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—— Abstract

The blocks in the Bitcoin blockchain “record” the amount of work W that went into creating them

through proofs of work. When honest parties control a majority of the work, consensus is achieved by
picking the chain with the highest recorded weight. Resources other than work have been considered
to secure such longest-chain blockchains. In Chia, blocks record the amount of disk-space S (via a
proof of space) and sequential computational steps V (through a VDF).

In this paper, we ask what weight functions I'(S, V, W) (that assign a weight to a block as a
function of the recorded space, speed, and work) are secure in the sense that whenever the weight
of the resources controlled by honest parties is larger than the weight of adversarial parties, the
blockchain is secure against private double-spending attacks.

We completely classify such functions in an idealized “continuous” model: T'(S,V, W) is secure
against private double-spending attacks if and only if it is homogeneous of degree one in the
“timed” resources V and W, i.e., al'(S,V,W) = I'(S,aV,aW). This includes the Bitcoin rule
I'(S,V,W) =W and the Chia rule I'(S,V, W) = S - V. In a more realistic model where blocks are
created at discrete time-points, one additionally needs some mild assumptions on the dependency on
S (basically, the weight should not grow too much if S is slightly increased, say linear as in Chia).

Our classification is more general and allows various instantiations of the same resource. It
provides a powerful tool for designing new longest-chain blockchains. E.g., consider combining
different PoWs to counter centralization, say the Bitcoin PoW W; and a memory-hard PoW Wa.
Previous work suggested to use Wi + Wa as weight. Our results show that using e.g., VWi - vVWa
or min{Wi, W»} are also secure, and we argue that in practice these are much better choices.
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1 Introduction

Achieving consensus in a permissionless setting is a famously difficult problem. Nakamoto
solved it by introducing the Bitcoin blockchain [31] that achieves consensus on a chain of
blocks by having parties expend a resource: parallelizable computation (commonly called
work).

In Bitcoin, appending a block to a chain requires a proof-of-work (PoW), i.e., solving a
computationally-expensive puzzle. This puzzle is designed such that each block represents
the (expected) amount of computation that was expended to append it. As a consequence,
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each chain represents the total amount of computation required to create it. This allows for
a simple consensus mechanism commonly called the longest-chain rule: Given two different
chains, pick the one that required more computation to create. Note that a more accurate
term is heaviest-chain rule, which we will use interchangeably throughout the paper.

While this design achieves consensus, more importantly it also achieves a property called
persistence [19] under a simple economic assumption: As long as honest parties control more
than half of the computational resources committed to Bitcoin, a block that has been part
of the chain for some time will always be part of the chain. Since Bitcoin blocks contain
transactions, this effectively means that an adversary cannot double-spend a coin.

While Bitcoin’s design is simple, its reliance on PoW has its flaws. For example, it
wastes a lot of energy, and the manufacturing of the PoW hardware has become increasingly
centralized. Amongst other reasons, this has lead to the development of other blockchain
protocols. These protocols can be broadly categorized along three axes.

The Underlying Resources Bitcoin relies on parallelizable computation, which is a physical
resource. Two natural alternatives are disk space and sequential computation. A different
class of resources is not physical, but on-chain [2, 30]. The most well-known is stake,
which comprises different approaches that essentially rely on the on-chain coin balance of
a party.

The Consensus Design A broad distinction is between Byzantine-fault-tolerant-style (e.g.,
Algorand [24] or Filecoin [17]) and longest-chain protocols. Within themselves, longest-
chain protocols differ in their fork-choice rule, which prescribes how they select the longest
chain. Some are Nakamoto-like and, like Bitcoin, pick the heaviest chain, i.e., the one
whose blocks cumulatively required the most resources to create (e.g., Chia [10]). Others
rely on more complex fork-choice rules that, e.g., take into account where two chains fork
(e.g., Ouroboros [3]).

The Degree of Permissionlessness Roughgarden and Lewis-Pye [30] observe that “permis-
sionless” is colloquially used to describe different settings that vary in how permissionless
they are. Fully-permissionless protocols function obliviously to current protocol partici-
pants (e.g., Bitcoin or Chia). These differ from protocols that require some information
about participants (e.g., how many coins they are staking in Algorand, or commitments
to disk space in Filecoin). While the latter are still permissionless in the sense that
anyone can participate, they impose stricter requirements on participants.

1.1 Qur Contributions

In this paper, we completely characterize the design space of Nakamoto-like protocols
operating in the fully-permissionless setting using the physical resources disk space, sequential
computation, and parallelizable computation that are secure against private double-spending
attacks.

We observe that Nakamoto-like protocols only differ in what resources their blocks record,
and — especially if multiple resources are used — how they decide which of two blocks required
more resources to create. We model these differences using an abstraction called the weight
function T': R® — R. It takes as input the three resources possibly recorded by a block,
i.e., disk space S, sequential computation V! and parallelizable computation/work W, and

L Think V as in velocity of the sequential computation or V as in verifiable delay function (VDF), the
cryptographic primitive usually used to capture the number of sequential computation steps.
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outputs the weight I'(S,V, W) of a block. In the context of weight functions, the heaviest-
chain rule now picks the chain with the highest weight where a chain’s weight is defined as
the sum of the weight of all its blocks.

To get an intuition for the weight function abstraction, let us provide some examples. The
weight function T'piteoin (S, V, W) = W describes Bitcoin (or any other similar PoW-based
Nakamoto-like chain, e.g., Litecoin?). More interesting is Chia [10], a Nakamoto-like chain
combining disk space and sequential computation following I'cpia (S, V,W) =5 -V.

Our main result, informally stated in Theorem 1.1 below, fully characterizes which weight
functions result in a Nakamoto-like blockchain that is secure against private double-spending
attacks [31, 14] in the fully-permissionless setting [30].

In this work we address double spending, but not economic attacks such as selfish
mining [16]. Such attacks are an orthogonal issue and require a different set of tools.
Preventing double spending gives some additional guarantees, like the fact that one can trust
the timestamps on the chain [40].

To achieve a broad and simple characterization, we necessarily have to abstract imple-
mentation details and generalize over different blockchain designs. We operate under the
maxim that a good design principle is that chains should reflect the resources that went into
creating them. In practical instantiation of a blockchain this may not be fully guaranteed.
Network delay and limited block space lead to resources only being approximated by blocks.

Network delays have been well-studied for single resource blockchains like Bitcoin, Chia
and Ethereum [14, 22, 25, 21] and they add a multiplicative factor x(A) < 1 (A is the
network delay) to the honest resource in the honest majority assumption, where y depends on
the particular blockchain. Thus taking network delays into account would only quantitatively
affect our honest majority assumption and not give any new interesting insights. As for
resources being accurately reflected on chain: this also depends on the precise implementation
of the chain. There are multiple options: either take an average over multiple blocks (akin to
how Bitcoin difficulty changes), or put multiple proofs into one block/epoch (for example,
including the top k partial PoW solutions in a block, or like in Chia where multiple PoSpace
blocks come from the same challenge). This leads to a good approximation of the total
resources available at any point of time. To compensate for any loss we again need to include
a multiplicative factor to the honest resources in the honest majority assumption. The precise
formula would depend on the exact implementation details. Since our focus is on a unified
idealized model, we abstract away these details and leave the question of best practical design
and trade-offs involved in it as future work. There are other attacks like grinding and double
dipping® against chains that use space, but we have techniques to prevent them [33, 4]. Thus
we assume they are implicitly taken care of in the design.

One issue are so called replotting attacks. As we’ll discuss in §4.3, in practice replotting
can be prevented with a careful design putting bounds on the total weight of individual
blocks. Since replotting is not as well understood as the other issues, we will explicitly
exclude replotting in the statement of the theorem below. We’ll discuss our model in more
detail in §1.3.

» Theorem 1.1 (Main, Informal). In the fully-permissionless [30] setting and ignoring
replotting attacks, a Nakamoto-like blockchain is secure against private double-spending
attacks under the honest majority assumption (cf. below) if and only if the weight function
L(S,V, W) fulfills the following conditions:

2 https://litecoin.org/

3 A high level overview on these attacks can be found on https://docs.chia.net/longest-chain-
protocols/
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1. Monotone: T is monotonically increasing

2. Homogeneous in V,W: ol'(S,V, W) =T(S,aV,aW) for a >0

The honest majority assumption states that at any point in time during the attack T' applied
to the resources of the honest parties is larger than T applied to the resources of the adversary.

Thm. 1.1 is in an ideal model. In § 4 we provide a less idealized, discrete model and
prove a related result in this model which essentially states that every weight function that
is insecure in ideal model is also insecure in the more realistic discrete model. On the other
hand every weight function secure in the ideal model is secure in the discrete model with a
slightly stronger honest majority condition.

Finally, we deal with the replotting attacks and how to mitigate them in § 4.3.

1.2 Implications of our Result
1.2.1 Space-based Blockchains

Three very different blockchain designs whose main resource is disk space are Chia [10],
Filecoin [17], and Spacemint [33]. The first two are deployed and running in practice, while
the latter is an academic proposal.

Of the above, Chia is the only one captured by our result, i.e., it is a Nakamoto-like
protocol in the fully-permissionless setting. Its weight function is Tcpia(S,V, W) = S -V
which is secure against double-spending attacks by our Thm. 1.1.

Spacemint was an early proposal of a fully-permissionless blockchain based solely on
proofs of space, and thus cannot be secure against double-spending attacks according to
Thm. 1.1. The design of Spacemint slightly defers from Nakamoto’s chain-selection rule as
older blocks are given less weight than more recent ones, but even with this twist the security
of Spacemint against double-spending only holds if the honest space never decreases by too
much, and never increases too fast.

In contrast, Filecoin is not captured by our result because it is not fully-permissionless,
but instead operates in the stronger quasi-permissionless setting (cf. [30]).* Since Filecoin’s
weight function is Trilecoin (S, V, W) = S, Thm. 1.1 essentially shows that a setting stronger
than the fully-permissionless one is necessary.

Let us stress that, even in the fully-permissionless setting and when only relying on space,
we only rule out secure constructions of Nakamoto-like blockchains (where the weight of a
chain is the sum of the weights of its blocks, and the chain selection rule picks the heaviest
chain). While most fully-permissionless blockchains are of this form, this does not rule out
the possibility that a completely different chain selection rule would be secure. A recent
work [7] shows that, unfortunately, this is not the case, and no such chain-selection rule
exists. It gives a concrete attack against any chain-selection rule, and an almost matching
lower-bound, i.e., a concrete (albeit very strange) chain-selection rule for which this attack is
basically optimal.

4 Filecoin is also not Nakamoto-like since it is a DAG-based protocol (using GHOST, the Greediest
Heaviest-Observed Sub-Tree rule [38]) together with a finality gadget [1]. Note that the finality gadget
is not essential, and GHOST is the DAG-analogue to Bitcoin’s longest/heaviest-chain rule. So, for our
purposes, Filecoin could easily be modified to be Nakamoto-like (this has also been mentioned in [2]).
As we'll elaborate in §4.3, it seems running a space based chain in the quasi-permissionless setting is
quite expensive as to prevent reploting parties must constantly prove they hold the committed space
and this proofs need to be recorded on chain.
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1.2.2 Combining multiple PoWs

Since the production of Bitcoin mining-hardware has become increasingly centralized, one
might consider combining two different PoWs, e.g., W7 using SHA256 and W5 using Argon2.
As stated above, Thm. 1.1 only considers one parallel work W, but it naturally extends to
multiple resources of each type. In particular, our results capture weight functions such as
r(W,...,Wy) with Condition 2 being al’(W7y, ..., W) = T'(aWy,...,aW}) for a > 0.

Prior work [18] suggested the weight function I'(W71, ..., W) = Zle w; W; with constants
w;i. By Thm. 1.1, this is secure against private double-spending, but not a desirable weight
function in practice. Even though the constants w; can be used to calibrate the contribution
of each PoW, it seems difficult to realize this in a way that would prevent miners to ultimately
only invest in the cheapest PoW.

Our result show that more interesting combinations of W7, ..., Wy are possible. The first
draws inspiration from automated-market-makers® and is defined as

T(Wy,... W) =15 w}/*,

To maximize this weight function (for a given budget), one would have to invest into mining
hardware for all PoWs at a similar rate.
Another option is the Leontief utilities function®

F(Wﬁ,.”,ka):ZHﬂH{VVi,..,VVk}

which ensures that all PoWs must significantly contribute.

Our work just classifies the weight functions that are secure in the sense that we get
security against private double-spending whenever the honest parties control resources of
higher weight (as specified by the weight function). A question that is mostly orthogonal to
this work is to investigate which of those weight functions are also interesting from a practical
perspective, say because they incentivize decentralization or other desirable properties. Let
us observe that the class of secure weight functions does contain functions that make little
sense in practice, for example the function I'(V) = V which simply counts the number of
VDF steps. A blockchain based on this weight function would be secure assuming some
honest party holds a VDF that is faster than the VDF held by the adversary.

1.3 Model and Modelling Rationale
1.3.1 Maodelling Resources

Our model captures resources that are external to the chain, i.e., physical resources. In par-
ticular, we consider disk space S, sequential computation V', and parallelizable computation
W where we allow multiple resources per type, e.g., Wi and W5.” Each resource is modelled
as a function mapping time R>( to an amount Ry (. This is expressive enough to capture,
e.g., Bitcoin, any other PoW-based blockchain, or Chia.

In practice, cryptographic primitives are used to track these resources, usually Proof-
of-Space (PoSpace) [15], Verifiable Delay Functions (VDFs) [9, 41, 36], and Proof-of- Work
(PoW). Our modelling essentially assumes a perfect primitive, glossing over implementation
details and any probabilistic nature of the resource (similar to [39]).

5 https://en.wikipedia.org/wiki/Constant_function_market_maker

5 https://en.wikipedia.org/wiki/Leontief _utilities

7 These are three fundamental resources in computation, and also the most popular physical resources
used for blockchains. Nevertheless, we believe our model could be extended to other external resources.
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In practice parallel work W as captured by a PoW, and sequential work V as captured
by a VDF are very different. W is a quantitative resource in the sense that one can double
it by investing twice as much, while V' is a qualitative resource as it measures the speed of
the fastest available VDF. From the perspective of our Theorem on the other hand, W and
V behave the same, the only thing that matters in the (proof of the) Theorem is that W
and V are “timed” resources in the sense that their unit is something “per second”. W and
S on the other hand are both quantitative resources, but behave very differently.

1.3.2 Reasons for Omitting Stake

First, as described by Roughgarden and Lewis-Pye [30], stake-based blockchains do not
operate in the fully-permissionless setting. Therefore, since our result targets this setting,
modelling stake is not possible.

Another reason is that in our modeling we assume that parties hold some resources at
some given time, for an on-chain resource like stake this is not well defined as the resource
is only defined with respect to some particular chain, i.e., for different forks the parties
would hold different resources at the same time. To make issues even more tricky, with stake
it’s possible to obtain old keys that no longer hold any value, but still can be used in an
attack [2].

1.3.3 The Continuous Chain Model

Towards Thm. 1.1, we will first consider the Continuous Chain Model. While it is a very
abstract model, it is rich enough to already yield Conditions 1 and 2. In a nutshell, we
assume that a chain continuously and exactly reflects the resources that were expended to
create it.

Assume that the honest parties at time ¢ hold resources S(t), W(t), V (¢), then the chain
they can create in a time window [tg,¢;] will have weight ftil T(S(t), V(t), W(t))dt.

This continuous model avoids some issues of actual blockchains, like their probabilistic
nature or network delays. For example in Bitcoin, a so called 51% attack can actually be
conducted with less, say, 41% of the hashing power if network delays are sufficiently large.
Moreover, as a Bitcoin block is found every 10 minutes in expectation, it frequently happens
that no block is found in an hour at all. For this reason a block is only considered confirmed
if it’s sufficiently deep in the chain. These factors only have a quantitative impact on the
concrete security threshold of longest-chain blockchains and are well understood [20, 14].
The goal of this paper, however, is qualitative in nature. That is, we want to describe which
weight functions are secure against private double-spending attacks as long as honest parties
have sufficiently more resources than the adversary. Precisely quantifying how much security
is lost due to the fact that resources are only approximately recorded, due to network delays
or other aspects like double dipping attacks is not our goal.

So far we considered a strongly idealized setting where the blockchain recorded the
available resources continuously and ezactly, both can not be met in a practical blockchain®
where the quantitative resource S or W is distributed over an a priori unlimited number of
miners, but for practical reasons we only want a bounded number to actually give input to
a block. In Bitcoin and Chia, it is just a single miner that finds a proof that passes some
difficulty, and the frequency at which such proofs are found gives an indication of the total

8 At least not if they use a quantitative resource S or W, which only leaves V, but speed alone will not
make a good chain.
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resource. We can get a good approximation of the resources by waiting for sufficiently many
blocks or using a design where multiple miners contribute to a block, say we record some
k > 1 best proofs found since the last block in every block. In this work, we will not further
deal with the fact that resources are not ezactly recorded as it is not very informative for the
ideal perspective we are taking. In actual constructions like Bitcoin one deals with this by
requiring some time before considering blocks as confirmed. The number of blocks to wait is
computed using a tail inequality, it depends on the probability of failure one can accept and
on the quantitative gap one assumes between honest and adversarial resources.

1.3.4 Private Double-Spending Attack (PDS)
1.3.4.1 Why We Focus on PDS

We analyze the security of weight functions against a specific attack, the Private Double-
Spending (PDS) attack. So we do not prove security against arbitrary attacks and cannot
rule out that a worse attack than PDS exists.

The works of Dembo et al. [14] and Gazi et al. [20] used different techniques to show that
PDS is the worst attack against PoW and Proof-of-Stake-based longest-chain protocols. The
former [14] analysis also extends to Chia. Concretely, they show that if an adversary has
sufficient resources to perform some attack against one of these blockchains, they could also
perform a private double-spending attack instead. This verifies the intuition of Nakamoto,
who only considered the double-spending attack when arguing about Bitcoin’s security [31].

The above results [14, 20] are not general enough to imply the same (i.e., that only
consider PDS attacks is sufficient) in our more general setting. For example, their analyses
do not capture a blockchain design relying on two different PoWs — a design which our model
allows. Nevertheless, these works give evidence that focusing on PDS attacks is enough,
and we believe that the results of [14] should generalize to our setting. We leave proving or
refuting this intuition to future work.

Note that our intuition is based on the technical details of Dembo et al’s analysis [14].
It relies on a connection between PDS and any general attack strategy. That is, one “can
view any attack as a race between adversary and honest chains, not just the private attack.
However, unlike the private attack, a general attack may send many adversary chains to
simultaneously race with the honest chain.” [14, p. 2].

1.3.4.2 Explanation of PDS

In a PDS attack, the adversary forks the chain at some point in time, privately extends its
own fork (while honest parties continue to extend the main chain), and releases its fork later
on. The attack is successful if the adversary’s fork is at least as heavy as the honest chain
since this would allow the adversary to double-spend a transaction.

We let the adversary choose the resources available to honest parties and itself during this
time. The only condition is that we disallow the adversary to trivially perform a successful
attack. That is, at every point in time the adversary resources have at most as much weight
as the resources of honest parties, and, to avoid a draw, in some interval strictly less.

The honest chain directly corresponds to the resources of the honest parties. The
adversary, however, may cheat since it is mining in private. In particular, it can pretend to
have created the chain in a shorter or longer amount of time by stretching/squeezing time.
This time manipulation affects the resources recorded on the chain. For example, consider
W as the hash rate, then a chain records the total number of hashes. If the adversary now
pretends to have created this chain in 1/2 time, then its hashrate must be 2 - W since the
total amount of hashes does not change.

16:7
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Given such an attack, e.g., the weight function I'(W) = W? is insecure. Indeed, consider
an adversary with resource W(t) = 1 and honest parties with W (¢) = 2. Honest parties
mining for 1 time create a chain of weight 1-22 = 4. In the same timespan, the adversary
creates a chain of weight 1-12 = 1. However, if it pretends to have mined this chain privately
in 1/8 time, then its chain records the weight 1/8 - (8- 1) = 8 instead, beating the honest
chain.

We defer more precise definitions and figures exemplifying this time manipulation to § 3.

1.3.5 The Discrete Chain Model

So far, we discussed an abstract model where the chain continuously and exactly records
resource expenditure.

In §4 we discuss a model closer to a real blockchain, where blocks arrive in discrete time
slots. We still assume the block exactly records the resources W and V. In particular, a
block produced during some timespan [a,b) records W, = f: W (t)dt and V, = f: V(t)dt.
For the space we assume that the block records S(¢) at some point a <t < b. The reason for
this difference is that W and V' are resources that are measured per second (e.g., hashes/s or
steps/s), so integration over time is well-defined. One the other hand, a proof of space gives
a snapshot of the space S(t) available at some point ¢ during block creation. To be on the
safe side, we simply assume that the adversary can choose the time ¢ where its space was
maximal, while for the honest parties we assume ¢ is the time when S(¢) was minimal.

We show (Theorem 4.9) that the classification of secure weight functions basically carries
over to this discrete setting as long as the resources don’t vary by too much within the block
arrival time. But our main motivation to consider the discrete model is to discuss the issue
of replotting attacks in §4.3, which only make sense in a discrete setting.

1.4 Future Work

Our work opens multiple new questions for future work. We already mentioned identifying
weight functions that are not only secure, but also interesting at the end of section §1.2. At
the end of section §4.3 we will discuss an open question concerning replotting attacks. Some
other open questions include:

First, modelling on-chain resources, most notably, stake. While stake somewhat behaves
like disk space?, it is different and difficult to model since it is an on-chain resource. For
example, one modelling challenge is capturing long range attacks in which parties sell old
keys that controlled a lot of stake at some point. This is similar to a bootstraping attack for
disk space, but the difference is that the adversary can perform this attack for free (after
having bought the keys).

Second, considering chain-selection rules other than the heaviest-chain rule. For example,
in the stake setting, Ourboros Genesis [3] operating in dynamically available setting achieves
security against PDS using a different chain selection rule.

Third, considering different degrees of permissionless, such as the dynamically-available
or quasi-permissionless setting described by [30]. While our results rule out solely using
disk space in the fully-permissionless setting, this impossibility does not carry over to other
models. For example, Filecoin [17] only uses disk space, but is secure against PDS because it
operates in the quasi-permissionless model.

9 There exist proposals similar to Chia that use stake instead of disk space, i.e., where the weight is
Stake - V' [13].
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1.5 Related Work
1.5.1 Abstract Resource Models

Recently, Roughgarden and Lewis-Pye [30] (an updated version of [29]) presented many
(im)possibility results about permissionless consensus. They consider a resource-restricted
adversary where resources can be external or on-chain resources. External resources are
modelled by so-called permitter oracles, whose outputs depend on the amount of resources
the querying party has at the time of the query. An important part of their work is a
classification of the permissionlessness of consensus protocols:
Fully-permissionless protocols are oblivious to its participants (e.g., Bitcoin).
Dynamically-available protocols know a dynamic list of parties, which may be a function
of the past protocol execution (e.g., parties who staked coins), the participants are a
subset of this list, and at least one honest member of this list participates.
Quasi-permissionless protocols are similar to dynamically-available protocols, but make
the stronger requirement that all honest members of the list participate. Note that such
protocols differ from permissioned ones, which also have a list of parties, but where the
list cannot depend on the past protocol execution.
For example, a result of theirs states that no deterministic protocol solves Byzantine agreement
in the fully-permissionless setting, even with resource restrictions.

Two preceding works modelling abstract resources are Terner [39] and Azouvi et al. [2].

Terner [39] considers an abstract resource that essentially is a black-box governing participant
selection. They give a consensus protocol that can be instantiated with any such resource
satisfying certain properties (e.g., resource generation must be rate-limited relative to the
maximum message delay). Both [39, 2] consider only a single resource and not combination
of multiple resources.

Azouvi et al. [2] use the abstraction of resource allocators (similar to permitter oracles
in [30]) to build a total-ordered broadcast protocol. They describe the properties a resource
allocator must fulfill (e.g., honest majority), and construct resource allocators for the resources
stake, space'®, and work. As part of this, they classify resources as external vs. on-chain
(they call it virtual), and burnable vs. reusable (space and stake are reusable whereas work
is not) and discuss trade-offs between different types of resources, e.g., on-chain resources
are susceptible to long-range attacks. A limitation of [2] is that total resource is a priori
known and fixed. In our model all resources can vary and are known only when the blocks
are created.

1.5.2 Blockchain Designs

We give a selection of well-known permissionless blockchain designs, describing the weight
function or — for non-Nakamoto-like protocols — resource (S, V and W as before, and
stake St) and degree of permissionlessness (fully-permissionless, dynamically-available, or
quasi-permissionless): Bitcoin [31] (fp, W), Chia [10] (fp, S - V), Filecoin [17] (qp, S),
Ethereum [42] (da/qp,'t St), Algorand [24] (qp, St), Ouroboros [27, 12, 3] (da/qp, St), Snow
White [11] (da, St).

10 Their space allocator lies in the quasi-permissionless model, thus not conflicting with our results.
" Depending on whether the network is synchronous/partially-synchronous [30].

16:9

AFT 2025



16:10

Nakamoto Consensus from Multiple Resources

Multiple combinations of proof-of-stake (PoStake) and PoW, e.g., [28, 8, 18] exist (all
either da or gqp). [18] is the only fungible protocol, i.e., it is secure as long as the adversary
controls less than half of all stake and work cumulatively (essentially mapping to I'(St, W) =
St+W). Their protocol handles multiple PoStake and multiple PoW resources, thus capturing
Wy, Ws) = Wy + Wy, which we discussed in § 1.2.

[13] combine PoStake with sequential computation to create a dynamically-available
protocol.

Ignoring difficulty, Bitcoin assigns unit weight to every block whose hash surpasses a
threshold. [26] analyze other functions assigning weight to block hashes. They suggest using
a function that grows exponentially, but is capped at a certain value, which depends on the
maximum network delay.

1.5.3 Analyses of Blockchain Protocols

Various works analyze specific blockchains, mostly Bitcoin (or similar PoW chains) [19, 34,
35, 37, 20], but also longest-chain protocols in general [14]. These generally give quantitative
security thresholds (i.e., what fraction of adversarial resources is tolerable) depending on,
e.g., maximum message delay. We again remark that our work has a different aim, namely a
qualitative description of weight functions, disregarding precise security thresholds.

2 Preliminaries

Let [n] = {1,...,n}. Vectors are typeset as bold-face, e.g., . Rs and R>( denote the
set of positive real numbers excluding and including 0, respectively. Given two tuples
(@1,...,xn), (27, ..., 2),) € RY, we say (z1,...,2p,) < (2,...,2),) if z; < 2 for all i € [n]
with equality holding if and only if z; = 2} for all ¢ € [n].

We denote the time by ¢ € R>q. For Ty, 71 € R>o where Ty < T4, [Tp, T1] denotes the
time interval starting at Ty and ending at T;. The open interval (Tp, T1] denotes the time
interval [Ty, T1] excluding Ty. [Tp,T1) is defined analogously.

» Definition 2.1 (Monotonicity). A function f: RZy — R is monotonically increasing if

(X1, oy xn) < (2),...,2)) = flo1,...,2,) < f(2),...,20).

» Definition 2.2 (Homogeneity). A function f: R%, — R~ is homogeneous'

with 1 < j < n if, for all (z1,...,2,) € RZy and a > 0,

N Tj, ..., Ty

flre,. o, xjm, 0y, o xy) =a f(@,. 0,851, 5,. .., Zn)
» Definition 2.3 (Subhomogeneity). A function f:RZ; — Rsq is subhomogeneous in
x1,...,x; with 1 < j <n if, for all (x1,...,2,) € RZy and o > 1,

flo-ay, . o 2,541, 20) S a- f(T1,.00, 25, Tjp1, -0, Tn).

3 Continuous Chain Model

To characterize which weight functions provide security against private double-spending
(PDS) attacks, we will first introduce the Continuous Chain Model. Tt models physical
resources, how resources are turned into an idealized blockchain, and PDS attacks. As the
name suggests, the continuous model views the blockchain as one continuous object, instead
of consisting of multiple discrete blocks.

12 More precisely, f is a positively homogeneous function of degree 1. However, we will not need homogeneity
of higher degree, so we simply call it “homogeneous”.
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3.1 Modelling Resources

The model captures physical resources, which are external to the chain, and allows for
multiple resources per type. The resources are disk space S := (S1,..., Sk, ), sequential work
V = (V1,...,Vi,), and parallel work W := (W7, ..., Wy, ).13 It allows for multiple resources
per type. We will omit k1, k2, and k3 unless needed for clarity.

A resource profile records the amount of each resource available at any point in time.

Time is modelled as a continuous variable ¢ € R>¢, and we restrict our attention to the time
interval [0, T for some T > 0. We take each resource to be a function mapping this interval
to R>0, e.g., Wi [07T] — R>().

» Definition 3.1 (Resource Profile). A resource profile R is a 3-tuple of tuple of functions
R = (S(t)a V(t)7 W(t))[O,T]

where each tuples of functions is composed of functions with domain t € [0,T] with T > 0
and range R~q, and where each function is Lebesgue integrable.

» Remark 3.2. The requirement that each resource is non-zero at every point in time is a
minor technical condition. Note that it is always fulfilled in practice since interaction with
the blockchain requires a general-purpose computer, and even a low-powered one provides a
non-zero amount of S, V, and W.

3.2 Idealized Chain

Ideally, a blockchain should record the amount of resources that were expended to create it,

and blockchain protocols are generally designed to approximate this as closely as possible.

In our idealized model, we assume that a blockchain continuously and exactly reflects the
resources expended to create it.

» Definition 3.3 (Continuous Chain Profile). A continuous chain profile CC is a 3-tuple of
tuple of functions

CC = (S(t), V(t), W()jo.1

where each tuples of functions is composed of functions with domain t € [0,T] where T > 0
and range R, and where each function is Lebesgue integrable.

» Remark 3.4. Resource and chain profiles are syntactically identical. The difference lies in

semantics: A resource profile describes the resources available to a party (or a set of parties).

Meanwhile, a chain profile describes the resources that the chain reflects.

» Remark 3.5. In practice, blockchains do not ezactly record the amount of resources, but
only approximate them. For example, in Bitcoin, finding blocks is a probabilistic process, so
blocks do not record the actual work invested to create them, but only the ezpected amount
of work. Additionally, network delays cause miners to waste time (and thereby work) trying
to extend an out-of-date block, in the worst case leading to orphaned blocks. In spite of
these issues, the ideal model is still meaningful because these issues introduce quantitative
gaps (e.g., [14, 19, 20]).

13 These are three fundamental resources in computation and also the most popular physical resources
used for blockchains. Nevertheless, we believe our model could be extended to other external resources.
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To capture the heaviest-chain rule, the model assigns each chain a weight. To this end,
we first introduce the weight function I', which assigns a weight to a triple of resources. In
other words, it assigns a weight to one point in time.

» Definition 3.6 (Weight Function). A weight function is a non-constant function given by
I: RY) x R < R¥3) — R,

» Remark 3.7. The requirement that I' is non-constant is natural in practice. We explicitly
require it because such functions would be vacuously secure against PDS. Looking ahead, the
security definition only considers adversaries with a resource disadvantage, which is measured
using weight. But if the weight is constant, no such adversary exists, so the function would
always be secure against PDS.

As said, T takes in three resources and outputs the weight of a specific point in time. In
the next step, we extend I' to compute the weight of a whole chain. We denote this function
by I'. It takes a continuous chain profile as input and outputs the weight of it. Overloading
notation slightly, we also allow inputting a resource profile to I since it is syntactically
identical to a chain profile.

» Definition 3.8 (Weight of a Chain or Resource Profile). Consider a weight function T
and a continuous chain CC = (S(t), V (t), W(t))jo,r) or resource profile R = (S'(t), V'(t),
W' (t))jo.r]- The chain weight function T is defined as

T
T(co) ::/ T(S(t), V (L), W(¢)) dt
0
and

- T
I'(R) ::/0 L(S'(t), V' (t), W'(t)) dt.

3.3 The Private Double-Spending Attack

In a private double-spending (PDS) attack, the adversary forks the chain at some point in
time, extends this fork in private, before releasing the private fork to the public. The attack
is successful if the adversary’s fork is heavier than the honest chain, because the adversarial
fork replaces the honest chain, effectively reverting past transactions. We focus on the PDS
attack because it is the prototypical attack against blockchains; we refer back to § 1.3.4 for
an in-depth discussion.

3.3.1 Modelling the Attack

To model this attack, we first consider the time frame of the attack. The attack starts (i.e.,
the adversary forks the chain) at time 0, and the adversary publicly publishes its private
chain at time Tenq. So the attack spans the time interval [0, Ting]. During this time, the
resources available to the honest parties are given by the resource profile R”, and they use
them to build the honest chain profile CC™ in the following way:

» Definition 3.9 (Honest Chain Profile). Consider a resource profile R* = (S™(t), VI (¢),
WH(t))[o,Tend] The corresponding honest chain profile is CCT* = R™.
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That is, the honest chain CC?* correctly reflects the resources available to honest parties,
and also precisely keeps track at which point in the resources were available.!4

The adversary’s resources are R, and they use them to build the chain profile CCA.15
In contrast to the honest parties, the adversary may deviate from the protocol and cheat.
First, they may simply not use some of the resources available to them. Second, and more
importantly, since the adversary creates the fork in private, the chain CC* may not correctly
reflect at what time the resources were available. In essence, the adversary can alter the time
by stretching and squeezeing it. For example, in Bitcoin the adversary may mine a block in
100 minutes but pretend to have mined it within 10 minutes.

We model this time manipulation by a function ¢(t) describing the squeezing/stretching
factor at any point in time. At time ¢, ¢(¢) > 1 represents squeezing, ¢(t) < 1 stretching,
and ¢(t) = 1 no alteration. Altering the time affects, e.g., the length of the interval [0, Tend].
To this end, we introduce the altered time function AT (and its inverse AT~ )6 to translate
between time before and after squeezing/stretching. For example, ind = AT(Tend), resulting
in the interval [0, ind}.”

Altering time affects how CC4, which covers the time interval [0, Tend], reflects resources.
For the resources V and W, altering time cannot change the cumulative amount (e.g., in
Bitcoin it cannot change the number of found blocks and thus work performed). Therefore,
V and W must be multiplied by ¢. That is, at altered time ¢ € [0, TvendL CCA records the
resource ¢(t)VA(t) and ¢(t)WA(t). The disk space S behaves differently. As long as it is
available, it can be reused [2], so it does not accumulate (unlike V' and W). As a consequence,
altering time just changes when space was available. Thus, at altered time £ € [0, fend], ccA
records S(AT ().

» Definition 3.10 (Adversarial Chain Profile). Consider a resource profile RA = (S4(t), VA(t),
WA(1)) 0,1, and some function ¢(t): [0, Tena) — Rso. Define AT(t) := fot ﬁ du and its
inverse AT (..

Let fend = AT(Tend). An adversarial chain profile is any chain profile

CC‘A = (§A(5; VA(,tv)v NA(?))[&ind]

where ng(), ‘7;4(~) and WZA(J are Lebesgue integrable, and satisfy

0 < §4(1) < 84(t)
0 < VA®) < o(t) - VA®)
0 < WA®D) < o(t)- WAR)

for all t € [O,Tend] with t = AT (#).

Let us illustrate the stretching and squeezing from Def. 3.10 by the example of Bitcoin
and Chia in Figures 1 and 2.

M While this is by construction in our idealized model, timestamps are generally accurate in longest-chain
blockchains — even if a not-too-powerful adversary tries to disrupt them [40].

5 Tn general, we use the superscripts ™ and ** to denote the honest parties and the adversary, respectively.

16 AT~1 exists because ﬁ > 0 for all u, so fot ﬁ du is a monotonically increasing function of ¢ with
co-domain [0, AT (Tend)]-

"We use ~ to denote time after squeezing/stretching.
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Figure 1 Bitcoin’s weight function W and how it reacts to stretching and squeezing. The shaded
area is the weight.
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Figure 2 Chia’s weight function S -V and how it reacts to stretching and squeezing. The shaded
are is the weight.

We now have all ingredients to define when a weight function is secure against PDS
attacks. On a high level, the definition states that an adversary having resources of less
weight than the honest parties'® cannot create a private chain that is heavier than the
honest parties one — even by manipulating time. In more detail, “less weight” means that
the adversary has at most equal weight at every point in time (Equation (1)), and in some
interval it has strictly less (Equation (2)).

» Definition 3.11 (Weight Function Security Against PDS, Continuous Model). A weight
function T' is secure against private double-spending attack in the continuous model if for
all R™ = (S7(t), VI(t), W () 0,1, and R = (SA(t), VA(t), WAR))0,1..) Such that

D(SA(8), VA(), WA(1)) <T(S™(t), VF(t), WH(2)) Vt € [0, Tend] (1)
and for a time interval [Ty, T]

D(SA(t), VA@), WA®R)) < T(S™(t), VI (t), WH(t)) Vt € [Ty, T1] (2)
it holds that

r(cc™) > T(eet)

where CC™ := R™ and CCA satisfies Def. 3.10 for R and any H(t).

18 Clearly, a PDS attack always works when the adversary has a resource advantage.
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» Remark 3.12. An alternative to the precondition (Equations (1) and (2)) on resource profiles
in Def. 3.11 is that adversarial resources must be strictly smaller than the honest ones at
every point in time (instead of just for an interval). Looking ahead, Thm. 3.13 would be true
in the if-direction (monotonically increasing and homogeneous implies secure against PDS),
but not in the only-if direction. The reason is that not every non-homogeneous function
can be attacked (e.g., a function that is S - max(V, W) when each resource is below some
constant threshold ¢ and that is constant ¢? after that). If we additionally put the natural
constraint that a weight function I' is not eventually constant (i.e., for any point (s, v, w)
there exists (s',v’,w’) such that (s,v,w) < (s',v',w’) and I'(s, v, w) < T'(s',v',w’)), then
only-if direction also holds (by an adaption of our proof). Either way, the main takeaway is
that monotonically increasing and homogeneous functions are the ones secure against PDS,
and they are the only ones that should be used to construct Nakamoto-like blockchains using
multiple resources.

3.4 Main Theorem in the Continuous Model

There are many possible choices for I', but not all are secure against PDS, i.e., a bad choice
for a blockchain. For example, Figure 3 shows that W; - W is insecure, but that /Wy - vWo
seems secure — at least in the example. The following theorem shows that it is secure
against PDS in general, because it is monotone (cf. Def. 2.1) and homogeneous in W and V/
(i.e., al'(S,V, W) =T(S,aV,aW), cf. Def. 2.2). These are sufficient, but also necessary
conditions for security against PDS in the continuous chain model.

» Theorem 3.13 (Secure Weight Functions, Continuous Model). A weight function I" is secure
against private double-spending attacks in the continuous model if and only if I'(S,V, W)
is monotonically increasing (Def. 2.1) and homogeneous in V., W (Def. 2.2).

We omit the proof due to space constraints. Please refer to the full version of the paper [5,
Appendix A].

4 Discrete Chain Model

The continuous chain model is rather abstract, so we also consider a discretized version

using blocks. A block reflects the total amount of resources that were expended to create it.

Honest users create blocks according to some prescribed rule, e.g., in fixed time intervals,
but the adversary may not adhere to this rule.

Like in the continuous model, we will describe which weight function I' leads to a
discrete blockchain that is secure against PDS. Compared to the continuous model the
security statement introduces quantitative factors. The reason is that resources can fluctuate
within a block. The quantitative parameters essentially state: The higher the magnitude of
fluctuations within blocks, the larger the resource disadvantage of the adversary must be.

In principle, this statement also needs to quantitatively depend on how I' depends on
S. The reason is that in our modelling a block reflects S available at some point in time
during the block creation. Since S can fluctuate within a block, we pessimistically assume
that the adversary always gets the maximum and the honest parties only the minimum. So,
e.g., the function S? - V requires a larger disadvantage than S - V. To not carry around
another parameter, we restrict our attention to natural choices for I', namely, I' that are
subhomogeneous in S (cf. Def. 2.3) — think of this as “at most linear in S”.
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Figure 3 Consider two PoWs Wi, W, and two weight functions T'(Wi, Wa) = Wi - W and
' (W1, Wa) = VW; - Wa. The top row show the real resources 1/, W> (left) and how squeezing
them by ¢(-) = 2 (left) results in 11, 1} (right). The bottom row shows that I is not secure because
/(f W< 01 W \N, i.e., squeezing increases the weight. In contrast, I'V is not affected by the
squeezing.

4.1 Definitions

We define a blockchain BC as the discretization of a resource profile R. Let us first define a
block.

» Definition 4.1 (Blocks). Let R = (S(t),V (t), W(t))0,1] be a resource profile. A block b;
is defined by a timespan (t;,t;) with 0 < t; <t <T. The resources reflected by the block are
denoted by Sa(b;), Va(bi), and W(b;).

Timed resources V, and W, are reflected by

V.(bi)z/:"’ Vt)dt and W.(bi):/j W(t) dt.

i i

The constraint on S, s that

inf S(t) < Su(b;) < sup S(t). (3)

t<t<t) ti<t<t!
The weight of a block b is T'(S.(b), Va(b), Wa(b)).

The resources V and W accumulate within a block (e.g., a Bitcoin block reflects the
expected number of hashes). S is different ([2] called it “reusable”), so a block can only
reflect some amount of space that was available within the block’s timespan.
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by by b3 by bs b by b b3 by

(a) Honest parties. (b) Adversary (Example).

Figure 4 Discretization of parties. Here, honest parties discretize in fixed time intervals, while
the adversary may construct blocks in any non-overlapping fashion.

In the sequel, we will often make use of minima and maxima of resources within a block.

For technical reasons, they are defined via infimum and supremum, but think of them as
minimum and maximum.

» Definition 4.2 (Minima and Maxima of Resources). For a resource profile R = (S(t), V (1),
W (t))o,r) we denote the minima,/mazxima of resources in a block b with timespan (t',t") by

Smin(b) = t’<i?£t” S(¢) Smax(b) = t/iltlft” S(t)
Vaslh) =, 3, VO Vi) = s, V0
Winin(b) = t’<i?£t” W(t) Winax(b) = t'iltlgt” W(t)

where inf and sup are applied element-wise over the whole vector.

Now, a blockchain is a sequence of non-overlapping blocks. Its weight T, is the sum of
the blocks’ weights.

» Definition 4.3 (Discrete Blockchain). A discrete blockchain is a sequence of blocks BC =
(bo, . .. bp) whose timespans do not overlap. The weight of a blockchain is

T.(BC) = Y T(Sa(bi), Va(bi), Wa(b:)) (4)
b;eBC

For honest parties, chain profile and resource profile are identical. Honest parties discretize
their resource profile R7* by following some prescribed rules to create blocks (e.g., in fixed
one unit time intervals as depicted in Figure 4a). The resulting blocks are non-overlapping
and cover the whole timespan without gaps. The latter requirement is reasonable since
honest parties generally do not waste resources. Without loss of generality, we assume the
time interval to create a block is 1.

» Definition 4.4 (Honest Discretization). Let the honest parties’ resource profile be R =
(8M(t), VH(t), W™ (t))o,1). Consider a blockchain BC™ = (bft, ... b}) where each block b}t
spans the time (t;,t.). BC™ is an honest blockchain arising from R* ifto =0, ti, =T, and
ti=1i+1 forallic|T—1].

The adversary also starts from a resource profile R, but they may cheat when deriving the
blockchain from the resources. In terms of discretization, the adversary may not necessarily
follow the prescribed rule. It may create blocks covering varying timespans, or it might leave

gaps between blocks. The only condition is that blocks don’t overlap (as shown in Figure 4b).
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» Definition 4.5 (Adversarial Discretization). Let the adversary’s resource profile RA =
(8A(t), VA(t), WA(t))o,1). Consider a blockchain BC* = (bg', ... ,bA) where each block bt
spans the time (t;,t;). BCA is an adversarial blockchain arising from R4 if 0 < to, ty <T

(2L

and t; <ty for alli e [B —1].

Looking ahead, the security of the discrete blockchain quantitatively depends on the
maximum fluctuation of resources within blocks. We quantify this fluctuation by the &-
Smoothness of resources. Essentially, £ > 1 bounds the absolute change of resources within a
block.

» Definition 4.6 ({-Smoothness). Let £ > 1. A blockchain BC arising from R satisfies
&-smoothness if, for all blocks 0 < i < B, it holds that

Swmas(bi) < & - Smin(bi)
Vmax( z) <£ me( 7,)
Wmax( 1) S 5 : Wmin( 1)

» Remark 4.7. In practice, blockchains generally ensure that resources within a block are
relatively smooth, i.e, ¢ is small. They do so by imposing an upper bound on the resources
within a block. For example, Bitcoin’s difficulty mechanism essentially puts an upper and
lower bound on the work within a block ([26] proposes an alternative way to record work; it
has no lower bound, yet still an upper bound). This effectively limits the time span a block
takes. Since physical resources are not very elastic — especially at the quantities that are
consumed by blockchains — fluctuation is effectively limited.

4.2 Security Statement

Intuitively, the security statement in the continuous model was: If the adversary starts out
with fewer resources than the honest parties, then the weight of the adversarial chain is
lower than that of the honest one. In the discrete model, the result is a bit weaker because
we require a quantitative gap, denoted by § > 1, between honest and adversarial resources.
Together with £&-Smoothness, this leads to the definition of (, £)-security below.

» Definition 4.8 (Weight Function Security Against PDS, Discrete Model). A weight function
I is (9,€)-secure against private-double spending in the discrete model if, for all honest and
adversarial resource profiles R™ and RA such that

§-T(SA®t), VA®M), WA®)) < T(S™(t), V(t), W (1)) ¥t € [0,T] (5)

the following holds:
For any &-smooth (Def. 4.6) blockchains BC™ and BCA, respectively arising from R™
and R* according to Defs. 4.4 and 4.5, it holds that

T.(BC*) > T.(BCH).

We remark that the adversary is more powerful if 4 is small (i.e., the gap is small) and &
is large (i.e., resources may fluctuate by a large magnitude). The following theorem expresses
¢ as a function of §, namely £ = /5. This means that if the gap & is small, then only small
fluctuations of resources within blocks may be tolerated.

» Theorem 4.9 (Secure Weight Functions, Discrete Model). For any 6 > 1, a weight function
is T'(S,V,W) is (8§, V/8)-secure against private-double spending (Def. 4.8) if it is

1. monotonically increasing;

2. homogeneous in' V. and W ; and

3. subhomogeneous in S.
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We omit the proof due to space constraints. Please refer to the full version of the paper [5,
Appendix B].

4.3 Replotting Attacks

In the discrete model, we also have to consider replotting attacks. Such attacks were first
discussed in the Spacemint [33] paper under the term “space reuse”. The Chia green paper [32]
discusses them in more detail.

Replotting attacks are easiest understood when one assumes that disk space is bound to
some public key of a wallet. Then, in a replotting attack, the adversary repeatedly replots (i.e.,
re-initializes) its space using different keys within the time span of a block. This effectively
increases the adversary’s space within a block at the cost of extra computation to perform
the replotting. Concretely, we assume replotting takes p > 1 time (usually, blockchains
ensure that this p large), and an adversary with N space that replots m times appears to
have (m + 1) - N space.

» Remark 4.10. No matter the concrete cryptographic primitive used to track space, such
attacks seem unavoidable in the fully-permissionless model. In other settings, e.g., the
quasi-permissionless model, replotting can be disincentivized. For example, Filecoin [17]
requires parties to commit to space, and then the parties must continuously prove that they
are storing the committed space. This prevents replotting if the gap between the required
proofs is smaller than the replotting time. In practice, this gap might be too small and hence
inefficient, so a more delicate security argument is needed; see [23] for details.

4.3.1 Extra Assumptions are Necessary

Without any extra assumptions, replotting leads to attacks in the discrete model. For the
sake of example, consider Chia’s weight function S- V', which is secure according to Thm. 4.9.
Assume replotting takes time p = 2, S4 = VA =1 and ™ = V¥ = 1.1 (this gap suffices
since both profiles are 1-smooth), and consider the timespan [0, 6]. The honest parties create
5 blocks with a cumulative weight of 6 - (1.1-1.1) & 7.3. The adversary creates one block in
which it replots once. Assuming that the adversary cannot do anything else while replotting
(i-e., it can only gain V for 4 time), the weight of the block is 4 - (2-1) = 8. Note that this
attack generalizes to other weight functions I' and other values of p.

4.3.2 A Solution using Difficulty

One way to disincentive replotting in the discrete model is bounding the total weight of a
block b. Consider that the protocol keeps track of a difficulty D that is periodically adjusted
so that roughly one block is created per time unit (e.g., in Bitcoin the difficulty is reset
once every two weeks so blocks arrive roughly every 10 minutes). Further, let n > 1 be a
protocol parameter (to be set later). Then, the protocol bounds the weight of blocks as
D <T(b) <n-D (abusing notation of I slightly).

If we now set n < p, it is not hard to see that replotting does not help: Replotting even
once requires p time, and the resulting adversarial block has at most - D < p- D weight.
Meanwhile, the honest parties produce around p blocks, each of weight at least D; so in total
p-D.

Note that this argument requires D to stay fixed, an attacker might still be able to create
a heavier chain over a long period of time that spans several epochs (where the difficulty is
reset once every epoch).
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Chia [32] with its weight function I'(S,V) = S - V uses a similar idea, but it tracks the
difficulty of the space and VDF separately. The block arrival time is only determined by the
VDF difficulty, which is nice as VDF speed hardly fluctuates at all over time.

One can generalize this idea to any weight function that can be written as T'(S,V, W) =
I'1(S)-Ty(V,W). Now one would require that each block that records resources v, w, s
must satisfy Ts(v,w) = D. One doesn’t need to put an additional upper bound on the space
I’y (s) if T'y is subhomogenous, i.e., for any o > 1 we have I'; (as) < aI'1(s) (Chia does both,
it is (sub)homogenous and has an upper bound).

4.3.3 Future Work on Replotting

As mentioned, the above solutions don’t formally prevent replotting attacks that range over
many epochs. In practice that might not be such a big issue, as extremely long range attacks
are not really practical: they require a lot of resources for a long period of time, and thus
are expensive to launch. Moreover it might be difficult to convince honest parties to accept
a very long fork as it’s such an obvious attack. It still would be interesting to understand
whether it’s possible to formally achieve security against replotting attacks, we leave this for
future work.
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