
Composable Byzantine Agreements with Reorder
Attacks
Jing Chen∗ #

Department of Computer Science and Technology, Tsinghua University, Beijing, China

Jin Dong #

Beijing Academy of Blockchain and Edge Computing (BABEC), China

Jichen Li #Ñ

Department of Computer Science and Technology, Tsinghua University, Beijing, China

Xuanzhi Xia #

Department of Computer Science and Technology, Tsinghua University, Beijing, China

Wentao Zhou #

Department of Computer Science and Technology, Tsinghua University, Beijing, China

Abstract
Byzantine agreement (BA) is a foundational building block in distributed systems that has been
extensively studied for decades. With the growing demand for protocol composition in practice, the
security analysis of BA protocols under multi-instance executions has attracted increasing attention.
However, most existing adversary models focus solely on party corruption and neglect important
threats posed by adversarial manipulations of communication channels in the network. Through
channel attacks, messages can be reordered across multiple executions and lead to violations of the
protocol’s security guarantees, without the participating parties being corrupted.

In this work, we present the first adversary model that combines party corruption and channel
attacks. Based on this model, we establish new security thresholds for Byzantine agreement under
parallel and concurrent compositions, supported by complementary impossibility and possibility
results that match each other to form a tight bound. For the impossibility result, we show that even
authenticated Byzantine agreement protocols cannot be secure under parallel composition when
n ≤ 3t or n ≤ 2c + 2t + 1, where t and c denote the number of corrupted parties and communication
channels, respectively. For the possibility result, we prove the existence of secure protocols for
unauthenticated Byzantine agreement under parallel and concurrent composition, when n > 3t and
n > 2c + 2t + 1. More specifically, we provide a general black-box compiler that transforms any
single-instance secure BA protocol into one that is secure under parallel executions, and we provide
a non-black-box construction for concurrent compositions.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Security and
privacy → Security protocols

Keywords and phrases Byzantine agreement, protocol composition, channel reorder attack, security
threshold

Digital Object Identifier 10.4230/LIPIcs.AFT.2025.13

Funding This work is partially supported by Beijing Advanced Innovation Center for Future
Blockchain and Privacy Computing.

Acknowledgements The authors would like to thank several anonymous reviewers for their valuable
comments.

∗Corresponding author.

© Jing Chen, Jin Dong, Jichen Li, Xuanzhi Xia, and Wentao Zhou;
licensed under Creative Commons License CC-BY 4.0

7th Conference on Advances in Financial Technologies (AFT 2025).
Editors: Zeta Avarikioti and Nicolas Christin; Article No. 13; pp. 13:1–13:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jchencs@tsinghua.edu.cn
mailto:dongjin@baec.org.cn
mailto:jichenli@mail.tsinghua.edu.cn
https://limo923.github.io/
https://orcid.org/0000-0002-8711-5040
mailto:xiaxz24@mails.tsinghua.edu.cn
https://orcid.org/0009-0005-2265-662X
mailto:zhouwt24@mails.tsinghua.edu.cn
https://orcid.org/0009-0007-6346-9139
https://doi.org/10.4230/LIPIcs.AFT.2025.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

13:2 Composable Byzantine Agreements with Reorder Attacks

1 Introduction

The Byzantine agreement (BA) problem [46] is a foundational challenge in distributed
systems, concerned with achieving consensus among parties even in the presence of failures or
malicious behavior. This problem has been extensively studied under various models, leading
to significant theoretical breakthroughs, including both impossibility results [43, 26] and
the development of innovative protocols [24, 9, 47, 39]. As a core mechanism for achieving
distributed consistency and fault tolerance, Byzantine agreement underpins a wide range
of applications, including blockchain technologies [12, 1, 48, 55, 41, 56], secure multiparty
computation [54, 35, 4, 11, 17, 28, 33] and diverse distributed services [30, 45, 2].

Much of the early research on the Byzantine agreement problem was conducted under a
classical model where a network of n parties, each holding an initial input value, communicates
over reliable synchronous channels. In this model, faults are restricted to the parties
themselves: up to t parties may be corrupted by an adversary, but the communication
network is assumed to be secure – messages cannot be forged, altered, or dropped by the
adversary once sent by an honest party. The standard goals of a BA protocol in this setting
are: (1) agreement – all honest parties eventually terminate and output the same value; and
(2) validity – if all honest parties start with the same input, that value is the output. Studies
show that in unauthenticated settings, BA is achievable if and only if t < n

3 [43, 46], while in
authenticated settings, where digital signatures prevent forgery [50, 36], BA can be achieved
with any number of corruption t < n

2 [27]. The expected constant-round protocols with
optimal resiliency in the two settings were then constructed in [23] and [39], respectively.

However, the aforementioned studies primarily focus on single-instance executions of
Byzantine protocols, leaving the critical issue of protocol composition unaddressed. In modern
distributed environments, such as sharded blockchains, multiparty computation frameworks,
or cross-chain settings, multiple consensus protocols may be composed sequentially, in parallel,
or concurrently. In sequential composition, each protocol instance begins only after the
previous one has been completed. In parallel composition, all instances are initiated at the
same time and proceed with their steps aligned with each other. The most general model,
concurrent composition, grants the adversary full control over the start times and execution
rates of different instances.

The shift from single-instance to multi-instance execution introduces new problems,
demanding a re-examination of existing assumptions about fault models and protocol security.
In particular, [44] showed that, without a unique and common session identifier for every
execution of the protocol, no authenticated BA protocol can remain secure even under just
two parallel executions when corruption exceeds n/3. In other words, authenticated BA
performs as poorly as unauthenticated BA under parallel composition. Common session IDs
can sometimes be achieved via a bootstrap phase, but in this work we would like to pursue
the power of stateless composition without relying on such a bootstrap, so that the resulting
BA protocols can be directly applied whenever compositional executions are needed.

The challenge with protocol composition is that the adversary’s power is amplified,
and in our study we will amplify it even further. Indeed, a key limitation of the classical
model is its implicit assumption that adversarial power is confined to corrupting parties,
while communication channels remain trustworthy in the sense that messages sent between
honest parties will be received correctly. This abstraction overlooks more realistic adversarial
behaviors, such as man-in-the-middle or message-reordering attacks, which target the network
rather than the parties themselves, especially when protocol composition is concerned. By
carefully disrupting or manipulating some communication channels between multiple protocol
instances, an adversary may induce cross-protocol interference, leading to violations of
agreement or validity that would not occur in isolated executions.

J. Chen, J. Dong, J. Li, X. Xia, and W. Zhou 13:3

1.1 Adversary Model
To address the limitations of classical adversary models, we introduce an extended adversarial
framework tailored to protocol composition environments. In this model, the adversary
retains the classical ability to corrupt up to t parties, allowing them to deviate arbitrarily
from the protocol. In addition, channels can also be corrupted, without sending and receiving
parties being corrupted or even aware of the channel attack. This reflects realistic attack
approaches in networks where multiple protocols share the underlying network infrastructure.

In the real world, the adversary may exploit man-in-the-middle attacks, such as
ALPACA [7], to redirect the messages and bypass the security guarantees of TLS and
application layer protocols, resulting in cross-protocol attacks that rearrange the messages
from different protocols without breaking the signature scheme.

Such a setting captures the inherent interdependence of parallel or concurrently running
consensus protocols, where messages from different instances may traverse overlapping
physical or logical channels. Through reorder attacks, the adversary can introduce inter-
instance inconsistencies that undermine global agreement guarantees, even if each protocol
remains individually secure under classical assumptions.

This hybrid adversary model – combining party corruption with channel attacks – in-
troduces new theoretical challenges. In particular, these two kinds of attacks are coupled
together, thus determining the exact resilience thresholds under simultaneous control of t

parties and c channels requires a fresh analytical approach that goes beyond traditional BA
models.

1.2 Our Results
Our main results establish a new tight security threshold under the new adversary model.
We first present the impossibility result showing that even in the authenticated setting, BA
under parallel (and concurrent) composition is not achievable if n ≤ 3t or n ≤ 2c + 2t + 1,
where t is the number of corrupted parties and c is the number of channels that the adversary
can manipulate.

Intuitively, even if a majority of parties are honest, agreement may still fail if the
adversary can confuse one party, making it unable to tell which specific protocol instance
it is participating in. For example, when two protocols are running in parallel, an attacker
can target a particular party and swap the messages it is supposed to receive in the two
protocols, causing its result to differ from that of the other honest parties. Therefore, it is
not enough to simply bound the number of corrupted parties – one must also ensure that
the honest parties maintain a sufficient number of communication with parties in the same
protocol. This leads to a trade-off between party corruption and channel interference, and
motivates the combined threshold n > 2c + 2t + 1 as the condition necessary to preserve the
communication advantage of the honest majority.

We further prove possibility results under compositional executions, showing that the
condition n > 2c+2t+1 along with the condition n > 3t in classical setting (which is the tight
bound when only party corruption is considered) is sufficient even in the unauthenticated
setting. That is, when the combined adversarial power satisfies both conditions, it is
possible to design a BA protocol that remains secure under arbitrary parallel and concurrent
executions. These results complement our impossibility result, forming a tight security
threshold: n > max{2c + 2t + 1, 3t} is both necessary and sufficient for protocol composition
in our adversary model.

AFT 2025

13:4 Composable Byzantine Agreements with Reorder Attacks

Noticeably, for parallel composition, we provide a general black-box compiler that trans-
forms any single-instance secure BA protocol into one that is secure under parallel executions.
A non-black-box construction for concurrent composition is provided, which is secure un-
der asynchronous networks. By carefully structuring message sending and leveraging the
honest majority’s residual communication connectivity, our protocol prevents cross-instance
interference and ensures that no single execution is compromised due to shared network
vulnerabilities.

In conclusion, our work provides the first formal characterization of security for BA in
the presence of combined party corruption and channel attacks under protocol composition,
filling a critical gap in the theoretical understanding of consensus under adversarial network
interference. By introducing a unified adversary model and establishing the tight security
threshold, we extend the classical BA framework to more accurately reflect the complication
of modern distributed systems.

2 Related Work

Composition of Byzantine Agreements. In a stateless model where protocols do not have
distinguishing IDs, which is also considered by our work, [44] studied the sequential, parallel,
and concurrent composition of authenticated BA protocols and presented the impossibility
result as mentioned in the introduction. It also constructed secure randomized protocols
under sequential composition. Without cryptographic primitives, [3] considered concurrently
secure BAs with expected-constant round in both synchronous and asynchronous networks
with optimal resiliency in the classical model (i.e., n > 3t). However, as pointed out by [16],
its security proof had some subtle issues regarding, e.g., the use of oblivious leader election.

Both [3] and [16] are not stateless: they assume a unique and common session ID for every
execution of the protocol. As pointed out by [44], concurrent composition of any number
of executions in this case is possible. Indeed, the focus of [3] and [16] was to construct
expected-constant round protocols that are concurrently composible. Similarly, [37] assumed
unique session IDs but considered an adversary who can corrupt a player in some but not all
parallel executions.

Moreover, [16] followed the Universal Composability (UC) framework [8], which means the
protocol is secure under arbitrary composition with itself and other cryptographic protocols
in an adversarially controlled manner. Focusing on the asynchronous setting, [16] considered
concurrent BA and presented the first information-theoretic multi-valued oblivious common
coin (OCC) protocol with optimal resiliency. It further provided a modularized protocol for
round-preserving parallel composition of BA that was simpler than the construction in [3].

Computation and Communication Complexity. An important line of work considers the
complexity of a single execution of a Byzantine agreement. A body of foundational studies,
in particular [19, 20, 9], proposed Byzantine agreement protocols that required a quadratic
number of messages. More specifically, the O(n2) communication complexity necessitates
nearly all-to-all communication between parties. Subsequently, for randomized Byzantine
protocols, a seminal work [40] proposed a protocol where each party speaks to only Õ(1)
other parties, though their protocol achieved almost-everywhere agreement [21] rather than
agreement, where 1 − O(log−1 n) fraction of the parties reach agreement. Subsequent studies
have sought to bridge this gap by achieving agreement from almost-everywhere agreement. To
the best of our knowledge, so far the best communication complexity achievable for agreement
in authenticated setting is Õ(1) rounds with Õ(

√
n) communication and computation [32].

With enhanced cryptographic primitives such as LWE, this can be improved to Õ(1) rounds
and poly(λ, log n) communication [5, 25], where λ is the security parameter.

J. Chen, J. Dong, J. Li, X. Xia, and W. Zhou 13:5

However, for deterministic Byzantine protocols, [18] established that achieving agreement
inherently requires at least Ω(t2) communication. Furthermore, [14] extended this lower
bound to other generalized validity definitions (e.g., weak validity), demonstrating that
any well-defined Byzantine agreement variant necessitates Ω(t2) communication. Thus,
deterministic Byzantine agreements incur fundamentally more overhead than randomized
ones.

Different from this line of works that focused on single-instance executions of BA protocols,
our work investigates compositional executions of BA protocols. Although our protocols
are not necessarily optimal in terms of their complexity, our black-box compiler protocol
achieves polynomial communication and computation. Further improving the complexity
of our protocols and proving complexity lower-bounds in our model are interesting open
problems.

Network Attacks. Many prior works on network security have shown that channel attacks
(e.g., man-in-the-middle attacks) without corrupting participating parties exist in a wide
range of scenarios and pose a significant threat in real applications. By delaying, forging,
dropping, or redirecting, attackers can break SSL/TLS certificate validation in many critical
software applications [34, 51], cause security issues for HTTPS and its certificate trust model
[15], inflict devastating damage on private and consortium blockchains [22], and so on.

Finally, it’s worth noticing that for transaction messages in DeFi, attackers (miners) can
gain Miner Extracted Value (MEV) through transaction reordering attacks such as those
studied in [53], while [38] indicated that currently no mitigation schemes can fully solve this
problem. For a fully connected large-scale network, [52] analyzed Simple Majority Protocol
(SMP) under probabilistic message loss and proved that it can reach consensus in three
rounds of communication with probability approaching 1. However, those are within the
same consensus protocol and the role of channel attacks in the composition of Byzantine
agreements has not been explored yet.

3 Our Model

3.1 Byzantine Agreement
We consider the problem of Byzantine Agreement where P = {P1, . . . , Pn} is a set of n

parties, and P is common knowledge among all parties. The protocol Π is executed m times
in parallel (or concurrently), where we denote the k-th instance by Πk. Each party Pi in
each instance Πk is formally modeled by an interactive (randomized) Turing machine ITM i

k,
with an input tape containing its initial value, an output tape for its final output, a random
tape, and n − 1 pairs of communication tapes (input/output) corresponding to the other
n − 1 parties in the same Πk, denoted by Inputk

i,j and Outputk
i,j for each Pj ̸= Pi. More

specifically, Outputk
i,j contains messages that i sends to j, and Inputk

i,j contains messages
that i receives from j. Under parallel or concurrent composition, a party locally runs m

copies of such interactive Turing machines simultaneously, each corresponding to a particular
protocol instance.

Network and Communication. In most parts of the paper except Section 6, the network
is synchronous and point-to-point: communication proceeds in rounds, each consisting of a
send phase followed by a receive phase. In the send phase, a party writes the sending message
onto the corresponding communication output tape. Then, in the receive phase, the message
is written onto the target party’s input tape under the same protocol instance.

AFT 2025

13:6 Composable Byzantine Agreements with Reorder Attacks

More specifically, the communication channel between parties Pi and Pj , denoted by Cij ,
is the set of all input and output tapes between the two parties, for all m protocol instances.
By symmetry, Cji means the same thing as Cij and an attack on one is also an attack on the
other. In an uncompromised channel Cij , messages originating from Outputk

i,j are delivered
exclusively to Inputk

j,i for all k ∈ {1, ..., m}, and vice versa.

Stateless Setup. In stateless compositions of BA protocols, there is no common session
identifier for the protocol instances. The indices of different protocol instances are for
discussion purposes and are not accessible by the parties. Indeed, each Turing machine
ITM i

k has access to its tapes but doesn’t know the global index k. Internally, each party
may have individual numbering for its Turing machines, but those numbers may not be
consistent among different parties.

For authenticated Byzantine Agreement (ABA), a common setup is shared across all
protocol instances. In particular, all parties undergo a one-time trusted preprocessing phase
that generates cryptographic primitives, which are then used consistently across all protocol
instances. Formally, each interactive Turing machine has a read-only setup tape, and all
Turing machines run by the same party share this setup tape. For example, this tape may
contain the secret key of a signature scheme used by the party, as well as the public verification
keys of other parties. For unauthenticated Byzantine Agreement, no cryptographic primitives
are used and there is no setup tape or a setup phase.

Composition of BA Protocols. We consider two types of protocol composition: parallel
composition and concurrent composition. In parallel composition, all protocols start sim-
ultaneously, and each round has one time step across all protocol instances. In concurrent
composition, the adversary can independently control the start time and the time steps of
each round of each protocol instance.

Adversarial Model. We consider an adversary A(t, c) operating in the point-to-point full
information setting in a parallel or concurrent execution of protocol instances Π1, Π2, ..., Πm.
Its capabilities include:

Corruption: The adversary can corrupt up to t parties and chooses which parties to
corrupt before any protocol instance begins. This is called static corruption.
Channel Reorder Attack: The adversary can attack up to c channels between honest
parties. When Cij is under attack, the adversary is allowed to redirect messages on the
corresponding input tapes for different protocol instances and in both directions. See
below for a formal definition, which is also illustrated in Figure 1.

▶ Definition 1 (Channel Reorder Attack). For any two honest parties Pi and Pj, a channel
reorder attack on Cij allows the adversary to arbitrarily redirect messages between different
protocol instances and in both directions. Specifically, the adversary can deliver any message
msg ∈ Outputk1

x,y to any Inputk2
y,x, where k1, k2 ∈ {1, ..., m} and {x, y} = {i, j}.

Rushing: The adversary is rushing, meaning it can observe all messages sent by honest
parties in a round before deciding the messages to send from corrupted parties and
message reordering in the same round.
Computation Power: For our impossibility results, which apply to authenticated BA
protocols, we assume that all parties (honest and adversarial) are probabilistic polynomial-
time (PPT). In contrast, for our positive results, which apply to unauthenticated BA
protocols, we allow computationally unbounded adversaries.

J. Chen, J. Dong, J. Li, X. Xia, and W. Zhou 13:7

Figure 1 Communication diagrams for channel Cij/Cji, with and without channel reorder attack.

For this extended adversary model, a protocol Π is considered a solution to the BA
problem if it satisfies the following properties:

▶ Definition 2 (Byzantine Agreement). Let A(t, c) be an adversary who can corrupt up to
t parties and c channels. A protocol Π solves the Byzantine Agreement problem if for any
adversary A(t, c), the following two properties hold:

Agreement: All honest parties eventually terminate and output the same value.
Validity: If all honest parties begin with the same initial value v, then their output values
must all be v.

3.2 Composition Security
Composition security plays a pivotal role in analyzing the robustness of cryptographic
protocols executed within larger systems or concurrently with other protocol instances, rather
than in isolation. Our work adopts the definition of composition security as presented in [44],
with the notable distinction that we explicitly consider attacks on communication channels.

▶ Definition 3 (Composition Security of ABA). Let P1, ..., Pn be parties for an ABA protocol
Π. We say that Π remains secure under m instances of parallel (or concurrent) executions,
if for every PPT adversary A(t, c), the requirement of BA holds for every individual instance
of Π within the following procedure:
1. Setup Phase: A single, global trusted setup phase is performed once. This phase generates

setup strings s1, . . . , sn for parties P1, . . . , Pn, which are then consistently used across all
m protocol instances.

2. Static Corruption: The adversary A(t, c) statically corrupts up to t parties, gaining full
control over their actions. Additionally, the adversary can attack up to c communica-
tion channels Cij between honest parties, enabling channel reorder attacks described in
Definition 1.

3. Parallel (Concurrent) Executions: The following procedure is repeated in parallel (or
concurrently) for each protocol instance, until the adversary halts:

The adversary specifies the initial input values for all parties.
Each party uniformly generates the content of its random tape for the execution in this
protocol instance.

AFT 2025

13:8 Composable Byzantine Agreements with Reorder Attacks

All parties are invoked for the execution of Π.
The adversary determines the messages sent by the corrupted parties, while honest
parties strictly adhere to the protocol Π.
Messages transmitted over attacked channels are subject to the adversary’s reordering
on corresponding input tapes, whereas messages on unattacked channels between honest
parties are delivered reliably.

For unauthenticated Byzantine Agreement protocols, the definition of composition security
is analogous, with the difference that no setup phase or cryptographic primitives are needed.

4 Impossibility Result

Authentication allows protocols to achieve higher fault tolerance in the stateless execution
model, tolerating an arbitrary number of corrupted parties. However, this intuition breaks
down in composed scenarios. When multiple executions occur, a signature from a Party P on
message x does not prove that P signed x in the “current” specific execution. An adversary
can “borrow” signed messages from one execution and use them in another, rendering the
public-key infrastructure “useless” in distinguishing execution contexts.

▶ Theorem 4. There does not exist a protocol for stateless authenticated Byzantine Agreement
in a synchronous network with n parties that remains secure under parallel composition (even
for just two executions) against an adversary A(t, c), provided that (1) n ≤ 3t, or (2)
n ≤ 2c + 2t + 1.

Proof. For condition (1), the result follows directly from Theorem 1 in [44].
We prove the result for condition (2) by contradiction. Assume that there exists an

authenticated Byzantine Agreement protocol Π that remains secure under two parallel
executions against an adversary A(t, c) with n ≤ 2c + 2t + 1. We assume c > 0, otherwise we
have 2t + 1 ≥ n and it can be reduced to condition (1).

We consider two independent executions of Π: Let A1, A2, · · · , An and B1, · · · , Bn be
independent copies of n parties participating in protocol Π. The independent copies mean
that for each i, Ai and Bi are the same party that runs in two different parallel executions
of Π. For the purpose of the proof below, we denote the set T = {A2, · · · , A⌊ n+1

2 ⌋},
T̃ = {B2, · · · , B⌊ n+1

2 ⌋}, H = {A⌊ n+3
2 ⌋, · · · , An}, and H̃ = {B⌊ n+3

2 ⌋, · · · , Bn}. Note that we
have n ≤ 2c + 2t + 1, so we have c + t ≥ |T | = |T̃ | and c + t ≥ |H| = |H̃|.

Let rounds(Π) denote the maximum number of communication rounds required for
protocol Π to achieve termination in any execution. By the termination guarantees of the
agreement property of Byzantine Agreement protocols, rounds(Π) is finite and well-defined.
Furthermore, given the security assumption that Π remains secure under parallel composition,
it follows that Π must terminate within rounds(Π) rounds even when executed concurrently
across multiple protocol instances.

We now introduce an important abstract concept and will instantiate it in different ways
in the proof. A system X is a tuple:

A set P = {P1, . . . , Pn} of n parties, each party Pj runs two copies of ITMs, Aj and Bj ,
for protocol Π;
An adversary A(t, c) controlling t corrupted parties and reordering c channels;
Initial input values for all ITMs on their input tapes;
A network topology governing inter-party connectivity.

J. Chen, J. Dong, J. Li, X. Xia, and W. Zhou 13:9

Figure 2 Network topology of System S.

Intuitively, if the system contains a non-trivial adversary who corrupts some parties
and reorders some channels, then the network topology is consistent with the adversary’s
reordering of the channels. In some mental games, we may instantiate the system without
an adversary, in which case the network topology dictates how the parties’ communication
channels are inter-connected crossing the two executions of Π.

For any ITM M run by a party in P , its view in system X, denoted by viewX(M),
consists of the content of M ’s input tapes and random tape, where the former in particular
includes the initial input value and the messages received by M from other parties during
the execution of X.

When all parties (including A(t, c)) behave deterministically, viewX(M) is uniquely
determined by the initial configurations of the tapes and the adversarial behavior. Conversely,
under randomized executions (where the content of the random tapes are sampled uniformly
at random), viewX(M) constitutes a random variable over the corresponding probability
space.

We now instantiate the system S through the following configuration:
Network Topology: ITM A1 establishes connectivity with the set H̃ (replacing its
original link to H), while ITM B1 interfaces with H instead of H̃. This structural
reconfiguration is illustrated in Figure 2.
Initial Input Value:

ITMs in {A1} ∪ T ∪ H receive input 0;
ITMs in {B1} ∪ T̃ ∪ H̃ receive input 1.

Adversary: In this system, there is no adversary; formally, we have t = 0 and c = 0.
Protocol Execution: All ITMs in S strictly adhere to the instruction of protocol Π,
simulating an authenticated Byzantine Agreement environment. Specifically, each party:

Generates messages as prescribed by Π’s honest execution semantics;
Sends these messages via the network topology defined above.

Now we first state the following lemmas and we will prove them afterwards.

AFT 2025

13:10 Composable Byzantine Agreements with Reorder Attacks

Figure 3 Party’s view is identical between System 2PBA and System S.

▶ Lemma 5. In system S, all ITMs in {A1} ∪ T output 0, and there exists at least one ITM
in H outputs 0. Symmetrically, all ITMs in {B1} ∪ T̃ output 1, and there exists at least one
ITM in H̃ outputs 1.

▶ Lemma 6. In system S, all ITMs in {A1} ∪ H̃ and at least one ITM in T̃ output the same
value; Symmetrically, all ITMs in {B1} ∪ H and at least one ITM in T outputs the same
value.

By combining Lemma 5 with Lemma 6 we have OutputS(H̃) = OutputS(A1) = 0 and
at least one ITM h̃ ∈ H̃ satisfies OutputS(h̃) = OutputS(B1) = 1. Hence, we derive a
contradiction on the output of h̃, thereby completing the proof of the theorem. ◀

Next, we complete the proofs of Lemma 5 and Lemma 6.

Proof of Lemma 5. To prove the lemma, we define a new system 2PBA as follows and as
shown in Figure 3:

Network Topology: The system consists of two parallel executions of protocol Π,
denoted Π0 (consisted of A1, T and H) and Π1 (consisted of B1, T̃ and H̃).
Initial Input Value:

ITMs in {A1} ∪ T ∪ H receive input 0;
ITMs in {B1} ∪ T̃ ∪ H̃ receive input 1.

Adversary: The adversary A(t, c) chooses an arbitrary subset of parties
{P⌊ n+3

2 ⌋, · · · , Pn}, denoted by C, which satisfies |C| = min{c, n − ⌊ n+3
2 ⌋ + 1}. Then

the adversary reorders all the channels between C and P1, and corrupts the parties in
{P⌊ n+3

2 ⌋, · · · , Pn} \ C. As we have 2c + 2t + 1 ≥ n, the adversary can indeed corrupt all
these parties. In the following proof, we denote ITMC

0 = {ITM j
0 : j ∈ C} as the set of

ITMs run by C in the protocol Π0, and as the same, we denote ITMC
1 = {ITM j

1 : j ∈ C}.
Protocol Execution:

All honest parties in S strictly adhere to the instruction of protocol Π;
The corrupted parties reorder their channels between P1, and besides this action, they
adhere to the instruction of protocol Π.

J. Chen, J. Dong, J. Li, X. Xia, and W. Zhou 13:11

We then prove view2P BA(A1) = viewS(A1), view2P BA(T) = viewS(T), and
view2P BA(H) = viewS(H̃).

We proceed by induction on the round counter j ≥ 1.
Base Case (j = 1).

Message Generation: All parties in both 2PBA and S generate identical message sets due
to protocol Π strictly.
Message Routing:

In S: Messages propagate through the hexagonal graph.
In 2PBA: The adversary A(t, c) enforces the following redirections:

A1 → H
reorder7→ H̃, H̃ → B1

reorder7→ A1,

A1 → T , T → H

H → T , T → A1

H → A1
reorder7→ B1, B1 → H̃

reorder7→ H.

After reordering, B1 communicates with H rather than H̃, A1 communicates with H̃

rather than H. Other than that, all the ITMs strictly adhere to the instruction of Π. It
is easy to see that the actual message routing is the hexagonal graph the same as in S.
View Equivalence: The above routing rules induce identical message distributions at all
parties’ interfaces. Thus, view2P BA(A1) = viewS(A1), view2P BA(T) = viewS(T), and
view2P BA(H) = viewS(H̃).

Inductive Step. Assume equivalence holds through step j. For step j + 1:
Message Generation: Identical message distributions emerge from equivalent historical
views (by inductive hypothesis).
Message Routing: The hexagonal routing in S and adversarial redirection in 2PBA
preserve the same correspondence as j = 1.
View Update: Therefore, view(j+1)

2P BA(A1) = view(j+1)
S (A1) and view(j+1)

2P BA(T) = view(j+1)
S (T)

maintain for the j + 1 rounds.

Owing to the termination property of Byzantine Agreement, which mandates that the
protocol Π halts within rounds(Π), the aforementioned procedure completes in at most
rounds(Π) rounds. Consequently, we derive that view2P BA(A1) = viewS(A1), view2P BA(T) =
viewS(T), and view2P BA(H) = viewS(H̃).

Given the equivalence of views, the parties A1, T and H in both systems 2PBA and S
must yield identical final outputs. By the validity property of Byzantine Agreement, since
A1, T , and H in Π0 are initialized with input 0 and A1, T , ITMC

0 ⊂ H are honest, then
Output2P BA(A1) = Output2P BA(T) = Output2P BA(ITMC

0) = 0. Consequently, system S
inherits this outcome, we have OutputS(A1) = OutputS(T) = OutputS(ITMC

0) = 0.
Analogously, through the system 2PBA, we can rigorously demonstrate view2P BA(B1) =

viewS(B1), view2P BA(T̃) = viewS(T̃) and view2P BA(H̃) = viewS(H̃), thereby establishing
OutputS(B1) = OutputS(T̃) = OutputS(ITMC

1) = 1. ◀

Proof of Lemma 6. Similarly, we construct system 2PBA’ as instantiated below, shown in
Figure 4:

Network Topology: The system consists of two parallel executions of protocol Π,
denoted Π′

0 (consisted of A1, H̃ and T̃) and Π′
1 (consisted of B1, H and T).

Initial Input Value:
ITM {A1} receives input 0 and ITMs in H̃ ∪ T̃ receive input 1;
ITM {B1} receives input 0 and ITMs in H ∪ T receive input 1.

AFT 2025

13:12 Composable Byzantine Agreements with Reorder Attacks

Figure 4 Party’s view is identical between System 2PBA’ and System S.

Adversary: The adversary A(t, c) chooses an arbitrarily subset of parties
{P2, · · · , P⌊ n+1

2 ⌋}, denoted by C ′, which satisfies |C ′| = min{c, ⌊ n+1
2 ⌋ − 1}. Then the

adversary reorders all the channels between C ′ and P1, and corrupts the parties in
{P2, · · · , P⌊ n+1

2 ⌋}\C ′. As we have 2c+2t+1 ≥ n, the adversary can indeed corrupt all these
parties. In the following proof, we denote ITMC′

0 = {ITM j
0 : j ∈ C ′} as the set of ITMs

run by C ′ in the protocol Π0, and as the same, we denote ITMC′

1 = {ITM j
1 : j ∈ C ′}.

Protocol Execution:

All honest parties in S strictly adhere to the instruction of protocol Π;

The corrupted parties reorder their channels between P1, and besides this action, they
adhere to the instruction of protocol Π.

The subsequent proof by mathematical induction is analogous to the reasoning in system
2PBA of the preceding proof; therefore it is omitted here. It is noteworthy that after we get
view2P BA′(A1) = viewS(A1), view2P BA′(H̃) = viewS(H̃), and view2P BA′(T̃) = viewS(T̃), we
use the Agreement property instead of the Validity property of Byzantine agreement to deduce
that OutputS(A1) = OutputS(H̃) = OutputS(ITMC′

1). Similarly, we have OutputS(B1) =
OutputS(H) = OutputS(ITMC′

0). ◀

5 Black-box Compiler for Parallel Composable BA

This section presents a novel black-box compiler that transforms any BA protocol into
one that remains secure under parallel composition. The proposed approach addresses the
challenges introduced by message reordering attacks through the integration of a new Reliable
Message Transmission (RMT) protocol.

J. Chen, J. Dong, J. Li, X. Xia, and W. Zhou 13:13

5.1 Reliable Message Transmission for Parallel Composition
To achieve security under parallel composition, our compiler replaces the standard point-to-
point communication primitives in a given BA protocol with our newly designed Reliable
Message Transmission protocol. This RMT primitive guarantees correct and unforgeable
message delivery within the same protocol instance, even in the presence of adversarial
message reordering. The formal specification of the RMT is presented in Protocol 1.1

Algorithm 1 Reliable Message Transmission.
Given that party Pi wishes to send message msg to Pj , the reliable message transmission
protocol proceeds as follows:

Round 0: Party Pi initiates this message transmission by sending the message
(deliver, msg, Pi, Pj) to all parties except Pj .
Round 1: Party Pi sends the message (deliver, msg, Pi, Pj) to Pj ; and each other party
Pk ̸= Pj that received message (deliver, msg, Pi, Pj) from Pi in round 0 forwards the
same message (deliver, msg, Pi, Pj) to party Pj .
Decision: Upon party Pj receiving strictly more than n−1

2 copies of the message
(deliver, msg, Pi, Pj) by the end of round 1, it accepts message msg from Pi.

When n > 2t+2c+1, this RMT protocol ensures message delivery through a redundancy-
based approach. The principle is to use a majority vote to secure message transmission
against potential attacks, a technique also found in prior works but in different formats;
see, e.g., [49, 29, 13]. When executed by all participating parties, the RMT primitive is
characterized by two essential properties for its security within the black-box compiler.

Correctness: If both parties Pi and Pj are honest, and Pi used the RMT protocol to send
a message msg to Pj in round r, then Pj will accept the message msg from Pi by the
end of round r + 1.
Unforgeability: If both parties Pi and Pj are honest, and Pi did not use the RMT protocol
to send message msg to Pj in round r, then Pj will not accept msg from Pi by the end
of round r + 1.

The following lemma establishes the security guarantees of the RMT protocol:

▶ Lemma 7. Protocol 1 satisfies both correctness and unforgeability properties against any
adversary A(t, c), provided that n > 2c + 2t + 1.

Proof. Correctness: Since Pi is an honest party, it will send the message (deliver, msg, Pi, Pj)
to all other parties except Pj in round 0. In round 1, each party Pk ̸= Pj , including Pi,
forwards/sends the message to Pj , unless:

Pk is corrupted by the adversary, or
The communication channel Cik or Ckj is attacked by the adversary.

Since each corruption or channel attack can prevent at most one forwarding, at most t + c

of these forwarded messages can be suppressed. Thus, Pj receives at least n − 1 − t − c

forwarded messages. Since n > 2c + 2t + 1, we have n−1
2 > t + c, which is equivalent to

n − 1 − t − c > n−1
2 . Therefore, Pj receives strictly more than n−1

2 copies of the message
(deliver, msg, Pi, Pj), and accepts msg from Pi as valid by the end of round 1.

1If the values of t and c are publicly known, then the threshold n−1
2 in Protocol 1 can be replaced by

t + c and the protocol continues to work.

AFT 2025

13:14 Composable Byzantine Agreements with Reorder Attacks

Unforgeability: If Pi did not initiate the RMT protocol for message msg to Pj , then the
only way for Pj to receive (deliver, msg, Pi, Pj) is via adversarial intervention. The adversary
can inject at most t + c such messages through corrupted parties or attacked channels. Since
t + c < n−1

2 , Pj receives fewer than the majority threshold of messages, and thus does not
accept msg from Pi. ◀

5.2 Black-box Compiler
Using the RMT protocol, our black-box compiler applies a simple yet effective transformation:
given an existing BA protocol Π∗, it constructs a new protocol Π by replacing all point-
to-point message delivery operations with the RMT protocol. The internal logic, state
transitions, and computation procedures of Π∗ are completely preserved, ensuring that the
transformation is non-intrusive and protocol-agnostic.

Formally, a party Pi’s ITM i in protocol Π uses its corresponding ITM i
∗ in Π∗ as a

sub-routine. The outer one, ITM i, handles message sending and receiving according to
the RMT protocol, and passes accepted messages to the inner one, ITM i

∗. The inner one
then computes its state transition and out-going messages according to Π∗, and passes the
out-going messages to ITM i to send out.

Notice that in Π, a message that originally takes one round to deliver in Π∗ now takes
two rounds. As such, honest parties will only initiate a message sending in odd rounds (wlog
assuming the protocol starts with round 1) and will only accept a message in even rounds.
More specifically, if in the execution of Π∗ an honest party Pi sends a message to Pj in
round r, then in the execution of Π, Pi initiates the corresponding message sending in round
2r − 1 and Pj accepts the message by the end of round 2r.

▶ Theorem 8. Let Π∗ be a BA protocol for n parties that tolerates up to t Byzantine
corruptions. Let Π be the protocol obtained by replacing all point-to-point communication in
Π∗ with the RMT protocol. Then, Π is secure under parallel composition of any number of
executions against any adversary A(t, c), provided that n > 2t + 2c + 1.

Proof. Arbitrarily fixing an instance Πj , we prove its security under parallel composition by
induction. Consider a mental game with a single execution of the protocol Π∗ as follows.

For each honest party Pi and the corresponding ITM i
j in Πj , let its inner Turing machine

be ITM i
∗j . We construct an ITM i

∗ for Π∗, such that ITM i
∗ has the same initial input tape,

random tape (and setup tape) as ITM i
j , and thus also as ITM i

∗j .
Note that, for any adversary A(t, c) in Π, the only effects it can have on some party Pi

in instance Πj are the following:
It can fully control ITM i

j if the party Pi is corrupted.
It can cause an honest party Pi’s ITM i

j to accept a message msg from a corrupted party
Pj at some round 2r. This is because, in Π, no honest ITM accepts a message in odd
rounds, and due to the unforgeability property of RMT, the adversary cannot forge a
message from other honest parties to make an honest Pi accept it.

Therefore, for any adversary A in Πj , we simulate a corresponding adversary A∗ in Π∗ as
follows:

Whenever A corrupts a party Pi in Πj , A∗ corrupts the corresponding ITM i
∗ in Π∗.

Whenever A causes an honest ITM i
j to accept a message msg from a corrupted party Pj

at round 2r in Πj , A∗ sends message msg from ITM j
∗ to ITM i

∗ at round r in Π∗.

Since for every honest party Pi, both ITM i
∗j and ITM i

∗ have the same input, random, and
setup tapes at the beginning of round 1, they have the same state transition and out-going
messages. Because ITM i

j handles message sending and receiving according to the RMT

J. Chen, J. Dong, J. Li, X. Xia, and W. Zhou 13:15

protocol, and by the construction of the adversary A∗ in Π∗, at the end of round 2 in Πj ,
ITM i

j has accepted exactly the same messages as received by ITM i
∗ at the end of round 1

in Π∗. Thus ITM i
∗j after round 2 of Πj has the same view as ITM i

∗ after round 1 of Π∗.
That is, view2

Πj
(ITM i

∗j) = view1
Π∗

(ITM i
∗).

Let round(Π∗) be the maximum finite number of rounds in protocol Π∗. For each
r = 1, . . . , round(Π∗), we compare the view of ITM i

∗j after 2r rounds of Πj with the view of
ITM i

∗ after r rounds of Π∗. By the inductive hypothesis, we have

view2r−2
Πj

(ITM i
∗j) = viewr−1

Π∗
(ITM i

∗).

Thus they again have the same state transition and out-going messages in the corresponding
round 2r − 1 and round r.

Due to the correctness and the unforgeability properties of the RMT protocol, and by
the construction of the adversary A∗, again by the end of round 2r of Πj , ITM i

j accepts
exactly the same messages as received by ITM i

∗ at the end of round r in Π∗. Hence,
view2r

Πj
(ITM i

∗j) = viewr
Π∗

(ITM i
∗) for all r.

Accordingly, we conclude that the final output value of ITM i
j in Πj (which is that of

ITM i
∗j) and the final output value of ITM i

∗ in Π∗ are identical. As this holds for all honest
parties in Πj , we have that Πj inherits the same agreement and validity properties as Π∗.
Thus Π is secure under parallel composition. ◀

By applying our compiler to any existing BA protocol, we can construct a protocol that
remains secure under parallel composition. In particular, by transforming the protocol of
Garay and Moses [31], which is secure in the unauthenticated, stateless setting whenever
n > 3t, we obtain the following corollary:

▶ Corollary 9. There exists a protocol for stateless, unauthenticated BA that is secure under
parallel composition of any number of executions against any adversary A(t, c), provided that
the total number of parties n satisfies n > 3t and n > 2c + 2t + 1.

While the black-box compiler significantly enhances BA protocol’s security, it introduces
some performance overheads. The round complexity of the compiled protocol Π is doubled
compared with the original protocol Π∗. The communication overhead per message in the
original Π∗ is asymptotically O(n). In particular, for a message from Pi to Pj , Pi sends to
n − 2 parties in Round 0 of RMT, and up to n − 1 parties may send the message to Pj in
round 1. These overheads are the trade-off for achieving security against adversarial message
reordering in parallel compositions. Designing more efficient compilers that maintain similar
security guarantees while reducing communication or round complexity remains an important
direction for future research.

6 Concurrent BA Protocol under Asynchronous Network

The preceding sections focused on parallel composition under a synchronous network model,
where message delivery is guaranteed within a fixed time bound (i.e., a round). In this section,
we shift our attention to a more challenging setting, the asynchronous network model. Here,
messages can be delayed arbitrarily, and there is no global clock to coordinate the actions of
different parties. Moreover, we consider concurrent composition, where protocol instances
may not start simultaneously, making it significantly harder for a party to determine whether
a received message indeed belongs to a particular instance or has been reordered.

AFT 2025

13:16 Composable Byzantine Agreements with Reorder Attacks

To address these challenges, we first construct a reliable broadcast protocol tailored for
the asynchronous setting. Building upon this foundation, we then leverage the seminal
work of [6] and construct an unauthenticated BA protocol that is secure under concurrent
composition in an asynchronous network. Notably, security in the asynchronous model
implies security in the synchronous setting. Therefore, our BA protocol is also secure under
concurrent composition in synchronous networks.

6.1 Reliable Broadcast Under Concurrent Composition

Reliable Broadcast (RB) [10] is a fundamental communication primitive that ensures a
message sent by an honest sender is reliably delivered to all parties. It guarantees the
following properties:

Agreement: If any honest party accepts a message m, then all honest parties eventually
accept m.
Validity: If the sender is honest and broadcasts a message m, then all honest parties
eventually accept m.

Based on the work of [6] and utilizing the idea behind our RMT protocol in Section 5, we
present Protocol 2 that achieves reliable broadcast under concurrent executions against any
adversary A(t, c), under the conditions n > 3t and n > 2c + 2t + 1. To our best knowledge,
this is the first RB protocol that is concurrently secure in the stateless model, and may be of
independent interest.

The core idea is to avoid accepting messages based solely on direct receipt. Instead, each
party maintains a local view of all other parties’ state. This view is only updated after
a majority (i.e., more than n−1

2) of confirming messages have been received. Specifically,
let the original sender in the RB protocol be Pg = P1. The local state of a party Pj with
j = 1, . . . , n at some party Pi, denoted by Si

j , can be in one of the following three forms:
{initial, ⊥}: no value has been received by Pj yet;
{prepare, v}: value v tentatively accepted by Pj ;
{commit, v}: value v confirmed and will not change at Pj .

Respectively, the messages sent by a party Pi during the protocol reflect its own state and
take one of the following forms:

(receive, v, Pg): Pi has received value v sent by Pg;
(echo, v, Pi): Pi has tentatively accepted v;
(ready, v, Pi) : value v has been confirmed by Pi.

By adapting the BA protocol Π∗ from Figure 4 of [6] and replacing all broadcast procedures
with our RB protocol, we have the following:

▶ Theorem 10. There exists a protocol for stateless, unauthenticated BA that is secure under
concurrent composition of any number of executions in an asynchronous network against any
adversary A(t, c), where the number of parties n satisfies n > 3t and n > 2c + 2t + 1.

To prove Theorem 10, it suffices to prove the security of our RB protocol under concurrent
composition in an asynchronous network; see Theorem 17 in Section 6.2. Theorem 10
then holds by the security of protocol Π∗ and an inductive analysis similar to the proof of
Theorem 8. We include the protocol Π∗ in the appendix of this paper for reference purpose.

J. Chen, J. Dong, J. Li, X. Xia, and W. Zhou 13:17

Algorithm 2 Reliable Broadcast.
Say party Pg wishes to broadcast value v. Each party Pi initializes its local view of each
party Pj ’s state as Si

j = {initial, ⊥}. The protocol proceeds as follows:
Step 0 (performed by Pg): send (initial, v) to all parties including itself.

For each party Pi:
Step 1: Upon receiving some message (initial, v) from Pg, send (receive, v, Pg) to all
parties.
Step 2: Wait until the receipt of strictly more than n−1

2 (receive, v, Pg) messages for the
same value v from different parties. If local state Si

i = {initial, ⊥}, set Si
i = {prepare, v}

and send (echo, v, Pi) to all parties.
Step 3: Upon receiving some message (echo, v, Pj) from party Pj , forward it to all parties.
Step 4: Wait until the receipt of strictly more than n−1

2 (echo, v, Pj) messages for the
same v and Pj from different parties. If Si

j = {initial, ⊥}, set Si
j = {prepare, v}.

Step 5: Wait until strictly more than n+t
2 parties Pj have local state Si

j = {prepare, v}
for the same v. If Si

i = {initial, ⊥} or Si
i = {prepare, ∗}, where ∗ can be any value, set

Si
i = {commit, v} and send (ready, v, Pi) to all parties.

Step 6: Upon receiving some message (ready, v, Pj) from party Pj , forward it to all
parties.
Step 7: Wait until the receipt of strictly more than n−1

2 (ready, v, Pj) messages for the
same v and Pj from different parties. If Si

j = {initial, ⊥} or Si
j = {prepare, ∗}, where ∗

can be any value, set Si
j = {commit, v}.

Step 8: Wait until t + 1 parties Pj have state Si
j = {commit, v} for the same v. If

Si
i = {initial, ⊥} or Si

i = {prepare, ∗}, where ∗ can be any value, set Si
i = {commit, v}

and send (ready, v, Pi) to all parties.
Step 9: Wait until 2t+1 parties Pj have state Si

j = {commit, v} for the same v. Accept v.

6.2 Composition Security of Reliable Broadcast
We now prove that Protocol 2 satisfies the properties of reliable broadcast under concurrent
composition. In particular, we consider m instances of Protocol 2 concurrently executed
against adversary A(t, c), under conditions n > 3t and n > 2c + 2t + 1.

▶ Lemma 11. In any instance, for any two honest parties Pi and Pj, Pi eventually sets its
local state Si

j = {commit, v} if and only if Pj broadcasts the message (ready, v, Pj) during
the execution of this instance.

Proof. If an honest party Pj broadcasts (ready, v, Pj), then in the execution of any other
honest party Pi, this message will be forwarded by every party Pk unless:

Pk is corrupted by the adversary, or
the communication channel Cjk or Cki is under attack.

Since each adversary action can block at most one message, the number of suppressed
forwards is at most t + c. Therefore, Pi eventually receives more than n−1

2 such messages
and sets its local state for Pj to Si

j = {commit, v}.
Conversely, if Pj did not send the message in that instance, then the adversary can

inject at most t + c copies (ready, v, Pj). Since t + c < n−1
2 , an honest party will not

receive enough messages to satisfy the threshold, and thus will not set Pj ’s local state to
Si

j = {commit, v}. ◀

AFT 2025

13:18 Composable Byzantine Agreements with Reorder Attacks

▶ Lemma 12. In any instance, for any two honest parties Pi and Pj, Pi eventually sets
its local state Si

j = {prepare, v} only if Pj broadcasts the message (echo, v, Pj) during the
execution of this instance.

Proof. If Pj did not send the message (echo, v, Pj) in that instance, then the adversary
can inject at most t + c copies (echo, v, Pj). Since t + c < n−1

2 , an honest party will not
receive enough messages to satisfy the threshold, and thus will not set Pj ’s local state to
Si

j = {prepare, v}. ◀

▶ Lemma 13. In any instance, for any two honest parties Pi and Pj who respectively send
messages (ready, v, Pi) and (ready, u, Pj) during the execution of this instance, we have
v = u.

Proof. Assume for contradiction. Let Px and Py be the first honest parties to send
(ready, v, Px) and (ready, u, Py), respectively. Party Px must have observed strictly more
than n+t

2 party Pj with local state Sx
j = {prepare, v}. Party Py must have observed strictly

more than n+t
2 party Pj with local state Sy

j = {prepare, u}. This implies an overlap where
an honest party Pk has {prepare, v} in the view of Px and {prepare, u} in the view of Py.

Therefore, by Lemma 12, it implies that Pk sent both (echo, v) and (echo, u) messages.
However, an honest party sends only one type of echo message during a reliable broadcast
protocol. Therefore, v = u. ◀

▶ Lemma 14. In any instance, for any two honest parties Pi and Pj who accept values v

and u respectively, we have v = u.

Proof. If Pi accepts v, then it must have observed at least 2t + 1 parties Pk with the state
Si

k = {commit, v} in its local view, which includes at least t + 1 honest parties. Similarly,
Pj must have observed at least 2t + 1 parties Pk with state Sj

k = {commit, u} in its local
view, which includes at least t + 1 honest parties. By Lemma 11, there exists at least one
honest party Px that have send (ready, v, Px), and one honest party Py that have send
(ready, u, Py). Applying Lemma 13, it follows that v = u. ◀

▶ Lemma 15. In any instance, if an honest party Pi accepts a value v, then every other
honest party eventually accepts v in that instance.

Proof. Suppose Pi accepts value v. Then its local view must include at least 2t + 1 parties
Px with the state Si

x = {commit, v}, including at least t + 1 honest parties. By Lemma 11,
every honest party Pk in these t + 1 parties must have send (ready, v, Pk) in that instance.
Also by Lemma 11, eventually, all honest parties Pj will receive these messages and update
their local views, setting Pk’s state to Sj

k = {commit, v}. According to step 8 of the protocol,
upon observing t + 1 parties in state {commit, v}, every honest party Pj updates its own
state to Sj

j = {commit, v}, and send (ready, v, Pj) to all parties. Again, by Lemma 11, all
honest parties Py will receive these messages and update their local views, setting Pj ’s state
Sy

j = {commit, v} eventually. Since n > 3t, the number of honest parties exceeds 2t + 1.
Thus, every honest party will eventually have at least 2t + 1 {commit, v} states in its local
view and will accept v. ◀

▶ Lemma 16. In any instance, if an honest party Pg broadcasts a value v, then all honest
parties eventually accept v in that instance.

J. Chen, J. Dong, J. Li, X. Xia, and W. Zhou 13:19

Proof. Since Pg is honest, it sends (initial, v, Pg) to all parties. At least (n − t − c) honest
parties receive this message and forward (receive, v, Pg) to all other parties. Each honest
party Pi eventually receives more than n−1

2 such (receive, v, Pg) messages. It then sets its
local state Si

i = {prepare, v} and sends (echo, v, Pi) to all parties. As a result, each honest
party Pi receives more than n−1

2 echo messages for value v and each honest party Pj , and
thus sets the state Si

j = {prepare, v}. This ensures that every honest party Pi observes
enough prepare state in its local view to satisfy the condition for committing. Accordingly,
each honest party updates its own state Si

i = {commit, v} and sends (ready, v, Pi) to all
parties.

In Step 7 of the protocol, each honest party Pi receives more than n−1
2 ready messages

for value v and each honest party Pj , causing each party to update the state of Pj Si
j =

{commit, v}. Therefore, since n > 3t, every honest party Pi eventually has at least 2t + 1
{commit, v} states in local view and accepts v. ◀

▶ Theorem 17. Protocol 2 realizes reliable broadcast against any adversary A(t, c) under
concurrent composition in an asynchronous network, provided that n > 3t and n > 2t+2c+1.

Proof. Validity: In any instance, if the sender Pg is honest and broadcast value v, then by
Lemma 16, all honest parties eventually accept v in that instance.

Agreement: In any instance, if the sender Pg is corrupted, and some honest party Pi

accepts a value v in that instance, then by Lemma 15, all other honest parties eventually
accept the same value v in that instance. ◀

7 Conclusion and Future Directions

The primary contributions of this work include the introduction of a novel adversarial model
that simultaneously enables the corruption of parties and communication channels. The
reorder attack is both theoretically interesting and practically viable, enhancing the security
analysis for Byzantine Agreement protocols under both parallel and concurrent execution
settings.

Building upon this model, our work establishes surprising positive and negative results.
On the one hand, authenticated Byzantine Agreement becomes insecure when either n ≤ 3t

or n ≤ 2c + 2t + 1. While on the other hand, for unauthenticated Byzantine Agreement,
secure protocols exist under both parallel and concurrent compositions when n > 3t and
n > 2c + 2t + 1. Notably, these findings provide tight conditions for the security of Byzantine
Agreement under compositional executions – a fundamental advance in understanding
protocol resilience against corruption and reorder attacks.

The framework and results established in this paper motivate several promising directions
for future research:
1. In terms of positive results, we provide a black-box reduction for parallel-executed BA

protocols. Specifically, any unauthenticated Byzantine Agreement that is secure under
single-instance execution when t < n/3 can be efficiently transformed into a parallel-secure
protocol when in addition one has 2t + 2c + 1 < n. For concurrently-executed Byzantine
Agreement, we demonstrate our positive result via a concrete protocol using reliable
broadcast. We believe that our reliable broadcast protocol can also be used to help other
BA protocols achieve concurrent security, but a key open question remains: does there
exist a black-box reduction approach that generically transforms a single-instance secure
BA protocol into one that is concurrently secure? Also, the composition of BA protocols
against dynamic adversaries would be very interesting to explore, since so far all studies
on compositions consider static adversaries.

AFT 2025

13:20 Composable Byzantine Agreements with Reorder Attacks

2. The communication complexity of BA protocols has been a central focus in the literature.
Under our proposed adversarial model and compositional execution framework, this
work focused on polynomial-time computation and communication protocols and didn’t
investigate whether the complexity bounds of compositionally-secure BA protocols diverge
from those of classical single-execution authenticated Byzantine Agreement. Specifically,
we are curious about how reorder attacks may impact existing communication lower- and
upper-bounds. Intuitively, such attacks necessitate additional communication to preserve
security, but the exact complexity trade-offs require a rigorous study.

3. In this work we focus on the standard notion of validity commonly considered in the
literature. Since other validity notions such as weak validity have also been studied [42],
we are interested in whether our conclusions still hold with respect to those notions.
Intuitively, weaker validity conditions would relax the safety constraints that BA protocols
must satisfy, hence may allow the impossibility results be circumvented. Thus extending
our current model to weaker validity notions constitutes a promising direction for future
research.

References
1 Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter, and Jay J.

Wylie. Fault-scalable Byzantine fault-tolerant services. SIGOPS Oper. Syst. Rev., 39(5):59–74,
October 2005. doi:10.1145/1095809.1095817.

2 Shreya Agrawal and Khuzaima Daudjee. A performance comparison of algorithms for Byzantine
agreement in distributed systems. In 2016 12th European Dependable Computing Conference
(EDCC), pages 249–260. IEEE, 2016. doi:10.1109/EDCC.2016.17.

3 Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant time.
Distrib. Comput., 16(4):249–262, 2003. doi:10.1007/s00446-002-0083-3.

4 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC ’88, pages 1–10. ACM, 1988. doi:10.1145/
62212.62213.

5 Elette Boyle, Ran Cohen, and Aarushi Goel. Breaking the O(
√

n)-bit barrier: Byzantine
agreement with polylog bits per party. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, PODC ’21, pages 319–330. ACM, 2021. doi:10.1145/
3465084.3467897.

6 Gabriel Bracha. Asynchronous Byzantine agreement protocols. Inf. Comput., 75(2):130–143,
1987. doi:10.1016/0890-5401(87)90054-X.

7 Marcus Brinkmann, Christian Dresen, Robert Merget, Damian Poddebniak, Jens Müller, Juraj
Somorovsky, Jörg Schwenk, and Sebastian Schinzel. ALPACA: Application layer protocol
confusion - analyzing and mitigating cracks in TLS authentication. In Proceedings of the
30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 2021. URL:
https://www.usenix.org/conference/usenixsecurity21/presentation/brinkmann.

8 R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, FOCS ’01,
page 136. IEEE, 2001.

9 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI ’99, pages 173–186.
USENIX Association, 1999. URL: https://dl.acm.org/citation.cfm?id=296824.

10 Jo-Mei Chang and Nicholas F. Maxemchuk. Reliable broadcast protocols. ACM Trans. Comput.
Syst., 2(3):251–273, 1984. doi:10.1145/989.357400.

11 David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure
protocols. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, pages 11–19. ACM, 1988. doi:10.1145/62212.62214.

https://doi.org/10.1145/1095809.1095817
https://doi.org/10.1109/EDCC.2016.17
https://doi.org/10.1007/s00446-002-0083-3
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/3465084.3467897
https://doi.org/10.1145/3465084.3467897
https://doi.org/10.1016/0890-5401(87)90054-X
https://www.usenix.org/conference/usenixsecurity21/presentation/brinkmann
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1145/989.357400
https://doi.org/10.1145/62212.62214

J. Chen, J. Dong, J. Li, X. Xia, and W. Zhou 13:21

12 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 777:155–183, 2019. doi:10.1016/J.TCS.2019.02.001.

13 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic. As
easy as ABC: optimal (a)ccountable (b)yzantine (c)onsensus is easy! J. Parallel Distributed
Comput., 181:104743, 2023. doi:10.1016/J.JPDC.2023.104743.

14 Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Anton Paramonov, and
Manuel Vidigueira. All Byzantine agreement problems are expensivge. In Proceedings of the
43rd ACM Symposium on Principles of Distributed Computing, PODC ’24, pages 157–169.
ACM, 2024. doi:10.1145/3662158.3662780.

15 Jeremy Clark and Paul C. van Oorschot. SoK: SSL and HTTPS: Revisiting past challenges
and evaluating certificate trust model enhancements. In 2013 IEEE Symposium on Security
and Privacy, pages 511–525, 2013. doi:10.1109/SP.2013.41.

16 Ran Cohen, Pouyan Forghani, Juan Garay, Rutvik Patel, and Vassilis Zikas. Concurrent
asynchronous Byzantine agreement in expected-constant rounds, revisited. In Theory of
Cryptography Conference, pages 422–451. Springer, 2023. doi:10.1007/978-3-031-48624-1_
16.

17 Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. Round-efficient Byzantine agree-
ment and multi-party computation with asynchronous fallback. In Theory of Cryptography
Conference, pages 623–653. Springer, 2021. doi:10.1007/978-3-030-90459-3_21.

18 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for Byzantine agreement.
Journal of the ACM (JACM), 32(1):191–204, 1985. doi:10.1145/2455.214112.

19 Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983. doi:10.1137/0212045.

20 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988. doi:10.1145/42282.42283.

21 Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. Fault tolerance in networks
of bounded degree. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing, STOC ’86, pages 370–379. ACM, 1986. doi:10.1145/12130.12169.

22 Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. Impact of man-in-the-middle
attacks on Ethereum. In 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS),
pages 11–20, 2018. doi:10.1109/SRDS.2018.00012.

23 Paul Feldman and Silvio Micali. Optimal algorithms for Byzantine agreement. In Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages 148–161.
ACM, 1988. doi:10.1145/62212.62225.

24 Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous Byzantine
agreement. SIAM J. Comput., 26(4):873–933, 1997. doi:10.1137/S0097539790187084.

25 Rex Fernando, Yuval Gelles, and Ilan Komargodski. Scalable distributed agreement from
LWE: Byzantine agreement, broadcast, and leader election. In 15th Innovations in Theoretical
Computer Science Conference (ITCS 2024), pages 1–23. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2024. doi:10.4230/LIPICS.ITCS.2024.46.

26 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

27 Matthias Fitzi. Generalized communication and security models in Byzantine agreement. PhD
thesis, ETH Zurich, 2003.

28 Matthias Fitzi, Nicolas Gisin, Ueli M. Maurer, and Oliver von Rotz. Unconditional Byzantine
agreement and multi-party computation secure against dishonest minorities from scratch. In
Advances in Cryptology – EUROCRYPT ’02, pages 482–501. Springer, 2002. doi:10.1007/
3-540-46035-7_32.

29 Matthias Fitzi and Ueli M. Maurer. From partial consistency to global broadcast. In F. Frances
Yao and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 494–503. ACM, 2000.
doi:10.1145/335305.335363.

AFT 2025

https://doi.org/10.1016/J.TCS.2019.02.001
https://doi.org/10.1016/J.JPDC.2023.104743
https://doi.org/10.1145/3662158.3662780
https://doi.org/10.1109/SP.2013.41
https://doi.org/10.1007/978-3-031-48624-1_16
https://doi.org/10.1007/978-3-031-48624-1_16
https://doi.org/10.1007/978-3-030-90459-3_21
https://doi.org/10.1145/2455.214112
https://doi.org/10.1137/0212045
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/12130.12169
https://doi.org/10.1109/SRDS.2018.00012
https://doi.org/10.1145/62212.62225
https://doi.org/10.1137/S0097539790187084
https://doi.org/10.4230/LIPICS.ITCS.2024.46
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/3-540-46035-7_32
https://doi.org/10.1007/3-540-46035-7_32
https://doi.org/10.1145/335305.335363

13:22 Composable Byzantine Agreements with Reorder Attacks

30 Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic computation: Secure faut-tolerant
protocols and the public-key model. In Advances in Cryptology – CRYPTO ’87, pages 135–155.
Springer, 1987. doi:10.1007/3-540-48184-2_10.

31 Juan A. Garay and Yoram Moses. Fully polynomial Byzantine agreement for n > 3t processors
in t + 1 rounds. SIAM J. Comput., 27(1):247–290, 1998. doi:10.1137/S0097539794265232.

32 Yuval Gelles and Ilan Komargodski. Optimal load-balanced scalable distributed agreement. In
Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC ’24, pages
411–422. ACM, 2024. doi:10.1145/3618260.3649736.

33 Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure multiparty
computation. In Advances in Cryptology – CRYPTO ’02, pages 178–193. Springer, 2002.
doi:10.1007/3-540-45708-9_12.

34 Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly
Shmatikov. The most dangerous code in the world: Validating SSL certificates in non-browser
software. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 38–49. ACM, 2012. doi:10.1145/2382196.2382204.

35 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play ANY mental game. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC ’87, pages
218–229. ACM, 1987. doi:10.1145/28395.28420.

36 Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on computing, 17(2):281–308, 1988.
doi:10.1137/0217017.

37 Anuj Gupta, Prasant Gopal, Piyush Bansal, and Kannan Srinathan. A new look at composition
of authenticated Byzantine generals. arxiv, 2012. arXiv:1203.1463.

38 Lioba Heimbach and Roger Wattenhofer. SoK: Preventing transaction reordering manipulations
in decentralized finance. In Proceedings of the 4th ACM Conference on Advances in Financial
Technologies, AFT ’22, pages 47–60. ACM, 2023. doi:10.1145/3558535.3559784.

39 Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for Byzantine
agreement. J. Comput. Syst. Sci., 75(2):91–112, 2009. doi:10.1016/J.JCSS.2008.08.001.

40 Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In Proceed-
ings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06,
pages 990–999. SIAM, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109667.

41 Po-Chun Kuo, Hao Chung, Tzu-Wei Chao, and Chen-Mou Cheng. Fair Byzantine agreements
for blockchains. IEEE Access, 8:70746–70761, 2020. doi:10.1109/ACCESS.2020.2986824.

42 Leslie Lamport. The weak byzantine generals problem. Journal of the ACM (JACM),
30(3):668–676, 1983. doi:10.1145/2402.322398.

43 Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982. doi:10.1145/357172.357176.

44 Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of authenticated
Byzantine agreement. J. ACM, 53(6):881–917, 2006. doi:10.1145/1217856.1217857.

45 Thomas Locher. Fast Byzantine agreement for permissioned distributed ledgers. In Proceedings
of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’20, pages
371–382. ACM, 2020. doi:10.1145/3350755.3400219.

46 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, April 1980. doi:10.1145/322186.322188.

47 Birgit Pfitzmann and Michael Waidner. Unconditional Byzantine agreement for any number
of faulty processors. In Proceedings of the 9th Annual Symposium on Theoretical Aspects of
Computer Science, STACS ’92, pages 339–350. Springer, 1992. doi:10.1007/3-540-55210-3_
195.

48 Zhiguo Qu, Zhexi Zhang, Bo Liu, Prayag Tiwari, Xin Ning, and Khan Muhammad. Quantum
detectable Byzantine agreement for distributed data trust management in blockchain. Inform-
ation Sciences, 637:118909, 2023. doi:10.1016/J.INS.2023.03.134.

https://doi.org/10.1007/3-540-48184-2_10
https://doi.org/10.1137/S0097539794265232
https://doi.org/10.1145/3618260.3649736
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1145/2382196.2382204
https://doi.org/10.1145/28395.28420
https://doi.org/10.1137/0217017
https://arxiv.org/abs/1203.1463
https://doi.org/10.1145/3558535.3559784
https://doi.org/10.1016/J.JCSS.2008.08.001
http://dl.acm.org/citation.cfm?id=1109557.1109667
https://doi.org/10.1109/ACCESS.2020.2986824
https://doi.org/10.1145/2402.322398
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/1217856.1217857
https://doi.org/10.1145/3350755.3400219
https://doi.org/10.1145/322186.322188
https://doi.org/10.1007/3-540-55210-3_195
https://doi.org/10.1007/3-540-55210-3_195
https://doi.org/10.1016/J.INS.2023.03.134

J. Chen, J. Dong, J. Li, X. Xia, and W. Zhou 13:23

49 Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In David S. Johnson, editor, Proceedings of the 21st Annual
ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washington, USA, pages
73–85. ACM, 1989. doi:10.1145/73007.73014.

50 R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978. doi:10.1145/359340.359342.

51 David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin, and Latifur Khan. Smv-
hunter: Large scale, automated detection of SSL/TLS man-in-the-middle vulnerabilities in
android apps. In Network and Distributed System Security Symposium (NDSS), pages 1–14.
The Internet Society, 2014. doi:10.14722/ndss.2014.23205.

52 Ran Tamir, Ariel Livshits, and Yonatan Shadmi. Simple majority consensus in networks with
unreliable communication. Entropy, 24(3), 2022. doi:10.3390/e24030333.

53 Jianhuan Wang, Jichen Li, Zecheng Li, Xiaotie Deng, and Bin Xiao. n-mvtl attack: Optimal
transaction reordering attack on DeFi. In Computer Security – ESORICS 2023, pages 367–386.
Springer, 2023. doi:10.1007/978-3-031-51479-1_19.

54 Andrew Chi-Chih Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, SFCS ’82, pages 160–164. IEEE, 1982.
doi:10.1109/SFCS.1982.38.

55 Junghun Yoo, Youlim Jung, Donghwan Shin, Minhyo Bae, and Eunkyoung Jee. Formal model-
ing and verification of a federated Byzantine agreement algorithm for blockchain platforms. In
2019 IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE),
pages 11–21. IEEE, 2019.

56 Zhenwei Zhao, Xiaoming Li, Bing Luan, Weining Jiang, Weidong Gao, and Subramani
Neelakandan. Secure internet of things (IoT) using a novel Brooks Iyengar quantum Byz-
antine agreement-centered blockchain networking (BIQBA-BCN) model in smart healthcare.
Information Sciences, 629:440–455, 2023. doi:10.1016/J.INS.2023.01.020.

A Consensus Protocol in Figure 4 of [6]

Algorithm 3 The Consensus Protocol in Figure 4 of [6].
Phase(i): (by process p)
Step 1: Broadcast(p, 3i + 1, valuep). Wait until validate n − t (3i + 1)-messages.

valuep := majority value of the n − t validated messages.
Step 2: Broadcast(p, 3i + 2, valuep). Wait until validate n − t (3i + 2)-messages.

(i) If more than n
2 of the messages have the same value v, then valuep = (d, v).

(ii) Otherwise, valuep := valuep.
Step 3: Broadcast(p, 3i + 3, valuep). Wait until validate n − t (3i + 3)-messages.

(i) If validated more than 2t messages with value (d, v) then decisionp := valuep := v.
(ii) If validated more than t messages with value (d, v) then valuep := v.
(iii) Otherwise, valuep := coin_toss (0 or 1 with probability 1

2).
Go to round 1 of phase i + 1

AFT 2025

https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/359340.359342
https://doi.org/10.14722/ndss.2014.23205
https://doi.org/10.3390/e24030333
https://doi.org/10.1007/978-3-031-51479-1_19
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1016/J.INS.2023.01.020

	1 Introduction
	1.1 Adversary Model
	1.2 Our Results

	2 Related Work
	3 Our Model
	3.1 Byzantine Agreement
	3.2 Composition Security

	4 Impossibility Result
	5 Black-box Compiler for Parallel Composable BA
	5.1 Reliable Message Transmission for Parallel Composition
	5.2 Black-box Compiler

	6 Concurrent BA Protocol under Asynchronous Network
	6.1 Reliable Broadcast Under Concurrent Composition
	6.2 Composition Security of Reliable Broadcast

	7 Conclusion and Future Directions
	A Consensus Protocol in Figure 4 of [6]

