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Abstract
Common blockchain protocols are monolithic, i.e., their security relies on a single assumption, e.g.,
honest majority of hashing power (Bitcoin) or stake (Cardano, Algorand, Ethereum). In contrast,
so-called optimistic approaches (Thunderella, Meshcash) rely on a combination of assumptions to
achieve faster transaction liveness.

We revisit, redesign, and augment the optimistic paradigm to a tiered approach. Our design
assumes a primary (Tier 1) and a secondary (Tier 2, also referred to as fallback) blockchain, and
achieves full security also in a tiered fashion: If the assumption underpinning the primary chain
holds, then we guarantee safety, liveness and censorship resistance, irrespectively of the status of the
fallback chain. And even if the primary assumption fails, all security properties are still satisfied
(albeit with a temporary slow down) provided the fallback assumption holds. To our knowledge,
no existing optimistic or tiered approach preserves both safety and liveness when any one of its
underlying blockchain (assumptions) fails. The above is achieved by a new detection-and-recovery
mechanism that links the two blockchains, so that any violation of safety, liveness, or censorship
resistance on the (faster) primary blockchain is temporary – it is swiftly detected and recovered on
the secondary chain – and thus cannot result in a persistent fork or halt of the blockchain ledger.

We instantiate the above paradigm using a primary chain based on proof of reputation (PoR) and
a fallback chain based on proof of stake (PoS). Our construction uses the PoR and PoS blockchains in
a mostly black-box manner – where rather than assuming a concrete construction we distil abstract
properties on the two blockchains that are sufficient for applying our tiered methodology. In fact,
choosing reputation as the resource of the primary chain opens the door to an incentive mechanism
– which we devise and analyze – that tokenizes reputation in order to deter cheating and boost
participation (on both the primary/PoR and the fallback/PoS blockchain). As we demonstrate,
such tokenization in combination with interpreting reputation as a built-in system-wide credit score,
allows for embedding in our two-tiered methodology a novel mechanism which provides collateral-free,
multi-use payment-channel-like functionality where payments can be instantly confirmed.
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1 Introduction

The security of distributed cryptographic protocols typically relies on (unverifiable) assump-
tions about the number of (or the resources held by) corrupted vs. uncorrupted (aka honest)
parties. As an example, it is known that an honest majority is necessary and sufficient for
secure decentralization in the synchronous model; this includes (blockchain-based) decent-
ralized ledgers, where honest majority (of either parties or a resource like stake, e.g., [4] or
hashing-power [38]) is required. In a blockchain-based cryptocurrency, which might hold
billions of dollars, violation of such assumptions can have devastating effect for its users,
e.g., [1, 5].

Two types of defenses are typically employed to fortify blockchains in face of such
silent threats: The first one is a game-theoretic argument often used to argue the so-called
economic robustness of primitives, i.e., their resistance to rational attackers that might
violate the underlying cryptographic assumption, but are only willing to perform attacks
that maximally increase their utility. Such arguments have been used in the cryptography
research literature [19, 11, 12, 9, 10, 35]. but have also become common in mainstream
cryptocurrencies, like (PoS-based) Ethereum [4]. The second is to use fallback security where
the security assumption is fortified by an additional assumption, so that only if both fail the
protocol might lose (all) its security properties. This fallback paradigm has been employed
in a wide range of cryptographic constructions [25, 14, 31, 6, 17].

An advantage of fallback security is that one is able to use one of the assumptions in an
optimistic manner. A classical example here is that of fairness in multiparty computation
(MPC), e.g., [7, 8]: It is well known that fair MPC requires that at most t < n/2 of the parties
might be corrupted; however, without fairness, an arbitrary number, t < n of corrupted
parties can be tolerated (assuming a public-key infrastructure, in short PKI). Thus one
can employ an external fall-back mechanism, e.g., a judge [7] or a blockchain compensation
mechanism [25, 14], where we can optimistically run the (unfair) MPC protocol for t < n and
if a fairness violation is detected, then use the fallback to resolve the fairness violation. Such
an optimistic model of execution has been also used in the blockchain realm to allow for better
scalability and or network tolerance properties, with Thunderella [34] and Meshcash [13] being
the most representative examples: In a nutshell, these protocols rely on smart refinements of
the proof-of-work and/or proof-of-space-time paradigms, using novel optimistic methods to
accelerate the blockchain and improve scalability and finality under more restrictive security
assumption.

The starting point of our work is a novel, tiered fallback-mode for blockchains. The idea
is to use two assumptions, each of which is sufficient for a blockchain, in a tiered manner: If
Assumption 1 (which is often called the primary assumption) is true (we refer to this case
as the system’s normal mode) then the system maintains all its security and performance
guarantees – including safety and liveness – irrespective of whether or not Assumption 2
is true. Additionally, if Assumption 1 fails, then the core properties of the system – safety
and liveness – are not violated, but the system might be temporarily slowed down (we say
that liveness gets slower). We refer to this latter case as recovery mode. We note that being
able to guarantee both safety and liveness when either of the two assumptions fails, set our
construction apart from the above optimistic approaches to blockchain [34, 13]. In addition
to achieving the above tiered security, as we show below, by instantiating our proposed
construction with appropriate assumptions can combines the optimistic mode with rational
arguments in order to achieve better liveness properties while embedding DeFi operations on
layer one.1

1 As we discuss below, such DeFi-style properties are also put on hold during recovery mode.
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We instantiate the above tiered paradigm as follows: For our primary chain we use
reputation as a resource, relying on the Proof-of-Reputation (PoR) paradigm. We follow [26]
for defining the relevant assumption (Assumption 1 in the above exposition); intuitively,
reputation is utilized similar to how stake is used in a proof-of-stake (PoS) system, i.e., it is
extracted from the contents of (a sufficiently deep block) in the blockchain2. In a nutshell, the
reputation of a party corresponds to its probability of behaving honestly in the system. Our
protocol uses these probabilities to select parties that are tasked to maintain the blockchain –
in our iterated Byzantine fault-tolerant instantiation. These parties are block proposers and
endorses for each slot (see below for more details). Then the primary assumption, hereafter
referred to as the PoR-assumption, corresponds to requiring that the extracted reputations
are close to the actual “ground-truth” probabilities of honest behavior (cf. Section 4.1.)

For our fallback chain, we use the PoS assumption that underpins the security of the PoS
chain, e.g., that the majority of the stake in the system being held by honest parties3. We
remark that, as discussed below, our results use mostly black-box access on the secondary
(fall-back) chain, which can therefore be instantiated with different distributed ledgers – its
fallback security will then rely on the security of that instantiation. However, for clarity, we
chose to anchor our description to a PoS fallback blockchain.

The above combination of PoR with PoS fallback gives full security, i.e., both safety
and liveness if the PoR assumption is true (independently of the stake distribution), and, if
the PoR assumption fails but the PoS assumption is true, still both safety and liveness are
guaranteed, albeit with a temporarily slower liveness parameter. More exciting, as discussed
below, we introduce a mechanism which allows receivers to instantly confirm payments when
the sender pledges a one-time collateral to them in case of a fork/double spending. With the
use of a reputation system in PoR, we can even construct a mechanism that does this without
parties locking their own coins. This latter improvement can be achieved by interpreting
reputation as the blockchain-analogue of credit-score, a paradigm which we believe can we use
to embed also additional (classical) finance operation onto the above layer one thus opening
the path to better DeFi applications, that leverage the above tiered fallback approach. In
the following we give additional details on our contributions and techniques.

2 Our Contribution and Techniques

At a high level, our PoR-with-PoS-fallback design follows the PoR/PoS-hybrid blockchain
blueprint of [26] (which shares several ideas with [34] and [13].) However, our approach
includes multiple improvements over [26] and extensions – among others, a recovery mechanism
when PoR fails, censorship resistance, concrete instantiation of the lottery for selecting
minters, and explicit mechanisms (and economic robustness arguments) for participation
and embedded DeFi operations. Furthermore, rather than anchoring our protocol to that
of [26], we follow a more abstract, nearly black-box approach: We extract properties of the
primary (PoR) and fallback (PoS) blockchains that are sufficient for our arguments; then any
instantiation of the above chains which satisfies these properties would yield an instantiation
of our paradigm.

2 The choice of the concrete algorithm that extracts the reputation is orthogonal to our results and is
therefore treated here as a black box.

3 As is common in the blockchain literature, we use the term “honest” to refer to parties that faithfully
follow the protocol; unlike misbehavior, e.g., signing conflicting messages, honesty is not a property we
can verify and is used only in the analysis of the protocol.
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In more detail, both the PoR and the PoS chains rely on a lottery for selecting the
nodes that are in-charge of maintaining them. For the sake of exposition, let us focus on
the following structure for both the primary (PoR) and fallback (PoS) ledger protocols:
(1) The protocols advance in fully synchronized slots, where each slot might take several
(synchronous) rounds and is associated with the creation of a specific block (the round
and slot number is reflected in the block’s contents). (2) The lottery (which is seeded by
randomness extracted from the PoR chain) selects block proposers and block endorsers: block
proposers report their valid transactions they have heard and which are not already included
in the previous slot to the block endorsers via a byzantine fault-tolerant broadcast protocol;
the latter collect all valid transactions they receive (as broadcasted) from the proposers,
add their signatures to it and propagate it (via standard gossip style diffusion) to the whole
system. We stress that the above structure is for keeping the exposition as simple as possible,
(and in particular will allow us to argue security assuming both sub-chains has finality);
however, the proposed combination paradigm can be instantiated with different types of
blockchains, including Nakamoto-style blockchains (although the concrete liveness and safety
parameter will need to be tuned to account for eventual finality).

We stress that our fallback design assumes that a node runs both the PoR and the PoS
chain (in parallel; however, in normal mode, the fallback chain has minimal transactions); in
other words, the (Layer 1 of) the blockchain consists of a combination of the two ledgers.
This is in contrast to approaches that use only PoS as Layer 1 and overlay a reputation-based
protocol as a Layer 2 protocol to improve upon the properties of Layer 1 [15, 30]. We note
in passing that such a Layer 2 solutions cannot achieve the fallback guarantees that we are
aiming for, as failure of the assumption supporting Layer 1 would induce both safety and
liveness failure, irrespective of how well the reputation reflects the ground truth.

We next sketch the main properties of our tiered blockchain design and the techniques
for achieving them.

Detection and recovery from safety violation on the PoR chain

As already discussed in [26], reputation is a subjective and not necessarily future-proof
resource. In particular, some malicious (covertly operating) nodes might behave in a way
that makes the reputation-extraction algorithm assign to them high-reputation, and then,
if they manage to form a majority of slot endorsers for some slot, attack the system, e.g.,
make it fork or stall. As discussed below, we will employ incentives, by means of reputation
penalty, to deter such behavior, but this is not enough; we need a mechanism to ensure that
such safety and liveness violations do not occur in the first place. For this we use the fallback
PoS chain: the nodes that are selected in the PoS lottery to propose the next PoS block
report their view of the most headers (these are hash pointers) of the PoR chain, starting
from the hash-pointer reported in the previous PoS block. If any user observes that the
reported hash-pointers are different than what he observes in his view of the PoR chain, then
he complains in the next PoS block, also presenting evidence that his complain is valid –
i.e., presenting the inputs to the contested hash chain. If such a dispute occurs, and both
involved hash chains have proper justification, i.e., they are both valid continuations of the
PoR chain4 then the system enters a recovery mode, where the PoR chain takes control and
resolves any double spending that might have occurred as a result of the above fork. As
proven in [26], this can only happen when the assumption of the primary chain fails, i.e., the

4 Intuitively, “proper justification” includes evidence that the hash pointers were (part of blocks) that
were signed by the majority of valid endorsers – i.e., endorsers that according to the PoR lottery were
chosen for the corresponding slot.
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reputation considerably deviates from the ground truth meaning that the PoR assumption
has failed. We also note that in the case a fork is detected on the fallback chain, there is
sufficient “evidence” to allow us to remove (i.e., zero out the reputation of) parties who
have misbehaved, i.e., achieve a certain level of accountable safety (e.g., [22, 32, 29, 33]), by
identifying at least one corrupt party in case of a safety violation.

Although the idea of a detection mechanism was already proposed in [26], there was no
recovery mechanism, and the treatment considered the stake on the PoS system independent
of the contents of the PoR. This, for example, could work if one uses an already deployed
PoS blockchain as a fallback chain, where the fallback assumption is on the stake of that
blockchain. In this work, we are using PoR and PoS to build a self-contained, Layer-1
blockchain; this means that both the stake and the reputation need to be extracted from the
state of the system, which raises several technical challenges as discussed below. The first
challenge is:

Where do we extract the reputation (resp. stake distribution) and seeds for the PoR
(resp. PoS) lottery from?

The answer to the above question is not straightforward, because, due to the tiered
security, the PoS chain is needed when PoR is found to be unreliable, e.g., it has forked.
Hence one needs to be careful where to extract the reputation, stake distribution, and PoR
and PoS lottery-seeds from – in particular, because the reputation is needed to check that a
dispute on the PoS chain is justified. This is resolved by designating certain PoR-blockchain
blocks (in predefined slot numbers) as checkpointing blocks and using them to extract the
above runtime parameters. Such blocks need to be deep enough in the PoR chain, so that
they have been already certified in the PoS chain without any dispute, and sufficient time
has passed to ensure that any dispute should have been raised. By appropriate bounds on
the network latency and the liveness parameters of the PoR vs PoS chains, we can provide
such a depth.

The second challenge is with respect to recovery: Once the joint state of the two chains
reflect the fact that the primary chain has forked, i.e., there is a dispute on the secondary
chain with proper justification, the challenge becomes to recover from this situation without
any honest user losing any funds. Since transactions require a signature from the owner of
the funds, the only events that make such loss possible is double spending. To ensure that
this event does not occur we require that a party only considers a transaction, say from PoR
block Bi, as settled once the PoS block that endorses Bi is deep enough in the PoS chain
and remains undisputed. Once again, this interval depends on the relative liveness of the
PoR vs the PoS chain. (As we shall see below, our DeFi-style mechanisms also allows also
for transactions can be confirmed at the speed of just one PoR slot).

Thus the core task of the recovery mechanism is to re-bootstrap the PoR chain. In a
nutshell, this is done (in recovery mode) by temporarily using the PoS chain as primary,
to create a new PoR genesis block, which includes (1) a pointer to the most recent PoR
block B∗ that has been certified in a deep-enough PoS block and is undisputed, (2) any
transactions that were included (in any PoR-chain fork) following B∗ – the PoS chain receives
such transactions for a fixed period, and (3) any new transactions received (on the PoS chain)
during recovery mode. Any parties who have been detected to sign conflicting messages
have their reputation zeroed-out, which allows to sanitize the reputation as part of the
recovery process.5 At the end of the recovery period, the PoS chain puts all the collected

5 This elimination of cheaters already allows for sanitizing; however, one can also use the recovery period
to collect, on the PoS chain, new/additional/modified reputation data from the users and apply the
reputation extraction AI on these new data.

AFT 2025



19:6 Two-Tier Black-Box Blockchains and Application to Instant Layer-1 Payments

transaction in a PoR block that points (by a hash pointer) to B∗; this new block along with
the state extracted from the PoR chain up to B∗ serve as a genesis block for restarting (in
fact, resuming from the state ending to B∗) the PoR chain as the primary chain. We stress
that the above is a very high level description, and a careful treatment is necessary to ensure
security of the recovery procedure. The details can be found in Section 6.

Detection and recovery from liveness violation (on the PoR chain) and transaction
censorship

The next new feature of our two-tier architecture is the detection and recovery of liveness
violation and transaction censorship on the PoR chain. Let us start with liveness violation:
The aforementioned safety-violation detection kicks in (on the PoS chain) when two parties
report a fork, each with proper justification, as above.

However, a liveness violation (i.e., a party not sending something at the correct time)
is much harder to detect and prove. In particular, it is shown that accountable liveness
(analogous to the accountable safety discussed above) is impossible in our setting (of dishonest
majority) [28]. Nevertheless, we can achieve a compromise that is still, in a sense, the “best
of both worlds”: even if one of the PoR or PoS chains can fail, we either have liveness, or
all honest parties will go into recovery mode, where reputations can be reset (e.g., through
an external process). Intuitively, we do so by having PoS block creators vote on whether
they believe a liveness violation is happening (this is abstracted through the external signal
defined in Prop. 5.1). If PoR liveness is violated (and thus PoS assumptions hold), it means
that (most) PoS blocks will have honest majority block creators – who will either (1) help
propagate PoR blocks (if a PoR block is simply delayed), or (2) vote to confirm a liveness
violation. In the case of (1), we still achieve liveness (albeit slightly slower). In case PoS
block creators agree (have majority vote) on a liveness violation, then those disagreeing with
the claim of liveness violation can post the contested PoR block (achieving liveness, again),
or if no one disagrees, then this is evidence for liveness violation (i.e., no party claims to
have the PoR block), and all parties can go into recovery mode to reset reputations. On the
other hand, If PoR liveness is not violated, all honest parties would receive blocks without
delay, and would never go into recovery regardless of the results of votes on the PoS.

Another complicated case is transaction censorship, aka transaction-liveness violation: A
user u attempts to put its transaction to the PoR chain for a long time, but (due to violation
of the PoR assumption) it is ignored by several consecutive slot committees. In this case, u

posts its transaction (along with an annotation that this is a censored transaction) on the
PoS blockchain – again, u by observing censorship, u knows that the PoR assumption failed,
which means that the PoS assumption holds. Every party that observe such a transaction
on the PoS chain, attempts to put it in the PoR chain in one of the next several blocks. If
parties observe that an (allegedly) censored transaction fails to make it in the PoR chain by a
sufficiently long timeout (cf. Section 6) they confirm the censorship (and therefore the issue
on PoR) and can therefore trigger the recovery procedure as above. In this case, members of
the most recent committee who did not include the transaction, have their reputation zeroed
out. This does not penalize honest nodes, who would have seen the transaction on the PoS
chain and would have therefore included it.

Reputation as DeFi-enabler: Instantly confirmed safe transactions

Last but not least, we demonstrate how having (monetized, as above) reputation baked into
the protocol’s Layer 1, allows for improving both the speed and the functionality of the
blockchain system. In brief, the idea is the following: a party pi can pledge (deposit/lock as
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collateral) a certain amount of coins v to a specific recipient pj through a special pledge
transaction. Having created such a pledge, whenever pi sends a transaction tx to pj with
amounts up to v, this transaction tx is considered safe and pj can accept it as soon as they
see it on a PoR block. Note that since pj did not wait for tx to settle on the secondary chain,
it can no longer ensure that the coins in tx cannot be double spent in the time it takes to the
PoS to confirm. However, if double spending occurs (which means that the PoR blockchain
has forked), pj can claim (as part of the recovery mechanism) the original amount v through
the collateral.

At first sight the above might appear as a special, Layer 1, version of a payment channel [3].
However, it is not hard to verify that unlike payment channels, the above allows pi to make
instant payments to pj several times with a single pledge, as long as the interval between
any two such payments is long enough for the PoS chain to have the time to detect forks.

Notwithstanding, the novelty in the above mechanism becomes more evident once the
above pledge is replaced by a mechanism that allocates system funds (called a treasury) as
collateral, with the amount allocated to each party dependent on their reputation. Intuitively,
we use the parties’ reputation analogous to how financial services use the concept of credit
score. Specifically, the system can pledge for each party an amount (depending on the
reputations) that acts as the above pledged coins. The party can then pledge (without
needing to deposit their own funds as collateral) to a recipient, or several recipients if they
specify the associated fractions of the pledged amount for each. By properly tuning the
pledged amount for each party using the reputations, we can limit the total risk of the
system (i.e., the amount that could be lost if all parties misbehaved); furthermore, we
can prove that the strategy of any (malicious) node to double-spend is dominated by the
node playing honestly. We give the relevant details and proofs in Section 7. We believe
that the above demonstrates how our tiered PoR-with-PoS-fallback paradigm can enable
DeFi mechanisms, beyond what is currently achieved by monolithic (single assumptions) or
Layer-2 solutions. Devising additional such mechanisms, as well as additional applications of
monetized reputation is an interesting research direction. We refer to Tab. 1 for a schematic
summary of our contribution.

3 Related Work

The most relevant work is [26], from which we extend the design of our protocol. We
achieve several improvements: First, in [26], when a safety failure in PoR is detected, all
execution falls back to the PoS; in contrast, we propose a recovery mechanism to restart the
PoR while removing misbehaving part(ies). This is akin to the idea of accountable safety
(e.g., [22, 32, 29, 33]), where a fraction of corrupt parties can be identified and removed [29, 22]
when a safety violation happens (note, due to the nature of the PoR, it is only possible to
cause a fork in the event of dishonest majority with at least one identifiable, double-signing
party – thus we can support removing this party). Our two-chain setting offers us additional
benefits, however. In addition to identifying and removing corrupt parties, our protocol
can mitigate all safety violations – even in the event of a safety violation in the PoR chain,
payments using our “safe transactions” will never be reverted after recovery.

We remark that accountable (transaction) liveness is known to be harder to achieve than
accountable safety described above [28]. In fact, accountable liveness (in the single-blockchain
setting) is shown to be impossible in the case of dishonest majority (which we must consider
when the PoR chain assumption is broken). Nevertheless, more than detecting safety failures,
our work considers also the case when specific transactions may be censored on PoR, by
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taking inspiration from the two-tiered approach of Thunderella [34] (more comparisons below).
In contrast to [26], our protocol uses in a (nearly) black-box manner the underlying PoR
protocol. Lastly, we extend the security analysis of [26] by proposing an incentive structure,
such as block rewards, and prove that corrupt parties have no incentive to misbehave.

We compare below with other relevant works. Recently, Trustboost [39] presented a
protocol in the validator/client setting that reaches consensus by using in a black-box (only
read/write) manner some m blockchains, of which f number of them can be faulty Notably,
they proved that under assumption of partial synchrony and their black-box model, it
is impossible to reach consensus if m ≤ 3f . Intuitively, this follows from the analogous
impossibility in consensus literature. In this work, we circumvent this impossibility, by
achieving a weaker payment finality property with m = 2, f = 1 – this property informally
says that once a “safe” transaction appears in a block held by an honest party, the transaction’s
recipient will eventually receive the same amount of coins described by the transaction’s
output (even if safety may be violated). We do so by modifying the following: our protocol,
while also using the underlying PoR and PoS blockchains in a somewhat black-box way:
we do not change how their block creators are chosen or how they reach consensus about
a block, but we parametrize them by defining e.g., a transaction validity predicate, as well
as dictating how stake and reputation are computed. Moreover, we consider synchronous
network. Interestingly however, our protocol also achieves a stronger property than previous
work: if the safety of our protocol’s underlying PoR blockchain fails, we not only detect such
failure, but can also restart the PoR chain and remove at least one dishonest party. This
means that we could recover from any inaccuracies in our reputation system (the assumption
underlying the PoR blockchain’s safety).

Other previous works also construct blockchains combining (several) underlying blockchain
protocols. Thunderella [34] achieves instantaneous confirmation in the optimistic case of
3/4 honest majority of an agreed-upon committee and safety when its underlying (PoW)
blockchain has honest majority. Intuitively, Thunderella combines chains – one slow and one
fast. The fast path requires signatures from 3/4 parties from an agreed-upon committee.
In parallel, a slow (e.g., PoW) chain is run, on which parties post hashes of fast blocks or
transactions which they would like to see on the fast chain. These allow parties to detect
failures in the fast chain and fallback to the slow one. Our liveness property uses a similar
method as Thunderella, but we guarantee safety in case either of the fast (PoR) or slow
(PoS) chains may fail. This is in contrast to Thunderella, where (even) a temporary fork on
any of its two chains can result in a safety violation. In addition, we also outline in Sec. 7
how to incentivize parties (i.e., reward them) to follow our protocol. Meshcash [13] devised a
race-free mechanism, termed tortoise and hare consensus to take advantage of a DAG-based,
fast asynchronous but possible buggy protocol to improve liveness and scalability, while
relying on a slower synchronous consensus mechanism to ensure safety. The work of Tas
et al. [40] considers the same problem as ours, but is somewhat incomparable. They treat
safety and liveness as properties that can be separately broken, whereas we consider the case
where the underlying assumption of the PoR (or PoS) can be broken (in which case, both
safety and liveness may not hold). In particular, [40] achieves safety if at least one underlying
blockchain is safe, and liveness if all blockchains are live.

Works that achieve better safety by checkpointing blocks (e.g., on another chain) [23,
36, 37, 41] are similar to how we detect safety failures in our PoR chain; however, in our
work, we allow the checkpointing mechanism (i.e., our PoS chain) to also fail to satisfy safety.
Moreover, even in the case where our fast chain (PoR) fails, we still achieve (instant) finality
for transaction payments, though with worse liveness. Compared to payment channels [3],
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which allow for off-chain payments by first “locking” some amount of coins on chain, this
work achieves payment finality by enabling the sender to pledge coins to the recipient. In
contrast to the locked coins in payment channels, this amount of pledged coins (which we
call collateral) is not used up until a transaction sender double-spends – which does not
happen when the sender is honest (hence, pledge coins can be re-used for multiple payments
whose total amount is more than the pledge coins). Finally, we note that a mechanism for
guaranteeing quick payments between a merchant and a customer is also proposed in [27]. In
this, a third party, upon receiving a transaction (that is not yet settled on the chain) from the
customer directed to a merchant, makes the quick payment to the merchant over the payment
channel, effectively taking the risk that the customer transaction may not settle on-chain
(i.e., the third party works as a credit card company in some sense) [27]. In our approach,
there is no third party, and there is no risk of any party losing money for transactions issued
using our safe transactions mechanism.

4 Preliminaries and Model

We use “=” to denote equality of two different elements (i.e. a = b then...) and “←” as
the assignment operator (e.g. to assign to a the value of b we write a← b). A randomized
assignment is denoted with a

$←− A, where A is a randomized algorithm and the randomness
used by A is not explicit. We model the hash function as a random oracle. Following [20, 18],
we prove our result in the q-bounded model, in which all our theorems are proven assuming
that the adversary does not exceed a fixed (polynomial) number of queries to the random-
oracle.

Round, Slot, Epoch. Synchrony Assumption

In the blockchain protocol, we consider time as divided into discrete units called rounds.
For simplicity we assume the parties are synchronized – that is, honest parties agree on
which round it is. We consider blockchain protocols which run in a series of slots, which are
contiguous lengths of rounds (may be of fixed or dynamic length6) in which a lottery is run to
determine the parties who would be responsible for creating the block for that slot. An epoch
instead is a fixed length of contiguous slots. For example, if the epoch length of a protocol is
R, then epoch 1 consists of slots {1, · · · , R}, epoch 2 consists of slots {R + 1, · · · , 2R}, and
so on. In the protocols we consider, parties communicate over a network of authenticated
multicast channels.

4.1 Abstract Blockchain Protocol
At a high level, a blockchain system is a cryptographic protocol executed by multiple parties,
where the purpose of the parties is to agree on a set of inputs, called transactions and include
this transaction in a block. This block is added to previously added blocks, starting from a
special genesis block, that we denote with G.

The main properties that a blockchain protocol guarantees are that, as long an underlying
assumption holds (i.e., the majority of the computational power is controlled by the honest
parties), then transactions generated by honest parties eventually become part of the chain
(liveness), and that all honest parties always eventually agree (i.e. have the same view)

6 For example, Algorand [21] is currently implemented with slots that vary in length of time, dependent
on network conditions.
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on the content of the chain (safety). In this work, we will use a simple abstraction of a
blockchain protocol. This is described in Fig. 4.1. At a high level, the blockchain protocol is
parametrized by a few procedures that we discuss here.

GetChain, which allows each party to get access to their local view of the chain.

TxSubmit is a multi-party protocol used by users to submit a transaction tx (e.g., this is
the procedure that diffuses the transaction over the network)

Pstatus is a procedure used by each party to obtain the most recent system status. For
example, in a PoS chain, the status is represented by the stake distribution of the parties,
or in the PoR chain, the status represents the reputation vector. Pstatus requires each
party to input the view of the chain in every epoch and the current epoch number t. How
Pstatus works depends on the type of blockchain we are using.

BlockCreate. This is an interactive multi-party protocol that allows the creation of a new
block that will be added to the chain. BlockCreate is run by each party at the beginning
of every new slot using as input a seed (this is the seed used for the lottery to decide
who are the block leaders are, more on this later). BlockCreate takes as input the output
obtained by Pstatus, the local chain of the caller, the slot index, and a set of transactions,
and it returns the new block, a set denoting the block leaders, and a certificate. The
certificate contains the signatures of the block hash computed by the block leaders.

certify is used to check if two hash headers are valid headers of two consecutive blocks in
the chain.

checklead is a procedure that allows verifying if a party was elected as a leader (often
referred to as block creator) to generate a specific block.

validity takes a blockchain view chain, a transaction tx, a buffer buffer, and some auxiliary
information aux, and determines whether a transaction is valid or not concerning the
transactions in chain ∪ buffer. The exact specification of this validity predicate depends
on the application for which the blockchain is used.

isvalidchain is the predicate that checks whether a chain is a valid hash chain, i.e., the
chain validation predicate in [20], and that every transaction tx in chain is valid (the
validity of the chain can be tested using the validity predicate above setting buffer = ∅.)

GOracle is an oracle that when called, returns the (same) genesis block (i.e., the first
block of the chain) to every party invoking it. GOracle is parametrized by an initial set
of transactions and by an initial seed. In this work, we follow [16] and consider a relaxed
version of the genesis block oracle. We indeed allow the adversary to bias the seed, and
get an advantage over the honest parties, by seeing the seed before the honest parties
do. How much the seed can be biased, and how much time in advance the adversary can
see the seed compared to the honest parties, is defined by the parameters m and delay
respectively. For example, when delay = 0 and m = 1 correspond to the case where
there is only one candidate genesis block and all the parties can see it at the same round.
We refer to the full version for the formal description of the oracle.

Pseed is an oracle that returns the seed that will be used to run the lottery (e.g., the
hash of previously generated blocks).
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Figure 4.1: Abstract Blockchain Protocol

Parameters and setup
Slot length SlotLen denoted in terms of number of rounds.
Each party pi running the protocol, has associated an address addri (a verification key of
a signature scheme).
At the beginning of the protocol the honest parties invoke GOracle with the command
get_genesis thus obtaining a genesis block G.

Each party pi keeps track of the following:
t: Current slot (all parties agree on the slot number due to synchronicity)
chain: Current chain obtained via the invocation of GetChain.
b: List of block creators/leaders, indexed by slot. Initialized to b[s] = ∅ for all s. We only
store block creators/leaders in position s, if in the slot s a block was successfully created.
Chains contains the view of the chain of the party in every slot.
An initially empty set buffer.

In each slot t, each party executing the protocol, on input a set of transaction
Txs does the following:
1. Run Pstatus(Chains, t) thus obtaining status, and invoke Pseed thus obtaining seed.
2. For every tx ∈ Txs, if validity(tx, chain, buffer, aux) = 1 then add tx to buffer.
3. Run BlockCreate on input (chain, status, seed, t, buffer) thus obtaining (B, C, cert). Let

Bn be the most recent block added to chain.
4. If for every addr ∈ C checklead(status, seed, addr, cert, |chain| + 1) = 1 and

isvalidchain(chain||B) = 1 and certify(status, H(B), H(Bn), seed, |chain|+ 1, cert) = 1 then
continue as follows, else reject the block and stop.

5. chain← chain||B.

On request GetChain: Return chain

Having defined the syntax of a blockchain protocol, we now state the security properties
that we may want from such protocol. Before doing that, we define a predicate ASP. This
predicate takes as input a slot number and returns 1 or 0. We require the standard properties
that one expects from a blockchain protocol to hold, conditioned on the assumption ASP
being equal to 1. In a nutshell ASP tells us whether the blockchain protocol we are running
can be trusted due to the underlying assumption being valid. By underlying assumption here,
we mean, for example, that there is an honest majority of the nodes running the protocol,
or that the majority of the stake is controlled by honest parties. The exact specification
of ASP depends on the protocol. The predicate ASP is of course never used by the parties
running the protocol, but it is used to state our theorems and definitions as it allows us to
specify what properties can be guaranteed depending on whether, in a given time frame,
ASP holds or not. This will be particularly relevant when defining the security of our hybrid
protocol, where the liveness and safety parameters will depend on which of the two blockchain
protocols is safe (i.e., which of the two assumptions is valid). We revisit the notion of safety,
block liveness, and transaction liveness to capture this aspect. These definitions are formally
described in our full version.
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4.1.1 Reputation and Stake

For our approach, we will rely on a PoS and a PoR chain, and we will formally describe the
properties of our system depending on which of the chains is safe. In particular, we will denote
the assumption predicate of the PoS chain with ASPPoS and the assumption for the PoR chain
with ASPPoR. To define the meaning of this predicate, we recall the definition of reputation
system from [26]: Informally, a reputation system Rep describes the probability distribution on
the honesty/dishonesty of reputation parties, described by a reputation vector (h1, · · · , hm).
For example, if according to Rep, we have Pr[(h1, · · · , hm) = (0, · · · , 0, 1)] = 0.6, then with
probability 0.6, everyone except Pm is dishonest. Following [26], we call a reputation
system Rep feasible if there exists a (PPT) sampling algorithm A which, with overwhelming
probability, chooses a subset of parties which has honest majority.

We make a distinction between real-world reputation Repreal (which is the actual, ground-
truth probabilities that parties are honest/dishonest) and system-extracted reputation Repsys.
We say that Repsys is accurate if the probability distribution actually describes (within
negligible error) the real probability in which parties are honest/dishonest (i.e., Repreal).
Conversely, we call a reputation system Repsys that is not accurate, inaccurate. For brevity
in our theorems, we introduce the following predicates, ASPPoR and ASPPoS: We say that for
a PoR chain, in a slot t ASPPoR(t) = 1 if and only if the reputation vector Rep is ϵ-feasible.
For a PoS stake instead, we say that in a slot t ASPPoS(t) = 1 if and only if the fraction of
honest stake is a constant fraction above 2/3. We refer the reader to the full version for more
details on reputation systems.

5 Security properties, and main tools

In this section, we describe our main tools: a PoR and a PoS blockchain system that follow
the abstraction proposed in Section 4.1. We argue that our abstractions are realized by the
PoR protocol proposed in [26] and by almost any PoS protocol. Before describing the exact
properties we want from the PoR and the PoS chain, we highlight how our protocol will work
and what are the main security properties that we guarantee.

At a very high level, in our protocol each party will run the two protocols blockchains
in parallel, using the PoR protocol as the primary chain (where the transactions will be
posted), and using the PoS protocol only to checkpoint the hash of the block generated
via the PoR protocol. The PoR chain will be the only chain actually managing the coins
and the treasury (more on the treasury later). Hence, any time that a party pi wants
to send money to pj , pi signs and issues on the PoR chain a transaction of the following
type (standard, addri, addrj , v), where addri and addrj denote the addresses of pi and pj

respectively, and v is the number of coins that pi wants to send to pj . The main property
we guarantee in our system is that if the assumption underlying the PoS chain (i.e., ASPPoS

holds) is valid then the following happens.

If ASPPoR (i.e., the assumption that underlines the PoR chain) holds in a sufficiently long
time interval [t1, . . . , t2], then the transaction will be confirmed at the speed of the PoR
chain in that interval (i.e., we get the transaction liveness of the PoR chain).
If ASPPoR does not hold, then in the worst case transactions will be confirmed at the
speed of the PoS chain (plus an additional constant parameter).
Regardless of whether ASPPoR holds or not, safety is always guaranteed (the parties will
eventually agree on a non-trivial common prefix).
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Table 1 With Yes and No we denote if a chain is secure or it is not secure respectively. The
column indicates slot intervals. For example, the first row captures the case where the PoR chain is
compromised, but then it regains its security. In this case, the performances (in terms of safety and
liveness) of our protocol, after some fixed recovery time ∆, come back to the PoR performances. We
we write Yes or No, it means that the performances of the protocol are independent of whether that
blockchain is secure or not.

0, . . . , t1 t1, . . . , t2 t2 + ∆, . . . , t3
Performance/security in the interval

t2 + ∆, . . . , t3
PoR Yes or No No Yes PoR chain

and safe transactionsPoS Yes Yes Yes
PoR Yes Yes Yes PoR chain

and safe transactionsPoS Yes or No Yes or No Yes or No
PoR Yes or No No No PoS chainPoS Yes Yes Yes

Moreover, if ASPPoR holds, we get the safety and liveness properties of the PoR chain,
regardless of whether ASPPoS holds. Please see full version for the formal statements regarding
the security of our protocol.

In a nutshell, we design a blockchain protocol that guarantees security as long as only
one of the blockchain protocols is guaranteed to work as prescribed. We stress that the
security of the protocol is guaranteed assuming that throughout the lifetime of the system, if
an assumption fails, then the other assumption is always guaranteed to hold (i.e., we do not
consider cases where the two assumptions alternate their validity).

5.1 Safe transactions
Another interesting property that we prove in our system, is that when the PoR assumption
does not hold (hence forks and double spending could be performed), honest parties that
accept the special type of transactions, that we call safe transaction, are guaranteed to
get refunded. These transactions are particularly interesting, as they can be confirmed at
the speed of the PoR chain, even if there is an undetected fork in the PoR chain, and still
guarantee that the receiver that confirmed the transaction will eventually get refunded. The
refund will be issued via a treasury. Managing this mechanism requires some care as in the
event the PoR chain forks potentially unlimited double-spending attacks could be performed.
We will discuss how this mechanism works in the next section (and refer to the introductory
section for a glimpse of this aspect of our protocol). We provide a summary of the properties
of our protocol in Tab. 1.

5.2 Main tools
We now provide a detailed description of the main tools used to design our protocol. For the
PoR (PoS) abstraction, denoted with ΠPoR (ΠPoS) we name any predicates, procedures, and
parameter x of the abstract protocol, with xPoR (xPoS). From our abstract PoR protocol ΠPoR,
we require safety with safety parameter coPoR, block liveness (with liveness parameter blivPoR),
and transaction liveness (with liveness parameter livPoR). Similarly, for our abstract PoS
protocol ΠPoS, we denote the safety parameter with coPoS = 1, the block liveness parameter
with blivPoS), and the transaction liveness parameter by livPoS. We now just need to define the
type of transactions accepted by each blockchain protocol, how the validation predicates work,
how the genesis block oracles are initialized, and what the relationship is between the PoS
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and the PoR parameters. Let the slot size of the PoR and of the PoS protocol be respectively
SlotLenPoR and SlotLenPoS. We consider the setting where SlotLenPoR << SlotLenPoS as this
captures the setting we are interested in, where the primary chain (the PoR chain) is faster
than the secondary chain (PoS). To simplify the description of our protocol we assume that
SlotLenPoS = ℓSlotLenPoR for some parameter ℓ = poly(λ) (but this simplification can be
easily avoided).

We require both chains to enjoy the following additional property that we call ∆-External
Signaling. At a high level, this property requires that if an event external to the blockchain
occurs, and all honest parties are aware of this event, then the event will be reported on the
blockchain. Most existing blockchains satisfy this property, as the nodes running the chain
can vote to claim whether a certain event occurred or not, and if the majority of the nodes
support the event (majority in terms of stake or reputation), then the event is deemed valid.

▶ Property 5.1 (∆-External Signaling). Let O be a deterministic oracle that, when queried
by a party p, with a string q (denoting a certain event), returns 1 (denoting that the event
has actually happened) or 0 (denoting that the event has not happened). The property of
external signaling for a ledger L requires the following:
1. If ASP(t) = 1 for every slot t ∈ [0, . . . , m] and O returns 1 to all the honest maintainers

of L querying the oracle with some question query in a given time slot τ ∈ [0, . . . , m−∆],
then the transaction (oracle, query) is included a part of the state of L within ∆ time
slots (i.e., accepted as a valid transaction).

2. If ASP(t) = 1 for every slot t ∈ [0, . . . , m] and a transaction (oracle, query) appears in
the view of all the honest maintainers of L, then it must be that at least one honest
party has invoked O with input query and obtained 1 as answer in a slot belonging to
the interval t ∈ [0, . . . , m].

We now describe how each individual protocol is parametrized, and then provide a
high-level and formal description of our protocol.

5.3 The properties of ΠPoR

The genesis functionality GOraclePoR is parametrized by delay = 2cqPoSℓ. GOraclePoR will
contain an initial seed, the initial reputation vector, and a set of transactions that contains
the initial balances (stake) of the parties in the system.

Other than the properties we have just mentioned, we require the PoR protocol to enjoy
this additional property. If certifyPoR certifies that a hash (hj) in the chain is subsequent
to another hash hj−1, then this implies that in the view of the honest parties running the
PoR chain, it is indeed the case that Bj−1 comes right before Bj with hj = H(Bj) and
hj−1 = H(Bj−1). This property is required to hold only if the assumption underlying the
PoR chain holds. More formally:

▶ Property 5.2 (Certificate unforgeability). If ASPPoR(t) = 1 for every slot t ∈ [0, . . . , m], then
for every j with 0 ≤ j ≤ m, no ppt adversary can create B0, cert0, B1, cert1 with B0 ̸= B1,
such that certify(status, h′, H(B0), j, cert0) = 1 and certify(status, h′, H(B1), j, cert1) = 1
where status is obtained from an honest party executing Pstatus.

We describe the type of transactions that can be parsed by the validity predicate
validityPoR, and provide a high-level description of how validityPoR works7. Formal description
of validityPoR is found in the full version.

7 All the transaction are signed, and the validity predicates accepts only transaction that are properly
signed. We assume that the check of the signatures is implicit, and avoid restating it any time that the
validation of a transaction is needed. Similarly, we assume that each transaction has a unique identifier,
and that transactions with the same identifier, coming from the same address, are rejected.
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tx = (standard, v, addri, addrs, id, σ). v is a vector of values, addri denotes the address
of the sender and addrs is a list of receiver. The transaction specifies that addrs[k] should
receive v[k] coins. σ just represents the signature of the transaction with respect to the
public-key addri.8 To validate this transaction, validityPoR simply checks if the balance of
addri is sufficient to pay the receivers by looking at all the accepted transactions so far,
and computing the balance of addri accordingly.
tx = (pledge, addri, addrj , idi, T, σi). This transaction does not specify any amount, but
just a sender/receiver address, and an expiration time T . Such a transaction is valid,
only if addri has not issued any other pledge transaction that has still a valid timer. A
timer T is valid if T ≥ t + ∆, where t denotes the current slot, and ∆ is a parameter that
we will specify later. This transaction represents a promise that the sender will pay the
receiver, even in the event of a fork. In particular, if a receiver has been the victim of a
double spending attack due to a fork on the PoR chain, this party can later complain on
the PoS chain, and ask for a refund. This refund will be taken from the system treasury,
and the refundable amount depends on the reputation of the party with address addri

(the higher the reputation is, the higher the amount of money that a party can pledge,
and hence, be used as a refund). This transaction is what will help us to create what we
have called a safe transaction. We will provide more details on these mechanisms later.
(reward, C, m, cert), this transaction contains a set C of block leaders who generated
the m-th block on the secondary chain (the PoS chain). This transaction is validated
only if the m-th block of the secondary chain contains a valid checkpoint and the leaders
(PoS block creators) are all part of the set C. Looking ahead, this transaction is used to
reward the parties that generate a block in the secondary chain. I.e., the existence of this
transaction on the PoR chain, means that all the addresses in C are entitled to receive a
reward. For simplicity, we assume that this reward is fixed and defined by the parameter
rew. We will provide more detail on this aspect on Section 6

5.4 The properties of ΠPoS

The genesis functionality GOraclePoS is parametrized by delay = 1. GOraclePoS contains an
initial seed and only one transaction (check-point, H(GPoR), 0,⊥), where h0 ← H(GPoR)
and GPoR is the genesis block of the PoR chain. We will elaborate more on each transaction
considered in our protocol but in a nutshell, the genesis block of the PoS chain contains a
checkpoint of the PoR chain. Initially, this checkpoint simply represents the hash of the genesis
block of the PoR chain. We do not specify how BlockCreatePoR works, except the following.
Let (B, C, cert) be the output of BlockCreatePoR, we require that ∀addr ∈ C∃σ ∈ cert such
that Ver(addr, h(B), σ) = 1 (i.e., we require that the block leaders provide a valid signature
of the hash of the created block).

We also require the following property to hold, which guarantees that honest block leaders
are selected relatively often.

▶ Definition 1 (Chain Quality). A blockchain protocol that follows the abstraction of Fig. 4.1
satisfies Chain Quality with parameter cq if for every t ∈ [0, . . . , m] with ASPPoS(t) = 1 and
GOraclePoS.corrupted = 0 the following occurs: at least every cq slot in the interval [0, . . . , m]
the output of BlockCreatePoS, denoted with (B, C, cert), is such that C contains the address
of at least one honest party.

8 For simplicity we just assume that an address corresponds exactly to a public-key of a signature scheme.
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We define formally the validity predicate validityPoS in the full version, and describe below
the type of transactions that can be parsed by such a validity predicate.

tx = (check-point, h, j, cert) This transaction is used to checkpoint block-hashes of the
PoR (the primary) chain on the PoS (the secondary) chain. In particular, the transaction
contains the hash h of a block generated in the PoR chain (recall that this transaction is
for the PoS chain), j is the block index, and cert represents the certificate that the block
is actually the j-th block of the PoR chain. This transaction will be accepted, only if
certifyPoR returns one (recall that certifyPoR is guaranteed to return one if a hash does
indeed correspond to a valid PoR block).
tx = (complaint, h⋆, cert⋆, j) this transaction is used when a party sees a check-point
with hash value h ̸= h⋆, with respect to the same index block (i.e., a party noticed that
his local view of the secondary chain is different from the view of the parties who did the
checkpointing). If this transaction is accepted, then all the parties running the PoS chain
will understand that a fork happened in the PoR chain, and will go in a so-called recovery
mode. We stress that the only way that a complaint can be accepted is if indeed there
is a fork on the primary chain (hence ASPPoR does not hold anymore). Indeed, when
ASPPoR holds, then no valid complaint can be generated due to the property of certificate
unforgeability (Property 5.2). Also in this case, we will elaborate more on this in the next
section.
tx = (payback, addrj , tx, σ) this transaction is issued by an honest party pj only in the
following situation

pj is in recovery mode.
pj accepted a transaction tx′ = (standard, addri, ·) that was discovered to be part of
a fork.
let t be the slot at which pj accepted the transaction tx, then the PoR chain contained
a transaction tx = (pledge, addri, addrj , idi, T, σi) with T ≥ t + ∆.

In summary transaction can be accepted only when in recovery mode. If the transaction
is accepted, it will allow pj to obtain whatever amount was specified in tx′, by either
taking the coins from addri account or from the treasury system if this money is not
available (mode detail will follow). This is another transaction that we will use to support
safe transactions.
tx = (liveness-violation). This transaction appears on the ledger only when the
majority of the parties have noticed a liveness violation on the primary (PoR) chain.
In practice, this is realized by making parties vote about whether they think the PoR
chain has a liveness issue. As mentioned, we abstract this voting aspect by relying on
Property 5.1
tx = (block-request, i). This transaction is accepted only if the ledger has already
accepted a transaction tx′ = (liveness-violation), otherwise it is ignored. The trans-
action is issued by a party that did not see the i-th PoR block (this can happen only
when the security of the primary chain has been violated), and requests this block to
appear on the secondary chain (PoS). An honest party that sees such a transaction,
which instead has seen the i-th PoR block B, can react by issuing the transaction
block-request-respose, i, B).

5.4.1 Instantiations of ΠPoR and ΠPoS below
We instantiate ΠPoR with the PoR protocol of [26] (without its fallback mechanism to a PoS
chain). Intuitively, Thm. 5.2 holds since when the assumption underlying the PoR security
holds (i.e., accuracy of the reputation system), honest PoR parties agree on the latest block
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without ambiguity. This is guaranteed by the fact that a public lottery is run to select n

committee members, and a block is accepted if the majority of the committee members sign
the block. An honest member of the committee will never sign two conflicting blocks for the
same slot. Hence, a certificate in this case can be thought has been the signature of all the
committee members.

Any PoS protocol where chain quality, chain growth, and consistency hold (under as-
sumption on the honest (super-)majority of stake and synchrony), will suffice as our fallback
chain ΠPoS. This includes, for example, the Algorand [21] or Cardano/Ouroboros [24] PoS
protocols. Note that the choice of PoS can have different advantages and disadvantages – for
example, Algorand satisfies instant finality (all transactions that appear on a valid block are
final) [2], but is designed assuming a higher fraction of honest parties.

6 Our Hybrid PoR/PoS protocol

To describe our protocol, which we denote with Π, we use the PoR and PoS abstract protocols
that we have introduced in Section 5.3 and Section 5.4, which we have denoted with ΠPoR
and ΠPoS respectively. The formal description of our protocol is provided in the full version;
here we provide a more informal description of how the protocol works.

6.1 High-level overview
Our protocol has two main modes of operation: normal and recovery mode. At a high level,
in normal mode each party will run the two protocols ΠPoR and ΠPoS using ΠPoR as the
primary chain (where the transactions will be posted), and using ΠPoS only to checkpoint the
hash of the block generated via ΠPoR. In more detail, any time that a block B is generated
in the PoR chain (let us say that B is the k-th block), the maintainers issue a transaction
(check-point, H(B), j, cert) (recall that cert is used in the secondary chain to certify that
H(B) does correspond to a hash of an actual block of the PoR chain.

6.1.1 Fork detection
If any party pj executing the protocol notices that the hash of, for example, the k-th block
in his PoR chain differs from the hash checkpointed on the PoS chain, then this party creates
the transaction tx = (complaint, h⋆, cert⋆, j), where h⋆ is the hash of the block in the local
chain of pj , and cert⋆ is the certificate pj obtained when the k-th block of the PoR chain
was generated by running BlockCreatePoR. Then pj submits tx via TxSubmitPoS(tx).

Once tx is accepted by the PoS chain, then all the parties running our protocol will notice
that the PoR chain had a fork, hence, they will enter in what we call Recovery Mode. In
this mode, the parties will discard all the PoR blocks that have been checkpointed after the
slot ∆ = 2livPoS. This guarantees that the chopped PoR chain is a chain agreed upon by all
the honest parties, and this is for the following reasons. Let us say that at time t an honest
party noticed that his local PoS chain was inconsistent with the checkpoint (i.e., it noticed a
fork). This means that there could have been something wrong with the PoR chain already
livPoS slots earlier (this is because in the worst case, an honest party checkpoint is included
in every livPoS slots). Moreover, once a fork is detected, the complaint can take up to livPoS

slots. Hence, chopping the PoR chain of all the blocks generated in the latest ∆ = 2livPoS

slots guarantees that all the parties in recovery mode agree with the current view of the
PoR chain. We note that we can use cert and cert⋆ to eventually identify (malicious) block
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leaders that accepted different block headers for the same slot. This information can be used
to put to 0 the reputation of these parties. Formal details on fork detection is found in the
full version.

6.1.1.1 Recovery mode

During Recovery Mode, the main goal of the protocol is to refund parties that were victims
of double spending (due to the forks happening) while still allowing parties to post new
transactions, but at the speed of the secondary chain (the PoS chain). To explain how
we refund parties that are victims of double spending in the recovery mode, we need to
introduce the type of transaction accepted in our system. In our protocol, we distinguish
between two types of transactions: standard and safe transactions. A party pi with address
addri, to issue a standard transaction and pay a party pj some amount of coins v, creates
the transaction tx = (standard, v, addri, {addrj}, id, σ), where id is a unique identifier, and
σ is the signature of the transaction for the secret key addri. A sender can also specify a
vector of receivers and a vector of coins to pay multiple parties via a single transaction.
Then pi invokes TxSubmitPoR(tx) (recall that TxSubmitPoR is the protocol that a party can
use to submit a transaction to the PoR chain). Once the receiver (with address addrj) sees
tx appearing in his local chain, then it declares the transaction as valid (recall that PoR has
instant finality). This is the most basic type of transaction that a blockchain protocol could
offer. However, if a fork happens, then a malicious pi can spend more than he has actually
available by creating a fork (this attack is often referred to as double spending). We have
argued how our protocol can detect a fork (using the PoS chain), and let parties agree on a
common view of the PoR (pre-fork), and continue running the protocol on the PoS chain.

In Sec. 7, we describe two sources of funds to refund the victims of double spending.
The first is simple: we can require that if a party wishes their transaction to be instantly
confirmed, they must have pledged a sufficient amount of collateral towards the transaction
receiver (the coins pledged will then be locked). The second method is to use system
funds (called the treasury) to pay back victims of double spending, which we detail the
implications of in Sec. 7. Intuitively, when pi wants to pay pj , they issue a standard
transaction tx = (standard, v, addri, {addrj}, id, σ). Then, pj accepts the payment if it
appears on a PoR block, and if there is a sufficient pledged collateral to pay for tx if
a conflicting transaction is confirmed instead. Such a pledge is captured by transaction
tx⋆ = (pledge, addri, addrj , T ), where T is an expiry timer, which must be checkpointed on
the PoS chain. If a conflicting transaction indeed is confirmed, a fork (and double spending)
happens, and the system goes into Recovery Mode, then pj creates a payback transaction
tx′ = (payback, addrj , tx, σ) to submit it on the PoS chain by invoking TxSubmitPoS(tx′)
(recall that TxSubmitPoS is the protocol that a party can use to submit a transaction to the
PoS chain). The PoS chain will accept this transaction now, and it will use the locked coins
to pay pj . We note that if no fork happens, pi can keep issuing safe transactions to pj as
long as the timer in tx⋆ has not expired. Moreover, pj , upon seeing tx part of his local
chain, it can immediately assume (at the speed of the PoR chain) that he will receive the v

coins (recall that tx was a payment of v coins). pj just needs to be careful to only accept
unconfirmed transactions whose total amount does not exceed the pledged amount. For more
detail on how these transactions are managed, we refer to the part in the full version named
“Normal mode for users: accepting safe transactions”.
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6.1.1.2 Finalizing the recovery

he Recovery Mode lasts a fixed number of rounds that we denote by rectime. After that,
the maintainers will try to restart the PoR chain. This is done by computing the balances
of all the parties using the transactions included in the pre-fork PoR chain (that is not
extended in Recovery Mode) and using the standard transactions that have been included in
the PoS chain, and the transactions (payback, ·) (included in the PoS chain as well). For
every balance balancei associated to a party pi, each maintainer creates a special transaction
txi = (0, addri, balancei). Then it will detect the parties that tried to double spend. This
can be easily done as the balances of these parties will be less than 0. This is because every
receiver will submit a transaction of the type (payback, ·, tx), where tx is an attempt of
double spending from some corrupted sender pi. When computing the balances, we consider
all the transaction tx wrapped in payback transactions, hence, the balance of a party that tried
to double spend will necessarily become less than 0, unless he paid his dept via a standard
transaction during the recovery mode. For all the parties that have been detected double
spending, the maintainers set their reputation to 0 thus obtaining a new reputation vector
statusPoR. Then each maintainer creates a transaction tx⋆ = (reputation, statusPoR), creates
a new genesis block GPoR that includes the transactions (tx⋆, {txi}i), and the seed computed
by hashing the latest block generated in the PoS chain. Then checkpoint h← H(GPoR) on the
PoS chain (by submitting a transaction (checkpoint, h, 0) via TxSubmitPoS). Each party
waits livPoS slots, to make sure that all the parties have the new genesis block checkpointed,
and go in normal mode, using the new genesis block to run the PoR protocol from scratch.
Please see full version for a formal description.

Block and Transaction Liveness Violation. We refer to the introductory part of the paper
for an informal description of how we guarantee block and transaction liveness, and our
full version for a formal description of this, as well as how rewards for the PoS chain are
generated and exported to the primary chain.

7 Collaterals for Fast Payments

Recall that to achieve safe transactions that can be accepted by a receiver pj instantly, the
sender must pledge an amount of coins to the receiver, which will be used to pay the receiver
in case of a double-spend. We describe two sources for the pledged coins (which can be
used in conjunction with each other): (1) The sender pi can deposit collaterals using their
own coins. (2) We design a system that manages a pot of funds called the treasury used for
pledging, where the amount allocated to each pledge is proportional to (a function of) the
pledger’s reputation. As is with the rest of the paper, ∆← 2livPoS, where livPoS is the PoS’s
liveness and ∆ is the number of slots to finalize a PoR block in the hybrid protocol. We refer
to the full version for formal details, discussions and proofs.

7.1 Fast Payments without Depositing Collateral
We leverage reputation in PoR as a “credit-score” to allocate system funds (which we call
the treasury) to parties as the collateral. We define the following operations on the treasury.

Initialization: We hard-code a starting amount T0 in the treasury (e.g., T0 = 0).
On (CheckTreasury, chain): Returns the amount of coins in the treasury according to
PoR chain chain at latest slot t. The amount returned is T0 plus the total inflow to the
treasury, minus the total outflow from the treasury.

AFT 2025



19:20 Two-Tier Black-Box Blockchains and Application to Instant Layer-1 Payments

The total outflow is the sum of all amounts in payback transactions (i.e., those labeled
payback). Similarly the total inflow is the total amount of coins entering the treasury
(e.g., through transaction fees, as a percentage of block rewards, etc. – for generality here
we don’t specify a particular mechanism for inflow).
On (CheckAllocation, chain, p, ∆): Returns the amount allocated to party p from the treas-
ury, according to PoR chain chain. This returns the output of TreasuryAllocation∆(p, chain).
It returns an amount proportional to the reputation of p, based on confirmed blocks
in the PoR; for formal description please see full version. Honest parties will call this
operation with ∆ = 2 · livPoS.

Accepting payments using collateral from the treasury. Suppose a party pj receives
a transaction from pi to pj at slot t. Then pj can accept this as a safe transaction if it
appears on a PoR block and (1) a pledge is checkpointed in the hybrid protocol (∆ slots
have passed without a PoR fork detected), and (2) the total amount in accepted, not-yet-
checkpointed transactions from pi to pj would not exceed the allocated collateral from the
treasury. Formally, for (2) pj verifies that, if pj accepts this transaction, then the total
amount in accepted transactions that are from pi to pj , between slots t−∆ and t, is at most
(CheckAllocation, chain, pi, ∆). Here chain is pi’s PoR chain at slot t.

Recovery phase and payback using collateral from the treasury. Suppose a party sees a
payback transaction (which is processed on the PoS chain during recovery phase) claiming
pi owes v coins to pj . This transaction is valid if we observe on the PoS chain: (1) two
conflicting transactions that prove pj is the victim of double-spending by pi for amount v, (2)
pi pledged to pj , and (3) (CheckAllocation, chain, p, ∆) ≥ v, where chain is the most recent
PoR chain in the honest party’s view before the recovery phase.

7.1.1 Defining and Proving Desiderata for Treasury Allocation
We list and prove the following natural desiderata for a system which allocates system funds
(a treasury) to parties, under both static and dynamic reputation systems.

Allocation agreement. For any party p and PoR chains chain and chain′

held by any two honest parties at some slot t, (CheckAllocation, chain, p, ∆) =
(CheckAllocation, chain′, p, ∆)
Allocation persistence. Let chain1 be the PoR chain held by some honest party at slot
t1 and and chain2 be the PoR chain held by some honest party at slot t2 > t1. Then unless
all honest parties end recovery phase at some t ∈ [t1, t2], (CheckAllocation, chain1, p, ∆) ≥
(CheckAllocation, chain2, p, ∆)
Treasury always sufficient. The value returned by (CheckTreasury, chain) for a PoR
chain held by an honest party’s view will be non-negative.
Fair allocation. If current slot is t and parties pi and pj both have the
same reputation according to chain at t − ∆, then (CheckAllocation, chain, pi, ∆) =
(CheckAllocation, chain, pj , ∆).
No incentives to misbehave for a period of ∆t. This property holds if, for any
pair ph and pa with the same stake and reputation, where ph is an honest party and pa a
dishonest party who had their reputation zeroed out (which would be observed by all
honest parties during recovery) at some time ta, the utility uta,∆t(pa) < uta,∆t(ph). The
utility u is defined below:

uta,∆t(p) =
∑

t∈[ta,ta+∆t]

rewPoR · Pr(IPoR
t,rt

) +
∑

t∈[ta,ta+∆t]

rewPoS · Pr(IPoS
t,st

) + fprofit · Pr(D)
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Here, IPoR
t,rt

is the event where p has reputation rt at slot t and is chosen as a PoR block
creator for slot t by an honest party in the hybrid protocol (and rewPoR is the block
reward in PoR); IPoS

t,s is the analogous event for the PoS where st is the stake of party
p at slot t (and rewPoS is the block reward in PoS). Pr(D) is the probability that p has
double-spent (make another party p′ accept a transaction which is later found to be
double-spending), and fprofit is the amount of coins gained by p by double-spending.
Informally, this says that over a period of ∆t, the honest party’s total expected utility
from PoR and PoS block rewards (honest parties don’t double-spend), is greater than the
expected utility of the adversarial party.

In particular, the first three properties imply that collateral from the treasury can be treated
in the same way as collateral pledged/locked using a party’s own funds.

▶ Lemma 2. Using a treasury scheme that is always sufficient, and has allocation persistence
and agreement, the hybrid protocol achieves payment finality.

Case 1: Static Reputation System. We first prove the above desiderata in a static
reputation system, for the operations we defined on our treasury. This is the case when
reputation and number of parties do not change, except the reputation of misbehaving parties
are zero’d out during recovery phase, after all double-spent transactions are paid back.

Intuitively, our allocation algorithm TreasuryAllocation is fair – it allocates the treasury
proportionally to a function of the reputation. Moreover, it allocates based only on the
confirmed checkpointed blocks in the PoR chain (so honest parties agree on the allocation,
whose amount persists until the end of recovery phase where all double spending transactions
are already resolved). For “no incentives to misbehave”, we require an extra assumption that
the amount in the treasury (and thus the amount allocated to each party) is not too large,
to prevent incentives to double-spend.

▶ Theorem 3. For the treasury specified in Sec. 7.1, under a static reputation system:
allocation agreement, allocation persistence, treasury always sufficient, and fair allocation
are satisfied with overwhelming probability. Moreover, if for any ∆t, (CheckTreasury, chain) <

m ·∆t · rewPoR for any chain held by an honest party (and m is the number of parties chosen
by the PoR lottery), there are no incentives to misbehave for ∆t.

We defer the discussion on dynamic reputation to the full version.
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