Zero-Knowledge Authenticator for Blockchain:

Policy-Private and Obliviously Updateable
Kostas Kryptos Chalkias &
Mysten Labs, Palo Alto, CA, USA

Deepak Maram &
Mysten Labs, Palo Alto, CA, USA

Arnab Roy =
Mysten Labs, Palo Alto, CA, USA

Joy Wang &
Mysten Labs, Palo Alto, CA, USA

Aayush Yadav &
George Mason University, Fairfax, VA, USA

—— Abstract

Transaction details and participant identities on the blockchain are often publicly exposed. In
this work, we posit that blockchain’s transparency should not come at the cost of privacy. To
that end, we introduce zero-knowledge authenticators (zkAt), a new cryptographic primitive for
privacy-preserving authentication on public blockchains. zkAt utilizes zero-knowledge proofs to
enable users to authenticate transactions, while keeping the underlying authentication policies
private.

Prior solutions for such policy-private authentication required the use of threshold signatures,
which can only hide the threshold access structure itself. In comparison, zkAt provides privacy for
arbitrarily complexr authentication policies, and offers a richer interface even within the threshold
access structure by, for instance, allowing for the combination of signatures under distinct signature
schemes.

In order to construct zkAt, we design a compiler that transforms the popular Groth16 non-
interactive zero knowledge (NIZK) proof system into a NIZK with equivocable verification keys,
a property that we define in this work. Then, for any zkAt constructed using proof systems with
this new property, we show that all public information must be independent of the policy, thereby
achieving policy-privacy.

Next, we give an extension of zkAt, called zkAt™ wherein, assuming a trusted authority, policies
can be updated obliviously in the sense that a third-party learns no new information when a policy
is updated by the policy issuer. We also give a theoretical construction for zkAt™ using recursive
NIZKs, and explore the integration of zkAt into modern blockchains. Finally, to evaluate their
feasibility, we implement both our schemes for a specific threshold access structure. Our findings
show that zkAt achieves comparable performance to traditional threshold signatures, while also
attaining privacy for significantly more complex policies with very little overhead.

2012 ACM Subject Classification Security and privacy — Cryptography; Security and privacy —
Authentication; Security and privacy — Privacy-preserving protocols

Keywords and phrases Blockchain privacy, authentication schemes, threshold wallets, zero knowledge
proofs

Digital Object Identifier 10.4230/LIPIcs.AFT.2025.2
Related Version Full Version: https://ia.cr/2025/921

Acknowledgements The authors thank Foteini Baldimtsi for her feedback on the manuscript.

© Kostas Kryptos Chalkias, Deepak Maram, Arnab Roy, Joy Wang, and Aayush Yadav;
37 licensed under Creative Commons License CC-BY 4.0

7th Conference on Advances in Financial Technologies (AFT 2025).

Editors: Zeta Avarikioti and Nicolas Christin; Article No. 2; pp. 2:1-2:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kostas@mystenlabs.com
https://orcid.org/0000-0002-3252-9975
mailto:deepak@mystenlabs.com
https://orcid.org/0000-0001-5324-6889
mailto:arnab@mystenlabs.com
https://orcid.org/0009-0005-3770-9982
mailto:joy@mystenlabs.com
https://orcid.org/0009-0007-9002-3191
mailto:ayadav5@gmu.edu
https://orcid.org/0009-0009-8051-2156
https://doi.org/10.4230/LIPIcs.AFT.2025.2
https://ia.cr/2025/921
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

2:2

Zero-Knowledge Authenticator for Blockchain

1 Introduction

Blockchain technology, with its decentralized architecture, offers a transparent and immutable
ledger of transactions, fostering trust among participants without the need for centralized
intermediaries. To authenticate a blockchain transaction, a user creates a digital signature
on the transaction. If said signature verifies under the user’s signature verification key, then
the transaction is permanently added to the blockchain by the validators.

This transparency, however, often comes at the cost of privacy, as transaction details,
participant identities, and contract logic are exposed to public scrutiny on most blockchains.
While there has been significant progress in enabling confidential transactions with privacy-
preserving blockchains, such as Zcash and Monero, and mixing services [28, 20, 19, 30, 27],
practical privacy concerns extend beyond just transaction details. For instance, public access
to account authentication logic makes it easier for malicious actors to design targeted attacks.
Consider, for example, threshold multi-signature [32], which is a popular authentication
mechanism supported by most blockchains for protecting high-value transactions. In threshold
multi-signature, n different signing keys are generated such that signatures under at least
t < n of those keys are needed to authorize a transaction. However, this reveals the access
structure (n,t) giving critical information to attackers who learn exactly how many accounts
they need to compromise.

In this work, we investigate approaches to conceal the account authentication logic (i.e.,
the policy) on smart-contract supporting public blockchains such as Ethereum, Solana, Aptos
and Sui. A popular solution to hide the access structure is to enforce it off-chain with
threshold signatures [17, 18] issued by a set of custodians or guardians. In such a threshold
authenticator!, a single key is secret-shared between n parties such that any ¢ parties can
generate partial signatures, and aggregate them into a complete signature. Crucially, this
final signature looks identical to a signature generated by the original key. Thus, threshold
authenticators hide the access structure (both ¢ and n) and inherently obscure the identity of
the signers within a group against blockchain transaction observers. This additional privacy
makes them a preferable alternative to the aforementioned multi-signature authenticators, as
noted by a recent user study [38].

The need for complex authentication policies. Threshold-wallets (i.e., cryptographic
wallets with authentication enforced via threshold signatures), however, do not support the
broad range of authentication needs seen in practice. A recent example is that of account
abstraction [43] which allows for programmable access to user accounts via smart contracts
instead of relying exclusively on private keys. For one, threshold-wallets — by definition — only
support a threshold access structure rather than arbitrary boolean formulae. It is also not
possible to combine existing keys created under different signature schemes, so for instance,
it is not possible to create a 1-out-of-2 access structure between an ECSDA and an EADSA
key under existing threshold signature schemes. Further, some implementations of threshold
EdDSA wallets can inadvertently reveal that the wallet is a threshold-wallet rather than a
single key?!

In practice, authentication policy designers may want to use transaction data to select an
appropriate access structure so as to balance usability and security concerns. Which is to say
that they might, for instance, want to use 2-out-of-3 keys for high-value transactions above

L An authenticator is simply an authentication mechanism which encodes a general access structure in
the form of an authentication policy.

2 Many threshold EADSA libraries introduce randomness in signatures on retries. So if different signatures
for the same message are observed, it can reveal the use of a threshold-wallet [34].

K. Kryptos Chalkias, D. Maram, A. Roy, J. Wang, and A. Yadav

a certain amount, and only 1-out-of-3 keys otherwise; or they might require authorization
from a special administrator key for certain transactions. Rich contextual policies like these
are commonly seen in smart-contract based authenticators [42, 3] (where the authentication
policy is expressed in a smart contract) and off-chain authenticators [8, 24] (where the
authentication policy is enforced off-chain by a trusted party). Finally, zero-knowledge proofs
offer similarly complex authentication policies with some limited degree of privacy for the
inputs to the policy, but not the policy itself [40].

To summarize, existing threshold authenticators offer some amount of privacy but only
support very specific authentication policies. On the flip side, smart-contract authenticators
leverage the rich language support to encode arbitrarily complex policies, but cannot hide the
authentication policy; and zero-knowledge proofs offer only limited privacy but for general
authentication policies. This is also summarized in Table 1 below.

This observation leads to the central question that motivates this work: can we build
private authenticators that are capable of hiding arbitrarily complex policies?

Our results. To address this question, we design a new class of authentication schemes to
validate user transactions on the blockchain while hiding the underlying (authentication)
policy. Since they leverage zero-knowledge proof systems as the core building block, we refer
to these schemes as zero-knowledge authenticators (zkAt). We summarize our contributions
below:

(1) Formalizing zero-knowledge authenticators: we formalize the notion of zero-
knowledge authenticators with policy-privacy for policies expressible as general NP
statements. Specifically, the property of policy-privacy guarantees that an adversary
learns nothing about the underlying policy besides its public inputs.

(2) Constructing zero-knowledge authenticators: we give a practical construction
for zkAt by building on the seminal work of Groth [29], known colloquially as simply
“Groth16”. More precisely, we define the property of verification-key equivocation and
show that non-interactive zero-knowledge proof systems (NIZK) with this property can
be generically used to instantiate zkAt. Then, we modify the Groth16 construction so
that it satisfies verification-key equivocation, thus yielding a zkAt.

(3) Oblivious policy updates: once policy-privacy has been achieved, a second interesting
question emerges: can policies be updated without leaking any new public information?
As our third contribution, we resolve this question by introducing zkAt™, which extends
our standard zkAt by additionally allowing for such oblivious policy updates. We also
give a theoretical construction for zkAt™ using recursive NIZKs.

(4) Demonstrating practicality: we implement both zkAt and zkAt™, and evaluate them
against similar (but less expressive) threshold signatures. Our results demonstrate that
zkAt offers comparable performance, even for more complex policy semantics, and as the
underlying NIZK is a succinct argument of knowledge (zk-SNARK), the final proof size
is independent of the policy.

1.1 Application overview

Our stated goal is to build a private authenticator for transactions on public blockchains.
More precisely, we want to build an authenticator for arbitrarily complex policies, such that
the underlying policy remains hidden from all parties that did not generate the policy and/or
the proof. Before delving into the technical details, we explore two scenarios where zkAt can
be applied.

2:3

AFT 2025

2:4

Zero-Knowledge Authenticator for Blockchain

Table 1 A comparison between authenticators. “Expressiveness” refers to whether complex
policies can be specified. “Policy anonymity set” indicates the level of policy privacy achieved: None
(no privacy), a pre-defined policy set (some privacy), all policies (full privacy).

Type Expressiveness anorllji?rllliiil/ set Oblivious updates
Multi-signature Limited None N/A
Threshold Limited Pre-defined N/A
Smart-contract Rich None N/A
Zero-knowledge Rich Pre-defined X

zk At Rich All X

zkAtT Rich All v

(1) Delegated transactions. High-level executives at an organization hold shared custody
of the organizational finances in the form of a threshold-wallet. The board members of
the organization vote on the policies required to authenticate transactions made with
the wallet. They might, for instance, require an authentication policy stating that all
“large” transactions initiated by the company must be signed by all the executives and
at least 50% of the board. For privately-held organizations, it may be in their interest
to keep such policies hidden from the public as an added layer of protection for the
organizational funds.

(2) Self-custody solutions. As another example, consider an individual user who wants
to protect their assets using a policy that requires, for instance, the user’s valid JSON
web tokens (JWT) issued by two-out-of-three OpenID providers (cf. [4] for a discussion
on JWT and OpenlD) the user has previously registered, in order to authenticate a
transaction.

In both examples, zkAt makes it more challenging for attackers to mount a successful
attack by hiding all information about the authentication logic and access structure. In
particular, in the first example, not only do attackers external to the organization not know
how many signatures are needed to authenticate a transaction, they do not even know
whether this threshold varies by amount and, if so, what the amount is! Similarly, in the
second example, the attackers don’t know which OpenID providers the user has registered
and, by extension, which accounts they need to compromise.

» Remark 1.1. We wish to emphasize that, more generally, in the scenarios we envision, the
authentication policies are hidden from the validators as well as other (public) third-parties.
At first brush, this may seem counter-intuitive — how can a validator validate a transaction
without knowing the underlying policy? Our claim is that there is no reason for the validator
to know the policy at alll Whatever the policy may be, a validator’s only concern is to ensure
that the transaction satisfies it, i.e., given the transaction as input, the verification algorithm
accepts under the policy issuer’s verification key. Importantly, as both our examples illustrate,
the policy issuer could be the user (prover) themselves, and it is in their interest to design
strong authentication policies.

1.2 Technical overview

To illustrate our technical ideas, we will begin by first considering a simple approach where
we only attempt to hide the user’s secret credentials.

K. Kryptos Chalkias, D. Maram, A. Roy, J. Wang, and A. Yadav

A simple first approach. The idea is to instantiate a general-purpose zero-knowledge proof
system (such as [29, 25]) with the policy circuit as input to the setup. As a concrete example,
to create a 1-out-of-2 multi-signature between two existing on-chain accounts while also hiding
the identities of the two multi-signature participants, a user can proceed in the following
manner:
Setup. Create commitments ¢y, ca to two addresses, i.e., ¢; = Commit(addr;; r;), where
each address addr; is a signature verification key for some signer. Create a designated-
prover NIZK (DP-NIZK) proving key and (proof) verification key pair (pk, vk) for the
policy P given by the relation,

x = (c1, 2, tXpp),
w = (addr, r, 0, txpy)

¢ = Commit(addr;r) V
¢o = Commit(addr; r)
A Sig.Verify(addr, txpb||[txpy, o) = 1

where txpp (resp. txpy) is the public (resp. private) part of the transaction. The proof
verification key vk acts as the user’s on-chain address.

Signing. Split the transaction into public and private components, as determined by
the privacy requirements. Collect signature o on the full transaction txpp||txpy from
one of the two accounts addr = addr; or addr = addry. Generate a ZK proof m =
ZK.Prove(pk, (c1, ¢2, tXpb), (addr, 7, 0, txpy)) proving that the policy is satisfied or, in other
words, the signature verifies with one of the two addresses.

Thus the resulting signature is nothing but a zero-knowledge proof, and the privacy
guarantee for the private inputs follows straightforwardly from the zero-knowledge property.
Notably, the above sketch already permits more expressive policies than threshold signatures
albeit without hiding the policy — the fact that P is a 1-out-of-2 authentication policy is
known to the public, however the actual addresses remain hidden thanks to the hiding
property of the commitment (as long as r1 and ro are secret), as do the private inputs to the
circuit.

Next, in order to hide the policy itself, the most obvious solution would be to universalize
the circuit. For example, we could make the circuit do n = poly(\) signature verifications
irrespective of the policy. This would allow policies that use up to n signatures to use the
same circuit. In effect, the “policy anonymity set” consists of all policies that use up to n
signatures. While this straw-man approach works to an extent, it results in poor signing
performance (even if someone’s policy only uses O(1) signatures, they need to verify all n to
generate the signature). Moreover, as policies become more expressive, the policy anonymity
set grows exponentially (if there are m possible triggers, a universal circuit would have to
verify all the 2™ possibilities). Thus the signing overhead for our simple first approach scales
proportionally to the size of the policy anonymity set, resulting in an unsatisfactory trade-off
between privacy and performance.

Achieving efficient policy privacy. In order to achieve policy-privacy without sacrificing
performance, we must ask a more fundamental question about our sketch above (without
the universalized circuit): assuming that the proving key is held privately by the user, do
the verification key and proof reveal any non-trivial information about the policy?

A priori, it is not at all obvious whether a zkAt is directly constructible from any existing
NIZK schemes. So, as a first step, we must formalize our, presently abstract, policy-privacy
property. To that end, we define a new property for NIZK proof systems, which we call
verification key equivocation (vk-equivocation). At a high level, in the vk-equivocation
experiment, an adversary — holding a proof verification key — must identify which of the two

2:5

AFT 2025

2:6

Zero-Knowledge Authenticator for Blockchain

policies (of its choice) was an honest proof created with respect to, for a statement (also of its
choice) that satisfies both policies. We find this to be a novel and practically useful property
that, to the best of our knowledge, has not been previously considered in designated proof
systems. The crucial observation is that if the underlying NIZK has equivocable verification
keys, or in other words if the verification key is independent of the underlying relation (which
encodes the policy), then a zkAt (instantiated according to our simple first approach) hides
the policy since the proof is already zero-knowledge!

Our next task then is to develop such a proof system with vk-equivocation. For this, we
turn to the work of Groth [29], that describes a NIZK for quadratic arithmetic programs
(QAPs) from pairing-based assumptions (cf. § 2.3 for a description of the scheme). In
particular, we find that a simple modification to Groth16 is sufficient to achieve this property.
At a high level, our main observation is that the only component linking the verification
key to the underlying relation are the evaluations of the QAP polynomials at a random
point x; and as it turns out, we can interpolate fresh polynomials that behave exactly as
the original ones on the characteristic points (so that they describe the same arithmetic
circuit), but additionally, also evaluate at = to a priori uniformly chosen values. These
fresh polynomials now define an updated QAP. This essentially fixes the evaluation of the
polynomials at = independently of the relation, and consequently the resulting verification
key is made completely independent of the updated QAP. Most notably, this modification
affects no change to the proof verification function, thus making it fully compatible with
existing Groth16 verifiers!

The overall workflow for setting up zkAt keys should thus be:

1. Choose a policy and encode it into a circuit,
. Run the modified Groth16 setup to generate the trapdoor, proving and verification keys,
3. Delete the trapdoor (as we explain shortly, if storing a sensitive secret is acceptable and

N

oblivious policy updates are desired, then the trapdoor can be persisted); and
4. Store the proving key, and publish the verification key as the on-chain address.

Interestingly, unlike in most other use cases of Groth16, the presence of a trusted setup
phase is not a problem. This is because it is in the interest of the user, who is the trusted setup
generator, to delete the trapdoor safely as otherwise their account could be compromised.

Updating policies obliviously. Policy issuers may want to be able to update their policies
for any number of reasons, such as for operational reasons such as periodic key rotation. A
trivial way to do this, of course, is to issue a fresh set of keys with respect to the new policy.
However, recall that the verification key acts as the user’s on-chain address, and thus the
trivial approach would require updating user addresses every time a policy is changed. It is
therefore desirable to grant policy issuers the ability to update policies without having to
change the verification keys. We call this feature oblivious updateability.

Interestingly, our Groth16-zkAt already achieves oblivious updateability in a limited sense
— the idea is to retain the trapdoor for our modified proof system (in cold storage), so that
new proving keys can be generated at will. Old policies and the corresponding proving keys
can then be retired by adding a clause within the policy circuit to check that the current
time is less than a fixed expiry time (this assumes that the current time is accessible as a
public input, a feature commonly available on most blockchains).

However, persisting the trapdoor carries significantly more risk as a leaked trapdoor breaks
security. Moreover, we only know our Groth16-zkAt to be securely updateable assuming that
an attacker cannot access two different proving keys corresponding to the same verification

K. Kryptos Chalkias, D. Maram, A. Roy, J. Wang, and A. Yadav

key, but in situations such as oblivious policy updates, this is not necessarily the case — a user
(prover) with two proving keys for the same verification key can learn non-trivial infomation
about the trapdoor and possibly break soundness of the NIZK.

Maliciously-secure oblivious policy updates. The upshot of this is that we must extend our
zkAt definition so as to realize maliciously-secure policy updates in the strongest sense, i.e.,
one where the adversary is given access to an update oracle, which returns updated proving
keys (corresponding to the same verification key) for policy updates of the adversary’s choice.
We call the extended primitive that satisfies the stronger update security, zkAt™.

The main technical challenge in constructing a zkAt* is to somehow fix the proof
verification key across policy updates since it acts as the user’s on-chain address while
securely updating the proving key. As we just explained, however, the Groth16-zkAt approach
does not quite work, so we approach this problem from a new direction. As usual, during
authentication, the user will still compute a proof 7; that the transaction satisfies the
underlying policy using a (not necessarily designated-prover) NIZK. The astute reader
may observe that the user cannot send this proof in the clear, since it obviously contains
information about the policy. Indeed, instead the user recursively composes this proof with
another “outer” NIZK proof 7o, essentially proving that it has a proof that the transaction
satisfies the policy. Notably, as this outer NIZK has the same structure for any policy,
there need only be a single global common reference string (CRS), crsp that can be used to
generate and verify outer proofs for all users.

Observe, also, that the policy can now be updated obliviously, since crsp does not depend
on any policy specific information. Unfortunately, this construction is incomplete, since there
are no clear candidate public keys that could play the role of a user address. One might
again be tempted to set the “inner” NIZK proof’s verification key as the user’s address, but
remember that this is not possible if we want oblivious updates. Instead of a proof verification
key acting as the user’s on-chain address, we let it be given by a signature verification key
vk, for a signing-verification key pair (sk,vk) generated by the user. Now, in addition to
the inner proof 7y, the user must additionally compute a signature ¢ on the inner proof’s
CRS, crsy, and then, in the outer proof, also prove that o verifies under vk. Thus, the public
instance for the outer NIZK is the address vk along with any other public transaction data,
and the private witness is crsy, 7y and o.

In order to update a policy, the policy issuer simply computes a fresh crs; for the new
policy and signs it with its secret signing key sk. Clearly, this reveals no information regarding
the update on the chain. Moreover, this construction has maliciously-secure policy updates
by soundness of the both NIZKs.

We remark that in applications where the policy issuers are distinct from the users
(which, recall, need not always be the case) there does arise a subtle issue with this approach,
namely that a user holding an older proving key can still authenticate with respect to that
policy. This, however, is easily circumvented by having the policy issuer additionally sign an
arbitrarily chosen tag that the user must prove belongs to a public set of currently accepted
tags, and has the benefit of allowing policies to expire gracefully.

1.3 Related Work

Existing blockchain authentication methods. Threshold [17, 18, 33, 6, 41, 2] and multi-
signing [39, 9] are commonly used authentication mechanisms in blockchain settings. Our
solution offers all the same benefits of threshold-based solutions such as privacy of signers,
compact signatures while also capturing more complex policy semantics beyond the threshold.

2:7

AFT 2025

2:8

Zero-Knowledge Authenticator for Blockchain

Moreover, with our zkAt, one can do this with pre-existing signing keys and without requiring
any expensive distributed key-generation, a pre-requisite for threshold signatures. Smart-
contract based authenticators [3, 42] (sometimes called account abstraction wallets [43]) are
popular for their flexibility and security features, for example, account recovery, flexible
policies for high-value transactions, ability to change policies over time. However, these
offer no notion of privacy. Interestingly, zkAt can be used to turn any smart-contract based
authenticator private.

Attribute-based authentication. Another common authentication mechanism is based on
user attributes satisfying certain pre-specified criteria [37, 35]. Indeed, this is nothing but a
policy-based authentication mechanism with the important distinction that the authentication
policy need not be private. Put another way, one may view zkAt as an extension of attribute-
based authentication that offers stronger privacy guarantees for not just the user’s attributes,
but also the constraints on those attributes.

Functional commitments. A functional commitment scheme [36] enables a user to succinctly
commit to a function (from a specified family), such that the user can later verifiably reveal
values of the function at desired inputs. Such a commitment must be binding to the function
and may additionally also hide [10] it. We observe that zkAt realizes a sort of function-
private functional commitment scheme for functions with binary outputs, with vk being the
commitment to the policy function. Perhaps for the first time, our equivocable Groth16
construction gives a functional commitment where the underlying function is updateable or
equivocable (given the trapdoor) without changing the commitment.

2 Preliminaries

In this section, we provide preliminaries needed for this work.

Notation. Let A denote the security parameter, and PPT denote probabilistic polynomial-
time. We use <$ to denote the output of a randomized algorithm, < to denote output of a
deterministic algorithm, and := for assignment. For our security definitions, we use notation
similar to [29].

Following common convention we use lowercase bold-face letters to denote vectors and
uppercase bold-face letters for matrices. For a vector x, ; denotes its i*" element. In general
G denotes a group and F a field. Let g; be the generator of a group G;, then we write g¥ for
x € F as [z]; and a[z]; = ¢¢*, for some a € F. As usual, Z is the ring of integers and Z,, is
the ring of integers modulo p for some integer p > 0. Finally, Z,[X] is the ring of polynomials
with coefficients in Z,, and for any polynomial U(X) € Z,[X| the notation deg(U) denotes
its degree.

Bilinear pairings. Let G; and Gs be groups of the same prime order ¢ with the generators
g1, g2 respectively. Using the notation from [29], we denote the pairing map G; X Go — Gr
as =: [a]y - [b]2 = [ab]r for any a,b € Z,.

2.1 Cryptographic Building Blocks

We recall the definitions for some common cryptographic primitives that we use in our
constructions.

K. Kryptos Chalkias, D. Maram, A. Roy, J. Wang, and A. Yadav 2:9

2.1.1 Signature schemes

A signature scheme Sig over message space 171 consists of the following polynomial time
algorithms:

Setup(1*) — (vk,sk). is a randomized algorithm that takes security parameter \ as
input and returns a pair of keys (vk,sk), where vk is the verification key and sk is the
signing key.

Sign(sk, M) — o. is a possibly randomized algorithm that takes as input the signing
key sk, and a message M € 111, and returns a signature o.

Verify(vk, M, o) — {0,1}. is a deterministic algorithm that takes as input the verification
key vk, a message M € 11, and a signature o. It outputs 1 (accept) or 0 (reject).

A signature scheme satisfies correctness if for all A\ € N, M € 71, and every
signing-verification key pair (vk,sk) < Setup(1?), every signature o <s Sign(sk, M),
Verify(vk, M, o) = 1.

» Definition 2.1 (Existential unforgeability under chosen messages). A signature scheme
Sig = (Setup, Sign, Verify) is existentially unforgeable under chosen messages if for every
PPT attacker A there exists a negligible function €(-) such that for all A € N the following
probability is at most e(\)

(vk,sk) «s Setup(1?*)

Pr |Verify(vk, M*,0*) =1 :
r | Verify(vk, M, o”) (M*, %) A% (vk)

and A should never have queried M* to the signing oracle, Og(-).

2.1.2 Non-interactive zero-knowledge

Let Cy := {C: {0,1}P°M™ — {0,1}} be a family of boolean circuits computable in polynomial
time. Then, a non-interactive proof system for a circuit Cy consists of the following polynomial
time algorithms:

Setup(1*,C) — (crs, 7). The setup algorithm takes as input the security parameter \
and a circuit C, and outputs a common reference string crs and a trapdoor .

Prove(crs, z,w) — m. The prover algorithm takes as input a crs, an instance z, and a
witness w. It outputs a proof .

Verify(crs, z,) — 0/1. The verification algorithm takes as input a crs, an instance x,
and a proof 7. It outputs 1 (accept) or 0 (reject).

» Definition 2.2 (Non-interactive zero-knowledge). Given a circuit C, a NIZK proof system

for an NP relation R = {(z,w) : C(z||lw) = 1} must satisfy the following properties:
Completeness: For every A € N, and every crs computed as (crs, 7) <$ Setup(1*, C),
any instance and witness pair (x,w) € X,

Pr [Verify(crs,z,m) =1 : 7 <= Prove(crs, z,w)] = 1.

Soundness: For every PPT adversary A, there exists a negligible function €(-) such that
for all A € N the following probability is at most e(X),

(crs,) < Setup(1*, C)

Pr | Verify(crs,z,m) = 1A = ¢ Zg (2, 7) A(crs)

where L is the language specified by XK.

AFT 2025

2:10 Zero-Knowledge Authenticator for Blockchain

Zero-knowledge: There exists a PPT simulator 8 = ($1,82) for every adversary A
and such that there is a negligible function €(-) such that for every A € N and every
(x,w) € R the following probability is at most €(N),

A(ers,z,m) =1: A(ers,z,m) =1
Pr (crs,7) < Setup(1*,C) | —Pr (crs,) + S1(1*,C)

7 < Prove(crs, z, w) T 4= 8So(7, 1)

Argument of Knowledge. Further, a NIZK proof system is an argument of knowledge if it
satisfies the following additional property:
(Computational) Knowledge soundness: For every PPT adversary A there exists
a PPT extractor & and a negligible function e(-), such that for all A € N the following
probability is at most €(\),

: (crs, T) < Setup(1*, C)

Pr| Verify(crs,z*,7*) = 1A (z*,w*) ¢ R N
e m) =N WU ER (o) = (A6)

where the notation ((z*,7*);w*) < (A||&)(crs), taken from [29], is shorthand for

(x*,7*) + A(crs) and w* + &(z*,m*) such that and & gets access to A’s code.

Designated-prover NIZK. A (publicly verifiable) designated-prover NIZK scheme (DP-
NIZK) for a circuit C consists of the following polynomial time algorithms:
Setup(1*,C) — (vk, pk,7). The setup algorithm takes as input the security parameter
A and a boolean circuit C, and outputs a verification key vk, a proving key pk and a
trapdoor 7.

Prove(pk, z,w) — . The prover algorithm takes as input the proving key pk, an

instance z, and a witness w. It outputs a proof .

Verify(vk, z,m) — 0/1. The verification algorithm takes as input a verification key vk,
an instance z, and a proof . It outputs 1 (accept) or 0 (reject).

A DP-NIZK scheme must further satisfy the same properties as described in Definition 2.2
with the crs appropriately replaced by pk and vk.

2.2 Quadratic arithmetic programs

A quadratic arithmetic program (QAP) comprises of a finite field Z, for some prime p with
Ip| = A, integers £ < m, and polynomials {U;(X), V;(X), W;(X)}*, and T(X) in Z,[X] with
deg(U;), deg(V;),deg(W;) < deg(T') = n (for all i € [0, m]) such that, for ag := 1, it defines
the following relation

T = (ai)ie[o,é] € Zf,
w = (ai)ie[6+17m] € Z;n_e
oo ailUi(X) - g aiVi(X) = Yo g aiWi(X) mod T(X)

In this work, we consider proof systems for satisfiability of general arithmetic circuits,
which consist of addition and multiplication gates over the finite field Z,. Gennaro, et al. [26]
gave an efficient technique for converting any arithmetic circuit into a QAP, thus allowing us
to prove statements encoded as general arithmetic circuits using Groth16.

K. Kryptos Chalkias, D. Maram, A. Roy, J. Wang, and A. Yadav

2.3 Recalling Groth16

Since it will be essential to one of our constructions, we now recall the Groth’s NIZK argument
for QAPs (and therefore for any arithmetic circuit).

Now, for some prime p such that |p| = A, groups G; = (¢91) and G2 = (g2) and Gr such
that the pairing e : G; X Gy — G is a bilinear map. Consider a QAP,

% = {p.G1, G2, Gr.e. 91,92, €, {UL(X0), Vi(X). Wi (XN, T(X) |

that defines a field Z, and a language of statements (a1,...,as) € Z and witnesses
(ag41,---,am) € Z"* such that for ag = 1, polynomials {U;(X), (X),Wz()it and
»[X] with deg(U;), deg(V;),deg(W;) < deg(T) = n (for all ¢ € [0,m]) and

T(X) in Z

T(X) =TI, (X — ;) for all distinct r; € Zj, the following holds
ZazUz(X) Zaz‘/Z(X) - Zasz(X) = H(X)T(X)
=0 1=0 =0

for some degree (n — 2) polynomial H(X) € Z,[X]. Then, the Grothl6 NIZK argument is
given by the following algorithms:
Setup. The setup algorithm accepts the QAP & as input, sets the secret trapdoor
7= (a, B,7,0,z) for a, B,7,0,x + Zy, and outputs it along with the verifier key vk and
the prover key pk where

" ::< als, B, P, [5]27{[X2.]1 = {ﬂUi(z)-ﬁ-a‘fé(wH-Wi(m)}l}g) ;

i=0

IJ

a1, [, (812, B, [Blas {16711 = [=52] }

pk := iy = i@)]1 32, {lwilz = Vi)l
{[Qh — |:6Ui(w)+aV(a:)+W (I)} }

0 1 i=e41
Prove. The proving algorithm samples r, s <- Z, and, using the instance and witness

(ar,...,ae,ap11,-..,am) € Z', sets the polynomial

H(X) = Z;'1;0 a;Ui(X) - Z?io a;Vi(X) — Zyio a;Wi(X)

T(X)

It then computes
[A], =[] + o] + 25000 @il
= [B], = [Bl2 + s[d]2 + 3212, ailwil2, (1
€]y = (slads +7(811 + rslol + S0y ailéih + 250 hil65))

~—

given the pk, and outputs 7 as the proof.

Verify. Given the vk, the instance (ag,...,as) € Zf, and a proof 7 := ([4]1, [B]2, [C]1),
the verifier simply checks whether:

4
(Al - [Bla £ [a)s - [8l2 + [C: - 3]z + (Z ail])

and outputs the result.

2:11

AFT 2025

2:12

Zero-Knowledge Authenticator for Blockchain

3 Zero-knowledge Authenticators with Policy-privacy

We now formalize the notion of a zero-knowledge authenticator for a family of authentication
policies and construct such an authenticator under a mild assumption that the underlying
NIZK has equivocable (verification) keys, a property which we also define.

3.1 Zero-knowledge authenticator

We define a zero-knowledge authenticator for a family of authentication policies. As mentioned
in the introduction, a zkAt can easily capture low-level semantics of an authentication
mechanism as a (polynomial-size) circuit.

Let IT = {fx : {0,1}P°¥®*) — {0,1}} be a family of authentication policies, then a zero-
knowledge authenticator for any policy P € II over the message space 111 and private input
space €2 consists of the following polynomial time algorithms:

Setup(1*,P) — (vkp,pkp). The setup algorithm takes as input the security parameter

A and the authentication policy P. It outputs a public verification key vkp and a secret

proving key?® pkp.

AuthProve(pkp, M,w) — m/L. The proving algorithm takes as input the secret key pkp,
a message M € 111 to be signed and some private input w € Q. It outputs a proof m or L.
AuthVfy(vkp, M, 7w) — {0, 1}. The verification algorithm takes as input the public
verification key vkp, a message M € 171, and a proof 7. It outputs 0 or 1.

» Definition 3.1 (Zero-knowledge Authenticator). A zero-knowledge authenticator must satisfy
the following properties with respect to any policy P € 11:

Completeness: For every message M € 111 and for every string w € € such that
P(M|lw) =1,
(vkp, pkp) < Setup(1*,P)
P = =1
: [AuthVy(vkp, M,) = 1 7 <$ AuthProve(pkp, M, w)

Knowledge soundness: For every PPT adversary A there exists a PPT extractor & and
a negligible function €(-) satisfying, for all X € N the following probability is at most ()

p [AuthVfy(vkp, M*, 7*) =1 (vkp, pkp) < Setup(1*, P) }
A P(M[jw") # 1 (M7, 77); W) = (A|8) (vkp, Pkp)

(Perfect) zero-knowledge: There exists a PPT simulator 8 = (81, 82) such that for
every PPT adversary A, every A € N, every M € 11 and every string w € Q such that
P(Mllw) =1,

Akp, M) =1
Pr (vkp, pkp) <= Setup(1*, P) =
7 <8 AuthProve(pkp, M, w)
(vkp, pkp, T) < 81 (1*,P)

Pr| A(vkp, M,m) =1 : T Sy(r, M)

3 We can assume that pkp also implicitly contains P.

K. Kryptos Chalkias, D. Maram, A. Roy, J. Wang, and A. Yadav

Policy privacy: For every stateful PPT adversary A, there is a negligible function (-)
such that the following probability is at most 1/2 + €(\)

{0,1} «<sb

Po, Py + ﬂ(l/\)

(vkp, , Pkp,) <=5 Setup(1*, Py)
(M*vw(*)(vwf) A ﬂ(Vka)

7 <8 AuthProve(pkp, , M*, wy)

Vb e {0,1} : Py(M*||wi) =1

P
|oAam) =0

Before giving a formal construction, we must define a new object called designated-prover
NIZK schemes (DP-NIZK) with equivocable verification keys. At a high level, the property
of verification-key equivocation guarantees that the verification key of a DP-NIZK scheme
is independent of its circuit. Looking ahead to our construction, when instantiated with a
DP-NIZK with this property, we will be able to reduce the policy privacy of our zkAt to the
verification key equivocation of the DP-NIZK.

3.1.1 \Verification-key equivocation

Informally, the vk-equivocation game models and adversary who, given a verification key
and a proof for a statement in languages specified by both circuits of its choice, must decide
which of the said circuits does the key (and proof) correspond to.

» Definition 3.2 (vk-equivocation). A publicly verifiable DP-NIZK scheme has equivocable
verification keys if for every stateful PPT adversary A, there is a negligible function €(-) such
that the following probability is at most % +e(N),

{0,1} <3 b

Co, Cl — ﬂ(l)‘)

(vky, pky,) < Setup(1*, Cp)
(x*’wS’wik) - ﬂ(ka)

7 <5 Prove(pk,, z*, w})

vhe{0,1} : Cyla*|lwp) =1

P
' ANA(m)=>b

where each circuit Cy encodes an NP relation Ry = {(z,w) : Cy(z||lw) =1}

3.2 Construction

We now provide our construction. It requires a publicly-verifiable DP-NIZK scheme
with vk-equivocation NIZK = (NIZK.Setup, NIZK.Prove, NIZK Verify) for the relation &p =

{(z,w) : P(z||w) = 1}.

Setup(1*,P) — (vkp,pkp). Give the security parameter A and the policy P as input,
the setup algorithm runs the NIZK setup to obtain the verification and the prover keys,
i.e., (Vky, Pkye) <8 NIZK.Setup(1*, P). It then outputs vkp = vk, , and pkp = pky.
AuthProve(pkp, M,w) — w/L. It parses pkp to obtain pk,, and then computes the proof
7 <8 NIZK.Prove(pk,, z := M,w = w) and outputs it.

AuthVfy(vkp, M, 7) — {0,1}. It returns the output of NIZK.Verify(vkp, M, 7).

Security. We claim that the above construction is a zkAt. The knowledge soundness and
zero-knowledge properties of zkAt follow directly from the underlying DP-NIZK so we only
focus on policy privacy, which we claim follows when the DP-NIZK proof has equivocable
verification keys. The formal theorem statement and proof are presented in the full version
of this article [14].

2:13

AFT 2025

2:14

Zero-Knowledge Authenticator for Blockchain

4 An Equivocable Groth16

In Section 3.1.1 we defined proofs with equivocable verification keys that are required to
instantiate our zkAt construction. We now explain how to concretely build this primitive
from the DP-NIZK of Groth [29].

A crucial observation towards achieving policy-privacy is that the Grothl6 verification
key can be equivocated — in the sense that one can perform the Grothl6 setup in a way that
guarantees that vk can be sampled independently of the relation. We give a bootstrapping
compiler to build an equivocable Groth16 scheme given the non-equivocable version.

Now, for some prime p such that |p| = A, groups G; = (¢1) and G5 = (g2) and G such
that the pairing e : G; X Gy — G is a bilinear map, consider a QAP,

R = {p, leGQaGTaeaglvg%E’ {Ul(X)7 ‘/;(X)a WZ(X)}:;O aT(X)}) (2)

that defines a field Z, and a language of statements (ai1,...,as) € Z and witnesses
(ag41,---,am) € Z"~* such that for ag = 1, polynomials {U;(X), (X),Wl()it and
T(X) in Z,[X] with deg(U;),deg(V;),deg(W;) < deg(T) = n (for all i € [0,m]) and
T(X) =i, (X — ;) for all distinct r; € Zj, the following holds

for some degree (n — 2) polynomial H(X) € Z,[X]. Then, we have the following constructive

procedure:

1. Sample z, {yv.i}i {Yvitieg » {yw.itiey <5 Z;,

2. For every symbol S € {U,V,W} and for every i € [0,m] interpolate the polynomial
Si(X) € Z,[X] over coordinates

Sl(l’) = ysﬂj and Vj e [n] . Si(’l’j) = Si(rj) = S@j .

Given this, we claim that the modified QAP:

m

@ = {p7 leGQa GTa eaglvg%& {01(X)a ‘71() W ()}1:0 ’T(X)} (3)
defines the same relation as %. Formally,

> Lemma 4.1. T(X) divides i~ a;U;(X) - 1 aiVi(X) — S, a;Wi(X) if and only if
(a1,...,am) is a satisfying assignment for R.

Please refer to the full version of this article [14] for the proof of this lemma.

In short, by interpolating fresh polynomials {UZ, Vi, Wl}z that behave exactly as {U;, V;, W;},
(respectively, for each i), but also evaluate at = to uniformly chosen values {yv.s, yv.i, yw.i},
(respectively, for each i), we have essentially fixed the evaluation of the polynomials at x
independently of the relation. The result is that the verification key generated during setup
will now be made completely independent of the updated QAP which, as we have just shown,
defines the same relation as the original QAP. Accordingly, let us now define the modified
setup algorithm (prove and verify algorithms do not change):
Setup. The setup algorithm accepts a QAP & as explained by (2), sets the secret
trapdoor 7 == (&, 3,7,8, 2, {yv.i}ti o {yvii}ieg » {yw,itiey) for all values in 7 sampled
uniformly from Zj;, and outputs it along with the verifier key vk and the prover key
(pk, %) where & is of the form described in (3) and,

K. Kryptos Chalkias, D. Maram, A. Roy, J. Wang, and A. Yadav

= lalu B Bla, e, {fuy = [2opsatuns] 4)

[ody, [Bl, [Bl2, [0]1, [0]2, {[93']1 = [%]1};{?
pk == {[1/%]1 = [yU,z-h}Zio, {[‘Pih = [y‘{ﬁi]z}gov
{[Ci]l = w 1) i=e1

Security. The main theorem for this construction states that it is a NIZK proof system
with vk-equivocation. In addition, completeness and zero-knowledge follow straightforwardly,
so we only show that this construction is also knowledge-sound. This is described and proven
formally in the full version of this article [14].

5 Obliviously Updateable Policy-privacy

In this section, we introduce zkAt with oblivious updates wherein, given a pkp with respect to
an existing policy P € I, a policy issuer can update pkp to pkp for some new policy P’ € II
without updating the corresponding vkp. Following the formal definition, we give a generic
construction for zkAt using recursive NIZKs.
An obliviously updateable zZkAt, that we call zkAt™, additionally consists of the following
polynomial time algorithms:
Gen(1*) — pp. The parameter generation algorithm as input the security parameter \,
and outputs public parameters pp for the protocol. All algorithms of zkAt™ take pp as
input, but we omit it for brevity. This algorithm is run once and for all.
Setup(1*,P) — (vkp, pkp,x). The setup algorithm takes as input the security parameter
A and the authentication policy P. It outputs a public verification key vkp, a secret
proving key pkp and a secret update key k.
PolUpdate(pkp, %, P’) — pkp/L. The policy update algorithm takes as input the secret
proving key pkp, a secret update key &, and an updated policy P’. Tt outputs the updated
secret proving key pkp,.

» Definition 5.1 (Obliviously updateable Policy-private Zero-knowledge Authenticator). A zkAt+
must additionally satisfy the following properties for policies P, P’ € 11,
Update completeness: For every message M € 1M and for every string w € Q such
that P'(M||w) = 1, we must have that

pp s Gen(1*

(vkp, pkp, k) < Setup(1*, P
pkp <$ PolUpdate(pkp, P’
7 <$ AuthProve(pkp, M, w

Pr | AuthVfy(vkp, M,7) =1

— — — —
—_

Update knowledge soundness: For every PPT adversary A there exists a PPT extractor
& and a negligible function €(-), for all X € N such that the following probability is at
most €(\),

pp Gen(l)‘)

AuthVfy(vkp, M*,7*) =1 A P < A(pp)
VP e Qp : P/(M*|lw*)#1 (vkp, pkp, %) < Setup(1*,P)
(M7, 7%); w*) < (A||6)(pp)

2:15

AFT 2025

2:16

Zero-Knowledge Authenticator for Blockchain

where the oracle O, (+) takes as input an updated policy PW) € 11 in its iﬁ_l-query, It adds
PO to the set Qp (initially set to {P}) and outputs the signing key pkl(,l) under P by
running PolUpdate(pkp, #, P(?).

» Remark 5.2. Since the verification key vkp is independent of the policy updates, the view
of the policy privacy adversary remains unaltered from that in Definition 3.1. So, policy
privacy is actually implicit in the definition.

5.1 Construction

In this section, we describe our generic zkAt™ construction for disjunctive policy updates,
which we explain next.

Disjunctive policy updates. Let P € II be an existing policy. Then, an update P’ € Il is a
disjunctive update if and only if P’ is a disjunction of P with some other valid policy. Thus,
for each P € TI, we can define the predicate Admp(P') =1 < P e {PV f : Vf eI}

Barring the trivial idea of re-running the setup and distributing fresh keys under the new
policy, obliviously performing general policy updates, which is to say non-disjunctive updates,
appears to be somewhat challenging. This is because it would require a way to revoke a
proving key under an older policy without also revoking the corresponding verification key.
Nevertheless, as we explain show in the full version of this article [14], allowing the older
proving key to expire via a simple tagging mechanism suffices for general policy updates with
only minor generic modification to the overall construction.

At a high level, our zkAt™ construction, recursively composes NIZK proofs with the “inner”

proof corresponding to the policy predicate, and the “outer” proof to the knowledge of a
valid proof to the policy predicate as well as a signature on the inner verification key for
soundness. Thus a verifier simply verifies this outer proof and is convinced of the user’s
authenticity. Like in our Groth16-zkAt construction, our zkAt* construction also requires
maintaining a sensitive secret x that gets used whenever the policies need to be updated,
so that when a new policy is created, the issuer simply issues a fresh signature on the new
inner verification key (using x). Importantly, no change is made to the outer keys so that all
third parties remain unaware of the update.

Tools required. The construction below utilizes a signature scheme Sig = (Sig.Setup,
Sig.Sign, Sig.Verify), an inner NIZKAoK scheme NIZK; = (NIZK;.Setup, NIZK;.Prove,
NIZK;.Verify) which encodes the policy, and an outer NIZKAoK scheme, NIZKp =
(NIZKo.Setup, NIZK o .Prove, NIZK o . Verify) for the following relation

P — x = (vk,, M) ~ NIZK; Verify(crs;, M, 71) =1
7 w= (crsp,mr,0) A Sig.Verify(vk,,crsr,o) =1
Gen(1*) — pp. Given the security parameter A as input, the parameter generation

algorithm generates the NIZK crs as crsp <$ NIZKo.Setup(1*,Cp), where Co is the
circuit encoding &£, and outputs pp := crsp. This algorithm is run once and for all.
Setup(1*,P) — (vkp, pkp, k). Given the security parameter A and the policy P as input,
the setup algorithm runs the inner NIZK setup to obtain crs; +$ NIZK;.Setup(1*, P).
Next, it creates the signing and verification keys for the signature scheme as (vk,,sk,) <%
Sig.Setup(1?), and then signs crs; to obtain o <s$ Sig.Sign(sk,,crsy). Finally, it outputs
vkp = vk,, pkp := (crsy, vk,,0), and £ = sk,.

K. Kryptos Chalkias, D. Maram, A. Roy, J. Wang, and A. Yadav

AuthProve(pkp, M,w) — m/L. Tt first parses pkp as (crsy,vk,, o) and continues only if
Sig.Verify(vk,,crsy, o) = 1, otherwise it aborts and outputs L. It then computes the proof
71 +$ NIZK;.Prove(crsy, z :== M, w := w) and then outputs the final proof 7 computed as
7 +$ NIZKo.Prove(pp, z == (vk,, M), w = (crsy, w7, 0)).

AuthVfy(vkp, M, 7) — {0,1}. Returns the output of NIZKo.Verify(pp, z := (vkp, M),).
PolUpdate(pkp, &, P") — pkp/L. If Admp(P’) # 1, it outputs L and aborts. Otherwise,
it parses pkp as (crsy,vk,,o). Then, the update algorithm re-runs the inner NIZK setup
with this input to obtain crs <s NIZK;.Setup(1*,P’). Next, it signs crs} to obtain
o’ +s$ Sig.Sign(k, crs}). Finally, it outputs pkp = (crs}, vk,,o’).

» Remark 5.3. Depending on the application scenario, the setup could be combined with
the parameter generation algorithm so that both are performed once, and the rest of the
protocol proceeds identically. This could be potentially useful in a situation where, for
instance, an organization has an authorized list of users who can create transactions on
behalf of the organization, while keeping their individual identities private. Moreover, this
gives a maximally private authentication scheme while still demanding accountability from
the users. On the other hand, if a protocol requires identities from individual users, one can
perform the setup for each user and set the (hash of) vk, as their corresponding addresses.

Security. The main security theorem and the corresponding proof for this section are
provided in the full version of this article [14].

6 Application: Private On-chain Authentication

We now discuss how our zkAt construction can be integrated into a blockchain. First, recall
that zkAtT uses existing NIZKs in a black-box manner, so its instantiation is relatively
straightforward. Even our concrete Groth16-zkAt uses the standard Groth16 proving and
verification algorithms. Therefore, the only major requirement for integrating our zkAt
constructions is the support for on-chain NIZK verification. Fortunately, many smart-contract
supporting chains like Ethereum, Aptos and Sui already support on-chain NIZK verification for
Grothl6 (among others), and can thus readily integrate any of our constructions. Therefore,
zkAt can act as a drop-in replacement for any existing authenticator used on public blockchains
including multi-signature, threshold signatures and smart-contract based authenticators.

Next, we give a practical instantiation of our zkAt. As a concrete example we will consider
the policy — “require t-out-of-n signatures,” where t,n and the n signature verification keys
are all to be hidden with the zkAt. The concrete zkAt would look as follows:

Setup. Create commitments cq,cs,...,c, to the n account addresses, i.e., ¢; «
Commit(addr;; ;) where address addr; is a signature verification key for the i*! signer.
Then, create a Merkle tree digest of the n commitments, root < MT.Commit ({c1,...,¢cp}).

Run the Groth16-zkAt setup to create a (designated-prover) NIZK proving key and (proof)
verification key pair (pkp,vkp) <$ Setup(1*, P) for the policy P given by the relation,

Vi ke t], addr; # addr,
x = (root, txpp), . A ¢; = Commit(addr;; r;)
W= ({addri,ri,ci,ai};l ,txpv> " A Sig.Verify(addr;, txpp ||tXpy, ;) = 1
A MT.Includes(root, ¢;) = 1

where txpp (resp. txpy) is the public (resp. private) part of the transaction. The proof
verification key vk acts as the user’s on-chain address.

2:17

AFT 2025

2:18

Zero-Knowledge Authenticator for Blockchain

Sign. Split the transaction into public and private components, as determined by the
privacy requirements. Collect signatures {o1,02,...,0¢} on the full transaction txpp||txpy
from t accounts {i1,14s,...,4;}. Finally, generate the authentication proof with public

input M := (root, txpp) and private input w = ({addri,ri,ci,oi}zzl ,txpv), ie, T <$
AuthProve(pkp, M, w) proving that the user has ¢ valid signatures on the transaction from
the set of n signers committed in the Merkle tree.

In particular, this design only requires implementing ¢ signature verifications in the circuit.
Assuming the use of a NIZK-friendly signature scheme which only requires a few thousand
R1CS constraints per verification, this is concretely efficient (cf. § 7). Using standard
signature schemes (which might be necessary if we want to use existing accounts) can lead
to costlier circuits. Concretely, each secp256kl verification requires 1.5M constraints [1]
and Ed25519 verification requires 2.5M constraints [23]. However, proving only takes a few
seconds on cloud machines*, so these are still practical for reasonable ¢ values seen in practice.

» Remark 6.1. Successfully integrating zkAt into a blockchain, will also require some
standardization effort with regards to the zkAt’s public inputs so as not to unintentionally
leak some information about the policy by virtue of using any specific public input. Below,
we provide a brief list of the required public inputs to a zkAt. Note that a blockchain designer
may decide to support all or a subset of these.
Transaction details (txpp):
Digest: specifying just a transaction digest however requires parsing the transaction
within a zero-knowledge proof. Transaction parsing can be simplified by carefully
designing the format of a transaction, e.g., structure it in the format of a Merkle tree.
We leave concrete specification for future work.
Amount: if supporting a specific type of transaction is enough, e.g., amount transfers,
then exposing the transaction amount as a public input can make the signature
generation process very efficient.
Other fields: similarly, other common fields of a transaction, e.g., the sender address,
can be exposed as public inputs.
Time: most blockchains support some notion of time. Including time allows specifying
time-based policies, e.g., use a certain set of credentials before market close and another
after. If the trapdoor is persisted in a safe place (e.g., cold storage), then time allows
oblivious policy updates. Say we want to rotate keys once a month, then we can embed
an expiry date after a month, and use the trapdoor to generate a new policy when needed.
Support for web2 credentials: certain blockchains support authentication based on
existing credentials issued by web2 providers, e.g., e-Passports [31], OpenID Connect
credentials [4]. To support these, the chains use oracles to fetch the public keys of an
issuer. In this case, a Merkle root of all the authorized public keys can serve as a public
input.

7 Implementation and Evaluation

We implemented, both, our zkAt construction by instantiating with standard Grothl6 (as a
proxy for the Groth16-zkAt), as well as zkAt™ constructions in Go using the gnark library
[11]° (we chose this library since it supports both Groth16 and recursive composition). All
our experiments were done on a laptop equipped with an Apple M3 Pro chip and we report
means over 100 executions.

4 It only takes 6s to verify Ed25519 signatures on a 16-core 32G RAM machine [23].
5 GitHub: https://github.com/Consensys/gnark

https://github.com/Consensys/gnark

K. Kryptos Chalkias, D. Maram, A. Roy, J. Wang, and A. Yadav

Table 2 Comparison of zkAt with threshold signatures. Signer time is equivalently the prover
time in zkAt.

Signer Verifier
time (ms) time (ms)
zkAt for P 50.97 0.89
2-0f-3 threshold 0.03 0.07

Policy choice. We restrict our implementations to the policy P described abstractly in the
previous section as: “require 1-out-of-3 signatures for transaction amounts under 1000 units,
otherwise require 2-out-of-3”. We find that this sufficiently captures complex policy semantics
not offered by, for instance, a traditional (¢-out-of-n) threshold scheme while also giving a
reasonable basis for comparison between the two.

We remark that our scheme generalizes to arbitrary circuits, and for zkAt, the proving
time is no worse than a standard zk-SNARK which is very commonly used in practice so we
expect an identical scalability profile since the prove and verify algorithms do not change. Our
intention for comparing with a 2-of-3 scheme is simply to demonstrate that the computational
cost for additional privacy is nominal. Of course, one can formulate more complex policies
with greater number of constraints, but we note here that even as the prover time increases
for more complex policies, the proof size and the verification time remain the same due to
the use of zk-SNARK. Moreover, since the proof computation would be performed offline,
and the (online) verification time is reasonably efficient, and depends essentially only on the
size of the public input, we do not expect a significant bottleneck to the scalability of our
protocol.

7.1 Evaluation of zkAt

In our proof-of-concept implementation a prover first draws an integer valued transaction
amounts uniformly, creates the required number of EADSA signatures [7] over a ZK-friendly
curve and then constructs the zkAt proof with the transaction data as the public input and
the signatures and their corresponding verification keys as the private input. In short, the
NIZK verification circuit checks whether one or two of the signatures verify depending on
the transaction amount.

Concretely, the basic zkAt was implemented over the BN254 curve and the resulting R1CS
had 24,564 constraints. Table 2 compares our implementation against a 2-of-3 threshold
scheme. While the signer (prover) time for zkAt is noticeably higher relative to the threshold
scheme, it is still small in absolute terms. The verification times are within an order of
magnitude.

7.2 Evaluation of zkAt™t

As before, in our simple proof-of-concept implementation a prover first draws an integer
valued transaction amounts uniformly, creates the required number of EADSA signatures
[7]. It then constructs the inner proof that the necessary number of verifying signatures
were obtained for the for the given transaction amount. Next, using the transaction data
and its signature verification key (which can be thought of as the prover’s address) as the
public input, it constructs the outer proof that (i) the inner NIZK circuit accepts and; (ii)
it has a verifying signature (with respect to the signature verification key corresponding to
its address) on the proving key used to compute the inner proof. In our implementation,

2:19

AFT 2025

2:20

Zero-Knowledge Authenticator for Blockchain

we instantiate the proof system with the Groth16 due to its compact proof size as well as

support for its recursive composition inside gnark, although other choices of proof systems
such as [25, 16, 15] are equally valid.

We implement the zkAt+ over the SNARK-friendly 2-chain® of BLS12-377 inner curve

[5, 12] and BW6-761 [13, 21] outer curve which was shown to be highly efficient for Groth16
[21, 22]. The inner and outer R1CSs have 24,172 and 40,474 constraints respectively. Table 3
gives the prover and verifier times for our implementation.

—— References

1

Table 3 Prover and verifier times for zkAt™. The preprocessing time is given for each signer.

Inner prover Preprocessing 325.15
time (ms) Proof generation 78.55
Outer prover time (ms) 644.54
Verifier time (ms) 7.47

0xPARC. Big integer arithmetic and secp256k1 ecc operations in circom. https://github.
com/0xPARC/circom-ecdsa, 2024. Accessed: 2025-02-19.

Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlomovits. Low-
bandwidth threshold ECDSA via pseudorandom correlation generators. In 2022 IEEE Sympo-
stum on Security and Privacy, pages 2554—2572, San Francisco, CA, USA, May 22-26 2022.
IEEE Computer Society Press. doi:10.1109/SP46214.2022.9833559.

Argent. Smart wallet features. https://www.argent.xyz/blog/smart-wallet-features,
2024. Accessed: 2024-10-11.

Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Yan Ji, Jonas Lindstrgm, Deepak Maram,
Ben Riva, Arnab Roy, Mahdi Sedaghat, and Joy Wang. zkLogin: Privacy-preserving blockchain
authentication with existing credentials. In Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda,
and David Lie, editors, ACM CCS 2024: 31st Conference on Computer and Communications
Security, pages 3182-3196, Salt Lake City, UT, USA, October 14-18 2024. ACM Press.
doi:10.1145/3658644.3690356.

Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves with
prescribed embedding degrees. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano,
editors, SCN 02: 3rd International Conference on Security in Communication Networks, volume
2576 of Lecture Notes in Computer Science, pages 257-267, Amalfi, Italy, September 12-13
2003. Springer Berlin Heidelberg, Germany. doi:10.1007/3-540-36413-7_19.

Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi
Zhu. Better than advertised security for non-interactive threshold signatures. In Yevgeniy
Dodis and Thomas Shrimpton, editors, Advances in Cryptology — CRYPTO 2022, Part IV,
volume 13510 of Lecture Notes in Computer Science, pages 517-550, Santa Barbara, CA, USA,
August 15-18 2022. Springer, Cham, Switzerland. doi:10.1007/978-3-031-15985-5_18.
Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. Journal of Cryptographic Engineering, 2(2):77-89, September 2012.
doi:10.1007/s13389-012-0027-1.

BitGo. Policy builder overview. https://developers.bitgo.com/guides/policy-builder/
overview, 2024. Accessed: 2024-10-11.

6 A 2-chain is a pair of pairing-friendly elliptic curves such that the base field of one curve is equal to the
scalar field of the other. This enables efficient proof composition of up to one level [12].

https://github.com/0xPARC/circom-ecdsa
https://github.com/0xPARC/circom-ecdsa
https://doi.org/10.1109/SP46214.2022.9833559
https://www.argent.xyz/blog/smart-wallet-features
https://doi.org/10.1145/3658644.3690356
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/978-3-031-15985-5_18
https://doi.org/10.1007/s13389-012-0027-1
https://developers.bitgo.com/guides/policy-builder/overview
https://developers.bitgo.com/guides/policy-builder/overview

K. Kryptos Chalkias, D. Maram, A. Roy, J. Wang, and A. Yadav

10

11

12

13

14

15

16

17

18

19

20

21

Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology —
ASIACRYPT 2018, Part II, volume 11273 of Lecture Notes in Computer Science, pages
435-464, Brisbane, Queensland, Australia, December 2-6 2018. Springer, Cham, Switzerland.
d0i:10.1007/978-3-030-03329-3_15.

Dan Boneh, Wilson Nguyen, and Alex Ozdemir. Efficient functional commitments: How to
commit to private functions. Cryptology ePrint Archive, Report 2021/1342, 2021. URL:
https://eprint.iacr.org/2021/1342.

Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie. Consen-
sys/gnark: v0.9.0, February 2023. doi:10.5281/zenodo.5819104.

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.
ZEXE: Enabling decentralized private computation. In 2020 IEEE Symposium on Security and
Privacy, pages 947-964, San Francisco, CA, USA, May 18-21 2020. IEEE Computer Society
Press. doi:10.1109/SP40000.2020.00050.

Friederike Brezing and Annegret Weng. Elliptic curves suitable for pairing based cryptography.
Designs, Codes and Cryptography, 37(1):133-141, 2005. doi:10.1007/s10623-004-3808-4.
Kostas Kryptos Chalkias, Deepak Maram, Arnab Roy, Joy Wang, and Aayush Yadav. Zero-
knowledge authenticator for blockchain: Policy-private and obliviously updateable. Cryptology
ePrint Archive, Paper 2025/921, 2025. URL: https://eprint.iacr.org/2025/921.

Binyi Chen, Benedikt Biinz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with
linear-time prover and high-degree custom gates. In Carmit Hazay and Martijn Stam, editors,
Advances in Cryptology — EUROCRYPT 2023, Part II, volume 14005 of Lecture Notes in
Computer Science, pages 499530, Lyon, France, April 23-27 2023. Springer, Cham, Switzerland.
doi:10.1007/978-3-031-30617-4_17.

Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKSs with universal and updatable SRS. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology — EUROCRYPT 2020, Part I, volume 12105
of Lecture Notes in Computer Science, pages 738-768, Zagreb, Croatia, May 10-14 2020.
Springer, Cham, Switzerland. doi:10.1007/978-3-030-45721-1_26.

Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl Pomerance,
editor, Advances in Cryptology — CRYPTO’87, volume 293 of Lecture Notes in Computer
Science, pages 120-127, Santa Barbara, CA, USA, August 16—20 1988. Springer Berlin
Heidelberg, Germany. doi:10.1007/3-540-48184-2_8.

Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor, Advances
in Cryptology — CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
307-315, Santa Barbara, CA, USA, August 20-24 1990. Springer, New York, USA. doi:
10.1007/0-387-34805-0_28.

Jiajun Du, Zhonghui Ge, Yu Long, Zhen Liu, Shifeng Sun, Xian Xu, and Dawu Gu. MixCT:
Mixing confidential transactions from homomorphic commitment. In Vijayalakshmi Atluri,
Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng, editors, ESORICS 2022:
27th European Symposium on Research in Computer Security, Part III, volume 13556 of
Lecture Notes in Computer Science, pages 763769, Copenhagen, Denmark, September 26-30
2022. Springer, Cham, Switzerland. doi:10.1007/978-3-031-17143-7_39.

Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun: Virtual
payment hubs over cryptocurrencies. In 2019 IEEE Symposium on Security and Privacy,
pages 106—-123, San Francisco, CA, USA, May 19-23 2019. IEEE Computer Society Press.
d0i:10.1109/SP.2019.00020.

Youssef El Housni and Aurore Guillevic. Optimized and secure pairing-friendly elliptic curves
suitable for one layer proof composition. In Stephan Krenn, Haya Shulman, and Serge
Vaudenay, editors, CANS 20: 19th International Conference on Cryptology and Network
Security, volume 12579 of Lecture Notes in Computer Science, pages 259-279, Vienna, Austria,
December 14-16 2020. Springer, Cham, Switzerland. doi:10.1007/978-3-030-65411-5_13.

2:21

AFT 2025

https://doi.org/10.1007/978-3-030-03329-3_15
https://eprint.iacr.org/2021/1342
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1007/s10623-004-3808-4
https://eprint.iacr.org/2025/921
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-031-17143-7_39
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1007/978-3-030-65411-5_13

2:22

Zero-Knowledge Authenticator for Blockchain

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

Youssef El Housni and Aurore Guillevic. Families of SNARK-friendly 2-chains of ellip-
tic curves. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptol-
ogy — EUROCRYPT 2022, Part II, volume 13276 of Lecture Notes in Computer Science,
pages 367-396, Trondheim, Norway, May 30 — June 3 2022. Springer, Cham, Switzerland.
doi:10.1007/978-3-031-07085-3_13.

Electron Labs. Ed25519 implementation in circom. https://github.com/Electron-Labs/
ed25519-circom, 2024. Accessed: 2024-10-11.

Fireblocks. Fireblocks governance and policy engine. https://www.fireblocks.com/
platforms/governance-and-policy-engine/, 2024. Accessed: 2024-10-11.

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953, 2019. URL: https://eprint.iacr.org/2019/953.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology — EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer
Science, pages 626-645, Athens, Greece, May 26-30 2013. Springer Berlin Heidelberg, Germany.
doi:10.1007/978-3-642-38348-9_37.

Noemi Glaeser, Matteo Maffei, Giulio Malavolta, Pedro Moreno-Sanchez, Erkan Tairi, and Sri
Aravinda Krishnan Thyagarajan. Foundations of coin mixing services. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer
and Communications Security, pages 1259-1273, Los Angeles, CA, USA, November 7-11 2022.
ACM Press. doi:10.1145/3548606.3560637.

Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized currencies.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017: 24th Conference on Computer and Communications Security, pages 473—489, Dallas,
TX, USA, October 31 — November 2 2017. ACM Press. doi:10.1145/3133956.3134093.
Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology — EUROCRYPT 2016, Part II, volume
9666 of Lecture Notes in Computer Science, pages 305—326, Vienna, Austria, May 8-12 2016.
Springer Berlin Heidelberg, Germany. doi:10.1007/978-3-662-49896-5_11.

Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon Goldberg.
TumbleBit: An untrusted bitcoin-compatible anonymous payment hub. In ISOC Network and
Distributed System Security Symposium — NDSS 2017, San Diego, CA, USA, February 26 —
March 1 2017. The Internet Society. doi:10.14722/ndss.2017.23086.

International Civil Aviation Organization. Basics of epassport cryptography, 2024. Accessed:
2025-02-17. URL: https://wuw.icao.int/Security/FAL/PKD/BVRT/Pages/Basics.aspx.

K. Itakura. A public-key cryptosystem suitable for digital multisignatures, 1983.

Chelsea Komlo and Tan Goldberg. FROST: Flexible round-optimized Schnorr threshold
signatures. In Orr Dunkelman, Michael J. Jacobson, Jr., and Colin O’Flynn, editors, SAC
2020: 27th Annual International Workshop on Selected Areas in Cryptography, volume 12804
of Lecture Notes in Computer Science, pages 34-65, Halifax, NS, Canada (Virtual Event),
October 21-23 2020. Springer, Cham, Switzerland. doi:10.1007/978-3-030-81652-0_2.
Kostas Kryptos Chalkias. Soft privacy-related leak in threshold eddsa wallets. https://x.
com/kostascrypto/status/1703594584100700641, 2023.

Jin Li, Man Ho Au, Willy Susilo, Dongqing Xie, and Kui Ren. Attribute-based signature
and its applications. In Dengguo Feng, David A. Basin, and Peng Liu, editors, ASIACCS 10:
5th ACM Symposium on Information, Computer and Communications Security, pages 60-69,
Beijing, China, April 13-16 2010. ACM Press. doi:10.1145/1755688.1755697.

Benoit Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes:
From polynomial commitments to pairing-based accumulators from simple assumptions. In
Toannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors,
ICALP 2016: 43rd International Colloguium on Automata, Languages and Programming,

https://doi.org/10.1007/978-3-031-07085-3_13
https://github.com/Electron-Labs/ed25519-circom
https://github.com/Electron-Labs/ed25519-circom
https://www.fireblocks.com/platforms/governance-and-policy-engine/
https://www.fireblocks.com/platforms/governance-and-policy-engine/
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/3548606.3560637
https://doi.org/10.1145/3133956.3134093
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.14722/ndss.2017.23086
https://www.icao.int/Security/FAL/PKD/BVRT/Pages/Basics.aspx
https://doi.org/10.1007/978-3-030-81652-0_2
https://x.com/kostascrypto/status/1703594584100700641
https://x.com/kostascrypto/status/1703594584100700641
https://doi.org/10.1145/1755688.1755697

K. Kryptos Chalkias, D. Maram, A. Roy, J. Wang, and A. Yadav

37

38

39

40

41

42

43

volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1-30:14,
Rome, Italy, July 11-15 2016. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:
10.4230/LIPIcs.ICALP.2016.30.

Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In
Aggelos Kiayias, editor, Topics in Cryptology — CT-RSA 2011, volume 6558 of Lecture Notes
in Computer Science, pages 376-392, San Francisco, CA, USA, February 14-18 2011. Springer
Berlin Heidelberg, Germany. doi:10.1007/978-3-642-19074-2_24.

Easwar Vivek Mangipudi, Udit Desai, Mohsen Minaei, Mainack Mondal, and Aniket Kate.
Uncovering impact of mental models towards adoption of multi-device crypto-wallets. In
Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, ACM
CCS 2023: 30th Conference on Computer and Communications Security, pages 3153-3167,
Copenhagen, Denmark, November 26-30 2023. ACM Press. doi:10.1145/3576915.3623218.
Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: Ex-
tended abstract. In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001:
8th Conference on Computer and Communications Security, pages 245-254, Philadelphia, PA,
USA, November 5-8 2001. ACM Press. doi:10.1145/501983.502017.

Microchain Labs. Zk session keys. https://docs.microchain.microchainlabs.xyz/blog/
second-post, 2024. Accessed: 2025-02-21.

Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique Schréder.
ROAST: Robust asynchronous schnorr threshold signatures. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer and
Communications Security, pages 2551-2564, Los Angeles, CA, USA, November 7-11 2022.
ACM Press. doi:10.1145/3548606.3560583.

Safe Core. Safe core protocol whitepaper. URL: https://github.com/5afe/safe-core-
protocol-specs/blob/main/whitepaper.pdf, 2024. Accessed: 2024-10-11.

Qin Wang and Shiping Chen. Account abstraction, analysed. In 2023 IEEE International
Conference on Blockchain (Blockchain), pages 323-331, 2023. doi:10.1109/Blockchain60715.
2023.00057.

2:23

AFT 2025

https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1145/3576915.3623218
https://doi.org/10.1145/501983.502017
https://docs.microchain.microchainlabs.xyz/blog/second-post
https://docs.microchain.microchainlabs.xyz/blog/second-post
https://doi.org/10.1145/3548606.3560583
https://github.com/5afe/safe-core-protocol-specs/blob/main/whitepaper.pdf
https://github.com/5afe/safe-core-protocol-specs/blob/main/whitepaper.pdf
https://doi.org/10.1109/Blockchain60715.2023.00057
https://doi.org/10.1109/Blockchain60715.2023.00057

	1 Introduction
	1.1 Application overview
	1.2 Technical overview
	1.3 Related Work

	2 Preliminaries
	2.1 Cryptographic Building Blocks
	2.1.1 Signature schemes
	2.1.2 Non-interactive zero-knowledge

	2.2 Quadratic arithmetic programs
	2.3 Recalling Groth16

	3 Zero-knowledge Authenticators with Policy-privacy
	3.1 Zero-knowledge authenticator
	3.1.1 Verification-key equivocation

	3.2 Construction

	4 An Equivocable Groth16
	5 Obliviously Updateable Policy-privacy
	5.1 Construction

	6 Application: Private On-chain Authentication
	7 Implementation and Evaluation
	7.1 Evaluation of zkAt
	7.2 Evaluation of zkAt^+

