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Abstract
Modern blockchain-based consensus protocols aim for efficiency (i.e., low communication and round
complexity) while maintaining security against adaptive adversaries. These goals are usually achieved
using a public randomness beacon to select roles for each participant. We examine to what extent
this randomness is necessary. Specifically, we provide tight bounds on the amount of entropy a
Byzantine Agreement protocol must consume from a beacon in order to enjoy efficiency and adaptive
security. We first establish that no consensus protocol can simultaneously be efficient, be adaptively
secure, and use O(log n) bits of beacon entropy. We then show this bound is tight and, in fact, a
trilemma by presenting three consensus protocols that achieve any two of these three properties.
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1 Introduction

Consensus is a cornerstone of distributed computing, with research spanning over four
decades [33, 28]. In the consensus problem, n players (or nodes) with respective inputs must
engage in communication in order to reach agreement on a value. The challenge stems from
the presence of at most f corrupted (eq. Byzantine) players, which may deviate from any
given protocol in arbitrary ways.

The consensus problem has been considered under a myriad of constraints and allowances
across various axes, including network synchrony, setup assumptions, the use of randomness
by honest players, and the capabilities of the adversary (Garay and Kiayias [20] provide a
detailed survey). With the renewed interest in this problem due to its foundational role in
blockchains, two properties of particular importance from a practical point of view have been
efficiency and adaptive security.

1. Efficiency. We consider an efficiency notion motivated by modern blockchain-related
consensus protocols. We say that a protocol has low communication (or in other words, is
laconic) if in every round few of the players (i.e., o(n) << n) send messages. A protocol
has low latency if it requires at most o(n) rounds. We refer to a protocol as efficient if
it has both low communication and low latency. Our efficiency notion is essential for
consensus protocols to scale to thousands of players and finalize transactions quickly.
Indeed, most modern blockchain systems (e.g., Bitcoin and Ethereum) are efficient in
this sense.
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2. Adaptive Security. We say that a consensus protocol is secure against an adaptive
adversary if it solves consensus even when the adversary may choose to corrupt players “on
the fly,” based on its observations thus far. We consider both a basic adaptive adversary
which can corrupt up to f players at any point based on the current transcript of the
protocol, but cannot un-corrupt them, and a mobile blocking adversary which can choose
potentially new players to target in each round but can only block their messages, and
not cause arbitrary behavior.

Observe that either of these properties is straightforward to achieve without the other: if
efficiency is not important, classical Byzantine fault-tolerant consensus protocols [10] are
adaptively secure. On the other hand, Nakamoto-style consensus [32] with round-robin
leader election is efficient against a non-adaptive adversary, but has linear latency against an
adaptive adversary.

In practice, the vast majority of blockchains, including Ethereum and Bitcoin, aim to
achieve both of the above properties. They do so by relying on a source of shared randomness
for the players, for tasks such as leader election and committee sampling [5, 32, 14]. Such
a primitive that provides access to fresh randomness at every point in time is referred to
in the literature as a randomness beacon [34]. Implementing such a beacon, however, is an
expensive task, with current constructions either employing delay functions [29, 7], requiring
many rounds or much communication [37, 12, 35, 24], or achieving a sub-optimal version of
the ideal functionality subject to manipulation [22, 5].

On the other hand, it turns out, that the use of unpredictable randomness is essential to
the design of efficient consensus protocols [17, 6, 1]. Dolev and Reischuk [17] show that any
deterministic protocol must have Ω(n2) communication complexity. Bar-Joseph and Ben-Or
[6] show that against a computationally unbounded adaptive adversary that can view the
local state of all players, any (even randomized) synchronous BA protocol requires Ω̃(

√
n)

rounds. Abraham et al. [1] show that without unpredictable randomness, any consensus
protocol must use Ω(n2) communication.

1.1 Our Setting
The goal of this paper is to quantify the precise amount of randomness that must be drawn
from such a beacon to allow for efficient and adaptively secure consensus protocols. We make
minimal auxiliary assumptions, focusing on the information-theoretic (i.e., a computationally
unbounded1 adversary and no PKI), synchronous setting. Specifically, we consider the
following ideal functionality for a beacon: At each round t, a fresh, uniformly random string
is revealed to all players.

Such an assumption, referred to as an idealized common coin or randomness beacon is a
common assumption in the BA protocols for asynchronous networks [15, 31]. We say that a
protocol has low beacon entropy if it can be implemented using a randomness beacon that
generates O(log n) bits in total during the protocol. We stress that it is important that the
random string revealed to all players at round t is not only uniform, but also is unpredictable
prior to round t. In other words, no adversary can predict the contents of the string of round
t prior to round t. Abraham et al. [1] show that any protocol secure against an adversary
that can predict the content of the beacon ahead of time, must use Ω(n2) communication.
We emphasize that our lower bound applies even when the protocol has access to our beacon
with stronger unpredictability.

1 Under computational assumptions, e.g., using a delay function, a beacon can be constructed. The
unbounded adversary setting enables us to isolate the utility of the beacon.
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1.2 Our Results
We provide a complete and tight characterization of efficiency, adaptive security, and low
beacon randomness:

Impossibility (Section 4, Theorem 7 and Corollary 8): We show that no consensus pro-
tocol can simultaneously achieve all three properties. That is, any efficient, adaptively
secure consensus protocol must use a randomness beacon that outputs ω(log n) bits. Our
impossibility result holds against a computationally unbounded adversary in a broadcast
communication model.

Possibility (Section 5, Lemmas 9, 15, and 17): We show that the above impossibility is
tight by presenting three consensus protocols, each realizing exactly two of the above
three properties. Our protocols work against a computationally unbounded adversary in
a peer-to-peer communication model. Together, they demonstrate a trilemma: consensus
protocols can achieve any two of efficiency, adaptive security and low-entropy, but not all
three.

2 Related Work

A long line of work considers a computationally bounded adversary [13, 2, 18, 21]. Protocols
in this setting employ cryptographic tools to enable adaptive secure consensus protocols with
as few as O(1) rounds (in expectation). This research culminates in the work of Ghinea,
Goyal and Liu-Zhang [21], which matches the decades-old lower bound Chor, Merritt, and
Shmoys [13] which states that any r round consensus protocol has error probability at least
Ω( 1

rr ).
Coming back to an unbounded adversary, other works [26, 36, 8, 1, 16] consider relaxed

versions of the adaptive adversary, and design consensus protocols that circumvent the
aforementioned round and communication lower bounds of [1, 6].

Adaptively secure consensus. By Abraham et al. [1], any protocol that is secure against a
strongly adaptive adversary must use Ω(n2) bits of communication. This bound is known to
be tight in the setting of a computationally bounded adversary by the work of Abraham et
al. [2]. The protocol of this work also achieves optimal O(1) round complexity, in expectation.

Adversary Relaxations. On the road to circumventing the lower bounds of [1, 6], various
relaxations to the strongly rushing adversary have been considered.

A typical relaxation is that if the adversary chooses to corrupt a player p at round r, player
p still performs the honest behaviour of round r prior to the adversary taking control of
p (at which point the adversary can send additional messages, still in round r). Protocols
achieving o(n2) communication complexity under this assumption include the work of King
and Saia [26], and the follow up work by King, Lonargan, Saia and Trehan [25] in which
they show protocols with O(n1.5) communication complexity. Additional cryptographic
assumptions allow the design of protocols with nearly linear communication complexity
[8, 11, 2, 9]. Another class of protocol circumventing the communication lower bound of [1]
are motivated by blockchain applications, and make use of proof-of-work or proof-of-stake
assumptions [16, 32].
Another line of work considers a late adaptive adversary. Roughly, this is an adaptive
adversary with an outdated view of the state of the protocol. At each round the adversary
may choose players to corrupt based on all information available so far, however the actual
corruption occurs several rounds later. Most of these works consider relaxed variants of
the consensus problem, e.g., almost-everywhere consensus [36, 4, 3, 27].

AFT 2025
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A mobile blocking adversary has been considered previously in [36], and is generally
related to the well studied model of omission failures [30, 23].

Randomness beacon entropy. As mentioned, the idealized randomness beacon assumption,
also known as a common coin, is extensively used in consensus protocol design in asynchronous
networks (See [31] and references within). A recent work [23] studies a similar question
to ours. Specifically, they consider protocols secure against an adaptive omission failure
adversary, and characterize the trade-off between the required number of oracle calls to a
random beacon and the round complexity.

3 Preliminaries

Notation. We let λ denote the security parameter. If a function f(λ) is O(1/poly(λ))
for every polynomial in λ, we say f is negligible in λ. We write f = negl(λ). We
let log(x) denote the logarithm base 2 of x. If X is a random variable over do-
main Ω, and Supp(X) = {x ∈ Ω | Pr[X = x] > 0}, we denote the min-entropy of X by
H∞(X) = minx∈Supp(X)

1
Pr[X=x] .

Model. We consider a network of n players (eq. nodes or participants). We focus here on
the permissioned setting, in which the set of n players is fixed and known to all players in
advance. At most f players can be corrupt. We further assume that communication takes
place over a synchronous network with maximum message delay of ∆, i.e. a player p at
round t has received all messages sent to it up to round t−∆. For simplicity of exposition,
we assume that ∆ = 1, but all our results extend naturally to the general case of delay
parameter ∆. Throughout the paper we consider two models for a communication network.
In the peer-to-peer model, players may send different messages to different players during
each round. In the broadcast model, players (including corrupted players) may only broadcast
a message, which is received by all other players.

Specifically, the latter model does not allow corrupt players to equivocate. Our lower
bound holds even in the more generous broadcast model, and our upper bounds hold even in
the more general peer-to-peer model of communication.

Adversary model. All of the adversaries considered in the paper are computationally
unbounded, and in particular we assume no PKI (though we do assume authenticated
channels between participants). Specifically, we consider three types of adversaries, static,
adaptive, and mobile blocking. Let f be the adversary’s corruption budget. It is useful for us
to consider an adversary as a pair of algorithms A = (A0,A1), where A0 is responsible for
choosing the identities of up to f corrupted players at every round t, and A1 is the adversary
participating in the protocol. A bit more formally, at each round t, A0 may observe (Π, t, Trt)
and output a set Ft of at most f players. Here, Π is a description a protocol and Trt refers
to the transcript of a protocol up to round t (see Definition 2). Each adversary type we
consider imposes different restrictions on either A0 or A1.2

Static. The static adversary chooses the identities of f corrupt players at round t = 0,
and this choice is fixed throughout the execution of the protocol. The adversary has
complete control over the behaviour of the corrupted players. In other words Ft = F0 for
all t. There are no restrictions on A1.

2 One might ask about the possibility of a mobile adversary capable of corruption, but this is tricky to
reason about as it requires a notion of “un-corrupting” players.
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Adaptive. At the beginning of each round t, the adversary chooses the identities of ft < f

players to corrupt in that round, based on its observations of the transcript of the protocol
and the players it has corrupted thus far. These players stay corrupted for the rest of the
execution. In other words, Ft ⊆ Ft+1 for all t. There are no restrictions on A1.
Mobile blocking. A mobile blocking adversary can, at every round, observe (Π, t, Trt),
where t is a round, and Trt is the transcript of Π up to round t, and output a set Ft of at
most f players that are prohibited from sending messages at round t. We emphasize that
unlike the adaptive adversary which is constrained by the total number of corruptions,
the mobile adversary may corrupt up to f players in each round regardless of how many
players it has corrupted in the past. A mobile blocking adversary is also captured by
the (A0,A1) notation via A0(Π, t, Trt) = S, and A1 be an adversary behaviour in which
corrupted players send no messages.

In any adversary variant, we say that an adversary corrupting at most f = ρn players is
ρ-bounded.

Randomness. The protocols we consider in this work have two main sources of randomness.
For both of them, we assume an ideal functionality as our goal is to reason about the nature
and amount of randomness required to design consensus protocols.
1. Common Random String (CRS). We assume that at round t = 0, an arbitrarily

long (as per the protocol’s specification) uniformly random string CRS is revealed to all
players. A static adversary must choose the identities of corrupt players prior to the
CRS being revealed. An adaptive or mobile adversary can choose the identities of corrupt
players after CRS is revealed.

2. Randomness Beacon. A randomness beacon is an oracle that at every round t, produces
a fresh uniformly random string seedt of an arbitrary length (as per the protocol’s
specification). In particular, for each round t, an adaptive or a mobile adversary must
choose the identities of corrupted players prior to the revelation of seedt.

Clearly, in the presence of an adaptive adversary the latter source of randomness is
significantly more powerful than the former. It is precisely the latter source of randomness
that is the main focus of this paper.

Authenticated Channels. Similarly to prior work [26, 8], we assume that communication
channels in our network are authenticated. Intuitively, this means that each player knows
the identity of the sender for any message received. This can be formalized by instantiating
communication channels with a map that maps a message m to the tuple (m, p), where p is
the sender of m. This mapping is fixed and can not be tampered with by the adversary.

Executions. An execution is a tuple E = (Π,A, r) where Π is the protocol run by honest
players. A is a particular adversary, i.e. A is an algorithm that chooses corrupt players
(only at t = 0 if static, otherwise A0 chooses at every round t) based on the transcript of
the protocol and internal state of corrupt players, and instructions for the behaviour of the
environment. r denotes the random coins of all players. Given a protocol Π we say that E is
an execution of Π if the first component of E is Π.

We say that an execution is admissible in the adaptive model if for all rounds t ≥ 0 it
holds that ft < 1

3 n. In the static model we further demand that the identities of corrupt
players remain fixed throughout the execution of the protocol. At times we abuse notation
and refer to an execution also as the random variable (Π,A) which is a distribution over
executions in which Π is the protocol run by honest players, and A is the adversary (corrupt
players in each round, and actions taken by them). We denote this random variable by EA.

AFT 2025
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The specification of the consensus problem we consider takes the form of the well known
Byzantine Agreement problem [33, 28].

Byzantine Agreement (BA). In the BA task, n players must come to an agreement on a
bit under some constraints. Each player Pi has an input bi ∈ {0, 1}, and produces an output
oi ∈ {0, 1}. We say that a protocol Π solves the BA task if the following three properties are
guaranteed by Π, except for with negl(λ) probability.
1. Termination. There exists t such that all honest players have produced an output by

round t.
2. Agreement. For any pair of honest players Pi, Pj , the probability (over the randomness

of the adversary and the protocol) that these players output different values is at most
negl(λ).

3. Validity. If all honest players have the same input bit b, then all honest players always
output b.

An additional critical notion relating to a BA protocol is latency, which is defined as
follows. Intuitively, latency captures the expected number of rounds it takes for Π to
terminate.

▶ Definition 1 (Latency). Let Π be a protocol solving BA, and let Ti,A denote the random
variable indicating the round in which player i terminates given an adversary A corrupting
some subset of the players. Given an execution E = (Π,A, r), let HE denote the set of
players that remain honest throughout the entire execution. Π has expected latency ℓ given
f corruptions if for all adversaries A corrupting at most f players,

max
(Π,A)

A corrupts at most f players

E
E=(Π,A,r)

[
max
p∈HE

Tp,A

]
≤ ℓ.

Randomness beacon. In this paper, we consider an ℓ-bit randomness beacon to be an n-
party protocol ΠO with access to a random oracle O that satisfies termination and agreement
and, on input 1λ, outputs a string s of length ℓ(λ). Furthermore, the value output by
the honest parties must be computationally indistinguishable from random, in the random
oracle model. In other words, the adversary responsible with distinguishing between the
uniform distribution and the output of the beacon is only bounded in its number of queries
to the random oracle, but not in any other manner. In particular, it can perform arbitrary
computation. More precisely, let A be any (computationally unbounded) adversary corrupting
f out of n players. Let BO by any computationally bounded distinguisher, making poly(λ)
queries to the random oracle O. Denote by v ← ΠO

A the output of the honest parties from
an execution of Π with the adversary A. For any such A,BO it must hold that:∣∣∣Pr[BO(1λ, v) = 1 : v ← ΠO

A]− Pr[BO(1λ, r) = 0 : r ← {0, 1}ℓ(λ) ]
∣∣∣ ≤ negl(λ).

We say that ΠO is secure against a static/adaptive/mobile blocking adversary if the
above holds and A is a static/adaptive/mobile blocking adversary respectively. We note that
the definition of a randomness beacon varies throughout the literature; here, we consider a
weak notion where the adversary corrupting parties during the protocol execution is different
from the adversary attempting to distinguish the beacon output from random. This notion
is still nontrivial.
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4 Impossibility Result

In the following, we define formal notions in order to rigorously discuss the amount of common
randomness consumed by a BA protocol with adaptive security and low communication.
Recall that in this section, we assume to be in the broadcast model of communication. We
begin with defining the transcript of a protocol.

▶ Definition 2 (Transcript). Consider a BA protocol Π for a network of n players, and let
A = (A0,A1) denote some adversary. Denote by EA the random variable of executions
under (Π,A). We define the transcript TrEA to be the random variable that indicates the
identities and contents of the players speaking in each round. Formally, we have

TrEA =
{

Trt
EA

}
t∈N

Trt
EA

= (It
EA

, Ct
EA1

, At
A, seedt, CRS), where It

EA0
⊆ [n] is a subset of honest players at

round t, and Ct
EA
∈

(
{0, 1}∗)It

EA denotes the messages of those players. Furthermore, an
honest player pi speaks in round t iff i ∈ It

EA
, and the message it sends is consistent with

Ct
EA

. At
A contains the identities of the adversarial parties speaking at round t and the

contents of their messages

We consider the following notion of unpredictability, that intuitively says that the
probability that an adaptive adversary can guess correctly the set of speaking parties in
every round, given the transcript of the protocol up to that round is negligible.

▶ Definition 3 (Adversary’s guess of speaking parties). Let Π be a consensus protocol, and let
A = (A0,A1) be an adversary. We define the adversary’s guess to be a series (Î0

A, Î1
A, Î2

A, ...)
given by an algorithm A2 of the adversary’s choice where for each t ∈ N,

Ît
A,A2

← A2(Π,
{

Tri
EA
| 0 ≤ i ≤ t− 1

}
, t)

Given the above definition, we can now define global leader unpredictability:

▶ Definition 4 (Global leader unpredictability). Let Π be a BA protocol. We say that Π has
global leader unpredictability if for any adversaries A = (A0,A1) and A2,

Pr
[
∀t, Ît

A,A2
= It

EA0
| CRS

]
=

∞∏
t=0

Pr
[
Ît

A,A2
= It

EA0
|
{

Ii
EA0
| 0 ≤ i < t

}
, CRS

]
≤ negl(λ)

We now prove that if a protocol Π satisfies global leader unpredictability, then its
transcript contains a significant amount of min-entropy.

▶ Lemma 5. Let Π be a BA protocol that satisfies global leader unpredictability. Then for
any constant c > 0 and any adversary A = (A0,A1),

∞∑
t=0

H∞(Trt
EA
|
{

Tri
EA
| 0 ≤ i < t

}
, CRS) ≥ c log n.

Proof. Assume towards a contradiction that there exist a constant c > 0 and an adversary
A = (A0,A1) such that

∞∑
t=0

H∞(Trt
EA
|
{

Tri
EA
| 0 ≤ i < t

}
, CRS) < c log n.

AFT 2025
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Now for each t ∈ N, denote by kt the value H∞(Trt
EA
|
{

Tri
EA
| 0 ≤ i < t

}
, CRS). Applying

f(x) = 1
2x to both sides of the inequality above, we get that

1

2

∞∑
t=0

kt

>
1
nc

Thus, by definition of min-entropy, we have that there exist strings St, t ∈ N s.t.

1
2kt

= Pr[Trt
EA

= St |
{

Tri
EA
| 0 ≤ i < t

}
, CRS]

We thus have that

Pr[∀t ∈ N, Trt
EA

= St | CRS] =
∞∏

t=0
Pr[Trt

EA
= St |

{
Tri

EA
| 0 ≤ i < t

}
, CRS] >

1
nc

where the first transition is by definition of the probability of event intersection. Since
It

EA
is a part of Trt

EA
, we thus get that there exists set Ît, t ∈ N s.t.

Pr[∀t ∈ N, It
EA

= Ît | CRS] >
1
nc

Now note that an adversary A2 that predicts at round t the set Ît can realize this success
probability, thus violating the global leader unpredictability condition, as required. Such an
adversary is realizable both in the adaptive and mobile blocking models since the adversary at
round t has definitive knowledge of the transcript up to and including round t− 1, including
CRS. ◀

We would now like to prove that the lack of the global unpredictability condition, combined
with low communication, implies susceptibility to attacks by adaptive adversaries. With the
notion of a transcript in hand, we can also now formally define the relevant notion for this
paper of low communication.

▶ Definition 6. Let Π be a consensus protocol, and let A = (A0,A1) be an adversary. We
define the communication complexity of Π to be the random variable C =

∑
t∈N
|It

EA
|. We

say that the communication is uniform if there exists T such that except for with negl(λ)
probability it holds that |It

EA
| = O(C

T ) for all t ≤ T and |It
EA
| = 0 for all t > T . We

refer to C
T as the uniform communication complexity of Π. We say that a protocol has low

communication if it has uniform communication of o(n).

The goal of defining uniform communication, as opposed to just considering the general
number of bits exchanged between players in the protocol, is to speak rigorously about
protocols in which only a few players speak in each round. We now aim to prove the following
theorem, which says that any BA protocol in which few players speak in every round, uses
low beacon entropy, and is adaptively secure, requires many rounds. In other words, no BA
protocol can simultaneously be efficient, adaptively secure, and use low beacon entropy.

▶ Theorem 7. Let Π be a protocol that has the following properties:
Π does not satisfy global leader unpredictability.
Except for O(1) initial rounds, Π has uniform communication complexity k

Then w.p. 1
p(n) for some polynomial p, Π requires Ω( ρn

k ) rounds in the presence of a ρ-bounded
adaptive adversary, for any ρ ≥ k

n . Furthermore, if a mobile blocking adversary is considered,
then Π does not exist for any ρ ≥ k

n .
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Proof. By the assumption that Π does not satisfy global leader unpredictability, we deduce
that there exist a polynomial p(n) and adversaries A = (A0,A1) and A2 such that

Pr[∀t, Ît
A,A2

= It
EA0
| CRS] ≥ 1

p(n) .

Now consider the following adversary B = (B0,B1), acting as follows. Let r = O(1) be the
number of initial rounds which may have high communication complexity. In the following,
we employ a well-known result [13], which states that any BA protocol with r rounds has
error probability of at least Ω( 1

nr ), with the adversary needing to corrupt at most r players
[13]. In our case, Ω( 1

nr ) = 1/nO(1).
1. For the first r rounds, employ the adversary strategy [13], corrupting at most r players

in the process.
2. B0 acts as follows: At the beginning of any round t > r, use A2(Π,

{
Tri

EA
| 0 ≤ i < t

}
)

to obtain Ît
A,A2

. In the case of the adaptive adversary, corrupt all the players in Ît
A,A2

until the total number of corrupted parties has reached the corruption budget ρn. In the
case of a mobile blocking adversary, corrupt them for round t.

3. B1 sends no messages by the corrupted players; that is, the players in Ît
A,A2

. Note
that this is compatible behaviour with the mobile blocking adversary, in addition to the
adaptive adversary.

From here on in, the analysis is conditioned on the event that A2 has guessed correctly
the identity of speakers at all rounds, which occurs w.p. at least 1

p(n) , by assumption. Due
to the strategy of [13], we have that with at least inverse polynomial probability, Π does
not solve BA up to round r of the execution. For the following Ω( ρn

k ) rounds, no progress is
made since the adversary corrupts all parties participating in the protocol for those rounds.
Thus at least with inverse polynomial probability, Π requires Ω( ρn

k ) rounds, as required. In
the case of a mobile blocking adversary, no progress is made at all, indefinitely, and so in
particular the protocol either has no termination, or has error probability at least Ω( 1

nr·p(n) ),
which is a contradiction. ◀

We now show that global leader unpredictability implies a randomness beacon. This
randomness beacon simply runs Π and computes the hash(i.e. queries the random oracle)
of the identities that spoke in each round. Since these identities are unpredictable, given
enough parties there is sufficient randomness to construct a beacon.

▶ Corollary 8. Let Π be an n-party protocol satisfying global leader unpredictability. If n ≥ λ,
there exists a randomness beacon Π′O such that:

Π′O has the same communication complexity and latency as Π.
Π′O outputs λ bits that are indistinguishable from random by any efficient (poly(λ) query)
adversary in the random oracle model.

Proof. Let O : {0, 1}∗ → {0, 1}λ be a hash function which we model as a random oracle.
Let Π′O be the protocol obtained by running Π and outputting the hash(i.e. querying the
oracle O) of the identities of the parties that speak in each round of Π. Observe now that
Π′O trivially satisfies the first bullet point, since it involves only running Π and applying
a function to its transcript. Since we operate in the broadcast setting with authenticated
channels, all parties know these identities of speaking parties. Recall that global leader
unpredictability states that this tuple of speaking parties has at least c log n min-entropy for
any constant c. Therefore, for any fixed string s, the probability that this tuple of identities
equals s is at most 1/λc for any constant c. Let BO be a computationally bounded adversary

AFT 2025
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making a polynomial number of queries to the random oracle O. The probability that B
queried the tuple of speaking parties to O is smaller than the inverse of any polynomial,
which is negligible. Therefore, except with negligible probability the hash of the tuple of
speaking parties is a freshly random value from the perspective of BO. ◀

5 Possibility Results

Having established the above trade-off, we turn to showing that it exactly captures the role
of randomness in efficient and adaptively secure BA. Specifically, we present three protocols
solving BA, all simplified versions of known protocols from the literature, and prove that each
of them satisfies two of the three properties we described above. To make our results as strong
as possible, throughout this section, we consider a model where players are deterministic and
all players are given access to an ideal randomness beacon and a CRS. Recall (see Section 3)
that an adaptive adversary must make corruption choices for round r prior to seeing the
beacon output of round r. While for the lower bound result we assumed a broadcast model
of communication, we assume a peer-to-peer network for the upper bounds, to make our
results as strong as possible. In particular, corrupt players can equivocate. We formally
describe our framework and general BA protocol in the following section, and then showcase
how this framework is instantiated in three ways to obtain protocols:
1. Efficiency and adaptive security. We show that when entropy from a beacon is not

limited, there exists a protocol that is adaptively secure and efficient. The details, along
with our general framework, are in Section 5.1.

2. Low beacon entropy and adaptive security. If one is willing to forgo low communic-
ation, we show that there is an adaptively secure, low beacon entropy protocol that also
has O(1) expected round complexity. The details are in Section 5.2.

3. Low beacon entropy and efficiency. If one wishes to forgo adaptive security, then
there exists an efficient protocol that uses low beacon entropy that is secure against a
static adversary. The details are in Section 5.3.

Mobile blocking adversary. All the proofs relating to security against an adaptive adversary
in this section can easily be modified to work for a mobile blocking adversary, with the same
protocols. The main observation is that against an adversary that can only silence players,
none of our proofs use the property that the same parties are corrupted between rounds,
and also that in our protocols, the actions of an honest player depend only on the messages
received from the previous round, and not any other round in the past.

5.1 Efficiency and Adaptive Security
In this section we describe our general framework for BA protocol design, along with one
instantiation of it to obtain a BA protocol that has low communication(i.e. O(λ) parties talk
in each round) and is secure against an adaptive adversary, as long as 3ft + 1 < (1− ϵ)n for
all t ∈ N and constants ϵ. Formally, we prove the following in this section:

▶ Lemma 9. For all ϵ > 0, assuming a randomness beacon, there exists a protocol Π
that except for with exp(−λ) probability, solves the BA task in the presence of an adaptive
adversary that satisfies 3ft + 1 < (1− ϵ)n for all t ∈ N.
Furthermore, the protocol has O(1) expected latency, and the protocol has uniform O(λ)
communication complexity, in expectation.
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Our general framework, with which all three of our protocols are designed, resembles
that of Gafni and Losa [19] of interlacing executions of the commit-adopt task and leader
election. The main differences are the use of the randomness beacon to ensure both low
communication and security against an adaptive adversary for some of our considered settings,
and the consideration of a stronger adversary (Losa and Gafni assume a non equivocating
adversary). With this in mind, we describe in this section the general framework and its
concrete implementation to obtain Lemma 9. The following sections explain how to modify
the implementation to obtain the other two protocols.

In all our protocols, the set of parties tasked with speaking in each round is denoted by
comt for round t. We refer to comt as the committee of round t. Furthermore, each round t

has a designated leader, denoted by ℓt. Despite the fact that every round has a leader, in
most rounds the leader does not have any special role. The identity of comt and ℓt in each
of our considered settings is derived both from the beacon and the given CRS in different
ways, as follows.

1. Efficiency and adaptive security. To achieve Lemma 9, we use the randomness beacon
as follows. Denote the string distributed at round t to the players by the randomness
beacon by seedt. We choose |seedt| = O(λ log n), where λ is the security parameter, and
we treat seedt as seedt = (ℓt, comt) where ℓt ∈ [n] is the identity of a player, which is
referred to as the leader of round t, and comt ⊆ [n] is a subset of size O(λ) of players,
indicating the committee of round t. The protocol presented in this section makes no use
of the given CRS.

2. Adaptive security and low beacon entropy. This protocol also makes no use of the
CRS. In this protocol, comt = [n] for all t, and the leader ℓt is elected via the randomness
beacon string seedt as above. See Section 5.2 for further details.

3. Efficiency and low beacon entropy. This protocol is the only protocol that makes
use of the CRS. We interpret the CRS as (seed1, seed2, . . .) where seedt = (ℓt, comt) with
ℓt ∈ [n] and comt ⊆ [n] of size O(λ). See Section 5.3 for further details.

Our framework is comprised from the interlacing of two components.
Commit-Adopt (CA). The CA protocol consists of 2-rounds. In each of these rounds, only
the committee comt speaks. If the CA step fails to achieve consensus, players proceed to
the second phase of the protocol.
Conciliator (CO). Intuitively, the goal of the Conciliator task is to bring back the honest
players into a consistent view after the previous CA failed. This is done by running an
additional CA and a leader election, and then outputting a value to continue with for the
subsequent CA.

We now formally define the two procedures CA, and CO.

▶ Definition 10 (Commit-Adopt). In the commit-adopt task (CA), each player receives an
input value z, and must produce an output of the form commit(z′) or adopt(z′) for some
value z′, with the following guarantees.
1. Agreement. If an honest player outputs commit(z) for some value z, then all honest

players must output either commit(z) or adopt(z).
2. Validity. If all honest players input the same value z, then all honest players must output

commit(z).
3. Termination. There exists a round r ∈ N such that by round r, all awake honest players

have submitted an output.
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Figure 1 Illustration of the structure of all three of our protocols. CA and CO procedures are
interlaced, with each CO procedure ensuring safety on a potentially locked value, followed by letting
a leader propose a value to the decision CA. In each round t, only the players in comt or ℓt send
messages.

▶ Definition 11 (Conciliator). In the conciliator task (CO), each player has an input value z

and must produce an output with the following guarantees.
1. Validity. If all honest players input the same value z, then all honest players output z.
2. Termination. There is a round r ∈ N such that all honest players output by round r.
3. Probabilistic Agreement. With probability at least 2

3 , all players output the same value z

inputted by some honest player.
Our generic protocol alternates between executions of CO and CA until BA is solved. See
Figure 1 for an illustration. We denote the i-th execution of CA and CO by CA[i] and CO[i],
respectively. We now provide formal descriptions of the protocols for CA and CO using
ℓt, comt as explained above to obtain Lemma 9. The following sections explain how these
implementations are modified to obtain our other protocols.

Algorithm 1 CA.

We employ the following adopt-commit protocol executed by all honest players p with
input zp.
1. At round t = 0, if p ∈ com0, p broadcasts its input zp. Otherwise, do nothing.
2. At round t = 1, if p ̸∈ com1, do nothing. Otherwise, if there exists a value z that p

has received z from more than 2|com0|
3 of the players in com0

3, p broadcasts vote(z).
Otherwise, do nothing.

3. At round t ≥ 2, p decides on its output as follows.
a. If there exists value z such that p has received vote(z) from at least 2|com1|

3 of the
players in com1, output commit(z).

b. Else if there exists a value z for which p received more vote(z) from players in com1
than for any other value, output adopt(z).

c. Else, output adopt(zp).

We now prove that the above procedure solves the CA problem in the presence of an
adaptive adversary, as long as there is a constant ϵ > 0 s.t. 3ft + 1 < (1− ϵ)n for all t ∈ N.
In general, the above procedure solves the CA problem as long as comt contains a greater
than 2

3 -majority of honest players for all rounds t. In the context of Lemma 9, we make the
following observation, which is used liberally throughout the section. We denote the above
protocol by Π.
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▶ Observation 12. Let A = (A0,A1) be an adaptive adversary. Then for all t it holds that

Pr
[
|A0(Π, t, Trt) ∩ comt| ≥

|comt|
3

]
= negl(λ)

Proof. The proof follows from standard concentration bounds. Specifically we get that
the expected number of corrupted players in comt is upper bounded by |comt|

3 (1− ϵ), and
thus by a Hoeffding bound we get the probability that the number of corrupted players
in comt exceeds |comt|

3 is at most e−Ω(ϵ2|comt|) = e−Ω(ϵ2λ). For this we use the facts that
|comt| = Ω(λ), ϵ is a constant, the choice of each player in comt being independent, and the
independence of A0(Π, t, Trt) on comt. ◀

We thus assume from here on in for the remainder of the analysis that an honest super-
majority assumption holds at all rounds amongst the committee members, i.e. |A0(Π, t, Trt)∩
comt| < |comt|

3 holds for all t. With that in mind all that is left is to prove that the above
protocol solves the CA problem.

▶ Lemma 13. For any constant ϵ > 0, except for with negl(λ) probability, Algorithm 1 solves
the CA task whenever 3ft + 1 < (1− ϵ)n.

Proof. Termination is clear from the behavior of the protocol. We move on to Validity,
assume that all honest parties start the protocol with input z, and let com0, com1 be as in the
protocol. Then in particular, all honest players in com0 broadcast z. The above observation
implies that any honest player in com1 observes the value z from more than 2

3 of the players
in com0. Thus all honest players in com1 broadcast vote(z) message at round 1. Which in
turn causes all honest players to output commit(z) at t = 2, as required. For Agreement,
let commit(z) be the value output by some honest player p. Which means that p observed
vote(z) from more than 2

3 of the members of com1. Note first that no other honest member
of com1 sends vote(z′) for a different value, as this implies that that two honest players q1, q2
in com1, respectively received multicasts of z, z′ from more than 2

3 of the members of com0,
and a quorum intersection argument implies the existence of an honest player in com0 that
broadcast two different inputs, which can not occur. Thus for any other value z′ an honest
player can only observe strictly less than |com1|

3 vote(z′) messages from players in com1. On
the other hand, if p observed vote(z) from more than 2

3 of the members of com1, this implies,
together with Observation 12, that more than 1

3 of the honest members of com1 broadcast
vote(z), which means all honest players have seen vote(z) messages from more than 1

3 of the
members of com1. Combined, this means that all honest players have observed more vote(z)
messages from players in com1 than for any other value, and thus output either adopt(z) or
commit(z), as required. ◀

We now proceed to designing a protocol for the CO task.

Algorithm 2 CO.

We employ the following conciliator protocol executed by all honest players p with input zp.
1. If t ∈ [0, 2], run according to CA protocol with input value z.
2. If r = 3, if p = ℓ3 or p ∈ com3, broadcast CA output.
3. if r ≥ 4, then:

a. If p received commit(z) from more than 1
3 of the players in com3 for some value z,

then p outputs z.
b. Else, if p received adopt(z) or commit(z) for some value z from ℓ3, then output z

c. Else, output zp.
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We now proceed to prove the correctness of the above procedure.

▶ Lemma 14. For any constant ϵ > 0, except for with negl(λ) probability, Algorithm 2 solves
the CO task whenever 3ft + 1 < (1− ϵ)n.

Proof. Termination is clear from the behavior of the protocol. For Validity, if z is the
input of all honest players, then by the Validity of CA, we get that by round 3, all honest
players output commit(z). For probabilistic agreement, note that if no honest player outputs
according to item (a), then the property holds as the leader is honest w.p. at least 2

3 .
Otherwise, Let p be an honest player that output according to item (a), which implies that p

observed more than 1
3 fraction of commit(z) messages for the same value z from the players

in com3. In particular this implies that at least one of those players is honest. Thus by the
Agreement property CA, we have that all honest players output either commit(z) or adopt(z).
Thus no player in com3 sends commit(z′) for any value z ̸= z′. In particular this means that
no honest player views more than a 1

3 fraction of commit(z′) for any z′ = z. Thus, all honest
players that output according to item (a) agree. Denote that value by z. Now note that
w.p. at least 2

3 , ℓ3 is honest, and if this is the case, then ℓ3 also output either commit(z) or
adopt(z), by the agreement property of CA, and all other honest players output z according
to item b in that case. Thus, w.p. at least 2

3 , all honest players agree on the output, as
required. ◀

We denote by Lc, Lca the number of rounds required to run the CO, CA tasks, respectively.
We can now describe the generic BA protocol we employ. The following protocol is executed
by every honest player p with input z.

Algorithm 3 BA protocol framework.

1. For i = 0, ..., D:
a. If t ∈ [(Lc + Lca)i, (Lc + Lca)i + Lc], run as in CO[i] with input being the output of

CA[i− 1] or z if i = 0 .
b. If r ∈ [(Lc + Lca)i + (Lc + 1), (Lc + Lca + 1)i] run as in CA[i] with input being p’s

output in CO[i].
c. let o be the output of CA[i].

i. If o = commit(v) for some value, then output v as BA decision. Participate in the
protocol for one more iteration with inputs to all subroutines being fixed to v.

ii. Else, move on to i + 1.

With the above instantiations of CA and CO in mind, we now prove that the above
protocol proves Lemma 9.

Proof. For Termination, consider an iteration i of the protocol above. By probabilistic
agreement of CO, we have that w.p. at least 2

3 , all honest players agree on the output of
CO[i]. Denote it by z. Conditioned on agreement, Validity of CA guarantees that all honest
players output commit(z), and thus they all terminate at the end of CA[i]. Thus for every
iteration i, w.p. at least 2

3 , all honest players terminate at the end of iteration i + 1. Thus,
w.h.p. all honest players terminate after O(log n) iterations. For Validity, consider the case
where all players have the same input z. The Validity properties of both CO and CA imply
that at end of iteration 1, all honest players output commit(z) from CA[1] and output z,
as required. For Agreement, Let p be the first honest player to output, with output z. I.e.
there exists an i such that p output commit(z) from CA[z], and no honest player has output
commit(z′) for any z at any iteration i∗ < i. In particular, this implies, by the consistency
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of CA, that all other honest players output either commit(z) or adopt(z) from CA[i]. Which
implies that all honest players enter iteration i + 1 with input z. The Validity of an iteration,
proven above, implies thus that by the end of iteration i + 1, all honest players output z.

Combining the fact that for every iteration i, w.p. at least 2
3 , all honest players terminate

at the end of iteration i + 1 with the small size of comt for all t, we obtain that the protocol
halts in O(1) rounds in expectation, and has O(λ) uniform communication complexity, in
expectation, as required. ◀

Note that we have essentially proved that Algorithm 3 solves BA whenever the number of
honest participants in each round exceeds a 2

3 fraction. Furthermore, it has expected latency
of O(1).

Nakamoto Consensus. Note that Nakamoto consensus [32], also gives an efficient protocol
with adaptive security. In each round, a leader is elected from a beacon. The leader adds a
block to a chain, and consensus is reached on a prefix of the current longest chain, i.e. on
blocks that are k-deep in the longest chain. This implies that in order to agree on a single
block with 1− exp(−λ) confidence, it must be k = O(λ) deep in the longest chain. Thus,
the beacon needs to emit k · log(n) random bits to reach consensus. We note that the classic
implementation of Nakamoto does not satisfy the validity condition of BA. This is easily
remedied with a single invocation of CA prior to the initiation of the Nakamoto protocol.
While CA requires Ω(n2) communication, note that our lower bound (Theorem 7) applies
even when the protocol has O(1) initial rounds of high communication.

5.2 Adaptive security and low beacon entropy
Next, we showcase a protocol that is secure against an adaptive adversary and does not
satisfy Definition 4 (i.e., has low beacon entropy). This, of course, as per Theorem 7, implies
that this protocol has to have high communication. Specifically, all n parties send messages
in every round. Specifically, we prove the following lemma.

▶ Lemma 15. For every ρ < 1
3 , and assuming a randomness beacon there exists a ρ-secure

consensus protocol against an adaptive adversary, with O(1) expected latency. Furthermore,
the protocol does not satisfy Definition 4.

We once again in this protocol make no use of CRS, as we aim to be secure against an
adaptive adversary. The protocol Π is going to follow the same structure of Algorithm 3,
with the following modifications.

All players participate in every round of Algorithm 3. In other words, comt = [n] for all
rounds t. In particular, the randomness beacon is not used for committee sampling.
The random beacon is still being used to sample a uniformly random leader during the
CO task. That is the only use of the randomness beacon. In other words, the output
of the randomness beacon at round t, denoted by seedt, contains only the identity of a
single player ℓt which is the chosen leader for round t.

Correctness of the protocol and its security against an adaptive adversary are immediate
from the proof of correctness for Algorithm 3, and the adversary being ρ-bounded for ρ < 1

3 .
The last item to prove is the following.

▷ Claim 16. Algorithm 3 when implemented without committees, satisfies that there exists
a constant c > 0 such that

∞∑
t=0

H∞(Trt
EA
|
{

Tri
EA
| 0 ≤ i < t

}
) ≤ c log n
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Proof. Note that the only source of entropy in the modified protocol is the leader election in
the CO subroutine. Besides that, all content of all messages is a deterministic function of the
inputs of the players. Furthermore, we have that for each iteration i, w.p. at least 2

3 , all
honest players terminate by the end of iteration i + 1. Thus, We get that for any adversary
A and any execution E, and for every iteration i > 0 w.p. at least 1− 1

3i−1 , It
EA

= ∅ where t

is any round during iteration i. In particular we then get that the total min entropy of the
transcript of the protocol Π during iteration i, for all i > 1 is upper bounded by log( 3i−1

3i−1−1 ).
For i = 0, 1, the transcript is determined by the identity of the random leader, hence both of
these iterations provide log n min entropy each. In total, we get that

∞∑
t=0

H∞(It
EA
|
{

Tri
EA
| 0 ≤ i < t

}
, CRS) < 2 log n +

∞∑
t=2

log( 3t−1

3t−1 − 1) < 2 log n + 1

as required. ◁

5.3 Efficiency and low beacon entropy
In this section, we showcase a protocol achieving both low communication and low Random-
ness beacon entropy usage, which in particular implies that it doesn’t have global leader
unpredictability (see Definition 4). This is the only protocol in which we make use of the
CRS. Specifically, we run Algorithm 3 but instead of using seedt to select committees and a
leader for CO[i], all the information about the committees and leaders for each iteration are
taken from CRS. I.e. the CRS is interpreted as (seed1, seed2, . . .), where seedt = (comt, ℓt)
with ℓt ∈ [n] and comt ⊆ [n] being a subset of players of size O(λ). We assume that CRS
is sufficiently long to encode such information. We recall that a static adversary makes its
choice of corruption before observing the CRS. Formally, we prove the following.

▶ Lemma 17. For every ϵ > 0 and ρ < 1−ϵ
3 , and assuming a CRS, there exists a ρ-secure

consensus protocol against a static adversary with O(1) expected latency and O(λ) uniform
communication complexity, in expectation.

For simplicity, we abuse notation and refer to ℓt, comt for the purposes of this lemma
also as the leader and the committee of round t as described in the CRS.

▶ Observation 18. Let A = (A0,A1) be a static adversary. Then for all t it holds that

Pr
[
|A0(Π, t) ∩ comt| ≥

|comt|
3

]
= negl(λ)

when comt is taken from the CRS.

The observation follows from the same arguments as Observation 12.

Proof. The proof of the lemma follows from the correctness of Algorithm 3 whenever the
honest fraction of participating parties in every round exceeds 2

3 . Algorithm 3 was shown to
have O(1) expected latency and by the size of comt for all t we get that the communication
complexity of the protocol is uniform O(λ) in expectation, as required. ◀

6 Conclusion

Our motivation in this paper was to characterize the space of what is possible in modern
consensus protocols. Although prior work has examined many desirable properties of
consensus, the relationship between randomness, communication efficiency, and adaptive
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security lacked a rigorous understanding. These properties have become especially desirable
in modern-day consensus protocols, yet their theoretical foundations have lagged behind.
We further our understanding of the consensus landscape by showing a trilemma: Efficient
consensus with adaptive security requires Ω(log n) bits of beacon entropy. On the positive
side, we provide protocols that achieve any pair of these properties.

Implications for practice. In modern blockchains, adaptive security is especially desirable
to prevent bribery attacks or other attacks where nodes are temporarily compromised. In
practice, modern blockchains often use randomness beacons to unpredictably elect leaders
or committees. However, these randomness beacons come at a cost and add design and
implementation complexity. Our work shows that efficient and adaptively secure protocols
require beacons; this cost is in some sense unavoidable.

A natural next question is exactly how much randomness is needed from the beacon. Our
possibility results show that the amount of entropy required is relatively low, growing only
logarithmically in the number of parties. Therefore, using a beacon is unavoidable, yet this
beacon can be relatively lightweight.

Extensions to other settings. In this work, we have considered a computationally unbounded
adversary and an information-theoretic setting. This choice mainly served to maintain the
simplicity and clarity of the exposition. A natural alternative model is the PKI setting,
with computationally bounded adversaries. Our positive results trivially extend to this
setting, as information-theoretic security implies security against a computationally bounded
adversary. Extending our lower bound is slightly more subtle, though we expect it to hold for
a notion of pseudorandomness rather than statistical beacon entropy. We leave formalizing
this analogous bound as an interesting direction for future work.

In this work, we restricted our attention to a special variety of low-communication
protocols, specifically ones where the set of parties speaking in each round is small. This
notion of communication efficiency is desirable in practice, and several protocols use a
committee subsampling approach to this end (e.g., Algorand, Ethereum). However, one
might also be interested in other notions of communication efficiency, for example the setting
where communication is simply measured by the total number of bits exchanged by honest
parties. An open question is whether our results stand in this alternate setting.
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