits of Yi are zero. Note that X is uniform
over a subspace of Fm

2 and the probability of getting a particular noise vector y is a multiple
of (1/m)ri , which is a rational number.

First we prove that each Di is εi-biased. For any character function χS with |S| < m
25 ,

since X and Yi are independent and X is ( m
25 )-wise uniform, χS is perfectly fooled by Di.

Next, consider any character function χS , where |S| ≥ m
25 . In this case, the bias is nonzero

only if none of the elements in S are selected by the random noise Yi. So the bias is at most

(1 − |S|/m)ri ≤ exp(−ri · |S|/m) ≤ εi.

Thus, we have shown that each Di is εi-biased.

APPROX/RANDOM 2025



67:18 On Sums of INW Pseudorandom Generators

By the closure property of linear subspaces,

| Supp(D1) + · · · + Supp(Dt)| = | Supp(X) + Supp(Y1) + · · · + Supp(X) + Supp(Yt)|
= |C⊥ + · · · + C⊥ + Supp(Y1) + · · · + Supp(Yt)|
= |C⊥ + Supp(Y1) + · · · + Supp(Yt)|.

The set C⊥ + Supp(Y1) + · · · + Supp(Yt) is precisely the set of all binary strings within
Hamming distance at most r1 + · · · + rt ≤ ⌈25 ln(1/ε1)⌉ + . . . + ⌈25 ln(1/εt)⌉ < m

25 from C⊥.
Therefore,

|X + Supp(Y1) + · · · + Supp(Yt)| ≤ |C⊥| ·
(

m

≤ m/25

)
≤ 2⌈H( 1

25 )·m⌉ · 2H( 1
25 )·m

< 2 · 2m/2. ◀

▶ Remark 32 (The benefit of noisy codewords). In the proof of Lemma 31, we use small-bias
distributions based on noisy codewords [31]. A more straightforward approach for minimizing
| Supp(D1) + · · · + Supp(Dt)| would be to simply make | Supp(Di)| as small as possible and
then use the trivial bound

| Supp(D1) + · · · + Supp(Dt)| ≤
t∏

i=1
| Supp(Di)|.

This approach is too weak to prove Lemma 31. Indeed, every small-bias distribution Di

satisfies | Supp(Di)| ≥ Ω(m) [1], so we inevitably have
∏t

i=1 | Supp(Di)| ≥ Ω(m)t, so the
bound is trivial when t ≥ 1.01 · m/ log m. In contrast, Lemma 31 is meaningful even when
t = Θ(m).

4.2 Constructing an INW⊕t generator that does not fool ROBPs
Recall that the seed length of INW⊕t

H is
∑

i∈[t],j∈[log n] log(deg(Hi,j)). Our goal is to show
that if every PRG in INW⊕t(Λ) fools width-3 programs, then every PRG in INW⊕t(Λ) has
seed length Ω(log2 n). Indeed, we will show that for each PRG in INW⊕t(Λ), the seed length
grows by Ω(log n) in each of Ω(log n) of the rounds of the INW recursion. The lemma below
makes this precise, formulated in the contrapositive.

▶ Lemma 33 (One-round seed length lower bound for fooling width-3 programs). Let n be a
sufficiently large power of two, let t ∈ N, let Λ ∈ [0, 1]t×log n, and let j∗ ∈ [log log n, 1

4 log n].
Assume that there exists a t× log n permissible family of labeled regular undirected multigraphs
H = {Hi,j} such that λ(Hi,j) ≤ Λi,j for every i, j and log(deg(H1,j∗))+· · ·+log(deg(Ht,j∗)) <

1
20000 · log n. Then there exists another t× log n permissible family of labeled regular undirected
multigraphs H′ = {H ′

i,j} such that λ(H ′
i,j) ≤ Λi,j for every i, j, along with a length-n,

width-3, standard-order ROBP B such that Pr
[
B(U{0,1}n) = 1

]
≥ 1 − exp(−n1/4), but

B(INW⊕t
H′(x)) = 0 for every seed x.

Proof. We first partition [t] based on whether deg(Hi,j∗) ≥ 1/(2Λ2
i,j∗

). Let T1 ⊆ [t] be the
indices such that deg(Hi,j∗) ≥ 1/(2Λ2

i,j∗
) and let T2 = [t] \ T1, which means for all i ∈ T2,

deg(Hi,j∗) ≥ (|Hi,j∗ | + 1)/2 by Proposition 17. Without loss of generality, we assume that
T1 = [t1] and T2 = [t] \ [t1]. Note that if Λi,j∗ = 0 for some i ∈ [t], then i ∈ T2.

Let M be a power of two satisfying n1/8 ≤ M < n1/4, and let m = log M . Now
we can construct a new family of graphs H′. For indices i ∈ T1, we use Lemma 31 to
construct a family of distributions Di, i ∈ T1 over {0, 1}m such that each Di is Λi,j∗-biased.
By Proposition 17, we know that for any graph Hi,j∗ such that deg(Hi,j∗) = 1, we have
λ(Hi,j∗) = Λi,j∗ = 1. Thus,



W. M. Hoza and Z. Lv 67:19

∑
i∈T1

⌈log(1/Λi,j∗)⌉ =
∑

i∈T1,Λi,j∗ ̸=1

⌈log(1/Λi,j∗)⌉ +
∑

i∈T1,Λi,j∗ =1

⌈log(1/Λi,j∗)⌉

≤
∑

i∈T1,Λi,j∗ ̸=1

⌈log(2 · deg(Hi,j∗))⌉ + 0

≤ 2 ·
∑
i∈[t]

log(deg(Hi,j∗)) ≤ 1
10000 · log n <

1
1000 · m,

where we used the fact that if Λi,j∗ ̸= 1, then deg(Hi,j∗) ≥ 2. Let Zi = Cay(Fm
2 , SBi), where

SBi : Ki → {0, 1}m is some generator such that SBi(UKi) = Di. (Such a generator exists,
because all probabilities under Di are rational numbers.) This graph satisfies λ(Zi) ≤ Λi,j∗

by Lemma 16, and each vertex in Zi has | Supp(Di)| distinct neighbors. Let q = 2j∗−1 and
Q = 2q, and we define

Wi = Zi ⊗ JQ/M .

Recall that H′
1, . . . , H′

t denote the rows of H′. For each i ∈ T1, let

H′
i = [J2, . . . , J22j∗−2 , Wi, J∗, . . . , J∗],

that is, for all indices j′ ̸= j∗, H ′
i,j′ is the complete graph of appropriate size, and in j∗-th

index, we use our Wi constructed before.
For each i′ ∈ T2, let

H′
i′ = [Hi′,1, Hi′,2, . . . , Hi′,j∗−1, Hi′,j∗ , J∗, . . . J∗],

i.e. the graphs up to j∗ are exactly same as the corresponding graphs in H, and after j∗,
we use the complete graphs of appropriate size. By combining H′

i, i ∈ T1 and H′
i′ , i′ ∈ T2

accordingly, we get a new family graphs H′. Since H is a family of graphs that satisfy the
constraint Λ, so is H′.

By the definition of INW⊕t
H′ ,

INW⊕t
H′(x0

1, . . . , x0
t ) = INWH′

1
(x0

1) ⊕ · · · ⊕ INWH′
t
(x0

t ) = G
(1)
log n(x0

1) ⊕ · · · ⊕ G
(t)
log n(x0

t )

= (G(1)
log n−1(x′

1), G
(1)
log n−1(H ′

1,log n[x′
1, y′

1])) ⊕ · · · ⊕

(G(t)
log n−1(x′

t), G
(t)
log n−1(H ′

t,log n[x′
t, y′

t])),

where x′
i and y′

i are the substrings of xi of appropriate length, and each G
(i)
log n as a INW

generator in INW(Λi), so that G
(i)
j , j ∈ [log n], is defined recursively. By recursively

expanding these generators until the j∗-th round, where we can express the output of INW⊕t
H′

as n/2j∗ independent copies, as H′
i,j′ are complete graphs for i ∈ [t] and j∗ < j′ ≤ log n, of

the following form

G
(1)
j∗

(x1, y1) ⊕ · · · ⊕ G
(t)
j∗

(xt, yt)

=
(
G

(1)
j∗−1(x1), G

(1)
j∗−1(H ′

1,j∗
[x1, y1])

)
⊕ · · · ⊕

(
G

(t)
j∗−1(xt), G

(t)
j∗−1(H ′

1,j∗
[xt, yt])

)
=
(

x1 ⊕ · · · ⊕ xt1 ⊕ G
(t1+1)
j∗−1 (xt1+1) ⊕ · · · ⊕ G

(t)
j∗−1(xt),

H ′
1,j∗

[x1, y1] ⊕ · · · ⊕ H ′
t1,j∗

[xt1 , yt1 ]

⊕ G
(t1+1)
j∗−1

(
H ′

t1+1,j∗
[xt1+1, yt1+1]

)
⊕ · · · ⊕ G

(t)
j∗−1

(
H ′

t,j∗
[xt, yt]

))
,

as G
(i)
j∗−1 is the identity function for i ∈ T1, where xi, yi are the corresponding input strings.

APPROX/RANDOM 2025



67:20 On Sums of INW Pseudorandom Generators

Let R′
i be the set of all possible G

(i)
j∗−1(xi)⊕G

(i)
j∗−1(H ′

i,j∗
[xi, yi]) where we allow xi to range

over all vertices and we allow yi to range over all edge labels, and let Ri = {x1,...,m|x ∈ R′
i},

which is the set of first m bits of strings in R′
i. In the following, we are going to show that

|
∑t

i=1 Ri| < 2m, hence there is at least one v∗ ∈ {0, 1}m such that v∗ /∈
∑t

i=1 Ri. Our
approach is to bound∣∣∣∣∣

t∑
i=1

Ri

∣∣∣∣∣ ≤

∣∣∣∣∣∑
i∈T1

Ri

∣∣∣∣∣ ·
∏

i∈T2

|Ri|.

We will bound |
∑

i∈T1
Ri| and

∏
i∈T2

|Ri| separately.
For each i ∈ T1, let x

(1)
i ∈ {0, 1}m be the first m bits of xi, and x

(2)
i ∈ {0, 1}q−m to be

the substring of xi after x
(1)
i , so that xi = (x(1)

i , x
(2)
i ). For yi, since Wi = Zi ⊗ J , we have

yi = (y(1)
i , y

(2)
i ) where y

(1)
i ∈ Ki and y

(2)
i ∈ {0, 1}q−m. Thus, for i ∈ T1, we have

xi ⊕ H ′
i,j∗

[xi, yi] = (x(1)
i , x

(2)
i ) ⊕ H ′

i,j∗
[(x(1)

i , x
(2)
i ), (y(1)

i , y
(2)
i )]

= (x(1)
i , x

(2)
i ) ⊕ Wi[(x(1)

i , x
(2)
i ), (y(1)

i , y
(2)
i )]

= (x(1)
i , x

(2)
i ) ⊕ (Zi[x(1)

i , y
(1)
i ], JQ/M [x(2)

i , y
(2)
i ])

= (x(1)
i , x

(2)
i ) ⊕ (Zi[x(1)

i , y
(1)
i ], y

(2)
i ).

By our construction of Zi, for any choice of x
(1)
i , y

(1)
i , we have x

(1)
i ⊕Zi[x(1)

i , y
(1)
i ] ∈ Supp(Di),

and⊕
i∈T1

x
(1)
i ⊕ Zi[x(1)

i , y
(1)
i ] ∈

∑
i∈T1

Supp(Di).

Therefore, by Lemma 31, we have∣∣∣∣∣∑
i∈T1

Ri

∣∣∣∣∣ ≤

∣∣∣∣∣∑
i∈T1

Supp(Di)

∣∣∣∣∣ ≤ 2 · 2m/2.

For i ∈ T2, we have

G
(i)
j∗−1(xi) ⊕ G

(i)
j∗−1(H ′

i,j∗
[xi, yi]) = G

(i)
j∗−1(xi) ⊕ G

(i)
j∗−1(Hi,j∗ [xi, yi]).

For i ∈ T2, deg(Hi,j∗) ≥ |Hi,j∗ |+1
2 and xi is a vertex label in Hi,j∗ ,

|Ri| ≤ |Hi,j∗ | · deg(Hi,j∗) ≤ 2(deg(Hi,j∗) − 1) · deg(Hi,j∗) ≤ 2 deg(Hi,j∗)2.

We know that log(deg(H1,j∗)) + . . . + log(deg(Ht,j∗)) < 1
20000 · log n < 0.001 · log n. By

Proposition 17, for any undirected graph h with degree 1, we know λ(h) = 1, so that for any
i ∈ T2, deg(Hi,j∗) ≥ 2, which means |T2| < 0.001 · log n. Therefore,∏

i∈T2

|Ri| ≤ 2|T2| ·
∏

i∈T2

deg(Hi,j∗)2 ≤ 20.001·log n · n0.01 ≤ n0.02 ≤ 20.2m.

By the bounds above, the number of possible choices for v is at most∣∣∣∣∣∑
i∈T1

Ri

∣∣∣∣∣ ·
∏

i∈T2

|Ri| ≤ 2 · 2m/2+0.2m < 2m.

Therefore, there is at least one v∗ ∈ {0, 1}m such that v∗ /∈
∑t

i=1 Ri.



W. M. Hoza and Z. Lv 67:21

Encoding this missing element to a width-3 branching program B computing the function
f : {0, 1}n → {0, 1} as

f(x) =
n/2j∗ −1∨

i=0
(x2j∗ ·i+1...2j∗ ·i+m = 0m ∧ x2j∗ ·i+q+1...2j∗ ·i+q+m = v∗),

we know that B(INW⊕t
H′(x)) = 0 for any input seed x. However, for a truly random input

satisfies each clause with probability 2−2m ≥ 1/
√

n, and since there are n/2j∗ ≥ n3/4 such
clauses, the acceptance probability is

Pr[B(U{0,1}n) = 1] = 1 − Pr[B(U{0,1}n) = 0] ≥ 1 − (1 − 1/
√

n)n3/4
≥ 1 − exp(−n1/4). ◀

We can then prove Theorem 8.

▶ Theorem 34 (Restatement of Theorem 8). Let n be a power of two, let t ∈ N, and let
Λ ∈ [0, 1]t×log n. If every PRG in the family INW⊕t(Λ) fools width-3 standard-order ROBPs
with error 0.99, then every PRG in the family INW⊕t(Λ) has seed length Ω(log2 n).

Proof. For every t ∈ N, Lemma 33 implies that for every PRG in the family INW⊕t(Λ) and
for each j ∈ [log log n, log n],

log(deg(H1,j)) + · · · + log(deg(Ht,j)) ≥ 1
20000 · log n.

Consequently, the overall seed length is at least∑
j∈[log log n,log n]

(log(deg(H1,j)) + · · · + log(deg(Ht,j))) ≥
∑

j∈[log log n,log n]

1
20000 · log n

= Ω(log2 n). ◀

5 Directions for future research

It would be very interesting to prove a general “XOR lemma” saying that taking the bitwise
XOR of many copies of a distribution amplifies its unpredictability for bounded-width ROBPs.
Proving such a general lemma might be the key to analyzing derandomized sums of INW
generators.

There is a well-known variant of the INW generator in which we use an extractor to
recycle the seed at each stage instead of using an expander, i.e., the recursive step is
Gj+1(x, y) = (Gj(x), Gj(Ext(x, y))). This construction and its analysis are similar to the
Nisan-Zuckerman PRG [39]. Intriguingly, it is not clear how to carry out the proof of
Theorem 7 using extractors instead of expanders. Conceivably, an extractor-based proof
might be more amenable to derandomization.

We would also like to highlight the problem of determining the optimal dependence on w

in Theorem 7. Can the nlog(w+1) term be improved to poly(n, w)?

References
1 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost

k-wise independent random variables. Random Structures Algorithms, 3(3):289–304, 1992.
doi:10.1002/rsa.3240030308.

2 Roy Armoni. On the derandomization of space-bounded computations. In Proceedings of
the 2nd Workshop on Randomization and Approximation Techniques in Computer Science
(RANDOM), pages 47–59, 1998. doi:10.1007/3-540-49543-6_5.

APPROX/RANDOM 2025

https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1007/3-540-49543-6_5


67:22 On Sums of INW Pseudorandom Generators

3 Sepehr Assadi and Vishvajeet N. Graph streaming lower bounds for parameter estimation
and property testing via a streaming XOR lemma. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 612–625, 2021. doi:
10.1145/3406325.3451110.

4 Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudorandomness for width-
2 branching programs. Theory Comput., 9:283–292, 2013. doi:10.4086/toc.2013.v009a007.

5 Andrej Bogdanov, William M. Hoza, Gautam Prakriya, and Edward Pyne. Hitting Sets for
Regular Branching Programs. In Proceedings of the 37th Computational Complexity Conference
(CCC), pages 3:1–3:22, 2022. doi:10.4230/LIPIcs.CCC.2022.3.

6 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM J. Comput.,
39(6):2464–2486, April 2010. doi:10.1137/070712109.

7 Mark Braverman, Gil Cohen, and Sumegha Garg. Pseudorandom pseudo-distributions with
near-optimal error for read-once branching programs. SIAM J. Comput., 49(5):STOC18–242–
STOC18–299, 2020. doi:10.1137/18M1197734.

8 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators for
regular branching programs. SIAM J. Comput., 43(3):973–986, 2014. doi:10.1137/120875673.

9 Joshua Brody and Elad Verbin. The coin problem and pseudorandomness for branching
programs. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages
30–39, 2010. doi:10.1109/FOCS.2010.10.

10 Eshan Chattopadhyay and Jyun-Jie Liao. Recursive Error Reduction for Regular Branching
Programs. In 15th Innovations in Theoretical Computer Science Conference (ITCS), pages
29:1–29:20, 2024. doi:10.4230/LIPIcs.ITCS.2024.29.

11 Lijie Chen, William M. Hoza, Xin Lyu, Avishay Tal, and Hongxun Wu. Weighted pseudorandom
generators via inverse analysis of random walks and shortcutting. In Proceedings of the 64th
Annual Symposium on Foundations of Computer Science (FOCS), pages 1224–1239, 2023.
doi:10.1109/FOCS57990.2023.00072.

12 Lijie Chen and Xin Lyu. Inverse-exponential correlation bounds and extremely rigid matrices
from a new derandomized XOR lemma. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 761–771, 2021. doi:10.1145/3406325.
3451132.

13 Kuan Cheng and Ruiyang Wu. Weighted pseudorandom generators for read-once branching
programs via weighted pseudorandom reductions, 2025. doi:10.48550/arXiv.2502.08272.

14 Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Error Reduction
for Weighted PRGs Against Read Once Branching Programs. In Proceedings of the 36th
Computational Complexity Conference (CCC), pages 22:1–22:17, 2021. doi:10.4230/LIPIcs.
CCC.2021.22.

15 Anindya De. Pseudorandomness for permutation and regular branching programs. In Proceed-
ings of the 2011 IEEE 26th Annual Conference on Computational Complexity, CCC ’11, pages
221–231, USA, 2011. IEEE Computer Society. doi:10.1109/CCC.2011.23.

16 Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On beating the
hybrid argument. Theory Comput., 9:809–843, 2013. doi:10.4086/toc.2013.v009a026.

17 Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In Proceedings of the 59th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 946–955, 2018. doi:10.1109/FOCS.2018.00093.

18 Anat Ganor and Ran Raz. Space Pseudorandom Generators by Communication Complexity
Lower Bounds. In Klaus Jansen, José Rolim, Nikhil R. Devanur, and Cristopher Moore, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2014), volume 28 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 692–703, Dagstuhl, Germany, 2014. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.692.

19 Pooya Hatami and William Hoza. Paradigms for unconditional pseudorandom generators.
Found. Trends Theor. Comput. Sci., 16(1-2):1–210, 2024. doi:10.1561/0400000109.

https://doi.org/10.1145/3406325.3451110
https://doi.org/10.1145/3406325.3451110
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.4230/LIPIcs.CCC.2022.3
https://doi.org/10.1137/070712109
https://doi.org/10.1137/18M1197734
https://doi.org/10.1137/120875673
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.4230/LIPIcs.ITCS.2024.29
https://doi.org/10.1109/FOCS57990.2023.00072
https://doi.org/10.1145/3406325.3451132
https://doi.org/10.1145/3406325.3451132
https://doi.org/10.48550/arXiv.2502.08272
https://doi.org/10.4230/LIPIcs.CCC.2021.22
https://doi.org/10.4230/LIPIcs.CCC.2021.22
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.1109/FOCS.2018.00093
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.692
https://doi.org/10.1561/0400000109


W. M. Hoza and Z. Lv 67:23

20 William Hoza and Zelin Lv. On sums of inw pseudorandom generators. ECCC preprint
TR25-050, 2025. URL: https://eccc.weizmann.ac.il/report/2025/050/.

21 William M. Hoza. Better Pseudodistributions and Derandomization for Space-Bounded
Computation. In Proceedings of the 25th International Conference on Randomization and
Computation (RANDOM), pages 28:1–28:23, 2021. doi:10.4230/LIPIcs.APPROX/RANDOM.
2021.28.

22 William M. Hoza, Edward Pyne, and Salil Vadhan. Pseudorandom Generators for Unbounded-
Width Permutation Branching Programs. In 12th Innovations in Theoretical Computer Science
Conference (ITCS), pages 7:1–7:20, 2021. doi:10.4230/LIPIcs.ITCS.2021.7.

23 William M. Hoza, Edward Pyne, and Salil Vadhan. Limitations of the Impagliazzo-Nisan-
Wigderson pseudorandom generator against permutation branching programs. Algorithmica,
2024, 2024. URL: https://link.springer.com/article/10.1007/s00453-024-01251-2.

24 William M. Hoza and David Zuckerman. Simple optimal hitting sets for small-success RL.
SIAM J. Comput., 49(4):811–820, 2020. doi:10.1137/19M1268707.

25 Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings of
the 36th Annual Symposium on Foundations of Computer Science (FOCS), pages 538–545,
1995. doi:10.1109/SFCS.1995.492584.

26 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the 26th Annual Symposium on Theory of Computing (STOC),
pages 356–364, 1994. doi:10.1145/195058.195190.

27 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: deran-
domizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing (STOC), pages 220–229, 1997. doi:10.1145/258533.258590.

28 Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom generators for group
products: extended abstract. In Proceedings of the Forty-Third Annual ACM Symposium on
Theory of Computing, STOC ’11, pages 263–272, New York, NY, USA, 2011. Association for
Computing Machinery. doi:10.1145/1993636.1993672.

29 Vinayak M. Kumar. New Pseudorandom Generators and Correlation Bounds Using Extractors.
In Proceedings of the 16th Innovations in Theoretical Computer Science Conference (ITCS),
volume 325, pages 68:1–68:23, 2025. doi:10.4230/LIPIcs.ITCS.2025.68.

30 Chin Ho Lee, Edward Pyne, and Salil Vadhan. On the Power of Regular and Permutation
Branching Programs. In Proceedings of the 27th International Conference on Randomization
and Computation (RANDOM), pages 44:1–44:22, 2023. doi:10.4230/LIPIcs.APPROX/RANDOM.
2023.44.

31 Chin Ho Lee and Emanuele Viola. Some limitations of the sum of small-bias distributions.
Theory of Computing, 13(16):1–23, 2017. doi:10.4086/toc.2017.v013a016.

32 Shachar Lovett. Unconditional pseudorandom generators for low-degree polynomials. Theory
of Computing, 5(3):69–82, 2009. doi:10.4086/toc.2009.v005a003.

33 Shachar Lovett and Yoav Tzur. Explicit lower bound for fooling polynomials by the sum of
small-bias generators. ECCC preprint TR09-088, 2009. URL: https://eccc.weizmann.ac.
il/report/2009/088/.

34 Ueli Maurer and Stefano Tessaro. Computational indistinguishability amplification: tight
product theorems for system composition. In Proceedings of the 29th International Cryptology
Conference (CRYPTO), pages 355–373, 2009. doi:10.1007/978-3-642-03356-8_21.

35 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3 branching
programs. In Proceedings of the 51st Annual Symposium on Theory of Computing (STOC),
pages 626–637, 2019. doi:10.1145/3313276.3316319.

36 Raghu Meka and David Zuckerman. Small-bias spaces for group products. In Proceedings
of the 13th International Workshop on Randomization and Computation (RANDOM), pages
658–672, 2009. doi:10.1007/978-3-642-03685-9_49.

37 Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993. doi:10.1137/0222053.

APPROX/RANDOM 2025

https://eccc.weizmann.ac.il/report/2025/050/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://link.springer.com/article/10.1007/s00453-024-01251-2
https://doi.org/10.1137/19M1268707
https://doi.org/10.1109/SFCS.1995.492584
https://doi.org/10.1145/195058.195190
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/1993636.1993672
https://doi.org/10.4230/LIPIcs.ITCS.2025.68
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.44
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.44
https://doi.org/10.4086/toc.2017.v013a016
https://doi.org/10.4086/toc.2009.v005a003
https://eccc.weizmann.ac.il/report/2009/088/
https://eccc.weizmann.ac.il/report/2009/088/
https://doi.org/10.1007/978-3-642-03356-8_21
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1007/978-3-642-03685-9_49
https://doi.org/10.1137/0222053


67:24 On Sums of INW Pseudorandom Generators

38 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. doi:10.1007/BF01305237.

39 Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. System Sci.,
52(1):43–52, 1996. doi:10.1006/jcss.1996.0004.

40 Edward Pyne and Salil Vadhan. Pseudodistributions That Beat All Pseudorandom Generators
(Extended Abstract). In Proceedings of the 36th Computational Complexity Conference (CCC),
pages 33:1–33:15, 2021. doi:10.4230/LIPIcs.CCC.2021.33.

41 Ran Raz and Omer Reingold. On recycling the randomness of states in space bounded
computation. In The 31st Annual ACM Symposium on Theory of Computing (STOC), pages
159–168, 1999. doi:10.1145/301250.301294.

42 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):Art. 17, 24, 2008.
doi:10.1145/1391289.1391291.

43 Eyal Rozenman and Salil Vadhan. Derandomized squaring of graphs. In Proceedings of the
9th International Workshop on Randomization and Computation (RANDOM), pages 436–447,
2005. doi:10.1007/11538462_37.

44 Michael Saks and David Zuckerman, 1995. Unpublished.
45 Thomas Steinke. Pseudorandomness for permutation branching programs without the group

theory. ECCC preprint TR12-083, 2012. URL: https://eccc.weizmann.ac.il/report/2012/
083/.

46 Yoav Tzur. Notions of weak pseudorandomness and GF (2n)-polynomials. M.Sc. thesis,
Weizmann Institute of Science, 2009. URL: https://eccc.weizmann.ac.il/static/books/
Notions_of_Weak_Pseudorandomness/.

47 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1–3):1–336, 2012. doi:10.1561/0400000010.

48 Emanuele Viola. The sum of d small-bias generators fools polynomials of degree d. Comput.
Complexity, 18(2):209–217, 2009. doi:10.1007/s00037-009-0273-5.

https://doi.org/10.1007/BF01305237
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.4230/LIPIcs.CCC.2021.33
https://doi.org/10.1145/301250.301294
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1007/11538462_37
https://eccc.weizmann.ac.il/report/2012/083/
https://eccc.weizmann.ac.il/report/2012/083/
https://eccc.weizmann.ac.il/static/books/Notions_of_Weak_Pseudorandomness/
https://eccc.weizmann.ac.il/static/books/Notions_of_Weak_Pseudorandomness/
https://doi.org/10.1561/0400000010
https://doi.org/10.1007/s00037-009-0273-5

	1 Introduction
	1.1 Pseudorandom generators for space-bounded computation
	1.2 Instantiating the INW PRG with relatively mild expanders
	1.3 A possible way forward: Unpredictability and Yao's XOR Lemma
	1.4 Sums of INW generators fool constant-width ROBPs
	1.5 Summing fewer copies of the INW generator does not work
	1.6 Increasing t vs. decreasing lambda: Two incomparable PRG paradigms
	1.7 Proof techniques
	1.7.1 Our proof that INW^{oplus t}(lambda) fools ROBPs, even if lambda is relatively large
	1.7.2 Our proof that sums of INW PRGs with seed length o(log^2 n) do not fool ROBPs
	1.7.3 Our proof that INW with small lambda is incomparable with INW^{oplus t} with large lambda

	1.8 Additional related work

	2 Preliminaries
	2.1 Read-once evaluation programs (ROEPs)
	2.2 Graphs
	2.3 Spectral expansion
	2.4 Lower bound on the degree of expander graphs
	2.5 Tensor products
	2.6 Expander mixing lemma
	2.7 INW generators
	2.8 Binary linear code

	3 Proof that sums of INW generators fool constant-width ROBPs
	4 Seed length lower bound for fooling ROBPs
	4.1 Sums of small-bias distributions
	4.2 Constructing an INW^{oplus t} generator that does not fool ROBPs

	5 Directions for future research

