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—— Abstract

We study long-term equilibria that arise in the token monetary policy, or tokenomics, design of proof-
of-stake (PoS) blockchain systems that engage utility maximizing users and validators. Validators
are system maintainers who get rewarded with tokens for performing the work necessary for the
system to function properly, while users compete and pay with such tokens for getting a desired
portion of the system service.

We study how the system service provision and suitable rewards schemes together can lead to
equilibria with the following desirable characteristics (1) viability: the system keeps parties engaged,
(2) decentralization and skin-in-the-game: multiple sufficiently invested validators are participating,
(3) stability: the price path of the underlying token used to transact with the system does not change
widely over time, and (4) feasibility: the mechanism is easy to implement as a smart contract, e.g.,
it does not require a fiat reserve on-chain to perform token buybacks or to perform bookkeeping of
exponentially growing token holdings.

Our analysis enables us to put forward a novel generic mechanism for blockchain monetary policy
that we call quantitative rewarding (QR). We investigate how to implement QR in single-token and
two-token proof of stake (PoS) blockchain systems. The latter are systems that utilize one token for
the users to pay the transaction fees and a different token for the validators to participate in the
PoS protocol and get rewarded. Our approach demonstrates a concrete advantage of the two-token
setting in terms of the ability of the QR mechanism to be realized effectively and provide good
equilibria. Our analysis also reveals an inherent limitation of the single token setting in terms of
implementing an effective blockchain monetary policy — a distinction that is, to the best of our
knowledge, highlighted for the first time.
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1 Introduction

Blockchains create value by offering services in a fully decentralized manner, wherein users
pay fees to access these services, while the functioning and security of the system is guaranteed
by a set of nodes or validators who receive rewards for performing the necessary computations
required by the protocol. These payments are issued in the system’s native token and the
mechanism that mints and distributes these tokens to the relevant participants determines
the “tokenomics policy” of the blockchain. Designing such policies with good properties is
pivotal to ensuring the success of blockchain systems in the long term.

The token’s value or price, denominated in standard (fiat) currency, crucially determines
the actual costs for users and the compensation for validators. An upward or downward
fluctuation in the token’s price can make the system less attractive for either type of party.
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While the system cannot directly control its token price in the market, it can implement various
monetary policies (such as increasing token minting, burning transaction fees, adjusting
the level of transaction fees, change the validator level of rewards, and others) to achieve a
long-term equilibrium with the desired price without compromising the system’s viability
and decentralization.

This motivates the study of tokenomics design achieving the following important desid-
erata:

1. Viability. Preconditioned on a positive system value, the system keeps all involved
parties actively engaged: validators to guarantee the protocol being live and securely
running, and the users to guarantee enough fees are collected at all time.

2. Decentralization and “Skin-in-the-game.” A set of validators each equally engaged
in the protocol — maximal decentralization [20], receiving adequate rewards to offset their
costs, while also having significant stake in the system operation (e.g. in the case of
proof-of-stake (PoS) systems, validators “staking” high enough amount of tokens).

3. Stability. Reasonably stable token prices, meaning that the price of the token required
to issue transactions does not significantly change over time.

4. Feasibility. The tokenomics policy should be feasible to implement on-chain algorithmic-
ally. In particular, this means that the policy avoids using features that are incompatible
or difficult to implement in the form of smart contracts, integrate into the blockchain
accounting model or they are antithetical to blockchain decentralization. For example,
the policy should minimize the use of off-chain entities that need to intervene actively
to adjust policy (e.g., a central bank type of actor), or the use of techniques such as
buybacks which would require a fiat reserve to facilitate. Furthermore, all the numerical
quantities that are accounted in the ledger (e.g., the number of tokens held by a validator)
should not grow exponentially over time.

The conditions under which there is a tokenomics policy achieving all these requirements is

a fundamental question which we address in this work.

1.1 Main contributions

We explore tokenomics policies in the PoS setting, i.e., the setting where validators have to
acquire tokens and stake them in order to receive rewards and perform the necessary system
maintenance to further the system’s operation. We put forth a model where a set of m users
and n validators engage with the system in discrete time steps. At each time step, users and
validators buy or sell tokens in order to accommodate their objectives that include issuing
transactions and staking tokens to provide the service.

Modeling framework. The model takes as given two exogenous parameters. The discount
factor 4, a conventional element in economic models, reflects players’ preference for immediate
utility over future gains, and is tied to the risk-free rate. The value of the service S®) captures
the usefulness of the system for users in each round ¢ and may fluctuate unpredictably due
to external shocks (Remark 3). The system can set rewards R®) to be distributed in each
round ¢ to the validators according to their current stake at round ¢; each validator also faces
a fixed cost v > 0 associated with maintaining the required secure node configuration. As
our analysis shows, the monetary policy, R(), influences the equilibrium and the token price.
One of our key findings (see below) is that suitably defined monetary policies can “absorb”
shocks and avoid undesirable price fluctuations.

The equilibria in our model come from players who aim to maximize their own discounted
utility, thus choosing strategies with time-dependent parameters, such as how many tokens
to sell on the market or retain for future rounds (users need to spend tokens to access the
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system, while validators need to stake tokens to receive rewards). These equilibria, in turn,
govern the key endogenous variables of the system, namely the staking levels of the validators,
the holdings of user tokens, the fees paid to the system, the demand and supply of tokens in
the spot market and the resulting trajectory or price path of the token (the market-clearing
price in equilibrium as in [11]).

Equilibria analysis and quantitative rewarding. We give both boundary conditions and
actual policies (mechanisms) that implement equilibria with all desired features: viability,
decentralization, stability, and feasibility. Specifically, our analysis leads us to put forward a
novel generic mechanism for blockchain “monetary policy”:

Quantitative Rewarding (QR). The amount of rewards the system gives to the
validators is suitably adjusted at each step to anticipate changes in the value of the
service.

This QR concept arises from our equilibrium analysis, focusing on how market demand
and supply respond to changes in service value S*) and rewards R(*). In all equilibria
implementing certain desired price paths, the following conditions hold at every round (cf.
Theorem 9):

Users spend an amount of tokens whose value is a constant fraction of the current service
value S,

Validators stake an amount of tokens that is a constant fraction of current rewards R®.

As these conditions and equilibria do not rule out undesirable mechanisms such as
buybacks, our goal is to use QR to induce equilibria where token demand and supply match—
so no buybacks are needed. Observe that if, at any point in time, the value of the service
decreases, users will buy fewer tokens, thus reducing demand and threatening price stability.
Instead of relying on buybacks, our QR mechanism, perhaps somewhat counterintuitively,
increases the rewards allocated to validators, who react by staking more tokens, which must
be acquired from the market. This action effectively restores the demand for tokens to align
with the supply. The reverse effect occurs when the value of the service increases.

We show that implementing QR in single-token systems to avoid buybacks is highly
non-trivial, as it requires anticipating future shocks far in advance. In contrast, for two-token
systems, QR can be implemented using only a one-step lookahead of the service value. This
conclusion stems from equilibrium analysis, but can be intuitively explained as follows: In
single-token systems, validators must retain some tokens to stake and sell only a portion to
the market to satisfy demand. In two-token systems, one token is used for staking, while
the other — distributed as rewards in our mechanism — is used by users. Validators can sell
all of these reward tokens to the market, making it easier to align supply with demand.
Consequently, any equilibrium where rewards match the next round’s service value (current
users’ demand for new tokens) avoids buybacks.

Decoupling users from validators via distinct tokens enables the system to absorb service
value fluctuations more effectively, while keeping the user token’s price stable and preserving
other desiderata. At equilibrium, the price of the stake token rises gradually, and validators
stake a fixed amount, trading only the other token, which they receive as a reward. In
contrast, a single-token setup may trigger a self-reinforcing loop of increasing validator
rewards, even after service levels stabilize, underscoring a fundamental distinction between
the single-token and two-token configurations.
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Implementing QR and its challenges. In Section 3.3, we investigate how to implement QR
via a mechanism which adjusts the rewards at every round based on the current rewards and
the next round service value using a single token for accounting. An important challenge that
arises in this setting is that the rewards formula is subject to a recursive condition (see the
lower bound in Theorem 13 and Corollary 14) which makes rewards subject to a “feedback
loop” effect that can lead to rewards explosion.

As a result, while maintaining certain (minimal) rewards to ensure decentralization and
security, it is possible that the system can trigger an uncontrolled growth in the amount of
rewards distributed and in the staked amounts of tokens (see Section 3.3.1 for conditions
that trigger such explosion). In Section 3.4 we describe in detail the implementation of our
mechanism for the case of stable prices. This implementation includes the strategies for
users and validators, showing that all information needed is service value at the next round
(despite their simplicity, these strategies still constitute an equilibrium in the underlining
repeated game, i.e., when more complex time-dependent strategies are in principle possible).

The above results apply to the single token setting which is the most common in PoS
systems (e.g., Ethereum and Cardano operate in this way, for example, as PoS cryptocurren-
cies) and paint a rather negative picture: one has to either accept tokenomics with widely
fluctuating token prices (the most common outcome that is observed in these systems as
deployed in the real world), implement drastic measures such as token buybacks, or suffer
a potential explosion in rewards accounting (unless future shocks in service value can be
predicted — a rather unreasonable assumption). Note that QR mechanisms are, in general,
more complex than standard “fee burning” policies used in practice (see Remark 16).

Two-token systems and QR. Poised to obtain a more favorable outcome, we next explore
the implementation of QR in two token PoS systems in which one token is used to get the
service and another token is used for staking (and governance). While less common, this
type of setup has been adopted in a few occasions: e.g., in the NEO cryptocurrency [19] and
can be implemented in other systems as well (e.g., in the Cosmos SDK [8]). To investigate
the potential of QR in this setting, we adapt our model to the two tokens setting (Section 4).
In order to maintain feasibility, while maintaining desirable prices, we identify the necessary
conditions that equilibria (mechanism) must guarantee in terms of rewards.

The two token mechanism for QR is presented in Section 4.3. The main advantage of
the resulting rewards formula is that it is simpler than in the single token setting and the
mechanism does not need to know “global information” about the service value time series
— merely a one step lookahead suffices (cf. Theorem 24). As an important corollary, the
mechanism achieves our objectives and is capable of avoiding the feedback loop effect of the
single token case that leads to an exponential explosion for rewards.

1.2 Related work

In the single-token setting, our results build on the model of [11]. In [11], the author
considers a platform design framework in which the system designer selects both time-
dependent rewards R(*) and service quality S®). There, S® is not influenced by external
shocks; rather, it is deterministically set by the system, which incurs a cost depending on
the chosen service quality. Market frictions are captured through shocks occurring at the
user level: with a fixed probability, token holdings are reset to zero at each round. The
objective is to maximize system profit, and the platform is permitted to engage in the spot
market, either by selling or buying back tokens. Compared to that prior work, our results
accommodate a more general class of equilibria as [11] uses a “rigid” policy R(*) that needs
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buybacks (see full version [15] for details). To the best of our knowledge, ours is the first
analytical model for such systems to study their equilibria and related token price paths
achieving all four desiderata we set out in the beginning of this section. Other prior work
includes the effects of tokens regarding user adoption and equilibrium selection [1, 2, 18],
or using token supply to promote optimal growth and service provision [6], also allowing
(costly) buybacks [7] that cause underinvestment in productivity. Different aspects of the
monetary characteristics of tokens have been studied in [25, 21, 22], while [16] considered
token burning; notably one can view QR as a generalization of the token burning mechanism
that is more versatile, cf. 16. In prior work, typically users receive the most attention, but
[4] expand on the strategy space of validators and their alternative uses for tokens. Further
work modeling validators’ staking strategies are [5, 13, 24, 14]. While all previous work has
focused on the single token design, [9] considered two-token systems and proposed several
economic indicators (most of them depending on the prices of the two tokens, and thus our
price analysis at equilibrium can be combined with these proposed metrics).

2 Model description and notation (single token)

We consider a Lagos-Wright ([17]) type of model, in which there are two kinds of players:
users and validators, as in [16, 11]. We have a repeated game where each round ¢, consists
of two phases or subrounds. Players first interact with the system (users pay the system to
get some service, and validators stake tokens to access rewards for performing some task),
and then they interact with a “spot market” (players buy or sell their tokens at the end of
the round in order to hold the amount of tokens they need at the next round). In order to
describe the model in detail, we introduce some notation in Figure 1. The two subrounds
are as follows:

Subround | (pay & stake)
(t)

Each user ¢ and each validator j has TK;" and ']I‘]Kg-t) tokens, respectively. Then, given some

(total) value of the service S®) and the total rewards R(®) for validators, we have

1. Each validator j performs some work, incurs a cost v, and receives an amount R§»t> of
additional tokens according to Equation (1), given the total reward for validators R®),

2. Each user ¢ uses some of her currently available tokens to pay for the service, and receives
the corresponding service value Si(t) according to Equation (2), given the value of the

service SO,

Subround Il (buy or sell)

Each user ¢ and each validator j has ’]I'th) — ugt) and TK?) + Rg»t) tokens, respectively. Both
type of players (users and validators) can buy any amount of new tokens or sell (part or all
of the tokens they currently have) at the current market price. In detail:

(t) (t

1. Each validator j sells s; tokens to the market and receives s; ).PRICE® units of money

in return. Note that we have a validator’s selling constraint
t t t
s <TKY + RY . (5)

Any negative s§t) is allowed, meaning that j is actually buying tokens from the market at

the current price.
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"/ Figure 1 Notation and symbols.
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(®)

2. Each user i buys b, additional tokens from the market and pays bl@ - PRICE® units

of money for that. Any negative bgt) is allowed, meaning that i is selling tokens to the

market at the current price. Note that we have a users’s selling constraint
b < TR® — (") . (6)

At the end of subround IT of step ¢ we get the token holdings for the next step, t + 1, for
each user 7 and each validator j, respectively

(6)

®)
TR = TK — o + 59 > 0 TK"") = TK{ + R{Y — s!"

>0. (7)

Each user ¢ and each validator j aims at maximizing her own discounted utility, respectively

&) 3)25t - g(n) — b . PRICE®)] (8)

y(0:0) “’Zat (). PRICE® — v] (9)

subject to their respective selling constraints in (6) and in (5). As usual, the discount factor
§ above is § = 1/(1 + r) where r is the risk free rate.!

» Definition 1 (symmetric equilibrium). Consider a system policy given by (1) and (2), and
a triple of users’ strategies, validators’ strategies, and prices

(w®,p®) 50 PRICE®

Z ? 7

such that the corresponding selling constraints (6) and (5) are satisfied. We say that such a
triple is an equilibrium f
1. Strategy sg-t)

for each validator j;

2. Strategy (u; ) , b, t)) mazimizes the discounted utility (8) of user i, given all other strategies,

for each user i;
3. The resulting two sequences of token holdings (7) are strictly positive, that is, TKZ(-t) >0
and TK" > 0.
Moreover, we say that such an equilibrium is symmetric if the token holdings of all users
are the same, and similarly, if all token holdings of all validators are the same, correspond to
sequences of strictly positive token holdings

TK" = TK{" >0 TK" = TK{ > 0. (10)
for all users i and for all validators j and for all t.

We should point out that, in addition to being natural, the symmetry conditions (10) are
often without loss of generality (see full version [15] for details).

» Remark 2 (viability and equilibria). The condition that tokens holding must be strictly
positive at all time steps implies that the selling/buying strategies at such an equilibrium
satisfy the selling constraints (6) and (5) with a strict inequality. This condition captures
our viability requirement of keeping all parties engaged.

! Intuitively, the system is analyzed as investment “against” the risk-free investment which is captured
abstractly by the risk-free rate. Also, at equilibrium validators do not necessarily break even (as e.g., in
prior work [11]) but they can have positive utility at each step, cf. Section 4.3.

mazimizes the discounted utility (9) of validator j, given all other strategies,
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In order to establish the existence of equilibria, we need a few (technical) assumptions,
regarding the service value (Assumption 1) and about the rewards and service sharing
functions (Assumption 2 below).

» Assumption 1 (service value). The service value S®) is upper bounded by some (arbitrarily
large) constant independent of t.

The value of the constant in Assumption 1 does not affect the results and bounds in any
way, and is only needed to establish the existence of equilibria. Other than this, we make no
other assumptions, and allow S(*) to increase or decrease arbitrarily within this range.

» Remark 3 (service value fluctuations — shocks). The service value S®) represents the overall
value the system provides to users. Several factors (technological improvements, competitors,
regulations, market conditions) influence S*). Consequently, the system may neither fully
control nor predict all future values of S(*), as these factors can cause unforeseen shocks.

3 Single token mechanisms

3.1 Analysis of price path

In this section we provide the analysis of the prices for the following family of service
allocation and rewards:

() )
s S(t)~s< o R = R® ¢ L @ (11)
' > Uy, >, TK

where s(-) and r(-) are arbitrary differentiable functions in (0,1), and where the indexes k

and v in the summations range over all users and all validators, respectively. In the following,
we denote by r'(-) and s'(+) the first derivatives of r(-) and s(-), respectively. We make the
following assumption about r(-) and s(-).

» Assumption 2. We generalize [11] and assume that the functions r(-) and s(-) in (11) are
both concave. Moreover, for the number m > 2 and n > 2 of users and validators under
consideration, they never allocate more than the total rewards or service value available,
r(1/n) < 1/n and s(1/m) < 1/m, and the first derivatives satisfy r'(1/n) > 0 and s'(1/m) >
0.

» Lemma 4. In any symmetric equilibrium, it holds that

@ -1 1
PRICE"“~" = PRICE® . 5. R®) RO =14 2 ) ) (12)
nTK;, n
Moreover
. t t
PRICEC — 5. 5" ) = TK;) . SW = 5 o) =L gLy,
PRICE® 4 u{" < TK! mTKY m m
(13)

Hence, if R®) # 1, then ugt) = TKS) and bgt) = TKSH) for all users i, and the following
identity must hold:

PRICEOR® = s®, (14)
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A simple class of schemes satisfying our assumptions is the following one from [11]:

) (®)
Si(t) _ g, ( U; t ) Rét) = R® . (%) . (15)
>k “l(c : 2o K.

Example 5 below provides another possible reward sharing function 7(-) other than the

one in (15). We do not claim that this alternative r(-) provides any particular improvement,
but simply point out that changing r(-), and similarly s(-), does affect the equilibria as
described by Lemma 4 (see full version [15] for further examples and discussion).

» Example 5. For any parameter £ > 1, the following reward sharing function r(z) = x — x*

satisfies r(1/n) = 1/n — 1/n’ > 0, meaning that for smaller number of validators a smaller
fraction of the total allocated rewards is actually distributed. Since 7/(1/n) =1 —£/n*~!, we
have /(1/n) > 0 for sufficiently large n.

» Remark 6. Assumption 2 implies that R() > 1 whenever R®*) > 0, thus implying that the
largest possible price growth must satisfy PRICE® < PRICE!~" [o=(0+r)- PRICE(~1)
where 6 = 1/(1 +r) and r is the risk-free rate. Intuitively, the return rate for just holding
the token cannot beat the risk-free rate, as one might expect when looking for equilibria that
keep all users and validators engaged (viability). Whether blockchains can achieve return
rates competitive with the inflation is studied in [10] in relation to policies adopted by some
of the current blockchains, though without providing analytical results.

3.2 Generic symmetric equilibria

In the following we focus on the interesting case of prices having a constant multiplicative
growth, which includes stable prices as a special case.

» Definition 7 (y-stable prices). We say that the prices (of some equilibrium under consider-
ation) are y-stable if, for all t > 1, they satisfy

1
PRICE® = = . PRICE*~Y y#£6, 7>0. (16)
Y
Note that stable prices satisfy the above condition with v = 1, while v > 1 and v < 1
correspond to decreasing and increasing prices, respectively.
We next define a class of generic symmetric equilibria which, as we prove below, captures
all symmetric equilibria with ~-stable prices.

» Definition 8 (generic symmetric equilibrium). A symmetric equilibrium is generic if the
following conditions hold for all t > 1 and constants kg, kg, Rew2Stake, Ser2Fees € R:
1. The monetary amount of tokens that users hold (and use) is proportional to the value of
the service offered by the system. That is, the service to fees ratio is constant,
St)

Ser2Fees) = 0 = Ser2Fees .
mTK}y - PRICE®

2. The amount of tokens staked by validators is proportional to the rewards offered by the
system. That is, the rewards to stake ratio is constant,
R®)

Rew2Stake®) := = Rew2Stake .
nTK;,
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3. The prices satisfy

PRICE"~Y =§ . PRICE®) - (1 + Rew2Stake - k)
=5 - PRICE® . Ser2Fees - Kg

where constants kg and kg depend only on the number of users m, the number of validators
n, the rewards sharing scheme, and on the service fee scheme.

4. FEach usert starts round t with the same token holding TKS), uses all its token current

holding for the service (uz(-t) = TKS)), and buys new tokens needed for the next round
accordingly (bgt) = TKS+1)).

Note that generic symmetric equilibria provide additional structure to the definition
of symmetric equilibria. The following theorem says that, when aiming at ~y-stable prices
(Definition 7), we can restrict ourselves to generic symmetric equilibria without loss of
generality. In particular, this holds true for stable prices.

» Theorem 9. Any symmetric equilibrium for the reward and service fee schemes in (11)
with y-stable prices is a generic symmetric equilibrium with constants
n—1 m—1

- -r'(1/n) and ks =g(n) - — -s'(1/m) .

KRR —

This in particular holds true for the case of stable prices.

Note that stable prices require the following specific constants in the two ratios involving
the tokens:

Ser2Fees = 1/(dkg) Rew2Stake = (1 — 0)/(dkR) (17)

thus implying that it must hold kg > 0 and kg > 0. Theorem 9 then implies the following.

» Corollary 10. Any generic symmetric equilibrium (and thus any symmetric equilibrium for
the reward and service fee schemes in (11)) with stable prices must have the following token
holdings:

(®)

R® §
TKY =2~ 5. kg >0 and TK = =—.
m

_° . 0
15 "R”

for any nonnegative S® and R®.

» Remark 11 (higher rewards improve PoS security). Security of PoS protocols relies on the
total amount of staked tokens — the higher, the better, as an attacker needs at least a fraction
of this amount to succeed. The results above and Item 2 in Definition 8 indicate that the
amount of staked tokens at equilibrium is proportional to the rewards. Therefore, increasing
rewards improves the system’s security, a strategy even suggested in some implementations,
such as Polkadot [3].

3.3 The implications of no buybacks and Quantative Rewarding

In the model considered so far, the system is allowed to buy or to sell the additional tokens
required during each subround II to match demand with supply. In this section, we refine
a concept of equilibrium, by requiring that the system does not have to buyback tokens
(and perhaps does not sell tokens either if demand and supply match at equilibrium). We
stress that this refers only to the “spot market” (subround IT) where tokens are exchanged
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for money. Indeed, these Lagos-Wright “two-stage” models have a simple implementation
(subround I): The system either burns some fees (when rewards are less than the paid fees)
or mints additional new tokens for rewards (when rewards are more than paid fees). Note
that no monetary reserve is needed for these operations.

» Definition 12 (no buyback). We say that a symmetric equilibrium satisfies the no buyback
condition if no additional tokens are bought at any round by the system, that is, mbg) > nsg)
for all t. Additionally, we say that the no buyback condition holds tightly if demand matches

supply, that is, mbg) = nsg)

Note that the quantities m - by and n - sy correspond to the token demand and supply in
the “market” subround II, respectively. As we formally prove below, the demand and supply
are determined by the service value and rewards, respectively:

Demand (mbg) from users) decreases if the next round’s service value decreases (Equa-

tion (19) below).

Supply (nsgf) from validators) decreases with the next round’s rewards (Equation (20)

below).

This naturally suggests the following quantitative rewarding approach to avoid buybacks:

1. (demand decreases = increase rewards.) Whenever the next round’s service value “de-
creases significantly”, in order to adjust supply to the decreased demand, we increase the
next round’s rewards. This will make rewards more attractive for the validators, who
then stake more tokens (and thus sell less on the market).

2. (demand increases = decrease rewards.) Whenever the next round’s service value “in-
creases significantly,” we can decrease the next round’s rewards. This will have the
opposite effect on validators, who will sell more tokens on the market.

The first case is necessary to avoid buybacks (satisfy Definition 12). The second operation

turns out to be useful for (i) restoring payments to a lower value when possible and (ii)

satisfying the no buybacks condition tightly, meaning that demand never exceeds supply

(mby = nsy). This stronger condition has the advantage that the system does not even need

to implement a minting mechanism for users to buy tokens (see Remark 15 below).

The following theorem establishes an equivalence between the no buybacks condition
and the above quantitative rewarding (rewards increase). In particular, it quantifies the
minimum rewards for which it is possible to avoid buybacks at a given round.

» Theorem 13. In any generic symmetric equilibrium, the no buyback condition holds at
round t if and only if the rewards satisfy the following condition

RUHD > R® (1 44a) —b- SED . (5R)H! (18)
where
Rew2Staki 1
a = Rew2Stake -n-r(1/n), b= ewantaxe R =1+ Rew2Stake - kg .

Ser2Fees  PRICE® ’
Proof. Let us first observe that the total amount of tokens bought by the users (demand) is
(t+1) (t+1) . (§R)HT
mb{) = mTKEY = 5 . _ 5 ( R)
PRICE(*Y . Ser2Fees  PRICE® - Ser2Fees
where R = 1+ Rew2Stake - kg. The total amount of tokens sold by the validators (supply) is

(19)

nsg) =n- (TKW TK(HU +R® (l/n))
R® RG+1)
" Rew2Stake  Rew2Stake

+R® .n.r(1/n) . (20)
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) (t)

Hence, the no buyback condition mbg > nsy/ is equivalent to

R®) Rt+1)
Rew2Stake  Rew?2Stake

(t+1) . t+1
+RW .n.r(1/n) < S 5 (OR)
PRICE? . Ser2Fees

that is

Rew2Stake
PRICE? . Ser2Fees

R® — R 4 R® .. (1/n) - Rew2Stake < CSFD L (R)HHL

By rearranging the terms, the theorem follows. |

The above theorem provides a recursive (algorithmic) formula for the rewards, which
leads to our mechanism described in Section 3.4 below. By unfolding the recursion (18)
in same theorem, we get the following bound on the growth of the rewards necessary to
guarantee the no buyback.

» Corollary 14. The minimal rewards satisfying the no buyback condition (tightly) are equal
to

t T
(t+1) _ t [ po L >
Riingie = (1+a) (R b;ls (1+a , t>1

for any initial reward R\, and for constants a, b, and R as in Theorem 13.

We stress that the minimal rewards satisfying the no buyback condition must satisfy the no
buyback condition tightly, and thus must coincide with the rewards RY

single in Corollary 14.
» Remark 15 (avoid users minting with tight no buyback). Observe that the no buyback
condition only requires supply to not exceed demand (Definition 12). Hence, it is possible
that (users’) demand exceeds (validators’) supply (mbg) fnsg) > 0). In this case, the system
has to provide this difference of tokens to the market (users). On the one hand, it allows the
system to make some further profit. On the other hand, there are scenarios in which this
might be difficult or undesirable (typically, it requires the system to implement a “special”
minting mechanism that allows users to buy tokens). In such cases, we require a tight version
of the no buyback condition (Definition 12) in which demand matches supply. The analysis
of this tight no buyback condition is given by Corollary 14, while the formula in Theorem 13

with equality gives the recursion for the rewards.

As we discuss below, implementing quantitative rewarding can be difficult due to the
possibility of an uncontrolled rewards growth. Indeed, Corollary 14 states that the initial
rewards R(®) cannot exceed a certain value unless rewards grow exponentially. This value,
critically, depends on future service values. In Section 3.4, we describe an implementation
under the assumption that the initial rewards R(®) can be set properly by the system (either
having full knowledge about future service values, a good estimate, or some partial control
over them).

» Remark 16 (QR vs fees burning). In practice, the system collects fees paid in round ¢

and uses part of them as rewards in the same round. Validators receive R®) - n - r(1/n)

R(t)ﬂ-r(l/n

tokens in total, defining the “rewards-over-fees” ratio as ROF®) := ). Systems

TR
that burn a constant fraction of fees and set the remainder as rewards main‘éjain a constant
ROF® < 1. Quantitative rewarding is more general: (1) ROF® can vary over time, implying
a nonconstant burn rate, and (2) ROF® > 1 allows monetary expansion, introducing extra
reward tokens (still avoiding user minting according to Remark 15).
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m=100,n=10,6=0.9,5t=1.1,R°=1 m=100,n=10,6=0.9,5t=12,R°=1
1.0
—— tokens U —— tokens U
6 tokens V 0.8 N tokens V
—— rewards —— rewards
4 0.6 \
0.4
2
[ — 0.2
0 0.0
0 10 20 30 40 50 0 10 20 30 40 50

Figure 2 The effect of service values on rewards growth when no buyback condition: a small
service value (left) can trigger an exponential increase in both rewards and validators staked amounts,
while a slightly bigger service value (right) can remove this growth.

3.3.1 Main dilemma: Uncontrolled growth of rewards

The bound in Corollary 14 suggests that an exponential growth of the rewards over time is

necessary if the system starts with a too high initial rewards or the service value is too low.

Hence, although larger rewards might be desirable to improve security (Remark 11), some
care is needed in case of “shocks” in the service value.

In the following experiment, we consider constant service value and rewards that are set
to the minimal value necessary in order to have no buyback (Theorem 13), and also impose

the rewards to not be below some minimum value (set to 0.1 for the sake of exposition).

For the sake of simplicity, we consider the rewards and cost sharing schemes in (15) and
g(n) =1, and observe the following:

Sufficiently high service value can avoid rewards explosion (Figure 2 compares two different
service values under the same conditions). The necessary increase in the service value
may simply be not possible due to inherent technological limitations and other external
factors.

Sufficiently small initial rewards also avoid the rewards explosion (Figure 3 compares two
initial rewards under the same conditions). Rewards however cannot be arbitrarily small
since they must cover the costs of validators and be competitive against other sources of
investments.

A higher risk free rate may also trigger an exponential growth (Figure 4 shows that
for smaller 6 we need a smaller initial reward, or a larger service value, to avoid this
explosion).

Allowing the token price to decrease does avoid the rewards explosion that instead occur
with stable prices, once we consider the rewards in money (Figure 5). Decreasing prices
are however not desirable, and perhaps one may want increasing prices, which turn out
to make the monetary reward explosion even more severe.

The above uncontrolled growth represents a potential “death spiral” stemming from
necessary equilibrium conditions. First, it leads to impractical implementation due to
numerical explosion in ledger validators accounts (thus violating feasibility). Second, it may
even render such equilibria nonexistent for some parameter combinations. Note that adapting
the rewards requires knowledge about shocks far in the future. Indeed, Theorem 13 states
that rewards cannot be reduced arbitrarily from one step to the next. Such powerful oracles
are generally not available, and solutions based on them also violate feasibility.
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m =100,n=10,6=0.9,5'=1.0,R°=0.9 08m =100,n=10,6=0.9,5'=1.0,R°=0.8

tokens U tokens U
3 tokens V 06 tokens V
rewards rewards
2 0.4
1 0.2
0 0.0
0 10 20 30 40 50 0 10 20 30 40 50

Figure 3 A too high initial rewards (left) causes an exponential growth, as opposed to a smaller
initial rewards (right) leading to stable rewards and staked tokens (note the different scale of the
y-axis in the two plots). In both cases, we fix a minimum value of 0.1 for the rewards, which is the
flat part of the green line in the right plot.

m=100,n=10,6=0.7,5t=11,R=1 m=100,n=10,6=0.7,S'=12,R%=1

le7 le7
tokens U 3 tokens U
4 tokens V tokens V
3 rewards —— rewards
2
2
1
1
0 — 0 —
0 10 20 30 40 50 0 10 20 30 40 50

Figure 4 The effect of risk free rate (§) on rewards growth when no buyback condition: a smaller
0 might trigger an exponential increase in both rewards and validators staked amounts (compare
the right picture here with the right picture in Figure 2).

m =100,n=10,6=0.9,5'=1.0,R°=1 m =100,n=10,6=0.9,5'=10,R°=1
30— tokensU 0.8 —— tokens U in money
tokens V tokens V in money
rewards 0.6 rewards in money
20
0.4
10
0.2 _ -~
o =———7=————"" | o0
0 10 20 30 40 50 0 10 20 30 40 50

Figure 5 The effect of non-stable prices on rewards and validators staked tokens. We set
decreasing prices according to the price growth parameter JR = 0.9. Though the rewards and staked
tokens increase exponentially (left) their value expressed in money — rewards and staked tokens
market cap — does not (right).
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3.4 Policy that accommodates and implements the stable price
equilibrium

In this section, we consider the fundamental question of how one can compute and implement
an equilibrium with stable prices satisfying the no buyback condition. Stable prices require
to keep a precise amount of tokens of users (on one side) and of tokens of validators (on
the other side) given by Corollary 10. The no buyback condition requires the system to set
the rewards so to satisfy the condition in Theorem 13. For the sake of exposition, we next
describe an implementation for the reward and service fee schemes in (11). We should point
out that this implementation does not specify how to set the initial rewards R(®) which is
the crucial point to avoid rewards explosion (Corollary 14).

Given parameters and constraints.

1. The risk free rate r and thus the discount factor § = 1/(1 +r).

2. The total number m of users and the total number n of validators (both constant over
time).

3. There is no need for the system to buyback tokens (Definition 12).

System parameters. The system design depends on essentially two parameters:
1. Total value of the service S which is divided among the users at each step .

2. Total amount of rewards R® which is distributed to the validators at each step t.

Suggested equilibrium description and properties. At each round ¢ > 0,
1. Users strategies:
a. Start with ’]I‘K(J) =52 5. kg tokens, where kg = g(n) - ™=L . s'(1/m).

m m

b. Spend all these tokens to get a service value equal to S® - s(1/m).

c. Given the next round service value S¢+1 | buy b(Ut) = ’]T]KSH) = %

required for the next round according to Item la.

-0 - kg tokens

2. Validators strategies:

a. Start with ']I‘KS) = B® . 25 - kR tokens, where kp = %=L - 1/(1/n).

n

b. Stake all these tokens to get R(*) - r(1/n) new tokens as reward.

c. Given the rewards R+ of next round, sell this amount of tokens (if negative, buy
tokens): s\ = (R® — Rt+D) . 2. kp + RY - r(1/n), which yields the required

’]I‘Kgﬂ) = @ . % - kg tokens for next round ¢t + 1 according to Item 2a.

3. System actions:

a. Given the next round service value S®+1) | set the next total rewards RT1) so that

m- S . 5. kg >n- (R(t) - R(t“)) . IL(S kr+n-RY r(1/n)

which guarantees the no buyback condition, that is, m - bg) >n- 33).
b. Announce the next rewards R(*+1) before the token buy or sell (Subround IT) begins.

c. Sell the required amount of tokens, mTKgH) — nsg), to match demand during

Subround II.
4. Prices: all tokens are exchanged at a stable price PRICE® = 1.
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’ System ‘ token A purpose token B ‘ purpose ‘
DFINITY ([27]) ICP staking & rewards Cycle computation (service)
NEO ([19]) NEO staking GAS pay transactions
Axie Infinity ([12]) AXS governance and staking SLP play (breeding Axie)
IOTA (]23]) IOTA staking & rewards Mana access ledger

Figure 6 Examples of two-token systems.

R® = (RY, RY) is the reward at time ¢.

sgt) = (S]X), s]g)) is the selling strategy of validator j.

bz(-t) (bzx), b; (t)) is the buying strategy of user i.

uz(»t) is the amount of token B used by user ¢ to pay for the service.

’]I‘]Kl(f) = (Ag), Bg)) are the token holdings of a generic player p (a user or a
validator).

PRICE® = (PRICEY, PRICE{") are the prices of the two tokens.

Figure 7 Notation for the two-token model.

4 A two-token model

In this section, we consider a natural variant of the previous (single-token) model to the case
in which we have two tokens, token A and B, whose use and purpose is as follows:

token B is used by the users to pay and get the service, and

token A is used by the validators for staking to get rewarded with more tokens (of both

types).
A number of existing systems follow a similar two-token scheme (see Figure 6 for some
examples) and a model based on the similar assumptions has recently been proposed by
[9]. Both tokens can be exchanged in the spot market as before, and thus we have a price
for each token (see Figure 7 for some additional notation for the two-token model). The
corresponding utilities are naturally given by

U Zat vl v =59 g(n) - 6,0 PRICEY — b, - PRICEY) . (21)
V(o) Z st v, v =59 PRICEY + 5,3 - PRICEY — v . (22)

For the sake of exposition, we consider the simpler reward sharing and payment schemes
(15), where token A is used for staking, and each validator j is rewarded with quantities
RE@ and Rg; of tokens A and B, respectively. Users get a service value depending on the
amount of tokens B they use, i.e., they pay to the system. Thus, we have

(t) AWM AD
) _ a) . u; ) _ p) J ) _ p) J
S, =25 (Zk ufp) ) RAj =R, (Z A(t)> ; RBj = Ry (Z A(t)> .
- v v v v
(23)
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The validators’ selling constraint for the single token (5) extends naturally into

AU Z AD 4 RO 05 1)

BO+D B 4 R o >0 (25)
Similarly, the users’ selling constraint for the single token (6) extends as follows:

A =AY £ hia >0 (26)

B£t+1) _ Bl(_t) _ Ul(-t) +big >0 (27)

where the asymmetry is due to the fact that only token B is used for getting the service, by
paying ugt) tokens. We next generalize the condition of (symmetric) equilibrium (Definition 1
and Remark 2) by requiring a “minimal” set of selling constraints to be non-strict (see
Remark 18 below).

» Definition 17 (symmetric equilibrium two tokens). Consider a system policy given by (23),

and a triple of users’ strategies, validators’ strategies, and prices, {(ugt), bz(-t))7 s;t), IP’R]I(C]E(t)},

such that the corresponding selling constraints of users (26)-(27) and of validators (24)-(25)

are satisfied. We say that such a triple is an equilibrium if, for every user i and every

validator j

1. (ugt), bl(-t)) mazximizes the discounted utility (21) of user i, given all other strategies

2. sjt maximizes the discounted utility (22) of validator j, given all other strategies

3. the selling constraint of token B are non-strict for user i (resp., token A for validator
j), and thus the corresponding token holdings are strictly positive, that is, Bz(-t) >0 and
Al >0

Moreover, we say that such an equilibrium is symmetric if the token holdings of all users are

the same, and similarly, if all token holdings of all validators are the same. In particular, we

have

B =B > 0 A=Al >0 (28)
for all users i and for all validators j and for all t.

» Remark 18 (minimal strict selling constraints). Note that in the definition above, each
type of player — validator or user — has non-strict selling constraint only in its own “main
purpose” token (see Equation 28). This corresponds to the natural requirement of continuous
participation in staking and in accessing and paying for the service. Furthermore, the price
analysis below implies that equilibria with certain desired prices are impossible if some of
the other selling constraints is also strict.

The next lemma is a generalization of [11, Lemma 1] to two tokens (see also [15] for
details), and it provides conditions in the prices based on the validators’ strategies.

» Lemma 19 (validators part). In the two-token model, the corresponding prices in any
symmetric equilibrium must satisfy the following conditions. If the selling constraints of B
are non-strict, then PRH(CE%*D = 5~IP’R]I(CJES) . If the selling constraints of A are non-strict,
then

PRICEY "V = 6 - PRICEY - (1 + Z{) + 6 - PRICE{) - 74 (29)
where
RY n—1 @ RY n-1

70— , Y (30)

nAs) n _nAg) n

and As) is the token holding (staking) of any validator at this equilibrium.
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Note that these two expressions in (30) are not symmetric in the two tokens, as the
staking token A appears in both denominators.
We next consider how the users’ buying strategies relate to the prices.

» Lemma 20 (users part). In the two-token model, the corresponding prices at any symmetric
equilibrium must satisfy the following conditions. If the buying constraints of B are non-strict,
then

S® if ul? =BWY S m—1
G s = g(n) - —— .

PRICE! ™V =4 - A
B PRICEY i u{” < BY mBY m

Moreover, if the selling constraints of A are non-strict, then IP’RH(CIEX%) =6 PRHCEX).

4.1 Generic symmetric equilibria

The following class of generic equilibria captures equilibria in the two-token model where
prices of token B are «-stable, that is, they satisfy (16), thus in particular the case in which
we aim at stable prices for token B used by the user to get the service.

» Definition 21 (generic symmetric equilibrium for two tokens). A symmetric equilibrium for
the two token model is generic if the following conditions hold for allt > 1:
1. The service to fees ratio is constant,

@)
mB{Y . PRICE{
U B
2. The prices of B satisfy

= Ser2Feesgy .

Ser2Feesg) =

PRICE{. ™" =5 . PRICEY - Ser2Feesg - kg

where constant kg depends only on the number of users m, the number of validators n,
and on the service fee scheme.
3. FEach user i starts round t with the same token holding Bg), uses all its current holding

tokens for the service (ugt) =

accordingly (bgt) = BS‘H)).

()
4. For the following rewards to stake ratios, Rewg2Stake®) := %7 the prices of A satisfy
Ny

Bg)), and buys new tokens needed for the next round

PRICEY " =5.PRICEY - (1 + Rewa2Stake®rg) + §-PRICEY - Rewg2Stake W kg
(31)

where constant kr depends only on the number of users n, and on the rewards sharing
scheme.

» Theorem 22. Any symmetric equilibrium for the two-token model with the reward and
service fee schemes in (23) and whose prices of token B satisfy (16) is a generic symmetric
equilibrium. This in particular holds true for the case of stable prices for token B.

Proof. The first three items in the definition of generic symmetric equilibrium (Definition 17)
follow from Lemma 20, from the definition of symmetric equilibrium requiring that users
selling constraints of token B are non-strict (Definition 17), and from the assumption about
the prices (16).

The last condition in Definition 17 is a rewriting of the prices in Lemma 19 and of
definition of symmetric equilibrium requiring that validators selling constraints of token A
are non-strict (Definition 17). <
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4.2 No buyback in the two-token model

In this section, we study the implications of no buyback in the two-token model. As for the
single token setting, we aim at equilibria where the system does not need to buyback tokens
of either type.

» Definition 23 (no buyback two tokens). We say that a symmetric equilibrium in the
two-token model satisfies the no buyback condition if no additional tokens (of either type) are
bought at any round by the system, that is, mbig) > nsjg) and mbiX) > nsjg).

The following theorem provides a bound on the rewards that depends only on the next
round’s service value. The main advantage of the two-token model is that rewards can be
adjusted “immediately” to the service value fluctuations, and they need to be low only when
the latter is low. The mechanism in Section 4.3 implements this idea.

» Theorem 24. In any generic symmetric equilibrium, there is a maximum monetary reward
for validators in terms of tokens B that can be awarded without violating the no buyback
condition. In particular, it must hold

KS

RY . PRICEY < 6. 90¢+D . rperymE
n-r n

This is because validators always sell all the newly rewarded B tokens and users buy (only)
tokens of type B, thus implying that validators keep all their tokens A and possibly buy new
ones, Al > A7V

y Ay Z Ay

Proof. We consider the two inequalities of the no buyback condition (Definition 23) separately.

1. For tokens of type B, we observe that, for PRHCES_D #*6- IP’RH(CIES)7 the users buying
SUHD — Qi+ . 4 .
Ser2FeesSt PRICES T PRICE(

strategies satisfy mbig) = mBSH) = Kg .

Moreover, the validators’ selling strategies satisfy sjg) = Rg) -r(1/n) , since the validators

selling constraint for tokens of type B must be strict, and thus Bl(»t) = 0 for all ¢.

Therefore the no buyback condition for tokens of type B is equivalent to n - R](;) -r(1/n) <

S+ . 8 .
PRICE

Ks.

2. We also require no buyback for the tokens of type A, which means that ij) = 0 because,

in any generic symmetric equilibrium users never hold (and thus never buy) tokens of type

A If users hold tokens A, the second part Lemma 20 implies ]P’R]I(CEX_U =4- IP’R]I(CEX),
thus contradicting (31) in Definition 21. Hence, ASH) = Ag) + RX) -r(l/n)+ ij) with

b >0

ian =Y
This completes the proof. |

4.3 Stable price mechanism in two-token model

We next describe a simple mechanism which implements stable prices for token B, while

the equilibrium price of token A tends to grow but is affected by the shocks. The system

provides rewards with tokens B only. At equilibrium, validators keep their tokens A as they

guarantees access to rewards, and sell only tokens B. More in detail:

1. In order to have stable prices for B and no buyback, we set R](;) such that Rg) -PRHCES) =
SUHD . L, where L =4 - s

buyback condition hold tightly. Furthermore, we set rRY = o.

is the constant given by Theorem 24 that makes the no
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2. The (equilibrium) buying strategies for token A are “no buy and no sell”, that is,
Ag) = Aig), for a suitable A%?) specified below. From the equation of the prices (29), we
obtain (see full version [15] for details)

(t=1) _
PRHCEX) _ % — gt+1) LLI , (32)
) A§9) n?
S t PRICE!Y
which implies IP’R]I(CIE‘(A) <=t

3. From the previous equation, the discounted utility of validators, if deviating by selling all
tokens A at some round 7, is at most 67 - Al” . PRICEY) < A\” . PRICEY, while the
discounted utility for the suggested strategies (equilibrium) equals

v
1—-46°

36t (RY - PRICEY) —v) =Y 6t (SU+) . L) -
t=0 t=0

4. In order to have feasible (nonnegative) prices, we need to set the initial payments and
token holdings sufficiently high.

» Theorem 25. For any service value satisfying Assumption 1 and any reward and service
sharing schemes satisfying Assumption 2, the strategies above are a symmetric equilibrium
with stable prices for token B used by users for getting the service.

Proof. We follow a similar argument as in [11, Remark 2 (existence)] based on the following
three conditions. First, the discounted utilities of all players (users and validators) assume
finite values (since their instantaneous utilities are proportional to S®). Second, these
strategies at equilibrium are in some bounded interval [¢,d]. For users, this is evident since
they buy tokens proportionally to S¢+1) and from Assumption 1. For the validators, they
sell all Rg) = O(SM®) tokens B, they never sell or buy tokens A. Third, the utilities of the
players are concave due to Assumption 2. Finally, Theorem 4.5 in [26] yields the desired
result (concavity implies that the necessary equilibrium conditions maximize a round-¢
decomposition of the utility (see full version [15]), while Theorem 4.5 in [26] ensures the
maximum for the decomposition indeed maximizes the corresponding player utilities, thus
an equilibrium). <

4.3.1 Stable price mechanism implementation

At each round t, the system only needs to estimate the next round service value S(t+1),

and thus a simpler “one step lookahead” oracle suffices, as opposed to the single-token case.

Then, we have the following simple mechanism:

1. Users use (spend) B tokens proportionally to S () and buy new B tokens proportionally
to the next round service value S(*+1),

2. Validators’ rewards consist of only tokens B proportionally to the next round service
value (1),

3. Validators sell all these B tokens that they get as rewards, and keep all A tokens they
had from the beginning.

It is worth pointing out that in our two-token model, users can also buy tokens A, and

validators can sell them as well. However, in the equilibria induced by the proposed

mechanisms, it is not convenient for either party to do so.

» Remark 26. We note that the equilibria described above are closely related to certain
proposed implementations of IOTA ([23]). As in our proposed reward scheme and equilibria,
rewards in the IOTA system are uniquely provided in the form of Mana tokens (= token B),
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while staking is conducted via IOTA tokens (= token A). Furthermore, only Mana tokens
can be traded to “[...] individuals that in some sense are external to the system” [23]. In
this context, our equilibria demonstrate that such designs, which forbid trading governance
tokens, may still be sustainable. Specifically, Theorem 25 says that there exist equilibria
where, even if trading governance tokens indirectly via some off-chain/secondary market
became possible, players would not find it advantageous to do so.

5 Conclusions and research directions

We studied the problem of token monetary policy in blockchain systems viz-a-viz a set of
desiderata that are crucial for the security and sustainability of blockchain systems. Our
analysis lead to our proposal of a new general tool for tokenomics policy, quantitative
rewarding, which judiciously adjusts the rewards given to validators with the objective of
achieving, at equilibrium, desirable paths for the token price, e.g., stable prices. In the
light of this, we investigated how the long-term equilibria between users, validators and
token flows are different for blockchains with a single token (used for transaction fees and
staking) and two separate tokens. An important finding of this analysis, is that the two-token
model affords additional flexibility that can handle a broader variation of service values at
equilibrium. Specifically, on the issue of implementation of monetary policies satisfying all
our desiderata, the results for single token tokenomics in Section 3 highlight the need for
some “global” information about future fluctuations in the service value, making such policies
difficult to realize (namely, in order to avoid buybacks and price fluctuations, oracles that
predict future shocks are needed to avoid reward explosion). In two-token systems, instead,
the policy only needs to know the near future service value to control prices and enforce
all our desiderata, a more tractable objective. In summary, in order to facilitate all our
desiderata for a monetary policy, a suitable proxy for the service value S is essential, and
for two-token systems the presence of such proxy can be put to use much more effectively
via our proposed QR mechanism. Future work could delve into assessing various possible
proxies and their on-chain implementation as well as the incentive compatibility for users
and validators that now will have the additional leverage of observing any of the oracle
computations and data dependencies that may be taking place publicly on-chain and could
be influenced by their actions.
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