
Beyond Optimal Fault-Tolerance
Andrew Lewis-Pye #

London Schoool of Economics (LSE), UK

Tim Roughgarden #

Columbia University, New York, NY, USA
a16z Crypto Research, New York, NY, USA

Abstract
One of the most basic properties of a consensus protocol is its fault-tolerance – the maximum fraction
of faulty participants that the protocol can tolerate without losing fundamental guarantees such as
safety and liveness. Because of its importance, the optimal fault-tolerance achievable by any protocol
has been characterized in a wide range of settings. For example, for state machine replication (SMR)
protocols operating in the partially synchronous setting, it is possible to simultaneously guarantee
consistency against α-bounded adversaries (i.e., adversaries that control less than an α fraction of
the participants) and liveness against β-bounded adversaries if and only if α + 2β ≤ 1.

This paper characterizes to what extent “better-than-optimal” fault-tolerance guarantees are
possible for SMR protocols when the standard consistency requirement is relaxed to allow a bounded
number r of consistency violations, each potentially leading to the rollback of recently finalized
transactions. We prove that bounded rollback is impossible without additional timing assumptions
and investigate protocols that tolerate and recover from consistency violations whenever message
delays around the time of an attack are bounded by a parameter ∆∗ (which may be arbitrarily larger
than the parameter ∆ that bounds post-GST message delays in the partially synchronous model).
Here, a protocol’s fault-tolerance can be a non-constant function of r, and we prove, for each r,
matching upper and lower bounds on the optimal “recoverable fault-tolerance” achievable by any
SMR protocol. For example, for protocols that guarantee liveness against 1/3-bounded adversaries
in the partially synchronous setting, a 5/9-bounded adversary can always cause one consistency
violation but not two, and a 2/3-bounded adversary can always cause two consistency violations but
not three. Our positive results are achieved through a generic “recovery procedure” that can be
grafted on to any accountable SMR protocol and restores consistency following a violation while
rolling back only transactions that were finalized in the previous 2∆∗ timesteps.
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1 Introduction

We consider protocols for the state machine replication (SMR) problem, in which processes
receive transactions from an environment and are responsible for finalizing a common sequence
of transactions. We focus on the partially synchronous setting [14], in which message delays
are bounded by a known parameter ∆ following an unknown “global stabilization time” GST
(and unbounded until that point).

The two most basic requirements of an SMR protocol are consistency, meaning that no
two processes should finalize incompatible sequences of transactions (one should be a prefix
of the other), and liveness, which stipulates that valid transactions should eventually be
finalized (ideally, following GST, within an amount of time proportional to ∆). Guaranteeing
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15:2 Beyond Optimal Fault-Tolerance

consistency and liveness becomes impossible if too many of the processes are faulty (i.e.,
deviate from the intended behavior of a protocol). For the SMR problem in partial synchrony,
it is possible to simultaneously guarantee consistency against α-bounded adversaries (i.e.,
adversaries that control less than an α fraction of the participants) and liveness against
β-bounded adversaries if and only if α + 2β ≤ 1 [19, 14].

The focus of this paper is consistency violations – the type of violation that enables, for
example, double-spending a cryptocurrency native to a blockchain protocol. What can be
said about a protocol when the adversary is large enough to cause a consistency violation? For
example, is it already in a position to cause an unbounded number of consistency violations
(as opposed to just one), or could the protocol “fight back” in some way?

To make sense of this question and the idea of multiple consistency violations, we
must formalize a sense in which a protocol might restore consistency following a violation,
necessarily by rolling back transactions that had been viewed as finalized by some non-faulty
processes. One key parameter is then the recovery time d, meaning the number of timesteps
after a violation before a protocol returns to healthy operation. A second is the rollback h,
meaning that the recovery process “unfinalizes” only transactions that have been finalized
within the previous h time steps.

The natural wishlist for an SMR protocol in partial synchrony would then be:
(1) All of the “usual” guarantees, such as optimal fault-tolerance (i.e., consistency with

respect to α-bounded adversaries and liveness with respect to β-bounded adversaries for
some α, β > 0 with α + 2β = 1).

(2) Automatic recovery from a consistency violation with the worst-case recovery time d and
worst-case rollback h as small as possible (if nothing else, independent of the specific
execution).

(3) Never suffers more than r consistency violations overall, where r is as small as possible.
To what extent are these properties simultaneously achievable?

This paper provides a thorough investigation of this question. To expose the richness of
the answer, we work with a timing model that can be viewed as an interpolation between
the synchronous and partially synchronous settings. In addition to the usual parameters ∆
and GST (known and unknown, respectively) of the partially synchronous model, we allow
for a known parameter ∆∗ ≥ ∆ which may or may not bound message delays prior to
GST. Canonically, ∆∗ should be thought of as orders of magnitude larger than ∆, with
∆ indicating the speed of communication between processes when all is well (no network
issues, no attacks) and ∆∗ a safe (and possibly large) upper-bound on the speed of (possibly
out-of-band) communication around the time of an attack.1 We will be interested in protocols
that always satisfy all the “usual” guarantees (1) and that finalize transactions in time O(∆)
(rather than O(∆∗)) after GST, whether or not pre-GST message delays are bounded by ∆∗,
and also satisfy the additional recovery guarantees (2) and (3) in the event that pre-GST
message delays are in fact bounded by ∆∗.2

Our main positive result, stated formally in Theorem 1 and proved in Section 7, shows
that such protocols do indeed exist. For example, we show that there is a protocol that
satisfies:

1 Indeed, for our positive results, message delays must be bounded by ∆∗ for the duration of our recovery
procedure, but not otherwise.

2 In particular, a synchronous protocol with respect to the parameter ∆∗ will not generally satisfy
consistency and liveness if message delays do not happen to bounded above by ∆∗.
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1
3 -resilience in partial synchrony (independent of whether ∆∗ bounds pre-GST message
delays), with expected latency O(∆) after GST;
should pre-GST message delays be bounded by ∆∗, recovers from consistency violations
in expected time O(∆∗) and with rollback 2∆∗; and
should pre-GST message delays be bounded by ∆∗, never suffers from more than one
consistency violation with a 5

9 -bounded attacker, and never suffers from more than two
consistency violations with a 2

3 -bounded attacker.
We achieve this result by designing a generic “recovery procedure” that can be grafted on to
any accountable SMR protocol, including protocols with asymmetric fault-tolerance with
respect to consistency and liveness attacks. Sections 4 and 5 give informal and formal,
respectively, descriptions of this procedure.

Our results are tight in several senses. For example, we prove in Theorem 2 that recovery
from a consistency violation necessarily requires a rollback proportional to the parameter ∆∗.
In particular, in the pure partially synchronous model (∆∗ = +∞, in effect), recovery from
consistency violations with bounded rollback is impossible. Theorems 3 and 4 show that the
bounds we obtain on adversary size (as a function of the number r of consistency violations)
are optimal. For example, in the symmetric case above, an attacker controlling five-ninths of
the processes can always force two consistency violations, and one controlling two-thirds of
the processes can cause unbounded rollback.

A comment on the benefits of automated recovery. It is sometimes assumed in the
literature (e.g. [26]) that, in the event of a consistency violation, an “administrator” will
somehow (through out-of-protocol means) remove perpetrators from the system and co-
ordinate an appropriate “reboot”. Our automated recovery procedure is “in-protocol,” and
therefore has the significant benefits that it does not rely on a centralized entity, has no
single point of failure, and formalizes a process by which one can guarantee bounded rollback
(a principal focus of this paper).

A comment on the (∆, ∆∗) timing assumptions. In practical settings, partial synchrony
may hold with respect to ∆ of the order of a few hundred milliseconds. It may also be
reasonable to suppose that synchrony will hold with respect to some much larger bound
∆∗, but making direct use of this larger bound to run a synchronous protocol (and increase
resilience beyond 1/3) would result in an impractically slow protocol. Our use of the two
bounds ∆ and ∆∗ reflects our interest in considering protocols that give all the usual
guarantees of protocols for partial synchrony (with no requirement that the larger bound ∆∗

should hold), but which also give recovery guarantees in the case that the larger bound for
synchrony should hold.

2 The setup

We consider a set Π = {p1, . . . , pn} of n processes. Each process pi is told its “name” i as part
of its input. We focus on the case of a static adversary, which chooses a set of processes to
corrupt at the start of the protocol execution.3 We call a process corrupted by the adversary

3 All results in this paper hold more generally for adaptive adversaries (with essentially identical proofs),
with the exception of the bound on the expected termination time for the recovery procedure asserted in
part (iii) of Theorem 1 (which requires that a random permutation of the processes be chosen subsequent
to the adversary deciding which processes to corrupt).
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15:4 Beyond Optimal Fault-Tolerance

faulty. Faulty processes may behave arbitrarily (i.e., we consider Byzantine faults), subject
to our cryptographic assumptions (stated below). Processes that are not faulty are correct.
The adversary is ρ-bounded if it corrupts less than a ρ fraction of the n processes.

Cryptographic assumptions. We assume that processes communicate by point-to-point
authenticated channels and that a public key infrastructure (PKI) is available for generating
and validating signatures. For simplicity of presentation (e.g., to avoid the analysis of
negligible error probabilities), we work with ideal versions of these primitives (i.e., we assume
that faulty processes cannot forge signatures). We also assume that all processes have access
to a random permutation of Π, denoted Π∗ : [1, n] → Π, which is sampled after the adversary
chooses which processes to corrupt.

Message delays. We consider a discrete sequence of timeslots t ∈ N≥0. As discussed
in the introduction, we consider protocols that operate in partial synchrony (with some
parameter ∆, perhaps in the order of seconds or milliseconds) and satisfy additional recovery
properties should synchrony hold (with some different parameter ∆∗, which may be set much
larger than ∆) while running the “recovery procedure”.

Synchrony. In the synchronous setting, a message sent at time t must arrive by time t + ∆∗,
where ∆∗ is known to the protocol.

Partial synchrony. In the partially synchronous setting, a message sent at time t must arrive
by time max{GST, t} + ∆. While ∆ is known, the value of GST is unknown to the protocol.
The adversary chooses GST and also message delivery times, subject to the constraints
already specified.

Clock synchronization. In the partially synchronous setting, we suppose all correct processes
begin the protocol execution before GST. When considering the synchronous setting, we
suppose all correct processes begin the protocol execution by time ∆∗. A correct process
begins the protocol execution with its local clock set to 0; thus, we do not suppose that
the clocks of correct processes are synchronized. For simplicity, we assume that the clocks
of correct processes all proceed in real time, meaning that if t′ > t then the local clock of
correct p at time t′ is t′ − t in advance of its value at time t.4

Notation concerning executions and received messages. We use the following notation
when discussing any execution of a protocol:

Mi(t) denotes the set of messages received by process pi by timeslot t;
Mc(t) denotes the set of all messages received by any correct process by timeslot t;
Mc denotes the set of all messages received by any correct process during the execution.

Transactions. Transactions are messages of a distinguished form, signed by the environment.
Each timeslot, each process may receive some finite set of transactions directly from the
environment.

Determined inputs. A value is determined if it known to all processes, and is otherwise
undetermined. For example, ∆, ∆∗ and Π are determined, while GST is undetermined.

4 Using standard arguments, our protocol and analysis can easily be extended to the case in which there
is a known upper bound on the difference between the clock speeds of correct processes.
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State machine replication. Informally, a protocol for state machine replication (SMR) must
cause correct processes to finalize logs (sequences of transactions) that are live and consistent
with each other, and must also produce “certificates” of finalization that can be presented to
clients who may not always be online and observing the protocol execution. Formally, if σ

and τ are sequences, we write σ ⪯ τ to denote that σ is a prefix of τ . We say σ and τ are
compatible if σ ⪯ τ or τ ⪯ σ. If two sequences are not compatible, they are incompatible.
If σ is a sequence of transactions, we write tr ∈ σ to denote that the transaction tr belongs
to the sequence σ.

Fix a process set Π and genesis log, denoted logG. If P is a protocol for SMR, then it
must specify a function F , which may depend on Π and logG, that maps any set of messages
to a sequence of transactions extending logG. We require the following conditions to hold in
every execution (for any M1, M2, pi, pj and tr):

Consistency. If M1 ⊆ M2 ⊆ Mc, then F(M1) ⪯ F(M2).5

Liveness. If pi and pj are correct and if pi receives the transaction tr then, for some t,
tr ∈ F(Mj(t)).

This definition of consistency ensures that correct processes never finalize incompatible logs:
for any sets M1, M2 ⊆ Mc that two such processes might have received, F(M1) ⪯ F(M1 ∪M2)
and F(M2) ⪯ F(M1 ∪ M2). We say a set of messages M is a certificate for a sequence of
transactions σ if F(M) ⪰ σ: intuitively, any process can present the set of (potentially
signed) messages M to a “client” that has not been observing the protocol execution as proof
that it has finalized a sequence of transactions extending σ. If we wish to make F explicit,
we may also say that M is an F-certificate for σ.

SMR (informal discussion). The selection F of finalized transactions by a correct process
depends only on the set of messages it has received, and not on the times at which these
messages were received. The motivation for this restriction is to formalize the requirement
of SMR [22] that “clients” wishing to verify the finality of transactions without observing
the entire execution of the protocol should be able to do so (via a suitable certificate).
As discussed in [25], this crucial distinction between SMR and Total-Order-Broadcast is
sometimes overlooked in the literature: In the context of an honest majority, any report of
finality by a majority of processes constitutes proof of finality, so a protocol for Total-Order-
Broadcast directly gives a protocol for SMR. However, the distinction becomes non-trivial in
the context of player reconfiguration, or if there is no guarantee of honest majority (such
as in this paper). In partial synchrony, certificates are anyways required for guaranteed
consistency and liveness [16], so our approach is general for the context considered here.

The liveness parameter. If there exists some fixed ℓ that is a function of determined inputs6

other than ∆∗ and such that the following holds in all executions of P , we say P has liveness
parameter ℓ: If pi and pj are correct and if pi receives the transaction tr at time t then, for
t′ = max{t, GST} + ℓ, tr ∈ F(Mj(t′)).

5 This is equivalent to the seemingly stronger condition in which Mc is replaced by the set of messages
received by any process (correct or otherwise), as faulty processes always have the option of echoing any
messages they receive to correct processes.

6 The requirement that ℓ is not a function of ∆∗ (while ∆∗ is not necessarily O(∆)) means that having
liveness parameter ℓ may require finalization of transactions in time less than ∆∗ after GST.
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15:6 Beyond Optimal Fault-Tolerance

Liveness and consistency resilience. Recall that n = |Π|. When the protocol P is clear from
context, we write ρC to denote the consistency resilience of P , which is the largest ρ such that,
for all n, the protocol satisfies consistency so long as the adversary is ρ-bounded. We write
ρL to denote the liveness resilience, which is the largest ρ such that, for all n, the protocol
satisfies liveness so long as the adversary is ρ-bounded. It is well known that ρC + 2ρL ≤ 1 in
the partially synchronous setting [14] and that ρC + ρL ≤ 1 in the synchronous setting [19].

The number of consistency violations. When F is clear from context, we say the set of
messages M has r consistency violations if there exist M0 ⊂ M1 ⊂ · · · ⊂ Mr ⊆ M such
that, for each s ∈ {0, 1, . . . , r − 1}, F(Ms) ̸⪯ F(Ms+1). We also say M has a consistency
violation (w.r.t. F) if it has at least one consistency violation. An execution has r consistency
violations if Mc has r consistency violations.

Accountable protocols (informal discussion). Informally, a protocol is accountable if it
produces proofs of guilt for some faulty processes in the event of a consistency violation. We
cannot generally require proofs of guilt for a fraction λ > ρC of processes, since consistency
violations may occur when less than a fraction λ of processes are faulty. On the other hand,
all standard protocols that provide accountability produce proofs of guilt for a ρC fraction of
processes in the event of a consistency violation [24].

Accountable protocols (formal definition). Consider an SMR protocol P:
We say the set of messages M is a proof of guilt for p ∈ Π if there does not exist any
execution of P in which p is correct and for which M ⊆ Mc.7
We say P is λ-accountable if the following holds at every timeslot t of any execution of P :
if Mc(t) has a consistency violation, then Mc(t) is a proof of guilt for at least a λ fraction
of processes in Π.

Given that all standard protocols that are λ-accountable for any λ > 0 are also ρC-
accountable, we will say that a protocol is accountable to mean that it is ρC-accountable.
It is important to note that, while an accountable protocol ensures the existence of proofs
of guilt for a ρC fraction of processes in the event of a consistency violation, it does not
automatically ensure consensus between correct processes as to a set of faulty processes for
which a proof of guilt exists. One role of the recovery procedure (as specified in Section 5)
will be to ensure such consensus.

Message gossiping. In our recovery procedure, it will be convenient to assume that correct
processes gossip all messages received. Then, if synchrony does hold with respect to ∆∗, any
message received by correct p at some timeslot t is received by all correct processes by time
t + ∆∗. It will not generally be necessary to gossip all messages; for example, for standard
quorum-based protocols, it will suffice to gossip blocks that have received quorum certificates
(QCs) along with those QCs.

A comment on setup assumptions. Given an accountable SMR protocol P and a process
set Π, our wrapper will initiate a sequence of executions of P, with process sets that are
progressively smaller subsets of Π. Of course, a PKI for Π suffices to provide a PKI for each

7 If we wish to make P, logG, and Π explicit, we may also say that M is a (P, Π, logG)-proof of guilt.
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subset of Π and a random permutation of Π naturally induces a random permutation of each
subset. Moreover, the maximum number of executions of P initiated by the wrapper will be
small and the size of the process set of each is known ahead of time. (For example, if ρC = 1/3
and the adversary is 5/9-bounded, the wrapper will initiate at most two executions of P; if
ρC = 1/3 and the adversary is 2/3-bounded, at most three.) Thus, for setup assumptions
such as threshold signatures, one can simply run each required setup in advance, before
executing the wrapper.

3 Recovery metrics

In this section, we introduce definitions to quantify how well a protocol recovers from
consistency violations.

Generalizing resilience to take recovery into account. Is a protocol vulnerable to one
consistency violation inexorably doomed to an unbounded number of them? Or could a
protocol achieve strictly higher levels of resilience by tolerating (and recovering from) a
bounded number of consistency violations? The following definitions generalize consistency
and liveness resilience to account for the possibility of recovery from consistency violations.

Recoverable consistency resilience. Consider a function g : N≥0 → [0, 1]. We say a protocol
P has recoverable consistency resilience g if the following holds for each r ∈ N≥0: g(r) is
the largest ρ such that, for all n, provided the adversary is ρ-bounded, executions of P
have at most r consistency violations.
Recoverable liveness resilience. Consider a function g : N≥0 → [0, 1]. We say a protocol P
has recoverable liveness resilience g if the following holds for each r ∈ N≥0: g(r) is the
largest ρ such that, for all n, provided the adversary is ρ-bounded, liveness holds in all
executions with precisely r consistency violations.8

Suppose P has consistency resilience ρC and recoverable consistency resilience g. Note
that g(0) = ρC . Also, g is nondecreasing (i.e., g(s) ≥ g(r) for s > r): if executions of P have
at most r consistency violations when the adversary is ρ-bounded, then this is also true of
all s > r. If g(r + 1) > g(r), the protocol effectively has increased consistency resilience after
r consistency violations.

Recoverable resilience for our wrapper. Suppose P is accountable and has consistency
resilience ρC and liveness resilience ρL for partial synchrony with ρC +2ρL = 1. If we identify
some fraction x of the processes in Π as faulty and then run an execution of P using the
remaining processes, there will be no consistency violation so long as less than a fraction
x + ρC(1 − x) of the processes in Π are faulty. Given this, let us define a sequence {xr}r∈N≥0

by recursion:

x0 = 0, xr+1 = xr + ρC(1 − xr).

Define:

g1(r) = min{xr+1, 1 − ρL}, g2(r) = min{xr + ρL(1 − xr), 1 − ρL}. (1)

8 Prior to the rth consistency violation, a sufficiently large adversary may still be in a position to cause a
liveness violation.
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15:8 Beyond Optimal Fault-Tolerance

Given P as input, our wrapper produces an SMR protocol with recoverable consistency
resilience g1 and recoverable liveness resilience g2 as in (1). For example, if ρC = ρL = 1

3 ,
then g1(0) = g2(0) = 1

3 , g1(1) = g2(1) = 5
9 , and g1(r) = g2(r) = 2

3 for all r ≥ 2.

Specifying the recovery time. Next, we provide a definition that captures the time required
by a protocol to recover from consistency violations. Suppose P has recoverable liveness
resilience g. We say P has recovery time d with liveness parameter ℓ if the following holds
for all executions E of P:
(†d,ℓ) If there exists r such that E has precisely r consistency violations, let t be least

such that Mc(t) has r consistency violations (otherwise set t = ∞). If correct pi

receives the transaction tr at any timeslot t′ then, for every correct pj and for
t′′ = max{t + d, GST, t′} + ℓ, tr ∈ logj(t′′).

In the above, d should be thought of as a “grace period” after consistency violations, after
which liveness with parameter ℓ must hold. In our construction, d is governed by the length
of time it takes to run our recovery procedure.

Probabilistic recovery time. Our recovery procedure uses the random permutation Π∗ –
chosen after the adversary chooses which processes to corrupt – to select “leaders,” and as
such it will run for a random duration. To analyze this, we allow the grace period parameter d

in the definition above to depend on an error probability ε ∈ [0, 1] and sometimes write dε to
emphasize this dependence. We then make the following definitions:

We say that (†d,ℓ) is ensured with probability at least p if, for every choice of corrupted
processes (consistent with a static ρ-bounded adversary), with probability at least p over
the choice of Π∗ (sampled from the uniform distribution), (†d,ℓ) holds in every execution
consistent with these choices and with the setting.
We say that P has probabilisitic recovery time dε with liveness parameter ℓ if it holds for
every ε ∈ [0, 1] that (†dε,ℓ) is ensured with probability at least 1 − ε.

Recovery time for our wrapper. Given P with liveness parameter ℓ as input, our wrapper
will produce an SMR protocol with (worst-case) recovery time O(∆∗ ·fa), probabilisitic recov-
ery time O(∆∗ · log 1

ε ), and liveness parameter ℓ, where fa denotes the actual (undetermined)
number of faulty processes.

Bounding rollback. We say that a protocol has rollback bounded by h if the following holds
for every execution consistent with the setting and every correct pi, pj ∈ Π: if there exists an
interval I = [t, t + h] such that σ ⪯ logi(t′) for all t′ ∈ I, then σ ⪯ logj(t′) for all sufficiently
large t′. That is, consistency violations can “unfinalize” only transactions that have been
finalized recently, within the previous h time steps. Here, h can be any value that depends
only on determined inputs.

Bounding rollback for our wrapper. Given an SMR protocol P with liveness resilience ρL

as input, our wrapper will produce an SMR protocol with rollback bounded by h = 2∆∗ so
long as synchrony holds for ∆∗ and the adversary is (1 − ρL)-bounded. In fact, while the
recovery procedure described in Section 5 requires a common choice for ∆∗, rollback can be
bounded on an individual basis, with each correct process making their own personal choice
of message delay bound ≤ ∆∗. rollback will be bounded by twice their personal choice of
bound, so long as that bound on message delay holds.9

9 The requirement that the choice be ≤ ∆∗ stems from the fact that the recovery procedure requires
delays to be bounded by ∆∗ to function correctly.
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4 The intuition behind the wrapper

We describe a wrapper, which takes an accountable and optimally resilient SMR protocol P
as input, and which runs an execution of P until a consistency violation occurs.10 Once this
happens, the wrapper triggers a “recovery procedure”, which achieves consensus on a set of
faulty processes F for which a proof of guilt exists, together with a long initial segment of
the log produced by P below which no consistency violation has occurred. The wrapper then
initiates another execution of P that takes this log as its genesis log, with the players in F

removed from the process set. This next execution is run until another consistency violation
occurs, and so on.

Specifying logi(t) and F . While the formal definition of SMR in Section 2 requires us to
specify the finalization rule F (from which the transactions logi(t) finalized by pi can then
be defined as F(Mi(t))), it will be more natural when defining our wrapper to specify logi(t)
directly, and then later to define F such that logi(t) = F(Mi(t)). Recall that the given
protocol P satisfies consistency and liveness with respect to a function that may depend on
the process set and the genesis log. We write F(Π, logG) to denote this function.

The structure of this section. In Section 4.1, we describe the intuition behind a feature of
the wrapper which allows us to ensure rollback bounded by 2∆∗. We stress that bounding
rollback is non-trivial: this is the requirement on the recovery procedure that requires the
most delicate analysis. Section 4.2 then describes the intuition behind the recovery procedure.

In what follows, we use the variable E to denote an execution of the wrapper (with
process set Π and logG as the genesis log), which initiates successive executions E1, E2, . . .

of P, where Er has process set Πr and logGr
as the genesis log. Process pi maintains local

variables Mi and Mi,r for each r ≥ 1.11 The former records all messages so far received in
execution E , while the latter records all messages so far received in execution Er. We suppose
messages have tags identifying the execution in which they are sent, and that Mi,r ⊆ Mi at
every timeslot, for all correct pi and all r.

4.1 Ensuring bounded rollback
In what follows, we write ρC and ρL to denote the consistency and liveness resilience of
P. Each process pi executing the wrapper maintains a value logi. Suppose the currently
running execution of P is Er. To ensure rollback bounded by 2∆∗, pi proceeds as follows:

While running the execution Er of P, and when pi finds that some subset of Mi,r is an
F(Πr, logGr

)-certificate for σ properly extending logi, it will set logi to extend σ.
Process pi will only strongly finalize σ, however, once logi has extended σ for an interval
of length 2∆∗.
Upon finding that Mi,r has a consistency violation w.r.t. F(Πr, logGr

), pi will:
Send a signed r-genesis message (gen, logi, r) to all processes (motivation below);
Temporarily set logi to be logGr

;
Stop running Er, and;
Begin the recovery procedure.

10 By “optimally resilient,” we mean that the protocol’s consistency resilience ρC and liveness resilience λL

in partial synchrony are both positive and satisfy ρC + 2ρL = 1 (as is the case for all of the “usual”
SMR protocols designed for the partially synchronous setting). This assumption is merely to simplify
the presentation. For a non-optimally resilient protocol, the “1 − ρL” term in (1) should be replaced by
“(1 + ρC)/2”.

11 We use Mi when specifying the pseudocode, rather than Mi(t), since pi only has access to its local clock
and does not know the “global” value of t.
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15:10 Beyond Optimal Fault-Tolerance

To see what this achieves (modulo complications that may later be introduced by the
recovery procedure), suppose that synchrony holds for ∆∗. Then, due to our assumptions on
message gossiping described in Section 2, 2∆∗ bounds the round-trip time between any two
correct processes. In particular, suppose that pi finalizes σ at t because there exists M ⊆ Mi,r

which is an F(Πr, logGr
)-certificate for σ. Then every correct process pj will receive the

messages in M by t + ∆∗, and will then finalize σ (never to subsequently finalize anything
incompatible with σ), unless Mj,r has a consistency violation (w.r.t. F(Πr, logGr

)) by that
time. In the latter case, pi will begin the recovery procedure by timeslot t + 2∆∗ and will
not strongly finalize σ. So far, this approach is similar to the “safety-favoring” construction
of [25].

Complications introduced by the recovery procedure. Our recovery procedure introduces
the complication that there is not necessarily consensus on which logs have been strongly
finalized by some correct process. If a single correct process has strongly finalized σ when
the recovery procedure is triggered, and if the procedure determines that a log σ′ ̸⪰ σ should
be used as the genesis log in the next execution of P, then this may violate the condition
that the protocol has rollback bounded by 2∆∗. We must therefore ensure that the recovery
procedure reaches consensus on a log that extends all logs strongly finalized by correct
processes. As in explained in Section 4.2, the r-genesis messages sent by processes before
entering the recovery procedure will be used to achieve this.

4.2 The intuition behind the recovery procedure
Recall that ρC (ρL) is the consistency (liveness) resilience of P in partial synchrony (with
parameter ∆), and that the wrapper aims to deliver extra functionality in the case that
synchrony happens to hold with respect to the (possibly large) bound ∆∗, and so long as the
adversary is (1 − ρL)-bounded. So, suppose these conditions hold.

As noted in Section 4.1, while running execution Er of P , process pi will enter the recovery
procedure upon finding that Mi,r has a consistency violation. Given our gossip assumption,
described in Section 2, this means that correct processes will begin the recovery procedure
within time ∆∗ of each other. The key observation behind the recovery procedure is that, if
one has a proof of guilt for processes in some set F , where |F | ≥ ρCn, then the fact that the
adversary is (1 − ρL)-bounded (and 2ρL + ρC = 1) means that the adversary controls less
than half the processes in Π − F . This follows since:

1 − ρL − ρC = ρL, and so (1 − ρL − ρC)/(1 − ρC) = ρL/2ρL.

As a consequence, we can run a modified version of a standard ( 1
2 -resilient) SMR protocol

for synchrony (our protocol is most similar to [1]), in which the instructions are divided into
views, each with a distinct leader. In each view, the leader makes a proposal for the set of
processes F that should be removed from Πr to form Πr+1, and the processes outside F then
vote on that proposal.

Ensuring an appropriate value for logGr+1
. As well as proposing F , the leader pi must also

suggest a sequence σ to be used as logGr+1
and this sequence must extend all logs strongly

finalized by correct processes. To achieve this (while keeping the probabilistic recovery time
small), we run a short sub-procedure at the beginning of the recovery procedure, before
leaders start proposing values. We proceed as follows:
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Each correct pj waits time 2∆∗ upon beginning the recovery procedure and then sets
Pj(r) to be the set of processes in Πr from which it has received an r-genesis message.
Process pj then enters view (r, 1) (the 1st view of the rth execution of the recovery
procedure).

To form an appropriate proposal σ for logGr+1
while in view (r, v), the leader pi of the view

waits for 2∆∗ after entering the view (to accommodate possible lags between the progress of
and information received by different correct processes), and then proceeds as follows. If
M is the set of r-genesis messages that pi has received by that time and which are signed
by processes in Πr − F , then let M ′ be a maximal subset of M that contains at most one
message signed by each process. We say σ is extended by the r-genesis message (gen, σ′, r) if
σ ⪯ σ′. Process pi then sets σ so that the following condition is satisfied:

†(M ′, σ): σ is the longest sequence extended by more than 1
2 |Πr − F | elements of M ′.

Process pi then sends M ′ along with σ as a justification for its proposal. A correct process
pj will be prepared to vote on the proposal if †(M ′, σ) is satisfied and M ′ includes messages
from every member of Pj(r).

To see that this achieves the desired outcome, note that if pj is correct and M ′ includes
messages from every member of Pj(r), then it must contain a message from every correct
process. If σ′ has been strongly finalized by some correct process, then every correct process
must have finalized σ′ before entering the recovery procedure, and cannot have subsequently
finalized any value incompatible with σ′. So, for each r-genesis message (gen, σ′′, r) sent by
a correct process, σ′′ must extend σ′. It therefore holds that σ′ is extended by more than
1
2 |Πr − F | elements of M ′, so that, if †(M ′, σ) is satisfied, σ must extend σ′.

5 The formal specification of the wrapper

In what follows, we suppose that, when a correct process sends a message to “all processes”,
it regards that message as immediately received by itself. The pseudocode uses a number of
inputs, local variables, functions and procedures, detailed below.

Inputs. The wrapper takes as input an SMR protocol P, a process set Π, a random
permutation Π∗ of Π, a value logG, and message delay bounds ∆∗ and ∆. The consistency
resilience ρC of P is also given as input. Recall that the given protocol P satisfies consistency
and liveness with respect to a finalization function that may depend on the process set Π′

and the value log′
G for the genesis log. (For example, signatures from a certain fraction of

the processes in Π′ may be required for transaction finalization.) We write F(Π′, log′
G) to

denote this function, and suppose also that this function is known to the protocol.

Permutations and the variables Πr. Process pi maintains a variable Πr for each r ∈ N≥1.
Π1 is initially set to Π, while each Πr for r > 1 is initially undefined.12 Once Πr is defined,
Π∗

r is the permutation of Πr induced by Π∗.

Views and leaders. Views are indexed by ordered pairs and ordered lexicographically: one
should think of view (r, v) as the vth view in the rth execution of the recovery procedure.
For r, v ∈ N≥1, we set lead(r, v) = pi, where pi = Π∗

r(v); this function is used to specify the
leader of each view.13

12 We write x ↑ to indicate that the variable x is undefined, and x ↓ to indicate that x is defined.
13We can write pi = Π∗

r(v) because the number of views in the rth execution of the recovery procedure
will be bounded by |Πr|.
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Received messages and executions. We let Mi be a local variable that specifies the set
of all messages so far received by pi. The wrapper will also initiate executions E1, E2, . . .

of P: for each r ≥ 1, Mi,r specifies all messages so far received by pi in execution Er. We
suppose that messages have tags identifying the execution in which they are sent, and that all
messages received by pi in Er are also received by pi in the present execution of the wrapper,
so that Mi,r ⊆ Mi for all r.

The variables logGr
. Process pi maintains a variable logGr

for each r ∈ N≥1. Initially,
logG1

is set to logG, while each logGr
for r > 1 is undefined. If the execution Er of P is

initiated by the wrapper, then this will be an execution with logGr
as the genesis log and

with process set Πr.

Logs. Process pi maintains two variables logi and log∗
i . The former should be thought of

as the sequence of transactions that pi has finalized, while the latter is the sequence that pi

has strongly finalized.

Signatures. We write mpi to denote the message m signed by pi.

r-genesis messages. An r-genesis message is a message of the form (gen, σ, r)pj , where σ

is a sequence of transactions and pj ∈ Π. These are used during the rth execution of the
recovery procedure to help reach consensus on an appropriate value for logGr+1

. We say σ′

is extended by the r-genesis message (gen, σ, r)pj
if σ′ ⪯ σ.

r-proposals. An r-proposal is a tuple P = (F, σ, M, r), where F ⊂ Π, σ is a sequence of
transactions, M is a set of r-genesis messages, and r ∈ N≥1. The last entry r indicates that
this is a proposal corresponding to the rth execution of the recovery procedure. One should
think of F as a suggestion for Πr − Πr+1, while σ is a suggestion for logGr+1

and M is a
justification for σ.

(r, v)-proposals. An (r, v)-proposal is a message of the form R = (P, v, Q)pj , where P is
an r-proposal, pj ∈ Π, and either Q = ⊥ or else Q is a QC (as specified below) for some
(r, v′)-proposal with v′ < v.

Votes. A vote for the (r, v)-proposal R = (P, v, Q)pj
, where P = (F, σ, M, r), is a message

of the form V = Rpk
, where pk ∈ Π. We also say V is a vote by pk. At timeslot t, pi will

regard V as valid if it is signed by one of the processes that, from pi’s perspective, remains
in the active process set – i.e., if Πr is defined and pk ∈ Πr − F .

QCs. A QC for an (r, v)-proposal R = (P, v, Q′)pj , where P = (F, σ, M, r), is a set Q of
votes for R. At timeslot t, pi will regard Q as valid if every vote in Q is valid and Q contains
more than 1

2 |Πr − F | votes, each by a different process. If Q is a QC for an (r, v)-proposal
R = (P, v, Q′)pj

, we set view(Q) = (r, v) and P(Q) = P , and we may also just refer to Q as
a QC.

Locks. Each process pi maintains a value Q+
i , which is initially undefined. This variable

should be thought of as playing the same role as locks in Tendermint. The variable Q+
i may

be set to a valid QC for an (r, v)-proposal during view (r, v).
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The variables Pi(r) and t0. Process pi maintains a local variable Pi(r) for each r ≥ 1,
initially undefined. Upon halting execution Er and entering the recovery procedure at timeslot
t (according to its local clock), pi will set t0 := t, wait 2∆∗, and then set Pi(r) to be the set
of processes in Πr from which it has received signed r-genesis messages.

The time for each view. Each view is of length 8∆∗. Having set t0 upon halting execution
Er and entering the recovery procedure, pi will start view (r, v) (for v ≥ 1) at time t0 + 2∆∗ +
8(v − 1)∆∗.

Detecting equivocation. At timeslot t, we say pi detects equivocation in view (r, v) if Mi

contains at least two distinct (r, v)-proposals signed by lead(r, v).14

Valid (r, v)-proposals. Consider an (r, v)-proposal R = (P, v, Q)pj , where P = (F, σ, M, r).
At timeslot t (according to pi’s local clock), process pi will regard R as valid if:

(i) Πr and logGr
are defined;

(ii) F ⊂ Πr, and |F | ≥ ρC |Πr|;
(iii) Mi is a (P, Πr, logGr

)-proof of guilt for every process in F ;
(iv) M is a set of r-genesis messages, each signed by a different process in Πr − F ;
(v) For each pk ∈ Pi(r), there exists an r-genesis message signed by pk in M ;
(vi) σ is the longest sequence extended by more than 1

2 |Πr − F | elements of M ;
(vii) pj = lead(r, v);
(viii) Q+

i is undefined, or Q is a valid QC with (a) view(Q) ≥ view(Q+
i ), and (b) P(Q) = P ,

and;
(ix) pi does not detect equivocation in view (r, v).

The local variables voted and lockset. For each (r, v), voted(r, v) and lockset(r, v) are
initially set to 0. These values are used to indicate whether pi has yet voted or set its lock
during view (r, v).

r-finish votes and QCs. An r-finish vote for P is a message of the form Ppj
, where

P = (F, σ, M, r) is an r-proposal and pj ∈ Π. At timeslot t, pi will regard the r-finish vote
as valid if Πr is defined and pj ∈ Πr − F . A valid finish-QC for P is a set of more than
1
2 |Πr − F | valid r-finish votes for P , each signed by a different process.

The procedure Makeproposal. If pi = lead(r, v), then it will run this procedure during
view (r, v). To carry out the procedure, pi checks to see whether there exists some greatest
v′ < v such that it has received a valid QC, Q say, with view(Q) = (r, v′). If so, then pi sends
the (r, v)-proposal R = (P(Q), v, Q)pi

to all processes. If not, then it sets F to be the set of
all processes pj ∈ Πr such that Mi is a (P, Πr, logGr

)-proof of guilt for pj . Let M be the set
of r-genesis messages that pi has received and which are signed by processes in Πr − F , and
let M ′ be a maximal subset of M that contains at most one message signed by each process.
Process pi then sets σ to be the longest sequence extended by more than 1

2 |Πr − F | elements
of M ′ and sends to all processes the (r, v)-proposal R = (P, v, ⊥)pi

, where P = (F, σ, M ′, r).

Message gossiping. We adopt the message gossiping conventions described in Section 2.

14 If Mi contains a vote for an (r, v)-proposal, we consider it as also containing that (r, v)-proposal.
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The function F . While the function F is not explicitly used in the pseudocode, we will
show in Section 7 that, at every t, logi = F(Mi) (where logi and Mi are as locally defined for
pi at t). The function F is specified in Algorithm 2.

Pseudocode walk-through. The pseudocode appears in Algorithm 1. Below, we summarise
the function of each section of code.

Line 14. This line starts the execution of the wrapper by initiating E1, the first execution
of P, which has process set Π1 = Π and logG1

= logG as the genesis log.

Lines 16 – 19. During the rth execution of P, these lines check whether the recovery
procedure should be triggered. If so, then pi disseminates an r-genesis message, temporarily
resets its log, and starts the recovery procedure.

Lines 21 – 25. During the rth execution of P, these lines check whether pi should extend
its finalized and strongly finalized logs.

Lines 28 – 30. These lines initialize the rth execution of the recovery procedure by setting
t0 and Pi(r).

Lines 32 – 41. These lines specify the instructions for view (r, v). Initially, the leader
waits 2∆∗ and then makes an (r, v)-proposal. Processes vote upon receiving a first valid
(r, v)-proposal. Upon receiving a first valid QC for an (r, v)-proposal, Q say, pi sets its lock
to Q and then waits 2∆∗. If, at this time, it still does not detect equivocation in view (r, v),
then it sends a finish vote for P(Q).

Lines 43 – 47. These lines determine when pi stops carrying out the rth execution of the
recovery procedure. This happens when pi receives a valid finish-QC for some r-proposal P .
The r-proposal P then specifies Πr+1 and logGr+1

.

Informal discussion: how does the recovery procedure ensure consensus? To establish
that at most one r-proposal can receive a valid finish-QC, suppose that some correct pi sends
a finish vote for the r-proposal P during view (r, v). In this case, pi must set its lock to
some valid QC, Q say, at some timeslot t while in view v. Suppose that Q is a QC for the
(r, v)-proposal R, and note that P(Q) = P . We will observe that:
1. All correct processes set their locks to some valid QC for R while in view v.
2. No (r, v)-proposal other than R can receive a QC that is regarded as valid by any correct

process.
From (1) and (2) it will be easy to argue by induction on v′ > v that no correct process
votes for any proposal R′ = (P ′, v′, Q′)pj

such that P ′ ̸= P , since their locks will forever
prevent voting for such proposals. It follows that if any correct pk sends a finish vote for
an r-proposal P ′ during some view v′ ≥ v, then P = P ′. We conclude that, assuming (1)
and (2), at most one r-proposal can receive a valid finish-QC.

To see that (1) holds, note that all correct processes will be in view (r, v) at t + ∆∗ and
will have received Q by this time. They will therefore set their lock to be some QC for R,
unless they have already received a valid QC for some (r, v)-proposal R′ ̸= R. The latter
case is not possible, since then pi would detect equivocation in view (r, v) by t + 2∆∗, and so
would not send the finish vote for P .
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Algorithm 1 The instructions for pi.

1: Local variables
2: r, initially 1. ▷ Number of executions of P initiated
3: rec, initially 0. ▷ 1 if carrying out recovery
4: logi, log∗

i , initially set to logG ▷ Finalized and strongly finalized transactions
5: Πr, r ≥ 1. Initially, Π1 = Π, while Πr ↑ for r > 1. ▷ Process set for Er

6: logGr
. Initially, logG1

= logG, while logGr
↑ for r > 1. ▷ Genesis log for Er

7: Mi, Mi,r, initially empty. ▷ As specified in Section 5
8: Q+

i , initially undefined. ▷ The lock
9: t0, initially undefined. ▷ Timeslot at start of recovery

10: Pi(r), initially undefined. ▷ A set of processes
11: voted(r, v), lockset(r, v) (r, v ≥ 1), initially 0. ▷ As specified in Section 5
12:
13: At timeslot t:
14: If t = 0, start execution E1 of P, with process set Π1 and with logG1

as genesis log;
15:
16: If rec = 0:
17: If Mi,r has a consistency violation w.r.t. F(Πr, logGr

):
18: Send (gen, logi, r)pi to all processes; ▷ Send r-genesis message
19: Set logpi

:= logGr
; Stop running Er; Set rec := 1; ▷ Start recovery

20:
21: If rec = 0:
22: If ∃σ, M s.t. σ ≻ logi and M ⊆ Mi,r is an F(Πr, logGr

)-certificate for σ;
23: Let σ be the longest such; Set logi := σ; ▷ Extend log
24: If there exists a longest σ ≻ log∗

i s.t. logi has extended σ for time 2∆∗:
25: Set log∗

i := σ; ▷ Extend strongly finalized log
26:
27: If rec = 1:
28: If t0 ↑, set t0 := t; ▷ Set t0 upon entering recovery
29: If t = t0 + 2∆∗: ▷ Set Pi(r)
30: Set Pi(r) := {pj ∈ Πr : Mi contains an r-genesis message signed by pj};
31:
32: If t = t0 + 4∆∗ + 8(v − 1)∆∗ (for some v ∈ N≥1) and pi = lead(r, v):
33: Makeproposal; ▷ Leader makes new proposal 2∆∗ after starting view
34: If t ∈ [t0 + 2∆∗ + 8(v − 1)∆∗, t0 + 2∆∗ + 8v∆∗) (for some v ∈ N≥1):
35: If voted(r, v) = 0 and Mi contains a valid (r, v)-proposal R:
36: Send Rpi to all processes; Set voted(r, v) := 1; ▷ Vote
37: If lockset(r, v) = 0 and Mi contains a valid QC for an (r, v)-proposal, Q say:
38: Set Q+

i := Q, lockset(r, v) := 1; ▷ Set lock
39: Set the (r, v)-timer to expire in time 2∆∗;
40: If (r, v)-timer expires and pi does not detect equivocation in view (r, v):
41: Send P(Q+

i )pi to all processes; ▷ Send finish vote
42:
43: If Mi contains a valid finish-QC for some P = (F, σ, M, r):
44: Set Πr+1 := Πr − F , logGr+1

:= σ; ▷ Start new execution of P
45: Set r := r + 1 and make t0 and Q+

i undefined;
46: Start execution Er of P, with process set Πr and with logGr

as genesis log;
47: Set rec := 0; Set logi := logGr

;
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Algorithm 2 The function F .

1: Inputs
2: M ▷ A set of messages
3: Π, logG ▷ Process set and genesis log
4: F(Π′, log′

G) ▷ A function for each possible Π′ and log′
G

5: Local variables
6: r, initially 1.
7: Πr, r ≥ 1. Initially, Π1 = Π, while Πr ↑ for r > 1.
8: logGr

. Initially, logG1
= logG, while logGr

↑ for r > 1.
9: end, initially 0

10:
11: While end = 0 do:
12: If M does not have a consistency violation w.r.t. F(Πr, logGr

):
13: Let σ be longest such that M is an F(Πr, logGr

)-certificate for σ;
14: Return σ; Set end := 1;
15: Else if there does not exist a unique r-proposal with a valid finish-QC in M :
16: Return logGr

; Set end := 1;
17: Else if there exists a unique r-proposal P = (F, σ, M ′, r) with a valid finish-QC in

M :
18: Set Πr+1 := Πr − F , logGr+1

= σ;
19: Set r := r + 1;

To see that (2) holds, the argument is similar. All correct processes will be in view (r, v)
at t + ∆∗ and will have received R by this time. Item (ix) in the validity conditions for
(r, v)-proposals prevents correct processes from voting for (r, v)-proposals R′ ̸= R at later
timeslots, and correct processes cannot vote for such proposals at any timeslot ≤ t + ∆∗

because pi would detect equivocation in view (r, v) in this case.

Having established that at most one r-proposal can receive a valid finish-QC, suppose
now, towards a contradiction, that no r-proposal ever receives a valid finish-QC. Let v be
the least such that lead(r, v) is correct and let i be such that pi = lead(r, v). Since pi waits
2∆∗, until some timeslot t say, before disseminating an (r, v)-proposal R = (P, v, Q)pi

, it will
have seen all locks held by correct processes by this time, and will have received r-genesis
messages from all processes in any set Pj(r) for correct pj . At t, pi will disseminate an
(r, v)-proposal which all correct processes regard as valid by timeslot t + ∆∗. All correct
processes will therefore vote for the proposal by this time and will receive a valid QC for the
proposal by time t + 2∆∗. All correct processes will then set their locks. They will still be in
view (r, v) by time t + 4∆∗ (since they enter the view within time ∆∗ of each other) and will
send r-finish votes for P by this time.

6 The theorem statements

Given functions g, g′ : N → R, we say g ≤ g′ if g(r) ≤ g′(r) for all r ∈ N. If x ∈ R, we say
g ≤ x if g(r) ≤ x for all r ∈ N. We say g < g′ if g ≤ g′ and g(r) < g′(r) for some n.

We begin with our main positive result, which states the guarantees our wrapper achieves
for recoverable consistency and liveness, worst-case and probabilistic recovery time, and
rollback. The proof of Theorem 1 is given in Section 7.
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▶ Theorem 1. Suppose the wrapper is given an accountable SMR protocol P as input, where
P has consistency resilience ρC and liveness resilience ρL in partial synchrony, such that
ρC + 2ρL = 1. Let g1 and g2 be as defined in expression (1) in Section 3. If P has liveness
parameter ℓ and is accountable for (1 − ρL)-bounded adversaries, then the wrapper produces a
protocol with the same consistency and liveness resilience as P in partial synchrony, and with
the following properties for (1 − ρL)-bounded adversaries when message delays are bounded
by ∆∗:

(i) Recoverable consistency resilience ≥ g1 and recoverable liveness resilience ≥ g2.
(ii) Recovery time O(fa∆∗) with liveness parameter ℓ, where fa is the actual (unknown)

number of faulty processes.
(iii) Probabilistic recovery time O(∆∗log 1

ε ) with liveness parameter ℓ.
(iv) Rollback bounded by 2∆∗.

The next three results describe senses in which Theorem 1 is tight. We say a protocol
has bounded rollback if there exists some h such that the protocol has rollback bounded by h.
Our first impossibility result states that the rollback of a protocol must scale with ∆∗, and
hence bounded rollback in the partially synchronous setting is impossible.

▶ Theorem 2 (Impossibility result 1). Suppose partial synchrony holds w.r.t. ∆ and synchrony
holds w.r.t. ∆∗. Suppose P is a protocol for SMR with liveness resilience ρL, consistency
resilience ρC ≥ ρL, liveness parameter ℓ, and with rollback bounded by h. If we are given
only that the adversary is ρ-bounded for ρ > 1 − 2ρL, then h = Ω(∆∗). In particular, P does
not have bounded rollback in the pure partially synchronous setting.

The proof of Theorem 2 is given in the full online version of the paper. Our second
impossibility result justifies our restriction to (1 − ρL)-bounded adversaries: with a larger
adversary, bounded rollback is impossible (even in the synchronous setting).

▶ Theorem 3 (Impossibility result 2). Consider the synchronous setting and suppose P is a
protocol for SMR with liveness resilience ρL and consistency resilience ρC ≥ ρL. If we are
given only that the adversary is ρ-bounded for ρ > 1 − ρL, then P does not have bounded
rollback. (The same result also holds in partial synchrony.)

The proof of Theorem 3 is given in the full online version of the paper. Our final impossibility
result shows that the recoverable consistency and liveness functions g1 and g2 in Theorem 1
cannot be improved upon, giving an analog of the “ρC + 2ρL ≤ 1” constraint for all positive
values of r.

▶ Theorem 4 (Impossibility result 3). Given ρC and ρL such that ρC + 2ρL = 1, let g1 and g2
be as defined in Section 3. Suppose g′

1, g′
2 ≤ 1 − ρL and that P is an SMR protocol for partial

synchrony with recoverable consistency resilience ≥ g′
1 and recoverable liveness resilience ≥ g′

2
when message delays are bounded by ∆∗. Suppose that, for some d and ℓ, P has recovery
time d with liveness parameter ℓ when the adversary is 1 − ρL-bounded. Then:
1. If g′

2 ≥ g2, then g′
1 ≤ g1, and;

2. If g′
2 > g2, then g′

1 < g1.
The proof of Theorem 4 is given in the full online version of the paper.

7 The proof of Theorem 1

We assume throughout this section that the adversary is (1 − ρL)-bounded and that message
delays are bounded by ∆∗.
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Some further terminology. We make the following definitions:
Process pi begins the rth execution of the recovery procedure at the first timeslot at
which r = r and rec = 1 (where those values are as locally defined for pi).
The rth execution of the recovery procedure begins at the first timeslot at which some
correct process begins the rth execution of the recovery procedure.
Execution Er begins at the first timeslot at which some correct process begins execution
Er. If r > 1, then the (r − 1)th execution of the recovery procedure also ends at this
timeslot.
If a QC/finish-QC is regarded as valid by all correct processes, we refer to it as a valid
QC/finish-QC.

▶ Lemma 5. If the rth execution of the recovery procedure begins at t0, then:
(i) All correct processes begin the rth execution of the recovery procedure by time t0 + ∆∗.
(ii) There exists a unique r-proposal, P say, that receives a finish-QC that is regarded as

valid by some correct process.
(iii) If v0 is least such that lead(r, v0) is correct, all correct processes receive a valid finish-QC

for P by time t0 + 2∆∗ + 8v0∆∗.
(iv) All correct processes begin execution Er+1 within time ∆∗ of each other and with the

same local values for Πr+1 and logGr+1
.

The proof of Lemma 5 is given in the full online version of the paper.

Further notation. Given statement (iv) of Lemma 5, each value Πr or logGr
is either

undefined at all timeslots for all correct processes, or else is eventually defined and takes the
same value for each correct process. We may therefore write Πr and logGr

to denote these
globally agreed values.

▶ Lemma 6. If pi is correct, then, at the end of every timeslot, logi = F(Mi).

Proof. Let rec, r, Mi, Mi,r and logi be as locally defined for pi. Consider first the case that
rec = 0 at the end of timeslot t. In this case, Mi has a consistency violation with respect
to F(Πr, logGr

) for each r < r but does not have a consistency violation with respect to
F(Πr, logGr

). Also, Mi contains a valid finish-QC for some r-proposal for each r < r, which
must be unique by Lemma 5. At the end of timeslot t, logi is the longest string σ such that
Mi (and Mi,r) is an F(Πr, logGr

)-certificate for σ. The iteration defining F in Algorithm 2 will
not return a value until it has defined all values Πr and logGr

for r ≤ r. Upon discovering
that Mi does not have a consistency violation with respect to F(Πr, logGr

), it will return the
same value σ, as the longest string for which Mi is an F(Πr, logGr

)-certificate.
Next, consider the case that rec = 1 at the end of timeslot t. In this case, Mi has a

consistency violation with respect to F(Πr, logGr
) for each r ≤ r, and also contains a valid

finish-QC for some r-proposal for each r < r, which must be unique by Lemma 5. However, Mi

does not contain a valid finish-QC for any r-proposal. At the end of timeslot t, logi = logGr
.

The iteration defining F will not return a value until it has defined all values Πr and logGr

for r ≤ r, and will then also return logGr
. ◀

▶ Lemma 7. The wrapper has rollback bounded by 2∆∗. Also, logGr+1
⪰ logGr

whenever
logGr+1

↓.

Proof. We say pi finalizes σ if it sets logi to extend σ and that pi strongly finalizes σ if
it sets log∗

i to extend σ. Suppose pi finalizes σ while running Er at t because there exists
M ⊆ Mi,r which is an F(Πr, logGr

)-certificate for σ. By (iv) of Lemma 5, every correct
process pj will begin Er by t + ∆∗, and will receive the messages in M by that time. This
means pj will finalize σ, never to subsequently finalize any sequence incompatible with σ
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while running Er, unless Mj,r has a consistency violation w.r.t. F(Πr, logGr
) by t + ∆∗. In

the latter case, pi will begin the recovery procedure by timeslot t + 2∆∗ and will not strongly
finalize σ at that time. We conclude that, if pi strongly finalizes σ while running Er, then all
correct processes finalize σ while running Er.

If pi strongly finalizes σ while running Er and if the rth execution of the recovery procedure
does not begin at any timeslot, it follows that, for all correct pj , σ ⪯ logj thereafter. So,
suppose that the rth execution of the recovery procedure begins at some timeslot t0. Note
that, if pj is correct, then it waits 2∆∗ after beginning the rth execution of the recovery
procedure before defining Pj(r). By Lemma 5, all correct processes begin the rth execution of
the recovery procedure within time ∆∗ of each other. Since correct processes send r-genesis
messages immediately upon beginning the recovery procedure, it follows that Pj(r) includes
all correct processes.

By Lemma 5, there exists a unique r-proposal, P = (F, σ′, M ′, r) say, that receives a
valid finish-QC. For this to occur, there must exist v and an (r, v)-proposal R = (P, v, ⊥)
(signed by lead(r, v)) which receives a valid QC. This QC must include at least one vote
by a correct process, pj say. It follows that M ′ must contain r-genesis messages from every
member of Pj(r), and so from every correct process. As we noted previously, if pi strongly
finalizes σ while running Er, then every correct process must finalize σ before beginning
the rth execution of the recovery procedure. So, for each r-genesis message (gen, σ′′, r) sent
by a correct process, σ′′ must extend σ, and also extends logGr

. It therefore holds that
σ (and logGr

) is extended by more than 1
2 |Πr − F | elements of M ′. Recall that σ′ is as

specified by P . No correct process will vote for R unless σ′ is the longest sequence extended
by more than 1

2 |Πr − F | elements of M , meaning that σ′ must extend σ and logGr
. So far,

we conclude that logGr+1
extends σ and logGr

. Since it follows by the same argument that
logGs

extends σ for all s > r, the claim of the lemma holds. ◀

▶ Lemma 8. If an execution of the wrapper has r consistency violations, then the rth

execution of the recovery procedure must begin at some timeslot (and so, by Lemma 5 must
also end at some timeslot).

The proof of Lemma 8 is given in the full online version of the paper.

▶ Lemma 9. The wrapper has recoverable consistency resilience ≥ g1 and also recoverable
liveness resilience ≥ g2.

Proof. Recall that, in Section 3, we set x0 = 0 and xr+1 = xr + ρC(1 −xr), and then defined:

g1(r) = min{xr+1, 1 − ρL}, g2(r) = min{xr + ρL(1 − xr), 1 − ρL}.

Note that xr lower bounds the fraction of the processes removed to form Πr+1, i.e. |Π −
Πr+1| ≥ xrn. By Lemma, 8, if there exist r consistency violations, then the rth execution
of the recovery procedure must end at some timeslot. If the adversary is g2(k)-bounded,
and since P has liveness resilience ρL, it follows that liveness must hold. If the adversary
is g1(r)-bounded, then since P has consistency resilience ρC , the (r + 1)th execution of the
recovery procedure cannot begin at any timeslot. From Lemma 8, it follows that there are at
most r consistency violations. ◀

▶ Lemma 10. The wrapper has recovery time O(fa∆∗) with liveness parameter ℓ, where fa

is the actual (unknown) number of faulty processes. It also has probabilistic recovery time
O(∆∗log 1

ε ) with liveness parameter ℓ.

AFT 2025



15:20 Beyond Optimal Fault-Tolerance

Proof. The fact that the wrapper has recovery time O(fa∆∗) with liveness parameter ℓ

follows directly from (iii) of Lemma 5, since views are of length O(∆∗). To establish the
claim regarding probabilistic recovery time, note that we required ρC > 0 in the definition
of optimal resilience. Some finite power of (1 − ρC) is therefore less than ρL, so there
exists r such that any execution in which the adversary is 1 − ρL-bounded can have most r

consistency violations. If the adversary is ρ-bounded, then the probability that, for one of
the (at most r) executions of the recovery procedure, the first d views all have faulty leaders
is O(rρd) = O(ρd) for fixed ρC . Since each view is of length O(∆∗), it follows from (iii) of
Lemma 5 that the wrapper therefore has probabilistic recovery time O(∆∗log 1

ε ) with liveness
parameter ℓ, as claimed. ◀

8 Related Work

Positive results. A sequence of papers, including Buterin and Griffith [7], Civit et al. [10],
and Shamis et al. [23], describe protocols that satisfy accountability. Sheng et al. [24]
analyze accountability for well-known permissioned protocols such as HotStuff [29], PBFT [8],
Tendermint [4, 5], and Algorand [9]. Civit et al. [12, 11] describe generic transformations that
take any permissioned protocol designed for the partially synchronous setting and provide a
corresponding accountable version. These papers do not describe how to reach consensus on
which guilty parties to remove in the event of a consistency violation (i.e. how to achieve
“recovery”), and thus fall short of our goals here. One exception to this point is the ZLB
protocol of Ranchal-Pedrosa and Gramoli [21], but the ZLB protocol only achieves recovery if
the adversary controls less than a 5/9 fraction of participants, and does not achieve bounded
rollback. Freitas de Souza et al. [13] also describe a process for removing guilty parties in a
protocol for lattice agreement (this abstraction is weaker than SMR/consensus and can be
implemented in an asynchronous system), but their protocol assumes an honest majority
and the paper does not consider bounded rollback. Sridhar et al. [26] specify a “gadget” that
can be applied to blockchain protocols operating in the synchronous setting to reboot and
maintain consistency after an attack, but they do not describe how to implement recovery
and assume that an honest majority is somehow reestablished out-of-protocol.

Budish et al. [6] consider “slashing” in proof-of-stake protocols in the “quasi-permissionless”
setting. Their main positive result is a protocol that, in the same timing model considered
in this paper (with additional guarantees provided pre-GST message delays are bounded
by a known parameter ∆∗), guarantees what they call the “EAAC property” – honest
players never have their stake slashed, and some Byzantine stake is guaranteed to be slashed
following a consistency violation. Budish et al. [6] do not contemplate repeated consistency
violations, a prerequisite to the notions of recoverable consistency and liveness that are
central to this paper. To the extent that it makes sense to compare their “recovery procedure”
with our “wrapper,” our protocol is superior in several respects, with worst-case recovery
time O(n∆∗) (as opposed to O(n2∆∗)); probabilistic recovery time O(∆∗log 1

ε ), where ε is
an error-probability bound (as opposed to O(n∆∗log 1

ε )); and rollback 2∆∗ (as opposed to
unbounded rollback).

Gong et al. [15] consider the task of recovery and achieve results that are incomparable to
those in this paper since they consider different timing and fault models: they restrict to the
case of “ABC faults”15 but consider full partial synchrony, meaning that it is not possible to

15 Processes subject to “ABC faults” can only display faulty behaviour so as to cause consistency failures,
and not to threaten liveness.
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achieve bounded rollback. Given this setup, their protocol satisfies the condition that after
a single execution of the recovery procedure, a 5/9-bounded adversary is unable to cause
further consistency and liveness violations, and after two executions of the recovery procedure
a 2/3-bounded adversary is unable to cause further consistency and liveness violations. The
authors also describe sufficient conditions for a general BFT SMR protocol to allow for
“complete and sound fault detection” in the case of consistency violations, even when the
actual (unknown) number of faulty processes is as large as n − 2.

Distinct from our aims here, i.e., the removal of guilty parties so as to achieve recovery
in the event of a consistency violation, a number of papers consider the ability of protocols
to recover from temporary dishonest majorities (without consideration of any mechanism
to ensure that the dishonest majority is temporary). Avarikioti et al. [2] establish a formal
sense in which Bitcoin is secure under temporary dishonest majority. We note that, since
Bitcoin is dynamically available [17], it cannot be accountable [20], meaning that there
can be no mechanism to remove guilty parties (and only guilty parties) in the event of a
consistency violation. Badertscher et al. [3] extend this analysis to consider dynamically
available proof-of-work and proof-of-stake protocols more generally and also establish negative
results for BFT-style protocols that do not make use of accountability to remove guilty
parties (as we do here).

Prior to the study of accountability, Li and Mazieres [18] considered how to design BFT
protocols that still offer certain guarantees when more than f failures occur. The describe a
protocol called BFT2F which has the same liveness and consistency guarantees as PBFT
when no more than f < n/3 players fail; with more than f but no more than 2f failures,
BFT2F prohibits malicious players from making up operations that clients have never issued
and prevents certain kinds of consistency violations.

Negative results. There are a number of papers that describe negative results relating to
accountability and the ability to punish guilty parties in the “permissionless setting” (for
a definition of the permissionless setting see [17]). Neu et al. [20] prove that no protocol
operating in the “dynamically available” setting (where the number of “active” parties is
unknown) can provide accountability. The authors then provide an approach to addressing
this limitation by describing a “gadget” that checkpoints a longest-chain protocol. The “full
ledger” is then live in the dynamically available setting, while the checkpointed prefix ledger
provides accountability. Tas et al. [28, 27] and Budish et al. [6] also prove negative results
regarding the possibility of punishing guilty participants of proof-of-stake protocols before
they are able to cash out of their position.

9 Final Comments

For the sake of simplicity, we have presented our wrapper in the “permissioned” setting (with
a fixed and known set of always active participants). However, since the procedure produces
certificates that suffice to verify each new genesis log and the set of processes removed
after each consistency violation, it can also be applied directly to proof-of-stake protocols
in the quasi-permissionless setting [17]. Specifically, our procedure can be used to give a
practical replacement for the (proof-of-concept) recovery procedure of Budish, Lewis-Pye
and Roughgarden [6] within the formal setup they consider.

While Theorems 2-3 show senses in which Theorem 1 is tight, a number of natural
questions remain. For example, our recovery procedure implements a synchronous protocol
and has recovery time O(fa∆∗). While Theorem 2 establishes that some bound on message
delays is required if we are to achieve bounded rollback, one might still make use of a

AFT 2025
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recovery procedure that does not require synchrony: could such a procedure achieve recovery
time O(fa∆) after GST? Also, while our recovery procedure has rollback bounded by 2∆∗,
Theorem 2 only establishes a lower bound of ∆∗. Is this lower bound tight, or is 2∆∗ optimal?
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