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Abstract
Selfish miners selectively withhold blocks to earn disproportionately high revenue. The vast majority
of the selfish mining literature focuses exclusively on block rewards. [7] is a notable exception,
observing that similar strategic behavior is profitable in a zero-block-reward regime (the endgame
for Bitcoin’s quadrennial halving schedule) if miners are compensated with transaction fees alone.
Neither model fully captures miner incentives today. The block reward remains 3.125 BTC, yet
some blocks yield significantly higher revenue. For example, congestion during the launch of the
Babylon protocol in August 2024 caused transaction fees to spike from 0.14 BTC to 9.52 BTC, a
68× increase in fees within two blocks.

Our results are both practical and theoretical. Of practical interest, we study selfish mining
profitability under a combined reward function that more accurately models miner incentives. This
analysis enables us to make quantitative claims about protocol risk (e.g., the mining power at which
a selfish strategy becomes profitable is reduced by 22% when optimizing over the combined reward
function versus block rewards alone) and qualitative observations (e.g., a miner considering both block
rewards and transaction fees will mine more or less aggressively respectively than if they cared about
either alone). These practical results follow from our novel model and methodology, which constitute
our theoretical contributions. We model general, time-accruing stochastic rewards in the Nakamoto
Consensus Game, which requires explicit treatment of difficult adjustment and randomness; we
characterize reward function structure through a set of properties (e.g., that rewards accrue only as
a function of time since the parent block). We present a new methodology to analytically calculate
expected selfish miner rewards under a broad class of stochastic reward functions and validate our
method numerically by comparing it with the existing literature and simulating the combined reward
sources directly.
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1 Introduction

Blockchain consensus mechanisms rely on incentives to coordinate behavior. To remain safe
and live, crypto-economic systems require a majority (as in Proof-of-Work) or a super-majority
(as in Proof-of-Stake) of participants to adopt the protocol-specified (sometimes referred
to as “honest”) actions. Selfish mining [10] first demonstrated that this honest behavior

1 During Professor Weinberg’s development of this paper, he participated as an expert witness on behalf
of the State of Texas in ongoing litigation against Google (the “Google Litigation”).
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20:2 Selfish Mining Under General Stochastic Rewards

might not be incentive compatible for the rational miner who could earn a disproportionately
large fraction of block rewards by selectively delaying the publication of their blocks. In the
ensuing decade, a rich literature around strategic behavior in consensus protocols developed
(e.g., in Ethereum Proof-of-Stake [27, 31, 24]). The vast majority of this literature focuses
on strategies that optimize for the portion of the protocol-assigned rewards earned by the
agent. These rewards, sometimes referred to as “protocol issuance” or “consensus rewards,”
have historically accounted for nearly all of the value in consensus participation; this is no
longer true.

As modern blockchains gain usage and facilitate more significant economic activity, their
decentralized applications generate revenue. Consensus participants can collect some of this
revenue through the block producer’s ability to arbitrarily re-order, insert, and delete transac-
tions when they are elected leader; [8] introduces this concept as Miner/Maximal Extractable
Value (abbr. MEV). MEV has been studied theoretically and measured empirically, leading
to significant changes in blockchain design. Ethereum best exemplifies this, as over 90%
of its blocks are built using a public, open-outcry block-building auction. The motivation
for this auction is grounded in the notion of “fairness” of validator rewards. By creating a
transparent market for buying and selling transaction orderings, each consensus participant
should earn about the same amount of MEV – a principle originally encoded into consensus
rewards, which are proportional to investment (measured in either work or stake).

A separate line of literature studies strategic behavior in decentralized finance (abbr.
DeFi), which represents another source of rewards generated at the application layer. For
example, loss-versus-rebalancing [21] (abbr. LVR) measures the amount of loss incurred
by liquidity providers in decentralized exchanges as arbitrageurs balance the price of the
decentralized exchange against an infinitely deep centralized exchange. These losses are
precisely the profit available to those performing the arbitrage. This model completely
abstracts the block creation and consensus processes, only considering the profits available
to traders. In reality, the block producer has the final say over the transactions in their
block, resulting in a large portion of this value flowing back to the consensus participants
themselves.

The perspectives of the selfish mining, MEV, and DeFi literatures are incomplete in
isolation. The co-mingling of revenue across the consensus and application layers necessitates
a more precise model of rewards and their impact on strategic behavior, as demonstrated in
the following real-world examples.

▶ Example 1 (The launch of Bablyon). On August 22, 2024, the Babylon [33] protocol
launched on Bitcoin. The launch allowed BTC tokens to be “locked” through a transaction
processed on the chain. With a cap of 1000 BTC, demand for transaction inclusion spiked
as people rushed to be among the first to lock their tokens. This congestion led to a 68×
increase in transaction fee revenue from 0.138 to 9.515 BTC between parent and child blocks
857909, 857910; over the four block range of 857908 to 857911, the fee revenue increased by
500× from 0.031 to 15.551 BTC [19]. This immense growth in transaction fees persisted for
only seven blocks, with an average per-block fee revenue of 9.64 BTC, after which the protocol
reached its cap and fees returned to baseline levels. For those seven blocks, the block reward
of 3.125 BTC, which normally represents nearly the entire source of miner revenue, was only
25% of the rewards claimed. Despite the limited scope of Bitcoin applications, Babylon
exemplifies how non-protocol-specified rewards can dramatically distort miner incentives.

▶ Example 2 (The “Low-Carb Crusader”). Proof-of-Stake differs from Proof-of-Work in
that it requires stakers to explicitly lock up capital to participate in the system. While
Proof-of-Work is limited only to incentivizing miners with positive rewards, Proof-of-Stake
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enforces a subset of the protocol rules through the credible threat of destroying the capital
owned by a misbehaving staker. Historically, this stick has served as an effective deterrent,
but on April 2, 2023, an attacker referred to as the “Low-Carb Crusader” exploited a piece
of infrastructure in the Ethereum protocol motivated by application layer-generated rewards.
By tricking a server facilitating the block building auction referenced above, the attacker
accessed private transaction data, which they exploited to 20 million USD of MEV [9]. In the
Ethereum specification, this behavior violated the rules and thus was subject to a slashing
penalty of 1 ETH (2600 USD at current prices) levied against the attacker’s stake. Clearly,
the consensus reward and penalty mechanism could not account for this magnitude of profit
arising from the application layer. This example demonstrates the risk facing consensus
mechanisms, where non-honest behaviors are incentivized with multi-million dollar exogenous
rewards originating from the application layer.

These examples shows how the economic value generated in the application layer bleeds
into the consensus layer rewards; see Appendix A.1 in the extended version of the paper
[3] for a discussion on “timing games,” which is another source of revenue for consensus
participants (particularly in Proof-of-Stake).2 To fully understand consensus incentives, a
more general model for rewards is needed. In particular, a more accurate view of rewards
would capture the aggregate incentives for following a specific strategy under many distinct
revenue streams. The present work was motivated by that reality and takes the first step
toward modeling general stochastic rewards in longest-chain protocols.

1.1 Related work
Combining the proportion of block rewards and the linear-in-time transaction fee models
of [10] and [7] was the initial motivation for this work. We build upon their Markov Chains
to analyze expected attacker rewards and study the β-cutoff strategies for selfish mining.
As previously noted, neither work captures the state of the world in 2025; the fundamental
question of “how vulnerable is Bitcoin to Selfish Mining now?” remains unanswered and
of interest to the research community; this work seeks to address this gap in the literature.
[37] demonstrates how large “whale transaction” fees in conjunction with the standard block
rewards may result in attacker profitability at lower hashrates. They use reinforcement
learning to approximate the optimal policy and profit for attackers. We also model these
rewards as granting bonus value to blocks depending on the outcome of a Bernoulli trial.
Our framework (Section 4) accommodates much more general rewards, and our instantiation
(Section 5) includes a third source – linear-in-time transaction fees. Further, we analytically
solve for the profitability of strategies rather than approximating them.

The selfish mining literature has grown extensively in the past dozen years; see [13] for a
recent survey. [23, 30, 18] generalized the basic selfish mining strategy to broader strategy
spaces. [34] studied the effect of the relative sizes of block rewards and transaction fees and
the impact on miners’ decisions on when to mine; [14] extended that analysis and show that
if all miners are rationale, the equilibrium hash rates will be far below the maximal capacity.
[5] demonstrated that longest chain Proof-of-Stake protocols would also be vulnerable to
selfish mining – a result instantiated through numerous selfish strategies in various staking
protocols: [27, 31, 24] in Ethereum, [12, 11] in Algorand’s cryptographic self-selection, [25, 26]
in Tezos. We extend our model of the Nakamoto Consensus Game from [4], which studies
the detectability of selfish mining in Proof-of-Work.

2 The appendix is excluded from the proceedings version of this paper due to the page limit – see the
extended version [3] for the full appendices. Hereafter, we simply refer to the appendices directly without
referencing the full version to reduce redundancy.

AFT 2025
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MEV is one of the most relevant topics existing blockchains are reckoning with; we focus
how MEV impacts consensus mechanisms. [8] coined the term and introduced many of
the key properties of MEV in permissionless systems. [36] systematized MEV strategies
and proposed mitigations. [2, 6, 16] focused on the centralizing nature of MEV and how
Ethereum’s block building market is implemented through “Proposer-Builder Separation.”
[28, 32] studied timing games and their impact on consensus. [35, 29] empirically analyzed
Ethereum block builders and how the market structure has evolved. We also draw on the
DeFi literature when considering application-generated revenue for consensus participants.
We focus on arbitrage profits as captured in LVR [21]. [20] extends the original model to
capture trading fees.

1.2 Summary of results
We partition our results into two sets: practical and theoretical.

Despite the analysis of selfish mining under block rewards and transaction fees alone
being several years old ([10, 7]), there remains a glaring hole in the literature to study selfish
behavior under the combined rewards. Quoting from [13], a recent selfish mining SoK, “we
find that only 3 works include transaction fees in their modeling; 2 consider both block
rewards and transaction fees.” As described in Section 1.1, [37] model transaction fees as
“whale transactions” instead of linear-in-time; [15] approximate transaction fees using the
average amount of time in each block; thus, they simply increase the size of the fixed block
rewards. Our first contribution is an analysis of selfish mining under the combined
model of block and transaction fee rewards; this practical contribution helps
paint a more accurate picture of the selfish mining in Bitcoin under a realistic
aggregate reward function.

Section 5.3 contains numerical results and discussion (see Figure 2) for the basic com-
bination of fees and block rewards, along with other aggregate reward functions. Critically,
as demonstrated in Figure 3, the protocol risk depends greatly on the reward model. For
example, we show that the threshold at which an attack becomes profitable decreases by
22% when considering the two rewards together instead of only block rewards. Additionally,
our plots allow us to make qualitative observations about miner behavior under different
reward schemes. For example, a miner considering both block rewards and transaction fees
will mine more or less aggressively, respectively, than if they cared about either alone. We
confirm these analytical results through simulations (Figure 7 in the full version [3]) and by
directly comparing them to existing literature (Appendices G and H in [3]).

To derive the aforementioned practical results, we develop a set of theoretical results
that may be of independent interest. We present (i) a model of the Nakamoto
Consensus Game with general stochastic reward sources, (ii) a novel methodology
to analytically solve for a selfish miner’s rewards, and (iii) a natural set of reward
function properties. Section 2 describes the new structure we impose on the NCG and
how general, time-accruing reward sources interact with difficulty adjustment, which we
must explicitly account for. Further, unlike previous work,3 our reward functions can be
stochastic. Namely, we study a much more general class of static rewards (Definition 6),
which we define as functions that accrue randomly and independently only as a function of
time since the parent block. Calculating attacker profits under these general reward sources

3 With the sole exception of [37], which studies a narrow set of random rewards – see Section 1.1 for
discussion
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requires the novel, path-counting technique presented in Section 4. The practical results
(Section 5) described in the previous paragraph follow as a corollary since the combination
of block and transaction fee rewards is static.

Lastly, we characterize a natural set of reward function properties motivated by existing
blockchains (Section 3 and Appendix B in the full version [3]). We illustrate these properties
through two extensive case studies. Section 3.1 examines transaction fees and describes
how different assumptions about block size, transaction patience, and arrival rate manifest
in very different reward functions captured by our properties. Appendix B.2 in the full
version [3] focuses on arbitrager profits under various assumptions about price trajectories
and leader-election mechanisms.

2 Preliminaries and model

We start by defining a stylized model of Proof-of-Work mining with general stochastic
rewards. This necessitates some crucial differences between our model and previous selfish
mining literature. For example, general rewards can be sensitive to specific inter-block times,
requiring explicit modeling of difficulty adjustment. Section 2.2 discusses these differences in
detail.

2.1 Nakamoto Consensus Game with general rewards
Let M denote the set of n miners, where miner m ∈ M has hashrate αm.

Views

At any time t, there is a public view Vt, consisting of the “state” of the blockchain known to
all miners at time t. This view includes all blocks that have already been broadcast, their
creation times, and the identity4 of their creators in M . It also includes the content of each
block, which contains enough information to compute the values of all variables and account
balances in every block across forks. For each block B in a view, we have Timestamp(B),
the time5 that the block was produced.

At any time t, there is also a private view V m
t for each miner m that includes Vt and

potentially some additional blocks m knows about that are unknown to all other miners
(e.g., a private fork). We assume that miners don’t selectively exclude a subset of miners
when they broadcast, and all broadcasting happens instantaneously (e.g., no eclipse attacks
[17]). As a result, V m

t will only include Vt and any blocks mined by m that have not yet
been broadcast (along with their contents).

General Rewards

Miners are rewarded for creating blocks on the eventual longest chain in the form of block
rewards (a fixed value issued once per block), fees from included transactions, and potentially
additional revenue stemming from their monopolistic control over the content of the block
(MEV). The size of this reward can be different across blocks and might be stochastic. We
abstractly model these rewards as a function R.

4 Real-world blockchains are often pseudonymous, and the “identities” of miners refer to their public keys.
5 Timestamp here refers to the actual creation time of the block, rather than a reported time stated by

the miner.

AFT 2025



20:6 Selfish Mining Under General Stochastic Rewards

Fix a time t, a view V , a block B in V , and a miner m. We use r to capture any exogenous
randomness that could impact the value of blocks that a miner creates (e.g., the launch of a
protocol that could create large amounts of congestion and resultingly higher transaction
fees as in Example 1). We denote by Bm(t, V, B, r) the set of valid blocks that m can create.
Because not all views are achievable under a specific realization of the randomness r, when
we invoke a view V together with r, we implicitly restrict r such that V is realizable.

▶ Definition 3 (Reward Function). A reward function Rm for miner m takes as input a
time t, a view V , a block B in V , randomness r, as well as a block B′ ∈ Bm(t, V, B, r), and
outputs a real number,

Rm(t, V, B, r, B′) → R.

The output of Rm can be interpreted as the amount of reward collected by m for creating
a block B′ that extends B in V at time t given randomness r, assuming B′ ends up on the
eventual longest chain.

We allow different miners to have different reward functions to keep the model general.
This per-miner reward can capture miner heterogeneity (e.g., from private order flow or better
trading strategies). For the properties we define in Section 3 and the selfish mining analysis
in Sections 4 and 5, however, we restrict our study to miner-independent (see Definition 4
below) reward functions.

Miner Strategies

Each miner m has a strategy that takes as input a time t, a view V m
t , and the reward

Rm(t, V m
t , B, r, B′) for extending each block B ∈ V m

t by a valid block B′ ∈ Bm(t, V m
t , B, r),

and outputs
a block B ∈ V m

t to mine on,
contents of the next block B′ ∈ Bm(t, V m

t , B, r), and
a (potentially empty) subset of blocks in V m

t \ Vt to broadcast.
For each miner m, we denote by Next(m, t, V m

t , r) the first time after (or equal to) t that m

broadcasts a block assuming their private view remains V m
t , and by

Next_Broadcaster(t, r) := arg min
m∈M

{Next(m, t, V m
t , r)},

the identity of the next miner to broadcast after (or at t), breaking ties arbitrarily. We use
these functions to determine the ordering of broadcasters as the game progresses (see details
in [3], Appendix – Algorithm 1).

Note that miner strategies cannot directly observe the randomness r but might indirectly
depend on it through the realizations of Rm and Bm(t, V m

t , B, r), all of which take as input
the same randomness r. While we focus on deterministic miner strategies in this paper, our
model can easily be extended to account for randomized behavior.

Nakamoto Consensus Game (NCG)

The Nakamoto Consensus Game describes how views evolve given a fixed set of miner
strategies. We model the game after difficulty has already been adjusted according to these
strategies, resulting in a stable orphan rate λ,6 and we normalize time so that the average
block time is 1. We let time 0 refer to a point after which the difficulty of mining puzzles
remains constant. We further assume that miners only extend blocks created after time 0.

6 See Section 2.2 for extended discussion and [22] for a more comprehensive overview of difficulty
adjustment is used in the Bitcoin protocol.
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Prior to the game, we draw the following random variables independently:7
Miner selection – A sequence of miners ⇀

m ∈ MN, where mi is the creator of the ith block.
For each i, mi is selected independently such that it equals m ∈ M with probability
αm/

∑n
j=1 αj .

Block times – A sequence of block creation times ⇀

t ∈ RN, where t0 := 0, and the duration
tj − tj−1 for j ≥ 1 is drawn i.i.d. from an exponential distribution with rate 1/(1 − λ).
Remaining randomness – The randomness r.

Initially, there is some public view V0 but no hidden blocks, so V m
0 = V0 for all m ∈ M , where

V0 := {B0} is the view containing a single genesis block B0 such that Timestamp(B0) = 0.
Starting with j = 1 (the variable used to index the miners ⇀

m and block times ⇀

t ) and t = 0,
we check if there are new blocks to broadcast before updating the block that each miner is
building on based on the contents of the pre-determined strategy. See Appendix C.1 in [3]
for the procedure to carry out the NCG and for a note on ensuring uniqueness of the longest
chain.

2.2 Notes on model
We briefly summarize how we model difficulty adjustment below. See Appendix C.2 in [3]
for an extended comparison of our model to previous work and the role of independence in
the randomness of rewards.

Difficulty adjustment

In practice, mining involves solving computational puzzles with adjustable difficulty. Since
miners can enter (or exit) permissionlessly, the total hashrate of all miners can vary over
time, resulting in varying block production rates. The protocol varies the difficulty of these
puzzles based on timestamps of recent blocks, targeting a fixed average inter-block time. In
Bitcoin, the difficulty updates once every difficulty epoch (2016 blocks/roughly every two
weeks assuming ten-minute block times) by the difficulty adjustment algorithm (DAA). The
difficulty of extending any blocks is the same within an epoch, except for forks across the
epoch boundary. Note also that forks are rarely longer than a few blocks, so this represents
an insignificant fraction of the blocks in an epoch.

Fixing a set of miner strategies, one can compute the expected fraction of blocks per
epoch that do not end up on the longest chain. We assume the difficulty adjusts based on
this expected value (rather than directly modeling per-epoch updates described above) and
calculate the profitability of various strategies under this new difficulty. Specifically, we
calculate the expected orphan rate λ (Lemma 16), which implies the difficulty-adjusted rate
of block production is 1/(1 − λ). This corresponds to blocks on the longest chain growing at
an average rate of 1.

3 Reward functions: properties and examples

Recall that miner strategies take as input the amount of reward available for extending
each existing block at time t, as specified by the reward function R, and make decisions
about where to mine, what to include, and what to broadcast accordingly. This section
defines a set of natural properties that reward functions might have. In Section 3.1, we

7 See Appendix C.2 in [3] for a discussion of why we can assume independence.

AFT 2025
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motivate these properties with an extensive case study on transaction fees, one of the primary
revenue sources observed empirically to date. See Appendices A.2, B, B.1, and B.2 in [3] for
additional properties and a second case study on LVR, a prominent source of revenue on
chains with significant DEX volume.

While we define these properties in the context of the NCG in this paper, we believe
their applicability extends far beyond Proof-of-Work and selfish mining. Our framework
can be used to characterize rewards and their implications for the incentives of consensus
participants across blockchain protocols.

Recall that in the NCG, given a set of miner strategies, three independent random
variables ⇀

t ,
⇀
m, r are drawn and used to compute a set of views V m

t for all miners m and all
times t. Let Vm

t be the support V m
t , meaning the set of views achievable at time t for some

realization of ⇀

t ,
⇀
m, r. Initially, Vm

0 = {V0} for all m, where V0 := {B0} is the view containing
a single genesis block B0 such that Timestamp(B0) = 0. Miner strategies in the NCG take
the realization of a reward function as input. That is, at time t, miner m sees the reward
Rm(t, V m

t , B, r, B′) for extending each block B ∈ V m
t by a valid block B′ ∈ Bm(t, V m

t , B, r).
A miner-independent reward function yields the same value for the block regardless of

who created it. This corresponds to a setting where all miners have access to the same set of
rewards (e.g., the common value setting), and thus, we drop the superscript m. In practice,
some reward sources may be heterogeneous between block producers (e.g., from private order
flow or from differing abilities to extract MEV [1]). All reward functions considered in this
paper will be miner-independent, but the properties can be readily generalized by tracking
the subset of miners with access to each reward source. See Section 6 for a discussion of
extending this work.

▶ Definition 4 (Miner-Independent Rewards). A reward function R is miner-independent
if for all times t, all miners have the same set of valid views, the same set of valid blocks
extending each block in those views, and equal rewards from any such valid block.8 Formally,
R is miner-independent if for all t, and all m, m′ ∈ M ,

Vm
t = Vm′

t ,
for all V ∈ Vm

t , all blocks B in V , and all r, we have Bm(t, V, B, r) = Bm′(t, V, B, r),
for all V ∈ Vm

t , all r, all parent blocks B in V , and all valid blocks B′ ∈ Bm(t, V, B, r),
we have Rm(t, V, B, r, B′) = Rm′(t, V, B, r, B′).

We can also characterize reward functions that grow according to the same distribution
without depending on the chain’s history. The following property limits the dependence of R

on the view. Intuitively, it says that the only relevant information in the view that affects
the amount of reward in a block is the timestamp of its parent.

▶ Definition 5 (View-Independent Rewards). A reward function R is view-independent if for
all times t′ < t, any two views V1, V2 ∈ Vt′ such that Timestamp(B1) = Timestamp(B2) = t′

for some blocks B1 ∈ V1, B2 ∈ V2, we have:
for all r, the set of valid blocks extending B1 at t in V1 is the same as the set of valid
blocks extending B2 at t in V2, B(t, V1, B1, r) = B(t, V2, B2, r),9 and

8 Technically, since blocks include information about their creator, it would be more accurate to say
that there is a bijection between the set of valid views/blocks for any pair of miners. We overlook this
formality to simplify notation.

9 Recall that when we invoke a view and randomness together as inputs to a function, we implicitly
assume that the randomness could give rise to the view.



M. Bahrani, M. Neuder, and S. M. Weinberg 20:9

for every valid block B′ ∈ B(t, V1, B1, r), we have

Pr
r,

⇀
t ,

⇀
m|V1

[R(t, V1, B1, r, B′) = x] = Pr
r,

⇀
t ,

⇀
m|V2

[R(t, V2, B2, r, B′) = x]

for all x.

Note that fixing a view V1 (resp. V2) can update the distribution of the r,
⇀

t ,
⇀
m. We use the

subscript r,
⇀

t ,
⇀
m|Vi to refer to the posterior distribution of these random variables conditioned

on V1, V2. For example, block rewards are view-independent (within the same four year
halving window) because each block earns the same fixed reward from the protocol. Example 7
below is a non-example that demonstrates how transaction fees that are not fully claimed by
a parent block (e.g., arising from finite block sizes) are not view-independent because the
reward of the resulting child block depends on the amount of unclaimed transaction fees.

View-independence already limits the dependence of R on the view to the timestamp of
the parent block. We next define a subset of view-independent rewards where the dependence
on view is limited to the length of elapsed time since the parent block (and is the same
regardless of the exact parent block timestamp).

▶ Definition 6 (Static Rewards). A reward function R is static if for all ∆ > 0, all
times t1, t2 and views V1 ∈ Vt1 and V2 ∈ Vt2 such that Timestamp(B1) = t1 − ∆ and
Timestamp(B2) = t2 − ∆, we have:

for all r, the set of valid blocks extending B1 at t1 in V1 is the same as the set of valid
blocks extending B2 at t2 in V2, B(t1, V1, B1, r) = B(t2, V2, B2, r), and
for all valid blocks B′ ∈ B(t1, V1, B1, r), we have

Pr
r,

⇀
t ,

⇀
m|V1

[R(t1, V1, B1, r, B′) = x] = Pr
r,

⇀
t ,

⇀
m|V2

[R(t2, V2, B2, r, B′) = x]

for all x.

Example 9 below highlights that transaction fees are static using the [7] model with
constant arrival rate and infinite block sizes. See appendix Examples 37 and 38 in [3], which
demonstrate the conditions under which LVR is or is not static.

3.1 Properties of transaction fees
To illustrate the value of the aforementioned properties of reward functions, we perform an
extensive case study on transaction fees (see Appendix B.2 in [3] for a similar study but
on LVR). We consider the relevant properties that arise from different assumptions about
block sizes, user patience levels, and accrual rate of transactions. These examples aim to
justify the properties we focus on in Section 3 and motivate Sections 4 and 5, which measure
attacker revenue under multiple static reward sources.

Transaction fees

Users pay transaction fees to interact with blockchains. A mempool collects transactions
as they arrive, and its state at all times is captured in our model through the realization
of the randomness r. Consider transactions as infinitely divisible,10 belonging to the same

10 We could instead consider transactions as heterogeneous in size (e.g., as in Ethereum where transactions
consume different amounts of gas) or exclusive to miners (e.g., from private order flow), but the
additional complexity doesn’t add anything to the qualitative observations and is thus elided.

AFT 2025
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mempool,10 and specifying a fee. A valid block B′ mined at time t and extending a parent
block B can include any transactions in the mempool at t that are not already included in
Chain(B). The corresponding reward function for a valid candidate block is the sum of the
fees paid by the transactions it includes.

We call users patient if their transactions remain valid until they are eventually included
in a later block. We shorthand transactions originating from patient users as patient
transactions.

As demonstrated in the following example, we cannot claim any further structure on the
patient-user transaction fee reward function without restricting the set of valid blocks.

▶ Example 7 (Patient transaction fees may be view-dependent). Consider two blocks B1, B2
with the same timestamp t′ and with the same parent mined at t. B1 claims all transaction
fees arriving in [t, t′], while B2 claims none. The rewards of maximizing candidate blocks
B′

1, B′
2 built on B1, B2 respectively, are different, as B′

2 can claim more transaction fees than
B′

1.

The key observation is that miners may not claim the complete set of available transactions,
thus impacting the claimable rewards of descendant blocks in that view (for more formalism,
see Lemma 30 in the appendix of [3]). Alternatively, consider the case where each block can
include all transactions (e.g., infinite block size as in [7]). If we additionally restrict the set
of views for each miner Vm

t′ , we can make the following stronger claim.

▶ Example 8 (Patient transaction fees are view-independent if blocks are infinite capacity and
fully-claiming). Assume blocks have infinite capacity and restrict views to only include blocks
that contain all available transaction fees at the time of mining. Then, the distribution of
rewards for B′ built at time t on parent block B1 or B2, which have the same timestamp
t′, is the same. Namely, the reward is the sum of patient transaction fees arriving in the
interval [t′, t].

Here, view-independence arises from the mempool fully emptying after each block is
created. Thus, the reward function only depends on newly arriving transaction fees after
the parent block is mined. Importantly, this reward function may not be static (which is a
stronger condition than view independence) because the transaction fee arrival rate may
not be homogeneous over time. For example, some hours of the day (such as trading hours
in Asia time zones) might result in higher transaction fee arrivals. Assuming a constant
transaction arrival rate, we can further establish staticness.

▶ Example 9 ([7]’s model of transaction fees is static). Assume 1 unit of patient transaction
fees arrive per unit of time, blocks have infinite capacity, and all blocks in the view claim all
available transaction fees (as in [7]). A block B′ extending B at time Timestamp(B) + ∆
can claim any reward in [0, ∆]. Therefore, this reward function is static.

While the previous example considers deterministic transaction fee arrivals (1 unit of
fees per unit of time), the same claim holds if the arrival rate is a random function of r

(but still identically distributed over time). Constant accrual, in addition to the mempool
clearing, results in the reward function being independent of the timestamp of the parent
block, making it static.

Until now, we have only considered patient users. In contrast, consider impatient users,
who submit transactions that are only valid for the next block produced (e.g., by checking
the height of the block they are included in before executing). We similarly shorthand these
as impatient transactions.
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▶ Example 10 (Identically distributed, impatient transaction fees are static). Assuming the
impatient transactions arrive according to a fixed distribution over time since the parent
block, this reward function is static because the mempool clears after each block.

Note that the mempool clearing after each block was necessary for both Examples 9
and 10 to be static. However, the clearing came about differently – infinite block sizes in the
former and impatient users in the latter. The mempool clearing is a sufficient condition for
staticness if the distribution of rewards doesn’t depend on global clock time.

Varying the assumptions on block size and user patience allows us to describe reward
functions under differing models of congestion; we now consider transaction fees that are high
regardless of the block size. This contentious transaction model is motivated by the launch
of Babylon (Example 1). Transaction fees may spike because there is immense demand not
just for inclusion in a block but also for a specific ordering (e.g., needing to be one of the
first 100 transactions of a particular type).

▶ Example 11 (Bernoulli rewards are static). Consider contentious transaction fees modeled
as independent Bernoulli trials that occur once per block height, resulting in a constant
random reward of size E with probability p. This is a static reward function.

In Section 5, we study a variant of selfish mining under a combined reward function
that includes Bernoulli rewards, linear-in-time transaction fees as in Example 9, and block
rewards. This combined reward function is static, which is crucial to the tractability of that
analysis. See Section 1.1 for a discussion on the similarities between our model of Bernoulli
rewards and that of [37]. See Appendix B.1in [3] for examples pertaining to the properties
defined in Appendix B and Appendix B.2 for an extended case study on LVR.

These examples showcase the properties we ascribe to general reward functions in Section 3.
While these case studies allow us to demonstrate View-Independence (Definition 5) and
Staticness (Definition 6) in familiar settings, they do not cover all MEV types. As mentioned
in Section 6, we see characterizing the complete set of properties and applying them to
other forms of MEV (e.g., sandwiches and liquidations) as a key direction for future work.
With these properties in place, we now focus on calculating expected attacker profits from
performing β-cutoff selfish mining strategies under general static reward functions.

4 Selfish mining with static rewards

Sections 2 and 3 presented our model of general stochastic rewards and created a structure
around these reward functions. The subsequent sections study a specific set of miner strategies
to analyze their profitability and feasibility under general static rewards (Definition 6). We
examine β−cutoff selfish mining strategies [7], in which the attacker determines whether or
not to hide their blocks based on the amount of reward realized during the mining process.

4.1 Mining strategies in the NCG
In the NCG defined in Section 2, miners make three decisions at each time t:
1. which block to extend,
2. the contents of their next mined block, and
3. which blocks to broadcast.
Based on these decisions, we define the protocol-prescribed mining as honest.
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▶ Definition 12 (Honest mining). The honest mining strategy is defined as,
1. mine on the longest chain,
2. claim all available rewards, and
3. publish every block immediately.

In words, the honest miners always follow the longest chain and immediately share any block
they find with the rest of the network. If the remainder of the network is honest, the rewards
that an honest miner, i, controlling αi fraction of the hash power is proportional to their
mining power.

[10] and [7] demonstrate that selfish mining is profitable for miners (even under various
tie-breaking schemes) when considering only block rewards or only transaction fees that are
linear-in-time respectively. [7] also introduced β-cutoff selfish mining strategies, in which the
attacker mines selfishly as long as the rewards they earn on their hidden block are sufficiently
small. If their rewards are larger than a threshold β, they instead broadcast immediately to
avoid losing the valuable block.

▶ Definition 13 (β-cutoff selfish mining [7]). If there is no private chain, the attacker follows
the rules:
1. mine on the public longest chain,
2. claim all available rewards, and
3. withhold any block found where the time since parent is less than β (create a private

chain).
The third step above creates the private chain for the attacker; they transition into the
following rules (same as original selfish mining):
1. mine on the private chain,
2. claim all available rewards, and
3. withhold any block found unless an honest block is found and the difference in length

between the public chain and the private chain is ≤ 1.

This strategy differs from pure selfish mining only in Step 3 under no private chain, where
the attacker decides whether or not to publish based on the rewards captured in the block.
Note that the strategies we consider claim all available rewards; miners could instead choose
to intentionally leave some rewards on the table to incentivize subsequent miners to build on
their chain (“undercutting” [7]). See Section 6 for discussion on extending our framework to
a broader class of miner strategies.

Given a static reward function, we want to determine the per-unit-time expected attacker
rewards from following the β-cutoff strategy as in Definition 13. We develop a new technique
based on a Markov Chain similar to Figure 13 in [7] and Figure 1 in [10].

▶ Definition 14 (β-cutoff Markov Chain). Consider the NCG where the 1 − α of the mining
power follows the honest strategy and α follows the β-cutoff strategy. Then define State
i for i ≥ 1 where the attacker has a hidden chain i blocks longer than the public chain.
Let State 0 denote the attacker having no hidden blocks and State 0’ denote the race
state between the honest and attacker forks each of length 1. Let State 0” denote the state
immediately after the attacker publishes their private chain.

Figure 1 depicts this Markov Chain. We now derive the transition probabilities using a
general, static reward function. When considering static reward sources, notice that R is
only a function of the time since the parent block was mined; we hereafter denote this static
reward source as R(t), where t is the time since the parent block. This simplification allows
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Figure 1 The Markov Chain capturing the β−cutoff strategy for miners deciding whether to
publish blocks depending on the size of the static reward. Ft(β) is the CDF of the rewards given
time t since the parent block, Pr[R(t) ≤ β]. The rate of the chain is 1/(1 − λ), which explicitly
captures the difficulty adjustment that results from a specific β-cutoff strategy.

us to compute the probability of transitioning from State 0 → State 1 by comparing the
expected amount of rewards earned in State 0 conditioned on those rewards being less than
β (the cutoff threshold for publishing the block in State 0).

▶ Definition 15 (Static Reward CDF & PDF). For a static reward source R and randomness
r, let Ft(x) denote the CDF of the reward function indexed by time t,

Ft(x) = Prr[R(t) ≤ x].

Similarly, let F ′
t (x) denote the PDF of the reward function,

F ′
t (x) = Prr[R(t) = x].

To calculate the probability of withholding the block, we integrate the probability distribution
of the time until the next block multiplied by the CDF of the rewards at each time.

Pr[State 0 → State 1] = α

∫ ∞

0

e−t/(1−λ)

(1 − λ)︸ ︷︷ ︸
density of time

· Ft(β)︸ ︷︷ ︸
rewards < β

by time t

dt (1)

Intuitively, given a reward source R, this value tells us how likely it is that the rewards
within an attacker block are less than β. Notice that the density function of the exponential
depends on a rate parameter 1/(1 − λ) (as discussed in Section 2.1), where λ the explicitly
calculated orphan block rate calculated as a function of β to account for difficulty adjustment.
See Lemma 16 for its derivation. Conversely, given an attacker block we can also calculate
the probability that the attacker publishes the block immediately if the block rewards are be
greater than β,

Pr[State 0 → State 0 ∧ attacker block] = α

∫ ∞

0

e−t/(1−λ)

(1 − λ)︸ ︷︷ ︸
density of time

· (1 − Ft(β))︸ ︷︷ ︸
rewards ≥ β

by time t

dt (2)
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With Equations (1) and (2), we construct the entire Markov chain in Figure 1. Note that it
differs from Figure 1 in [10] and Figure 13 in [7], only in the transition probabilities from
State 0 calculated above for general static reward sources (Equations (1) and (2)). As in
previous work, γ is the tie-breaking rate dictating the fraction of honest miners who mine
on the attacker block after it is published, and there is a race of length-1 forks (in State
1). This parameter doesn’t impact the β-cutoff itself and only affects the probability that
the attacker fork wins the tie. See [3], Appendix E.1, for the calculation of the stationary
distribution of this Markov Chain.

With the stationary distribution, we can explicitly solve for the proportion of orphan
blocks, λ ∈ [0, 1], which in turn gives us the difficulty-adjusted rate of the Poisson process
of the transitions in the Markov Chain as 1/(1 − λ). This rate is faster than the rate of
canonical blocks (normalized to 1) because the orphaning process causes a reduction in
difficulty.

▶ Lemma 16 (Calculating λ). Let λ measure the probability that a block produced in the
Markov Chain is orphaned. Then,

λ = p1(1 − α)
(

1 + α

1 − 2α

)
.

Proof in Appendix D.1 of the full version [3]. With λ, the new block production rate
is 1/(1 − λ). This is the rate at which blocks are found by any miner (i.e., the rate of
transitioning between states in the Markov Chain; Figure 1) assuming a constant hash rate
and results in the canonical chain blocks being produced at a rate of 1.

4.2 Expected attacker rewards
The stationary distribution alone is incomplete. To determine the attacker profit for a given
cutoff strategy, we calculate their expected profit from each state and multiply those values
by the stationary distribution of the Markov Chain to determine the expected profit per unit
of time.

▶ Definition 17 (Per-state attacker rewards, fi). Let fi denote the expected reward of a
canonicalized attacker block mined in State i.

To calculate this value, we need to find the expected value of the reward function by
integrating the time distribution over the possible paths that include an attacker block
claiming rewards arriving during State i. We first enumerate all possible paths that result
in a canonical attacker block from State i; we then integrate the reward function over
each path. The following example demonstrates this technique, and we generalize it in [3],
Lemma 40.

▶ Example 18 (State 3 paths). Consider the rewards arriving after the attacker has a lead
of length three. These rewards can be canonicalized in four different ways:
1. the attacker finds the next block, extending their lead to four,
2. the honest parties find the next block, then the attacker finds the subsequent,
3. the honest parties find the next two blocks, causing the attacker to publish their hidden

chain, and then the attacker finds the first block after publishing,
4. the honest parties find the next two blocks, causing the attacker to publish their hidden

chain, and then the honest parties find the first block after that.
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We can succinctly represent these four outcomes using the strings, A, HA, HHA, HHH, where
H & A denote honest and attacker blocks, respectively. This example prompts the definition
of attacker paths.

▶ Definition 19 (Attacker paths). Given State i for all i ≥ 2, there are i distinct paths
resulting in the attacker capturing rewards accrued in that state. The paths are enumerated
as the string (H∗)A, where H & A denote honest and attacker blocks respectively and H is
repeated 0, 1, . . . i − 1 times.

Continuing our State 3 example, we now calculate the expected reward from each
attacker path; adding these together is precisely the value of interest, f3.

▶ Example 20 (f3 continued). Consider the three attacker paths of State 3: A, HA, HHA.
These paths have lengths 1,2,3 and occur with probabilities α, (1−α)α, (1−α)2α, respectively.
Thus, we calculate the expected reward as,

f3 = α

∫ ∞

0

e−t/(1−λ)

(1 − λ) Er[R(t)] dt︸ ︷︷ ︸
A

+ (1 − α)α
∫ ∞

0

te−t/(1−λ)

(1 − λ)2 Er[R(t)] dt︸ ︷︷ ︸
HA

+ (1 − α)2α

∫ ∞

0

t2e−t/(1−λ)

2(1 − λ)3 Er[R(t)] dt︸ ︷︷ ︸
HHA

Each of these expressions can be viewed as the product of three independent sources of
randomness. The coefficients of the integrals are the probabilities of each path determined
by the winning miner, which depends on ⇀

m. The first expression in the integrand is the PDF
of the Erlang Distribution, which measures the sum of i.i.d. exponential random variables
(all with rate 1/(1 − λ)) to determine the amount of time of the path, which depends on ⇀

t .
The second expression in the integrand is the expected value over all remaining randomness,
r, of the reward function at time t. See Appendix E.2 in [3] for the remaining fi calculations.
Combining the stationary distribution values, pi, with the per-state expected rewards, fi, we
can calculate the full expected attacker reward.

▶ Theorem 21. The attacker’s expected reward is,

ATTACKER REWARD = f0p0 + f1p1 + α

∞∑
i=2

fipi−1.

Proof. For State 0 and State 1, we multiply the stationary distribution probability by the
expected per-state attacker reward to calculate the contribution to the full attacker reward.
For State i, i ≥ 2, we need to avoid double counting the contributions from each state
(e.g., you can transition to State 3 from either State 2 or State 4). To account for this
we only consider the probability of arriving in each state from the i − 1 state, which occurs
with probability αpi−1. Thus, for each state, we add the contribution to the total attacker
reward as αfipi−1. The resulting value tells us the expected attacker reward per unit time of
following a β-cutoff strategy under the static reward function and as a function of α, β, γ. ◀

5 Selfish mining with three reward sources

Selfish mining strategies were analyzed with just transaction fees and just block rewards in
[10, 7], respectively. With the more general notion of miner rewards as defined in Section 2,
a similarly general analysis is required to describe the profitability of selfish mining under
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different reward schedules. The methodology of path counting and integrating the general
reward function established in Section 4 works for any static reward functions. We now
instantiate a specific aggregate reward function, which more accurately captures complete
miner incentives as they exist in Bitcoin today. This combined reward function, which we
denote R̂, is composed of (1) a fixed block reward of size C, (2) a linear-in-time transaction
fee reward, and (3) an “extra” reward of size E awarded to a block based on the outcome of
a Bernoulli trial with probability p. Note that this new reward function considers the sum of
each of these rewards, a more representative model of how miners are rewarded in reality
rather than considering each of the rewards in isolation. For more straightforward examples
of applying the path-counting technique to single-source reward functions, see Appendix H
in [3] for only considering block rewards as in [10] and Appendix G for only considering
transaction fees as in [7].

5.1 Rewards #1 & #2: block rewards and transaction fees
Each block that a miner produces earns a “fixed block reward” of magnitude C, which is
paid directly to the miner as the first transaction in a block. We consider the block reward
fixed.11

▶ Remark 22 (Block rewards are static). Block rewards are a constant function that doesn’t
depend on t,

R(t) = C. (3)

As such, they are static because each block reward is identically distributed no matter the
timestamp of the parent block.
The miners are also paid through the contents of the block they create. In particular, the
transactions themselves specify a fee12 to be paid to the miner for including the transaction in
the block. As in [7], we start by assuming transaction fees arrive at a deterministic rate and
are fully claimable by any subsequent block. See [34] for empirical measurements justifying
the linear-in-time transaction fee rewards.
▶ Remark 23 (Deterministic transaction fees with fully claiming blocks are static). Using the [7]
definition of fixed-rate transaction fee arrival, we have

R(t) = t. (4)

This reward is static, as it is deterministic and the same for all blocks (only depending on
timestamp of the parent block).

5.2 Rewards #3: non-deterministic extra rewards
We also introduce a third type of reward to our model, motivated by the reality that some
blocks have much higher transaction fee revenue than others due to contention. [37] use
a similar model to capture high-fee-paying transactions in addition to block rewards; see
Section 1.1 for further discussion. Consider, for example, that a new type of transaction can

11 The Bitcoin block reward is cut in half every four years, which impacts the relative size of the block
reward compared to other reward sources. Our model considers the strategies available to miners within
the same block reward period.

12 In Bitcoin, the UTXO model defines a set of inputs and outputs for a transaction. Any balance that
doesn’t specify an output is claimable by the miner.
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become available at a specific block height, and only a fixed amount of those transactions
are valid (e.g., the first 10,000 transactions that purchase a specific NFT). To get their
transaction included, participants submit bids specifying the fee they will pay to the block
producer for higher-priority inclusion (assuming transactions are ordered by fee). This
contention for block space leads to much higher revenue for the miner (who serves as the
auctioneer) because even assuming infinite block sizes, the finite nature of the transaction
type induces the competition (sometimes referred to as a “priority gas auction” [8]). We
model this reward as a fixed size “extra reward” of magnitude E available to a miner of a
block with probability p (a Bernoulli trial) and independent of time. We refer to this reward
function as “Bernoulli rewards.”

▶ Remark 24 (Bernoulli rewards are static). Bernoulli rewards are static because each block
has the same distribution of rewards according to the outcome of the trial,

R(t) =
{

E if X = 1
0 otherwise,

where X ∼ Bernoulli(p). (5)

Note that this model doesn’t allow for the “predictability” of these Bernoulli rewards.
Since miners may know a priori what block height a new set of transactions will arrive at,
miners’ strategy space would be different than the standard selfish mining strategies we
explore below. See Section 6 for more discussion.

▶ Definition 25 (Reward function instantiation, R̂). Combining the three reward sources
(Equations (3)–(5)), we have the full reward function, which we denote as R̂,

R̂(t) = C + t + E · 1[X = 1], X ∼ Bernoulli(p). (6)

Recall that the path-counting technique defined in Section 4 applies to any static reward
function. Since R̂ is the sum of three independent, static rewards sources, it is static itself,
and thus, we can analyze it. Under R̂, we seek to calculate the attacker reward (Theorem 21).
Following the structure above, we define the Markov Chain as a function of R̂, which induces
a stationary distribution pi before explicitly calculating the per-state attacker reward fi. For
the derivation of the stationary distribution, an instantiation of the general technique in
Section 4.1, and the Markov chain under this combined reward function, see [3], Appendix E.3.
For the derivation of the expected attacker rewards, an instantiation of the general technique
in Section 4.2, see Appendix E.4 in [3].

5.3 Numerical results and discussion
Linear-in-time transaction fees and block rewards

Figure 2 analyzes the simple combination of the linear-in-time transaction fee rewards and
block rewards. As expected, the attacker rewards under this combined function interpolates
between the two extremes. Selfish (in red) shows the percentage of the block rewards
collected when always hiding in State 0 (which is exactly the reward in [10] – see Appendix H
in [3] for the full derivation). β−cutoff (linear) (in blue) shows the percentage of the
linear-in-time transaction fees collected on the attacker chain when choosing β to maximize
this ratio (which is exactly the reward in [7] – see Appendix G in [3] for the full derivation).
β−cutoff (linear + block) (in tan) shows the attacker’s reward when considering both
reward sources together. One interpretation of Figure 2 examines how different reward
regimes can lead to dramatically different conclusions regarding the “risk of attack” a
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Figure 2 The attacker rewards as a function of α under different metrics of rewards. We consider
miners who optimize for block rewards, linear-in-time rewards, or a combination of both. Considering
both rewards together paints a more realistic picture of the protocol risk.

protocol faces. In this case, the selfish miner who only optimizes for the ratio of block
rewards is not profitable until α = 1/3. On the other hand, if we only consider the fraction
of linear-in-time transaction fees capturable by a β-cutoff selfish miner, the story looks
much worse. In particular, that miner becomes profitable around α = 0.15. Considering
both rewards results in a more measured conclusion, where the strategy becomes profitable
around α = 0.25. By varying the relative size of the block reward compared to the per-unit
linear-in-time transaction fees, we can thus fully capture the dynamics of both reward models
by interpolating between the two strategies, which consider the sub-rewards in isolation.
Additionally, this figure can be interpreted qualitatively. We see that the attacker considering
both rewards (tan) behaves less aggressively than the linear optimizing attacker (blue) for
α ∈ [0.15, 0.25], as the optimal reward in that range is equivalent to honest. Conversely, for
α ∈ [0.3, 0.33], a pure selfish mining strategy would not be profitable; thus, the attacker
considering both rewards would be more aggressive than the block-reward maximizing miner
(who would choose to mine honestly).

Profitability thresholds

Figure 3 shows the value of α at which various strategies become profitable under different
reward sources as a function of γ. This extends Figure 3 of [10] to include more strategies.
For each γ, we consider the optimal β cutoff for an attacker, maximizing block, linear, and
total rewards, respectively. For each candidate α, we check if the optimal β results in a total
reward that exceeds the benchmark of the honest performance under that reward function
(i.e., the proportional block rewards from honest mining). We find the lowest candidate α

such that the rewards exceed the benchmark and identify that as the profitability threshold.
Intuitively, this is the fraction of the mining power needed to perform this strategy profitably.

For the pure selfish miner (in green), we see that the profitability thresholds of 1/3, 0.3, 0.25
for γ = 0, 0.25, 0.5 are identical to [10]. When considering just linear and block rewards (in
blue) and the total rewards (linear + block + bernoulli) (in pink), we see that for all values of
γ, the profitability threshold decreases significantly. For example, at γ = 0, the profitability
threshold is reduced from 1/3 → 0.26 → 0.18 (reductions of 22% and 31% respectively) when
considering the different reward sources. Similarly, at γ = 0.5, the profitability threshold is
reduced from 0.25 → 0.18 → 0.09 (reductions of 28% and 50% respectively).
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Figure 3 Demonstrating the α at which each strategy becomes profitable over honest as a function
of γ. This extends Figure 3 from [10] to include more strategies. Each respective strategy considers
profitability when only measuring a subset of the total rewards. For example, linear + block
rewards (in blue) denotes a β−cutoff strategy for α profitable if, when selecting β to maximize the
sum of linear and block rewards, the expected attacker reward exceeds 2α.

Interestingly, the attacker that only considers linear-in-time transaction fees (shown in
red) is profitable (measured against just linear-in-time rewards) for nearly all values of
α. While this may seem concerning, we believe that only linear-in-time rewards are not
a large enough component of the current Bitcoin incentive structure to warrant concern.
The aggregate view of the rewards (e.g., total shown in pink) more accurately represents
rewards as they exist in Bitcoin today. These results only consider the case where all three
components are approximately equal in magnitude. See Section 6 for a discussion on how
choosing the relative sizes of these different reward sources based on empirical values would
be a valuable application of our technique.

Measuring Bernoulli reward

Figure 4 examines the profitability of two other mining strategies: optimizing β for Bernoulli
rewards (in green) versus optimizing β for the sum of linear, block, and Bernoulli rewards
(in tan). Again, the combined rewards interpolate between the Bernoulli and the block-
optimizing miners. For the miner maximizing over all three rewards, we normalize them each
to have an expected value of 1 per block. The miner who only considers Bernoulli rewards
(in green) is always profitable and significantly outperforms honest when α ≥ 0.1.

Bernoulli rewards aim to capture the volatility of MEV, which depends greatly on
exogenous randomnesss (e.g., global capital market volatility). As the block reward continues
on it’s halving schedule and if transaction fees for Bitcoin transfers remain relatively low,
MEV may come to dominate the miner incentives in the long-term. The fact that a miner
becomes profitable under MEV rewards at such a low value of α may be a canary in the
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Figure 4 The attacker rewards as a function of α under different metrics of rewards. We consider
miners who optimize for block rewards, Bernoulli rewards, and the full R̂ containing block, Bernoulli,
and linear rewards. Note that the Bernoulli reward-optimizing attacker is profitable for all values of
α and meaningfully deviates from honest for α > 0.1.

coal mine for the endgame analysis of selfish mining under MEV. We see understanding how
Bitcoin MEV may play out under increased financial activity secured by the chain (e.g.,
through Bitcoin L2s that need to post data to the base chain itself) as one of the most
important avenues for future work.

See Appendix F in [3] for more numerical examples and simulation results confirming the
accuracy of the technique.

6 Conclusion and future work

We hope this work is a starting point for a more complete picture of participants’ incentives in
permissionless consensus mechanisms. Our practical contributions of analyzing selfish
mining under a more representative reward model in Section 5 fills a long-standing
gap in the selfish mining literature. Our modeling contribution of general rewards in
the NCG and characterizing properties of observed reward sources in Sections 2
and 3 serves as the basis for a richer theoretical treatment of MEV and its implications
for consensus. Our methodological contribution of presenting a path-counting
technique to calculate expected attacker profit under general static rewards in
Section 4 provides a turn-key solution for future work to analyze selfish mining under newly
identified reward sources. To conclude, we outline many potential future research directions.

Applying our methodology more broadly. Our reward instantiation in Section 5 is a
reasonably realistic model of reward sources in the Bitcoin blockchain today. The methodology
and instantiation represent a significant step in understanding the risk of selfish mining in
the presence of multi-faceted rewards, especially since prior work generally considered one
reward source at a time. However, empirical analysis may strengthen our results by forming
a more nuanced understanding of these rewards in practice (e.g., measuring the relative size
and probability of different MEV events). Note that our methodology still applies to any
static reward sources that can be analytically calculated using the path-counting technique
presented in Section 4. Beyond explicitly using our methodology, our technique has relatively
straightforward extensions that can reach beyond static rewards and β−cutoff strategies.
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Extending our methodology. There are several natural extensions to our methods. For
example, considering the profitability of β-cutoff selfish mining under non-static reward
functions is feasible. Such reward functions depend on additional information not captured
in the states of the Markov Chain. However, suppose that the additional information is
exogenous to the chain and independent of views. In that case, it is possible to augment the
state space of the Markov Chain to include this information. Sme reward sources exhibit
“periodic” behavior; in the case of Babylon (Example 1), elevated rewards persisted for a
seven-block period. A simple modification of the Markov chain would allow the rewards to
depend on whether the system was in a “high” versus “low” regime.

Another extension is to study MDP-based optimal strategies as in [30] rather than β-cutoff
selfish mining. [37] demonstrate the impact of changing the reward function on optimal
selfish mining profits when considering the combination of block rewards and occasional
“whale” transactions, and they note that the resulting large state spaces were intractable
with traditional MDP solving tooling and required machine learning. Considering how to
more succinctly represent multi-reward state spaces or using the Deep RL approach with
more combinatorial rewards are both promising directions. While we consider strategies that
make decisions based on the realization of rewards in the current block, the broader MDP
strategy space can be future-looking; for example, an attacker may want to start creating a
hidden chain of several blocks in advance of an anticipated large reward (e.g., from an NFT
drop occurring at a specific block height).

A complete picture of consensus incentives. As demonstrated in Examples 1 and 2,
modern blockchains have faced and will continue to face distortion of consensus incentives
from the application layer handling growing amounts of economic activity. Section 3 is a first
step at modeling properties of general reward functions, but applying these properties to
MEV beyond the transaction fee (Section 3.1) and LVR (Appendix B.2 in [3]) case studies
remains open. It would be interesting to derive a set of necessary and sufficient properties
to fully taxonomize MEV. Studying heterogeneity of reward sources was out of the scope
of this work, but expanding the properties of reward functions when block producers have
highly different rewards realizations is another key future direction.
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