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Abstract
We develop a new framework to prove the mixing or relaxation time for the Glauber dynamics on
spin systems with unbounded degree. It works for general spin systems including both 2-spin and
multi-spin systems. As applications for this approach:

We prove the optimal O(n) relaxation time for the Glauber dynamics of random q-list-coloring on
an n-vertices triangle-tree graph with maximum degree ∆ such that q/∆ > α⋆, where α⋆ ≈ 1.763
is the unique positive solution of the equation α = exp(1/α). This improves the n1+o(1) relaxation
time for Glauber dynamics obtained by the previous work of Jain, Pham, and Vuong (2022).
Besides, our framework can also give a near-linear time sampling algorithm under the same
condition.
We prove the optimal O(n) relaxation time and near-optimal Õ(n) mixing time for the Glauber
dynamics on hardcore models with parameter λ in balanced bipartite graphs such that λ < λc(∆L)
for the max degree ∆L in left part and the max degree ∆R of right part satisfies ∆R = O(∆L).
This improves the previous result by Chen, Liu, and Yin (2023).

At the heart of our proof is the notion of coupling independence which allows us to consider multiple
vertices as a huge single vertex with exponentially large domain and do a “coarse-grained” local-to-
global argument on spin systems. The technique works for general (multi) spin systems and helps us
obtain some new comparison results for Glauber dynamics.
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1 Introduction

The spin system is a fundamental probabilistic graphical model. It is defined on a graph
G = (V, E), where every vertex is a random variable and every edge models the local
interactions. Each variable takes a value from a discrete domain [q] = {1, 2, . . . , q}. Each
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vertex has a vector b ∈ Rq
≥0 called the external field and each edge has a symmetric matrix

A ∈ Rq×q
≥0 called the interaction matrix. The spin system defines a Gibbs distribution over

[q]V such that for any configuration σ ∈ [q]V ,

µ(σ) ∝
∏
v∈V

b(σv)
∏

e={u,v}∈E

A(σu, σv).

The spin system covers many important distributions including the uniform distribution of
graph colorings, the Ising model, the hardcore gas model in Physics, and a broad class of
undirected graphical models in machine learning [42].

Sampling from the Gibbs distribution is a central algorithmic task for spin systems. The
Glauber dynamics is a fundamental Markov chain Monte Carlo (MCMC) method for sampling
from high-dimensional distributions. Given a distribution µ over [q]V , it starts from an
arbitrary X ∈ Ω(µ), where Ω(µ) ⊆ [q]V is the support of µ. In each step, it updates the
current state X as follows:

pick a variable v ∈ V uniformly at random;
resample the value of Xv from the conditional distribution µv(· | XV \v).

It is well-known that if the state space Ω(µ) is connected through the moves of Glauber
dynamics, then the distribution µ is the unique stationary distribution for the Glauber
dynamics.

In this paper, we study the convergence rate of the Glauber dynamics. Let (Xt)t≥0 denote
the random sequence generated by the Glauber dynamics. Let P : Ω(µ) × Ω(µ) → [0, 1]
denote the transition matrix of the Glauber dynamics. Many notions capture the convergence
rate. The most standard one is the mixing time, which is defined by

T GD
mix(µ, ε) := max

X0∈Ω(µ)
min

{
t > 0 | DTV

(
P t(X0, ·) ∥ µ

)
≤ ε

}
, (1)

where DTV (P t(X0, ·) ∥ µ) denotes the standard total variation distance between µ and
the distribution of Xt. In words, if the Glauber dynamics starts from the worst initial
state X0, the mixing time is the minimum number t such that the total variation distance
between P t(X0, ·) and µ is below a sufficiently small constant. Another widely used notion
is the relaxation time. A standard fact says that P only has non-negative real eigenvalues
1 = λ1 ≥ λ2 ≥ . . . ≥ λ|Ω| ≥ 0 [22]. The gap λ1 − λ2 = 1 − λ2 is called the spectral gap of
Glauber dynamics. The relaxation time is defined by

T GD
rel (µ) := 1

1− λ2
.

It is well known that T GD
mix(µ, ε) = O(T GD

rel (µ) log 1
εµmin

), where µmin = minσ∈Ω(µ) µ(σ).
Recently, a series of works [4, 1, 3] studied Glauber dynamics using high dimensional

expanders. An important notion called spectral independence was developed during this
process. Anari, Liu, and Oveis Gharan [3] first introduced spectral independence for Boolean
distributions. The follow-up works [16, 24] then generalized it to non-Boolean distributions.
For example, for a Boolean distribution µ over {−1, +1}[n], the influence matrix Ψ ∈
Rn×n
≥0 is defined by Ψ(u, v) := PrX∼µ [Xv = + | Xu = +] − PrX∼µ [Xv = + | Xu = −]. A

distribution µ is C-spectrally independent if the maximum eigenvalue of Ψ is at most C. If
every conditional distribution of µ is C-spectrally independent, then by the local-to-global
argument [1], both relaxation and mixing time of Glauber dynamics are bounded by nO(C),
where n is the number of variables. Given this polynomial bound nO(C), many works tried
to obtain an improved or even the optimal mixing/relaxation time for Glauber dynamics,
especially when µ is a Gibbs distribution defined by spin systems. Chen, Liu and Vigoda [21]
proved that for spin systems on bounded degree graphs, the spectral independence implies
both O(n log n) optimal mixing time and O(n) optimal relaxation time.
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The next question is how to deal with spin systems on unbounded degree graphs. Many
works [29, 11, 2, 15, 12] focused on this question. Significant progress was made, especially
for 2-spin systems (q = 2). [29] first studied coloring and weighted independent sets (hardcore
model) in high-girth graphs and proved the near-optimal n1+o(1) relaxation time. [11]
introduced a stronger variant of spectral independence called complete spectral independence,
and proved the optimal O(n) relaxation time for anti-ferromagnetic 2-spin systems in the
uniqueness regime. To obtain the optimal mixing time, [2] made the first step and defined
a new notion called entropic independence. After a line of work [2, 15, 12], the optimal
O(n log n) mixing time was established for a broad class of 2-spin systems.

Most of the previous techniques [11, 2, 15, 12] for unbounded degree graphs are restricted
to the 2-spin systems. We consider the following question in this paper.

How to prove the optimal mixing/relaxation time
for Glauber dynamics on (multi) spin systems with unbounded degree?

To the best of our knowledge, the only previous result beyond 2-spin systems is the n1+o(1)

relaxation time for graph coloring [29]. However, [29] relies on the coupling analysis for
colorings in [28], which makes it difficult to be generalized to other spin systems.

In this work, we develop a new framework for proving mixing/relaxation time for the
Glauber dynamics on general spin systems including both 2-spin and multi-spin systems.
Our new framework is based on a stronger variant of the spectral independence known as
the coupling independence, which is already used implicitly or explicitly in many previous
works [40, 5, 14, 18, 19, 34]. A spin system µ on [q]V is C-coupling independent if for any
v ∈ V and a, b ∈ [q], there is a coupling (X, Y ) where X ∼ µv←a and Y ∼ µv←b such that

E [dH(X, Y )] ≤ C.

Here, dH(X, Y ) = |{v ∈ V | Xv ̸= Yv}| denotes the hamming distance between X and Y and
µv←a the distribution induced by µ conditional on v taking the value a.

Given a spin system on a graph G with Gibbs distribution µ, we show that if µ and
all the conditional distributions induced by µ satisfy the coupling independence and the
maximum degree of G is greater than a large constant, then the following comparison results
hold for Glauber dynamics.

Relaxation time comparison. The relaxation time satisfies T GD
rel (µ) = O(T GD

rel (µ⋆)),
where µ⋆ is a conditional distribution obtained from µ by fixing the values on a subset
Λ ⊆ V of variables. The set Λ is chosen intentionally such that the induced subgraph
G[V \ Λ] on other vertices has smaller maximum degree. For many spin systems, the
distribution µ⋆ is in an “easy regime” so that the mixing/relaxation time for µ⋆ is easy
to analyze. We can bound the relaxation time for µ via this comparison result (see
Theorem 9).
Mixing time comparison. If µ is a monotone spin system (Definition 14) and the
Glauber dynamics starts from a specific initial configuration, then the mixing time satisfies
T GD

mix(µ, ε) = Õ(T GD
mix(µ⋆, 1

4e )), where Õ hides a polylog(n/ε) factor (See Theorem 15).

We obtain the relaxation/mixing time bounds via the above comparison results. In the
relaxation time comparison result, the constant factor in O(·) is independent of the degree
of the graph. In applications, the distribution µ⋆ is in an “easy regime”, hence, we can use
some standard technique to show T GD

rel (µ⋆) = O(n). The comparison result gives the optimal
T GD

rel (µ) = O(n) relaxation time. Similarly, in the applications of monotone systems, we can
obtain the near-optimal Õ(n) mixing time for general graphs. Our comparison results only
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hold for graphs with large maximum degrees. It does not cause any issue in applications,
because coupling independence implies spectral independence, and for graphs with bounded
maximum degree, [21] already established the optimal relaxation/mixing time.

Our proof techniques can also give a near-linear time (in input size) sampling algorithm
(see Theorem 13). Furthermore, we introduce a general technique to establish coupling
independence for 2-spin systems (Theorem 16). Specifically, many spectral independence
results for 2-spin systems are proved by analyzing the decay of correlation in the self-avoiding
walk tree [20, 13]. We show that all of such proofs can be translated to a proof of coupling
independence.

Organization of the paper

In Section 1.1, we first exhibit some concrete applications. In Section 2, we give our technical
results. In Section 3, we give an overview of proof techniques.

All the detailed analysis are given in the full version [10].

1.1 Applications

Let G = (V, E) be a graph with maximum degree ∆ and [q] = {1, 2, . . . , q} a set of colors.
Given a set of color lists Lv ⊆ [q], v ∈ V , a proper list-coloring X ∈ [q]V assigns a color
Xv ∈ Lv to each vertex v ∈ V such that adjacent vertices receive different colors. In a special
case when Lv = [q] for all V ∈ V , the list coloring becomes the standard graph q-coloring.
We use µ to denote the uniform distribution over all proper list-colorings in G. For the list
coloring, in each step, the Glauber dynamics picks a random vertex v and update its color to
a random available color. There is a long line of works studying the mixing and relaxation
time of Glauber dynamics e.g. [33, 45, 9].

In the era of spectral independence, the proper list-coloring has been re-studied by a
series of works [16, 24, 19]. Though the technique varies, all these works established some
coupling independence results for the proper list-coloring. For list colorings on triangle-free
graphs, let α⋆ ≈ 1.763 denote the unique positive solution to the equation α = exp(1/α).
When |Lv| > (α⋆ + δ)∆, the Oδ(1)-coupling independence can be established by techniques
in [16, 24]. Our framework gives the optimal relaxation time of Glauber dynamics even if
the maximum degree of G is unbounded.

▶ Theorem 1 (Coloring: Relaxation Time). Let δ > 0 be a constant. For any triangle-free
graph G = (V, E) and color lists (Lv)v∈V , if |Lv| ≥ (α⋆ + δ)∆ for all v ∈ V , where ∆ ≥ 3 is
the maximum degree of G, then relaxation time of Glauber dynamics is Oδ(n), where n is
the number of vertices in G.

Under the condition of Theorem 1, the relaxation time of the Glauber dynamics has been
studied by many previous works. Combining the spectral independence technique [1, 3] with
the correlation decay analysis [27, 26], two independent works [16, 24] proved the polynomial
relaxation time nO(1/δ) of Glauber dynamics. For graphs with bounded maximum degree
∆ = O(1), Chen, Liu and Vigoda [21] established the O∆,δ(n) relaxation time, where
O∆,δ(·) hides a constant factor like ∆O(∆2/δ). For general graphs with possibly unbounded
maximum degree, Jain, Pham and Vuong [29] proved the first almost linear relaxation
time Oδ(ne(log log n)2) = Oδ(n1+o(1)). Their proof combined the techniques in [21] with the
coupling analysis in [28]. Compared to previous results, Theorem 1 gives the optimal linear
relaxation time for general graphs.
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We prove Theorem 1 by first verifying the coupling independence condition (Definition 7)
and then applying our comparison result (Theorem 9). Theorem 1 requires |Lv| ≥ (α⋆ + δ)∆
because the current best coupling independence result requires this number of colors but
our comparison result does not require such a strong condition. It is conjectured that
Oδ(1)-coupling independence should hold for proper list-coloring in general graphs when
|Lv| ≥ (1 + δ)∆ + O(1).

▶ Conjecture 2 (Folklore). Let δ > 0 be a constant. For any graph G = (V, E) with maximum
degree ∆ and color lists (Lv)v∈V such that |Lv| ≥ (1 + δ)∆ + O(1) for all v ∈ V , the uniform
distribution µ over all the proper list-colorings of G is Oδ(1)-coupling independent.

Our comparison framework can prove optimal relaxation time for Glauber dynamics on
proper list-colorings of graphs (with potentially unbounded degree) as long as Conjecture 2
holds.

▶ Proposition 3. If Conjecture 2 holds with δ > 0, then for any list coloring instance in
Conjecture 2, the relaxation time of Glauber dynamics is Oδ(n).

The standard relation between relaxation time and mixing time implies that the Glauber
dynamics mixes in time Oδ(n2 log q), which yields a sampling algorithm for the uniform
distribution µ of graph colorings in time Oδ(∆n2 log q) because each step of Glauber dynamics
can be simulated in time O(∆). However, in terms of sampling algorithm, our technique
would directly give an algorithm (not the Glauber dynamics) in time Õδ(∆n). Since the
input graph G contains ∆n edges, the running time is near-linear in the input size.

▶ Theorem 4 (Coloring: Algorithm). Let δ > 0 be a constant. There exists an algorithm
such that given any ε > 0, any triangle-free graph G = (V, E) and color lists (Lv)v∈V , if
|Lv| ≥ (α⋆ + δ)∆ for all v ∈ V , where ∆ ≥ 3 is the maximum degree of G, it returns
a random sample X satisfying DTV (X ∥ µ) ≤ ε in time ∆n(log n

ε )C(δ), where C(δ) is a
constant depending only on δ.

The next example is the hardcore model. Let G = (V, E) be a graph. Let λ > 0 be the
fugacity. The hardcore model defines a distribution µ over all independent sets S ⊆ V in
G such that µ(S) ∝ λ|S|. Let ∆ ≥ 3 denote the maximum degree of graph G. There is a
critical threshold (a.k.a. uniqueness threshold) for the tree uniqueness phase transition [36]

λc(∆) := (∆− 1)(∆−1)

(∆− 2)∆ .

such that if λ ≤ λc(∆) the correlation between two vertices decays in their distance; if
λ > λc(∆), the long-range correlation exists. A computational phase transition occurs at the
same threshold. If λ < λc(∆), polynomial time sampling algorithm exists [46]; if λ > λc(∆),
the sampling problem is hard unless NP = RP [44, 25]. The mixing and relaxation time of
the Glauber dynamics for hardcore model were also extensively studied [41, 28, 23]. Recent
works analyzed Glauber dynamics via spectral independence [3]. The optimal Oδ(n log n)
mixing time and the optimal Oδ(n) relaxation time were established when λ ≤ (1− δ)λc(∆)
for general graphs [21, 15, 12].

However, for the hardcore model on bipartite graphs, the picture is not very clear.
Consider the hardcore model in a bipartite graph G = (V = VL ⊎ VR, E). Let ∆L denote the
maximum degree in the left part. Assume 3 ≤ ∆L. It is recently known that the uniqueness
threshold for the hardcore model on the bipartite graph can be refined to λc(∆L) ≥ λc(∆)
where ∆ ≥ ∆L is the maximum degree of the bipartite graph [39, 13]. The Glauber dynamics
is also proved to have polynomial mixing time when λ < λc(∆L) [13].

APPROX/RANDOM 2025
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On the other side, when λ > λc(∆L), the lower bound in [44] does not hold for bipartite
graphs and the problem is #BIS-hard [7], where #BIS is the problem of counting the
independent sets in bipartite graphs. A line of works (e.g. [31, 8, 38, 17, 32]) studied various
sampling algorithms in the low-temperature (large λ) regime.

Within the critical threshold λ < λc(∆L), we consider “balanced” bipartite graphs. Let
∆R be the maximum degree in VR. We say a bipartite graph is θ-balanced if ∆R ≤ θ∆L.

▶ Theorem 5 (Bipartite Hardcore: Relaxation Time). Let δ ∈ (0, 1) and θ > 1 be two
constants. For any hardcore model on a θ-balanced bipartite graph G with fugacity λ, if
λ ≤ (1− δ)λc(∆L), then the relaxation time of Glauber dynamics is Oδ,θ(n), where n is the
number of vertices in G.

For the mixing time, again, the standard relation gives Oδ,θ(n2) mixing time of the
Glauber dynamics. However, since the bipartite graph hardcore is a monotone system,
our technique also implies the Õδ,θ(n) mixing time of Glauber dynamics starting from the
independent set containing all vertices in the left part: X0 = VL. Formally, for any S ∈ Ω(µ),

T GD
mix(µ, ε | S) = min {t > 0 | DTV (Xt ∥ µ) ≤ ε ∧X0 = S} .

▶ Theorem 6 (Bipartite Hardcore: Mixing Time). Let δ ∈ (0, 1) and θ > 1 be two constants. For
any hardcore model on a θ-balanced bipartite graph G with fugacity λ, if λ ≤ (1− δ)λc(∆L),
then the mixing time of Glauber dynamic starting from VL satisfies T GD

mix(µ, ε | VL) =
n(log n

ε )C(δ,θ), where C(δ, θ) is a constant depending only on δ and θ.

The previous work [13] established the ( ∆L log n
λ )O(1/δ)n2 relaxation time for the Glauber

dynamics, which, by the standard relation, implies the (∆L log n
λ )O(1/δ)n3 log 1+λ

λ mixing
time. The previous result holds for general bipartite graphs as long as λ ≤ (1− δ)λc(∆L).
For balanced bipartite graphs, we obtained the optimal relaxation time Oδ,θ(n) and the
near-optimal mixing time Õδ,θ(n), which significantly improved the dependency to n and
∆L compared to the previous result. For example, in the near critical case when λ =
(1− δ)λc(∆L) = Θ(1/∆L), previous result gives ∆O(1/δ)

L n2 · polylog(n) relaxation time and
∆O(1/δ)

L n3 ·polylog(n) mixing time but our result gives O(n) relaxation time and n ·polylog(n)
mixing time. However, our result works only on balanced bipartite graphs. The result in [13]
is still state-of-the-art for general bipartite graphs.

Finally, we point out that our technique could also recover many previous O(n) relaxation
time results for anti-ferromagnetic 2-spin systems in [11]. See Remark 10 for one example.

2 Technical Results

2.1 Coupling Independence
In this section, we give our general results for spin systems. Let G = (V, E) be a graph. Let
[q] = {1, 2, . . . , q} be a set of q ≥ 2 spins. For each vertex v ∈ V , let vector bv ∈ Rq

≥0 be
the external field at vertex v. For each edge e ∈ E, let symmetric matrix Ae ∈ Rq×q

≥0 be the
interaction matrix at edge e. A spin system defines a Gibbs distribution µ over [q]V such
that,

∀σ ∈ [q]V µ(σ) ∝ w(σ) :=
∏
u∈V

bu(σu)
∏

e={v,w}∈E

Ae(σv, σw).

We use Ω(µ) ⊆ [q]V to denote the support of the Gibbs distribution µ.
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Let Λ ⊆ V be a subset of vertices. Given any pinning τ ∈ [q]V \Λ, we define a conditional
distribution µτ by for any configuration σ ∈ [q]V ,

µτ (σ) ∝ wτ (σ) := 1[σV \Λ = τ ] ·
∏
u∈Λ

bu(σu)
∏

e={v,w}∈E
v,w∈Λ

Ae(σv, σw)
∏

e={v,w}∈E
v∈Λ∧w /∈Λ

Ae(σv, τw).

(2)

In words, µτ is a Gibbs distribution obtained for µ by removing all edges e ⊆ V \ Λ and
putting a constraint that every vertex in v ∈ V \ Λ must take the value τv. In particular, if
τ is feasible (e.g. τ belongs to the support of the marginal distribution µV \Λ), then µτ is
exactly the conditional distribution induced by µ given the condition τ . For all spin systems
considered in this paper, it holds that

∑
σ wτ (σ) > 0 for all τ . The distribution in (2) is

well-defined. Furthermore, for any subset S, we use µτ
S to denote the marginal distribution

on S projected from µτ .
The following condition plays a key role in the proof of our main results. Let ρ : V → N>0

be a function that maps every vertex v ∈ V to a positive integer. We call the function ρ the
Hamming weight function. For any two (possibly partial) configurations σ, τ ∈ [q]Λ, where
Λ ⊆ V , define their weighted Hamming distance with respect to ρ by

Hρ(σ, τ) :=
∑

v∈Λ:σ(v)̸=τ(v)

ρ(v). (3)

▶ Definition 7 (Coupling Independence). Let C ≥ 1 be a constant. A distribution µ over
[q]V is said to be C-coupling independent (C-CI) if there exists Hamming weight function
ρ : V → N>0 such that the following holds. For any pinning σ1, σ2 ∈ [q]S, where S ⊆ V and
σ1, σ2 disagree only at one vertex v0 ∈ S, there exists a coupling (X, Y ), where X ∼ µσ1 and
Y ∼ µσ2 , such that

E [Hρ(X, Y )]
ρ(v0) ≤ C.

The notion of coupling independence was introduced explicitly in [14] to study the spectral
independence property. For example, for Boolean distributions1 (q = 2), given any pinning
τ ∈ {−, +}V \Λ, the |Λ| × |Λ| influence matrix [3] is defined by

Ψτ
µ(v, u) := µτ∧v+

u (+)− µτ∧v−

u (+), (4)

where u, v ∈ Λ and τ ∧ v± denotes the pinning τ together with v taking the value ±. A
distribution µ is C-spectrally independent if the maximum eigenvalue of Ψτ

µ is at most C

for any pinning τ . It is not hard to show that C-coupling independence implies C-spectral
independence. Hence, recent works [14, 19, 18] utilized coupling independence to establish
the spectral independence for various spin systems.

2.2 Compare Markov Chains via Coupling Independence
In this work, we find more applications for coupling independence beyond establishing
spectral independence. We build some comparison results of Markov chains via coupling
independence. As a by-product result, we also show that the coupling independence gives
fast sampling algorithms.

Let µ be a Gibbs distribution over [q]V on graph G = (V, E). For any Λ ⊆ V , we use
G[Λ] to denote the induced subgraph of G on vertex set Λ.

1 The influence matrix and spectral independence are also defined for general distributions with q ≥ 2.
See [16] for the detailed definition.

APPROX/RANDOM 2025
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▶ Definition 8 (Relaxation Time with Pinning). Let µ be a Gibbs distribution on graph
G = (V, E) with maximum degree ∆. Let η ∈ [0, 1]. Let D(η) denote all subsets Λ ⊆ V such
that the maximum degree of G[Λ] is at most η∆. Define

T
(η)
rel (µ) := max

{
T GD

rel (µτ ) | Λ ∈ D(η) ∧ τ ∈ [q]V \Λ
}

.

In the above definition, µτ is a distribution on [q]V . In every step, the Glauber dynamics
picks v ∈ V uniformly at random then resamples the value on v. If v /∈ Λ, the value of v

after resampling is always τv. Indeed, µτ is essentially the same as µτ
Λ. But, considering µτ

would help us simplify some results and proofs. The following is our main comparison result.

▶ Theorem 9 (Relaxation Time Comparison). Let M ≥ 1 and 0 < η ≤ 1
2⌈M⌉ be two constants.

There exists ∆0 = Ω( M2

η2 log M
η ) such that for any Gibbs distribution µ on graph G with the

maximum degree ∆ ≥ ∆0, if µ satisfies M -coupling independence, then the relaxation time
of Glauber dynamics on µ satisfies

T GD
rel (µ) ≤ 2O(M/η) · T (η)

rel (µ).

The theorem is proved in the full version ([10, Section 4]). See Section 3 for a proof overview.
The above theorem is a comparison result between two kinds of relaxation times. Consider

the case when parameters of µ are close to the critical threshold so that the relaxation time
T GD

rel (µ) is hard to analyze. By choosing a sufficiently small η, suppose for any Λ ∈ D(η) and
any τ ∈ [q]V \Λ, the conditional distribution µτ falls into an easy regime. The relaxation time
T

(η)
rel (µ) is easy to analyze. Theorem 9 boosts the relaxation time from an easy regime to the

hard regime if µ satisfies the coupling independence and the maximum degree ∆ is greater
than a constant ∆0.

When applying Theorem 9 to a specific spin system with Gibbs distribution µ, we first
need to show that the µ satisfies the coupling independence property. Next, we choose a
small constant η to guarantee that T

(η)
rel (µ) is easy to analyze. Now, the constant parameter

∆0 in Theorem 9 is fixed. If the maximum degree ∆ ≤ ∆0 = O(1) is bounded, then since
the coupling independence implies the spectral independence, the previous work [21] already
established the optimal relaxation time for µ. If the maximum degree ∆ ≥ ∆0, we can apply
our boosting result to bound the relaxation time. We show how to prove Theorem 1 and
Proposition 3 via Theorem 9.

Proof Sketch of Theorem 1

Given a triangle-free graph G = (V, E) and color lists Lv ⊆ [q] with |Lv| ≥ (α⋆ + δ)∆ for
all v ∈ V , let µ denote the uniform distribution over all proper list-colorings. By going
through the analysis in [24], we can prove that µ satisfies O(1/δ)-coupling independence.
Let η be a parameter to be fixed later. For any Λ ⊆ D(η), any pinning τ ∈ [q]V \Λ, the
distribution µτ is essentially the same as the distribution µτ

Λ because the coloring outside
Λ is fixed by τ . By self-reducibility, µτ

Λ is a list coloring on G′ = G[Λ] with color list
L′v = Lv \ {τu | u /∈ Λ ∧ {u, v} ∈ E}. Let deg′(v) and deg(v) denote the degree of v in G′

and G respectively. The new instance satisfies

∀v ∈ Λ, |L′v| ≥ |Lv| − (deg(v)− deg′(v)) =⇒ |L′v|
∆′ ≥

|Lv| − deg(v)
∆′ ,

where ∆′ denotes the maximum degree of G′. By the definition of D(η), deg′(v) ≤ ∆′ ≤ η∆.
We have |Lv| − deg(v) > (α⋆ − 1)∆ ≥ α⋆−1

η ∆′. If we set the parameter η ≤ 1
10 , then

∀v ∈ Λ, |L′v| ≥ 5∆′. (5)
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In this easy regime, one can use path coupling [6] to show T
(η)
rel (µ) = O(n). To apply

Theorem 9, we pick a small η = O(δ) and η < 1
10 . If ∆ ≥ ∆0 = Θ( 1

δ4 log 1
δ ), then

T
(η)
rel (µ) = 2O(1/δ2)n = Oδ(n).

On the other hand, if ∆ ≤ ∆0 = Θ( 1
δ4 log 1

δ ), then the maximum degree is bounded, we can
use the result in [21] to obtain the relaxation time T

(η)
rel (µ) = Oδ(n) in the same order. This

gives the proof sketch of Theorem 1. The only missing component is how to establish the
coupling independence, which can be found in the full version ([10, Section 9]).

Proof of Proposition 3

To obtain (5), we only need to use the fact that α⋆ > 1. If we replace α⋆ with (1 + δ), then
we can set η ≤ δ

5 and (5) still holds. The same analysis proves Proposition 3.
▶ Remark 10 (Hardcore Model in Uniqueness Regime). Theorem 9 could also rediscover some
previous results. For example, for the hardcore model on a graph G = (V, E) with fugacity
λ ≤ (1−δ)∆, [11] proved the optimal Oδ(n) relaxation time. For a fixed λ, the hardcore model
falls into an easy regime if we can reduce the maximum degree of the graph by a constant
factor. The hardcore model in the uniqueness regime satisfies O(1/δ)-coupling independence
(which can be proved by Theorem 16 in this paper). Using a similar argument as that for
list coloring, one can rediscover the optimal Oδ(n) relaxation time using Theorem 9.

We remark that the relaxation time result for the bipartite graph hardcore model
(Theorem 5) is not a direct consequence from Theorem 9. We need to tweak the proof of
Theorem 9 to prove Theorem 5. The proof of Theorem 5 is in the full version ([10, Section
8]).See Section 3 for a proof overview.
▶ Remark 11 (Compare Theorem 9 to the Technique in [11]). Another comparison result about
relaxation time was given in [11]. The previous result considers general Boolean distribution
(not necessarily Gibbs distribution) µ over {−, +}V . Given a vector λ = (λv)v∈V , (λ ∗ µ)
denotes the distribution such that for any σ ∈ {−, +}V , (λ ∗ µ) ∝ µ(σ)

∏
v∈V :σ(v)=+ λv. The

result says if (λ ∗ µ) is spectrally independent for all λ ∈ (0, 1]V , then one can compare
T GD

rel (µ) to T GD
rel (λθ ∗µ), where λθ is the vector with constant value 0 < θ < 1. When applying

results to Gibbs distributions, here are some differences between Theorem 9 and the previous
result in [11].

Theorem 9 works for general domain [q] but previous result works only for Boolean
domain;
The condition is incomparable. Theorem 9 requires coupling independence for µ and a
degree lower bound for the underlying graph but the previous result requires spectral
independence for a family of distributions;
The easy regime is incomparable. The easy regime in Theorem 9 is the conditional
distributions on a small degree subgraph but the easy regime in the previous result is
λθ ∗ µ;

For many spin systems, one can use Theorem 9 to establish the optimal O(n) relaxation
for Glauber dynamics, where n is the number of variables in the spin system. By the standard
relation between mixing and relaxation time, the mixing time of Glauber dynamics can
usually be bound by O(n2). Each transition of Glauber dynamics can be simulated in time
O(∆). Hence, one can obtain a sampling algorithm in time O(∆n2). Alternatively, we can
give a faster sampling algorithm in time Õ(∆n) if the easy regime has near-linear mixing
time.

APPROX/RANDOM 2025
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▶ Definition 12 (Mixing Time with Pinning). Let µ be a Gibbs distribution on graph G = (V, E)
with maximum degree ∆. Let η ∈ [0, 1]. Let D(η) denote all subsets Λ ⊆ V such that the
maximum degree of G[Λ] is at most η∆. Define

T
(η)
mix(µ) := max

{
T GD

mix

(
µτ ,

1
4e

)
| Λ ∈ D(η) ∧ τ ∈ [q]V \Λ

}
.

In words, for any pinning τ on V \ Λ with Λ ∈ D(η), T
(η)
mix(µ) is an upper bound for the

mixing time T of Glauber dynamics for µτ such that starting from the worst initial X0, the
total variation distance between XT and µτ is at most 1

4e .

▶ Theorem 13 (Fast Sampling Algorithm). Let M ≥ 1 and 0 < η ≤ 1
2⌈M⌉ be two constants.

There exists an algorithm such that given any ε ∈ (0, 1) and any Gibbs distribution µ on
graph G with the maximum degree ∆ ≥ ∆0 = ( 10M

η )2 log 10M
η , if µ satisfies M-coupling

independence such that the weighted hamming distance ρ satisfies ρmax
ρmin

= poly(n), then it
returns a random sample X satisfying DTV (X ∥ µ) ≤ ε in time

∆T
(η)
mix(µ)

(
log n

ε

)O(M/η)
,

where n is the number of vertices in G and we use ρmax = maxv∈V ρ(v) and ρmin =
minv∈V ρ(v).

The theorem is proved in the full version ([10, Section 5]).See Section 3 for a proof overview.
In the above theorem, suppose ρmax

ρmin
= O(nd) for some universal constant d, then the

running time in above theorem should be T GD
mix(µ, η)∆(log n

ε )C(M/η+d) for some universal
constant C. We then hide the constants C and d by O(·) in Theorem 13.

Theorem 4 can be obtained from Theorem 13. Consider the list coloring on a triangle
free graphs G = (V, E) with |Lv| ≥ (α⋆ + δ)∆. The uniform distribution µ satisfies O(1/δ)-
coupling-independence with standard Hamming weight ρ(v) = 1 for all v ∈ V . Take
η = O(1/δ) be a small constant with η < 1

10 . By (5), a simple path coupling [6] shows that
T GD

mix(µ, η) = O(n log n). Hence, if the maximum degree ∆ is greater than ∆0, we run the
algorithm in Theorem 13 and the running time is ∆n · polylog( n

ε ). Otherwise, the maximum
degree is bounded and the result in [21] gives the Oδ(n log n) mixing time of the Glauber
dynamics, then we can simulate Glauber dynamics to obtain a sampling algorithm. The
proof of Theorem 4 is in the full version ([10, Section 9]).

The algorithm in Theorem 13 is not the Glauber dynamics. Roughly speaking, the
algorithm uses some strategy to pick vertices and uses the Glauber update to resample the
value of the picked vertices. However, for monotone spin systems, we can compare this
algorithm to Glauber dynamics via censoring inequality [43] and then we can bound the
mixing time of Glauber dynamics.

Let µ over [q]V be the Gibbs distribution. Define a partial order ≤ for [q]V as follows.
For each v ∈ V , pick a total order ≤v on [q]. For any two X, Y ∈ [q]V ,

X ≤ Y ⇐⇒ ∀v ∈ V, Xv ≤v Yv. (6)

For two distributions µ and ν over [q]V , we say µ is stochastic dominated by ν (i.e., µ ⪯ ν) if
there is a coupling C between µ, ν such that Pr(X,Y )∼C [X ≤ Y ] = 1. Let P be the transition
matrix of the Glauber dynamics on µ, which can be written as

P = 1
n

∑
v∈V

Pv, (7)

where Pv performs updates at the v ∈ V such that Pv(X, Y ) = µXV \v (Y ), for all X, Y ∈ [q]V .
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▶ Definition 14 ([37, Chapter 22]). We say µ is a monotone spin system if for every v ∈ V ,
Pv is ordering persistant, which means for any X, Y ∈ [q]V with X ≤ Y , it holds that
Pv(X, ·) ⪯ Pv(Y, ·).

By the definition of the partial ordering ≤ in [q]V , there is a unique maximum configuration
for the ordering. Denote this state as X+. Recall T GD

mix(µ, ε | X+) denotes the mixing time
of Glauber dynamics starting from X+.

▶ Theorem 15 (Mixing Time Comparison). Let M ≥ 1 and 0 < η ≤ 1
2⌈M⌉ be two constants.

For any monotone spin system µ on graph G with the maximum degree ∆ = Ω( M2

η2 log M
η ), if

µ satisfies M -coupling-independence such that the Hamming weight ρ satisfies ρmax
ρmin

= poly(n),
then the mixing time of Glauber dynamics starting from the maximum configuration satisfies

T GD
mix(µ, ε | X+) ≤

(
log n

ε

)O(M/η)
· T (η)

mix(µ),

where n is the number of vertices in graph G.

The theorem is proved in the full version ([10, Section 6]).See Section 3 for a proof overview.
The above theorem is of independent interest. Suppose µ is a monotone system with

coupling independence property. The parameters of µ are in the critical regime and the
underlying graph has an unbounded maximum degree. If we can choose a proper constant η

such that T
(η)
mix(µ) = O(n log n), then the theorem gives a linear-optimal Õ(n) mixing time of

Glauber dynamics for µ starting from the maximum configuration.
To obtain the near-linear mixing time for µ, some previous works [12, 15, 2] developed

comparison techniques for the modified log-Sobolev (MLS) constants. Roughly speaking,
if one can lower bound the MLS constant mls(µ) of the Glauber dynamics for µ, then one
can obtain the optimal O(n log n) mixing time. Previous works compared mls(µ) to mls(µ′),
where µ′ is a distribution in the easy regime, and such comparison requires µ to satisfy
certain entropic independence [2] condition. In general, it is not easy to verify the entropic
independence condition and analyze mls(µ′) even if µ′ is in an easy regime. Theorem 15
only requires the coupling independence condition and directly compares the mixing time.
However, Theorem 15 requires monotone systems, and the final mixing result is restricted.

We remark that although the hardcore model in bipartite graphs is a monotone system,
Theorem 6 is not a direct consequence from Theorem 15. We need to tweak the proof
of Theorem 15 to prove Theorem 6. The proof of Theorem 6 is in the full version ([10,
Section 8]). See Section 3 for a proof overview.

2.3 Establishing Coupling Independence
The next question is how to establish the coupling independence condition for spin systems.
Previously, spectral independence was known for many spin systems. The coupling independ-
ence was often a by-product result when proving spectral independence. Hence, it is known
for some specific spin systems such as subgraph world [14], b-matching [18] and coloring in
high girth graphs [19].

In this paper, we give a tool to turn many existing spectral independence results into
coupling independence results. A large family of spin systems is 2-spin systems. Let
G = (V, E) be a graph with maximum degree ∆ ≥ 3. Let 0 ≤ β ≤ γ be the edge interactions
such that γ > 0. Let λ > 0 be the external field. Let µ be the Gibbs distribution on G

with parameters β, γ, λ such that for any σ ∈ {−, +}, µ(σ) ∝ λn+(σ)βm+(σ)γm−(σ), where
n+(σ) is the number of vertices v with σv = + and m±(σ) is the number of edges {u, v} with
σu = σv = ±. The 2-spin system is said to be ferromagnetic if βγ > 1 and anti-ferromagnetic
if βγ < 1.
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Anari, Liu, and Oveis Gharan [3] analyzed the spectral independence for the hardcore
model. Chen, Liu, and Vigoda [20] extended the analysis to general 2-spin systems. Recall
that the influence matrix Ψτ

µ is defined in (4). The maximum eigenvalue Eigmax(Ψτ
µ) can be

upper bounded by the total influence from one vertex

Eigmax(Ψτ
µ) ≤ max

v

∑
u∈V

|Ψµ(v, u)|. (8)

The RHS is called the total influence bound. For 2-spin systems, the analysis is performed on
the Self-Avoiding-Walk (SAW) tree [46]. Roughly speaking, fix a vertex v, the SAW tree Tv

enumerates all the SAWs in graph G starting from v. By defining a proper 2-spin system on
Tv, one can use the total influence from the root in Tv to upper bound the total influence
from v in G, and thus establish the spectral independence for Gibbs distribution µ. In [20], a
weighted version of (8) is studied to deal with general 2-spin systems. We give the following
result for coupling independence.

▶ Theorem 16 (Informal version; see [10, Lemma 39] for the formal version). For 2-spin sys-
tems, the (weighted) total influence bound in the Self-Avoid-Walk tree implies coupling
independence.

As a consequence, all the spectral independence results for 2-spin systems in [20] can be
turned into coupling independence results in black-box. For the hardcore model in bipartite
graphs (Theorem 5 and Theorem 6), we can also use the above result to transform the total
influence bound in [13] into coupling independence result.

Theorem 16 is proved by constructing a recursive coupling in the full version ([10,
Section 7]). Fix a vertex v in G. We build a coupling (X, Y ) between µv+ and µv− and show
the discrepancy between X and Y are bounded by the total influence in the SAW tree Tv.
Suppose v has d neighbors u1, u2, . . . , ud. We split v into d copies v1, v2, . . . , vd such that vi

only has one neighbor ui. Define the pinning σi such that vj for j ≥ i takes the value + and
vj for j < i takes the value −. Then µv+ = µσ0 and µv− = µσd . We couple each adjacent
µσi−1 and µσi , then merge them into a coupling between two endpoints µσ0 and µσd . For
each adjacent pair, the only difference between σi and σi−1 is the pinning at vi. Hence, we
first couple the only neighbor ui of vi then construct the coupling recursively if the coupling
at ui fails. This recursive processing essentially enumerates all SAWs from v. We can relate
the coupling with the SAW tree to prove the theorem.

For multi-spin systems such as list-coloring, we can mimic the recursive coupling for
2-spin systems. Since the previous spectral independence results for list-coloring were also
obtained via the SAW tree [24, 16], a similar proof gives the coupling independence.

3 Proof Overview

We give a proof overview for the relaxation time comparison result in Theorem 9. Let
G = (V, E) be a graph with maximum degree ∆. Let ℓ and k be two constant integers such
that ℓ < k. Their specific values will be fixed later. We first partition all the vertices in
V into k parts U1, U2, . . . , Uk such that for any vertex v ∈ V , each Ui does not have more
than η

ℓ ∆ neighbors of v, where 0 < η < 1 is the parameter in Theorem 9. In other words,
let Γv = {u | (u, v) ∈ E} denote the set of neighbors of v in graph G. For any i ∈ [k],
|Γv ∩ Ui| ≤ η

ℓ ∆. The existence of the partition is guaranteed by the Lovász local lemma.
However, the local lemma requires the maximum degree ∆ to be sufficiently large. That
is why we require a lower bound for ∆ in our technical results. We also remark that in
our proof, the degree lower bound is used solely to ensure the existence of the partition. A
similar partition appeared in the previous work [30].
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The input Gibbs distribution µ over [q]V is a joint distribution of n variables (Xv)v∈V ,
where each variable takes its value from [q]. Now, we can view µ as a joint distribution
of k variables Y = (Yi)i∈[k] such that each variable Yi = XUi

takes its value from a huge
domain [q]Ui . We define the k ↔ (k − ℓ) down-up walk on Y . Given Y = (Y1, Y2, . . . , Yk),
the Markov chain does as follows

Down-walk: Sample a set S ∈
([k]

ℓ

)
of ℓ indices uniformly at random and then remove the

configuration on the set S: Y → Y[k]\S ;
Up-walk: Resample YS from µ conditional on Y[k]\S and then go back to a full configuration
Y[k]\S → Y[k]\S ∪ YS .

A full configuration Y = (Y1, Y2, . . . , Yk) is on the level k. In the down-walk, we sample
a random subset of indices S ⊆ [k] with size ℓ. By dropping the configuration YS , we
move from a full configuration at level k to a partial configuration at level k − ℓ. In the
up-walk, we resample YS and go back to the level k. The process can also be viewed as a
kind of block dynamics for configuration X ∈ [q]V . In every step, we pick a random subset
US = ∪i∈SUi ⊆ V of variables and resample X(US) conditional on X(V \ US).

We use local-to-global technique [35, 1, 3] to analyze the spectral gap of the k ↔ (k − ℓ)
down-up walk for Y . The local-to-global technique suggests to analyze the relaxation time of
k ↔ 1 down-up walk2. In the down walk, we pick a random S of size |S| = k − 1 and drop
YS . In the up-walk, we resample YS and go back to level k. We use coupling independence
to analyze this k ↔ 1 down-up walk via path coupling. For simplicity, suppose µ satisfies
C-coupling independence with standard Hamming distance (ρ(v) = 1 for all v ∈ V ). We can
view this k ↔ 1 down-up walk on Y as a block dynamics on X ∈ [q]V , where it updates a
block US in every step. Given two X ∈ [q]V and X ′ ∈ [q]V that disagree only at one vertex
v ∈ V , say v ∈ U1, we couple the transition of k ↔ 1 down-up walk. Let two k ↔ 1 down-up
walks (starting from X and X ′, respectively) select the same random subset S ⊆ [k] such
that |S| = k − 1.

If 1 ∈ S, which happens with probability k−1
k , then since v ∈ U1 the value of v is removed

in the down-walk, and thus X and X ′ can be coupled perfectly after the transition.
If 1 /∈ S, which happens with probability 1

k , then since v ∈ U1, the disagreement at v may
percolate to other blocks in the up-walk step. We use the coupling in the M -coupling
independence to couple the up-walk so that the expected Hamming distance between X

and X ′ after the transition is at most M .
Hence, the expected Hamming distance between X and X ′ after transition is at most M

k . If
k > M , the path coupling gives the O(log n) mixing time and O(1) relaxation time for this
down-up walk. To apply the local-to-global technique, we also need to fix a configuration
YΛ, where Λ ⊆ [k] and |Λ| = t ≤ ℓ, and consider the (k − t) ↔ 1 down-up walk for Y[k]\Λ.
The same path coupling works if k − t > M . By choosing k and ℓ such that k − ℓ > M and
using the local-to-global technique, we can show that the k ↔ (k − ℓ) down-up walk for Y

has O(1) relaxation time.
We then compare the k ↔ (k − ℓ) down-up for Y = (Y1, Y2, . . . , Yk) to the Glauber

dynamics for X ∈ [q]V . Recall that k ↔ (k − ℓ) down-up walk is a kind of block dynamics
for X. In every step, the block dynamics updates a subset US = ∪i∈SUi with |S| = ℓ. The
update step is to resample X(US) conditional on X(V \ US). This step samples from the

2 In [1, 3], the local walk is essentially defined as the 1 ↔ k up-down walk. Every state is Yi for i ∈ [k].
In the up-walk, it extends Yi to a full configuration Y . In the down-walk step, it samples a random
index j ∈ [k] and updates Y to Yj . It is well-known that 1 ↔ k up-down walk and k ↔ 1 up-down walk
has the same relaxation time.
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conditional Gibbs distribution µ
X(V \US)
US

on subgraph G[US ]. By the construction of the
partition, the maximum degree of G[US ] is at most η∆ so that we have the relaxation time
bound T

(η)
rel (µ) for Glauber dynamics on µ

XV \US

US
. Let T down-up

rel denote the relaxation time of
k ↔ (k− ℓ) down-up walk. By some standard comparison argument between block dynamics
and the Glauber dynamics, we can prove Theorem 9 by showing that

T GD
rel (µ) ≤ T down-up

rel × T
(η)
rel (µ) = O(1)× T

(η)
rel (µ).

Next, we explain how to get the near-linear time sampling algorithm in Theorem 13
and the mixing time in Theorem 15. Note that for k ↔ 1 down-up walk, the path coupling
actually gives the O(log n) mixing time. For one update step, it selects a subset S ⊆ [k] with
|S| = k − 1. Let i denote the missing index, i.e. S ∪ {i} = [k]. The update step resamples
YS conditional on Yi. We can simulate this transition step using (k − 1)↔ 1 down-up walk
for the conditional distribution on YS . This down-up walk also has the O(log n) mixing
time. We do this recursively until we need to sample from a conditional distribution on YS′

with |S′| = ℓ. Note that the maximum degree of the graph G[US′ ] is at most η∆. Now, we
simulate the Glauber dynamics for O(T (η)

mix(µ) · log n) steps to sample from the conditional
distribution. The following informal algorithm generates an approximate random sample
from µ within TV-distance error ε = O(1). The formal algorithm is given in the full version
([10, Section 5]).

Algorithm Sample(X, Λ)
Input: a subset Λ ⊆ [k];
Output: the algorithm randomly updates the partial configuration XUΛ so that XUΛ

becomes an independent approximate sample of µσ
UΛ

, where σ = XU[k]\Λ .
1. if |Λ| = ℓ: update XUΛ for O(T (η)

mix(µ) · log n) steps, where every step uses the
update rule of the Glauber dynamics on µσ

UΛ
, where σ = XU[k]\Λ .

2. else: run the update of |Λ| ↔ 1 down-up walk on µσ
UΛ

for O(log n) steps, where
σ = XU[k]\Λ and every step does as follows:
a. pick an index i ∈ Λ uniformly at random and let S = Λ \ {i};
b. call Sample(X, S) to update XUS

; (recursion step)

We can call Sample(X, [k]) with an arbitrary feasible X ∈ [q]V . When the algorithm
terminates, X is updated to an approximate random sample from the distribution µ. Note
that the parameter k is a constant. The total number of Glauber update steps is given by
N = (log n)O(1)T

(η)
mix(µ). Therefore, the overall running time of the algorithm is O(∆N).

Alternatively, we can think of the algorithm as follows: it first generates a random sequence
of vertices v1, v2, . . . , vN ∈ V . In the t-th step, the algorithm randomly updates the value
of vt, conditioned on the values of other variables. This behavior is similar to standard
Glauber dynamics for µ, except that the sequence v1, v2, . . . , vN follows a non-trivial joint
distribution. For monotone systems, we can compare this algorithm with Glauber dynamics
using the censoring inequality.

The results for list-coloring are consequences of general technical results. However, we
need to tweak the analysis to prove the results for hardcore model in bipartite graphs
(Theorem 5 and Theorem 6). The reason is that for hardcore model on G = (VL ∪ VR, E),
we only know λ < λc(∆L) but we cannot control the degree ∆R in the right part VR. Our
technique can only prove the coupling independence for µL, which is the marginal distribution
on VL projected from µ. To prove the relaxation time and mixing time results, we first
partition VL into disjoint part U1, U2, . . . , Uk such that for any vertex v ∈ VR, v has no more
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than η
ℓ ∆ neighbors in each Ui. Again, the existence of the partition is guaranteed by the local

lemma. Let X ∼ µL be a partial configuration on VL. We can define Y = (Y1, Y2, . . . , Yk),
where Yi = XUi

. By a similar proof, we show that the k ↔ (k − ℓ) down-up walk for Y is
rapid mixing. We consider a global Markov chain over {−, +}VL∪VR defined as follows. Let
X ∈ {−, +}VL∪VR be a full configuration.

Drop the right part to obtain X ← X(VL);
Update X using the k ↔ (k − ℓ) down-up walk for Y = (Y1, . . . , Yk), where Yi = X(Ui);
Sample X(VR) ∼ µX

VR
and let X ← X ∪X(VR).

We first compare this chain to the k ↔ (k − ℓ) down-up walk and then compare the Glauber
dynamics for µ to this Markov chain. This gives the relaxation time of Glauber dynamics.
For the mixing time, we can first obtain a near-linear time sampling algorithm for µL, since
hardcore model in bipartite graph is a monotone system, we then compare the algorithm to
the Glauber dynamics for µ via the censoring inequality.
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