
Efficient Parallel Execution of Blockchain
Transactions Leveraging Conflict Specifications
Parwat Singh Anjana∗ #

Supra Research, Udaipur, India

Matin Amini #

University of Southern California, Los Angeles, CA, USA

Rohit Kapoor #

Supra Research, New Delhi, India

Rahul Parmar #

Supra Research, Ahmedabad, India

Raghavendra Ramesh #

Supra Research, Brisbane, Australia

Srivatsan Ravi∗ #

Supra Research, Los Angeles, CA, USA
University of Southern California, Los Angeles, CA, USA

Joshua Tobkin #

Supra Research, Taipei, Taiwan

Abstract
Parallel execution of smart contract transactions in large multicore architectures is critical for higher
efficiency and improved throughput. The main bottleneck for maximizing the throughput of a node
through parallel execution is transaction conflict resolution: when two transactions interact with
the same data, like an account balance, their order matters. Imagine one transaction sends tokens
from account A to account B, and another tries to send tokens from account B to account C. If the
second transaction happens before the first one, the token balance in account B might be wrong,
causing the entire system to break. Conflicts like these must be managed carefully, or you end up
with an inconsistent, unusable blockchain state.

Traditional software transactional memory (STM) has been identified as a possible abstraction for
the concurrent execution of transactions within a block, with Block-STM pioneering its application
for efficient blockchain transaction processing on multicore validator nodes. This paper presents a
parallel execution methodology that leverages conflict specification information of the transactions
for block transactional memory (BTM) algorithms. Our experimental analysis, conducted over
synthetic transactional workloads and real-world blocks, demonstrates that BTMs leveraging conflict
specifications outperform their plain counterparts on both EVM and MoveVM. Our proposed
BTM implementations achieve up to 1.75× speedup over sequential execution and outperform the
state-of-the-art Parallel-EVM (PEVM) execution by up to 1.33× across synthetic workloads.

2012 ACM Subject Classification Computing methodologies → Parallel computing methodologies

Keywords and phrases Blockchain, Smart Contract, Parallel Execution, Conflict Specifications

Digital Object Identifier 10.4230/LIPIcs.AFT.2025.29

Related Version Full Version: https://arxiv.org/abs/2503.03203

∗Corresponding authors.

© Parwat Singh Anjana, Matin Amini, Rohit Kapoor, Rahul Parmar, Raghavendra Ramesh,
Srivatsan Ravi, and Joshua Tobkin;
licensed under Creative Commons License CC-BY 4.0

7th Conference on Advances in Financial Technologies (AFT 2025).
Editors: Zeta Avarikioti and Nicolas Christin; Article No. 29; pp. 29:1–29:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.anjana@supra.com
https://orcid.org/0000-0002-6574-3871
mailto:matinami@usc.edu
https://orcid.org/0009-0006-8776-3925
mailto:r.kapoor@supra.com
https://orcid.org/0009-0001-5855-3367
mailto:r.parmar@supra.com
https://orcid.org/0009-0004-4781-9424
mailto:r.ramesh@supra.com
https://orcid.org/0000-0002-6289-9723
mailto:s.ravi@supra.com
https://orcid.org/0000-0002-2965-3940
mailto:j.tobkin@supra.com
https://doi.org/10.4230/LIPIcs.AFT.2025.29
https://arxiv.org/abs/2503.03203
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

29:2 Efficient Parallel Execution of Blockchain Transactions

1 Introduction

Blockchains are in a race to reduce transaction latency, improving user experience and
increasing throughput to meet anticipated demand. This optimization effort has examined
every step of a blockchain transaction, including data dissemination, ordering, execution,
and storage. In this paper, we investigate the state-of-the-art in optimizing the execution
step of a transaction workflow.

Blockchains require all nodes to deterministically reach the same final state when executing
a block of transactions. To leverage multicore architectures, modern blockchain designs
seek to maximize parallel execution throughput while preserving deterministic consistency
across all nodes. Traditional software transactional memory (STM) has been identified as a
possible abstraction for the concurrent execution of transactions within a block. However, the
execution order must follow a preset order of transactions in a block. The main bottleneck
for maximizing the throughput of a node through block transactional memory (BTM) that
respects the preset order is transaction conflict resolution: when two transactions, T1 and T2
in a block, interact with the same state, like an account balance, order in which the reads
and writes on the state occurs matters for the correctness of the execution. Imagine that a
transaction T1 sends tokens from account A to account B, and another transaction T2 tries
to send tokens from account B to account C. If T2 happens before the first one, the token
balance in account B might be wrong, causing the entire system to break. Conflicts like these
must be managed carefully, or you end up with an inconsistent, unusable blockchain state.

Ethereum maintain consistency by sequentially executing a block of transactions, un-
derutilizing the multicore architectures of its nodes. In contrast, Solana [33] and Aptos [5]
utilize parallel execution, though in different settings. Aptos employs the classical STM
technique to execute transactions in parallel with BTM, without requiring any priori read-
write access specifications with transactions. Aptos’ Block-STM [17], represents the current
state-of-the-art, applying classical STM [32] techniques to the execution of ordered blocks
of transactions. STM techniques are typically speculative or optimistic, meaning that they
attempt to execute as many transactions in parallel as possible, while detecting and resolving
conflicts. If a transaction reads a value that later changes due to another transaction, it
must be re-executed to maintain consistency. In contrast, Solana’s parallel execution requires
transactions to be tagged with the accounts read and written, though this is not a STM-based
algorithm. We wondered whether the read-write access specifications could enhance a BTM
algorithm’s performance, and our findings indicated a positive correlation.

Firstly, we observe that some popular blockchains equip transactions a priori with
read-write sets, i.e., the sets of accounts that the transaction may access. For instance,
Solana leverages user-provided read-write sets as access specifications in its lock-profile-based
iterative, parallel execution strategy [38]. Similarly, Sui [16] utilizes user-provided access
specifications to execute transactions in a causally-ordered manner. Secondly, we further
observe that, when such access specifications are not available a priori, it is possible to
derive access specifications for public entry functions statically at the time of deployment
of smart contracts using data-flow analysis on the smart contract code. This is a one-time
computation, enabling efficient utilization of these specifications during transaction execution.
These access specifications essentially serve as conflict specifications for any parallel execution
technique on ordered blocks of transactions. As a complementary approach, we observe that
it is possible to build conflict specifications efficiently at runtime by checking whether the
accounts affected by a set of transactions (for instance, payment transfers in Aptos Move or
ETH or ERC-20 transfers in Ethereum [12]) are mutually disjoint.

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:3

This is where we see the challenge of improving BTM to further optimize execution by
leveraging conflict specifications. Specifically, we seek to answer the following questions: Do
conflict specifications improve transaction-execution throughput in existing BTM techniques?
If so, what is the best BTM technique to optimally leverage these conflict specifications?
By constructively answering these questions, we aim to advance the frontiers of parallel
transaction execution, driving significant improvements in blockchain scalability and efficiency.

Contributions. Our key contributions are as follows:
1. Leveraging our insight that conflict specifications must be exploited for maximizing

throughout in parallel execution, we detail two BTM algorithms, dBTM and oBTM, that
can efficiently execute block transactions when sound, but possibly incomplete conflict
specifications are available.

2. We present implementations of our algorithms for Ethereum VM (EVM) and Aptos
MoveVM and conduct a detailed empirical analysis on real-world blocks, thoroughly
analyzing the best and worst-case performance. Additionally, we design a workload
generator for analyzing performance on large blocks and unconventional workloads.

3. We present a rigorous formalism and implementation for how conflict specifications are effi-
ciently constructed for EVM and MoveVM. We then present a conflict analyzer integrated
implementation (iBTM) that outperforms existing parallel execution approaches.

4. We evaluated the performance of iBTM against sequential and state-of-the-art Parallel-
EVM (PEVM) [28] on both synthetic and historical workloads. In synthetic workload,
the proposed iBTM achieve up to 1.75× speedup over sequential and 1.33× over PEVM
and maintain consistent improvements, with an average speedup of 1.24× over PEVM. It
achieves a maximum speedup of 2.43× over sequential execution on historical workloads.

The methodology is rigorously demonstrated for EVM and MoveVM, for which conflict
specifications are algorithmically derived as part of our integrated implementation. However,
we remark that the purpose of our modular presentation and detailed ablation studies is to
demonstrate how easily our parallel execution algorithms can be applicable to other blockchain
ecosystems, specifically Sui and Solana, which explicitly provide a priori transactional access
sets that can be used to derive conflict specifications. By identifying dependencies upfront,
we can avoid unnecessary rollbacks and retries, making our system much more efficient
for prevalent blockchain infrastructures. This allows the system to automatically separate
transactions that need special handling due to dependencies, making the entire execution
process more streamlined and as we demonstrate, highly efficient. Finally, we present how
this approach also unleashes the possibility of workload adaptive execution that can leverage
a sequential or parallel execution algorithm, depending on the block’s “conflict threshold”.

Roadmap. The rest of the paper is organized as follows. Sections 2 and 3 presents related
work and motivation on parallel execution of block transactions, respectively. Section 4 intro-
duces the system model and the proposed BTM algorithms. Section 5 presents experimental
results on parallel execution using conflict specifications. Section 6 formalize and implement
conflict specification generation and evaluate the full integration in both real-world and
synthetic workloads. For succinctness of presentation, we focus on the EVM in the paper
and only summarize the MoveVM evaluation results. We conclude in Section 7.

2 Related Work

This section reviews smart contract execution models and existing parallel execution al-
gorithms for block transactional execution.

AFT 2025

29:4 Efficient Parallel Execution of Blockchain Transactions

Several models have been proposed for the execution of transactions in blockchains; one
such model involves the block proposer executing transactions, generating a block containing
state differences, and subsequently propagating this block across the network for validators
to validate. Another approach entails the block proposer determining the transaction order
in a block, after which all nodes reach consensus on this order before executing transactions
in parallel. The former is known as the Ethereum model [12], while the latter is known as the
Aptos model [5]. Another model facilitates parallel execution by incorporating read-write sets
with transactions; this is commonly called the Solana model [33]. A fourth model exploits
resource ownership to enable parallel execution, a methodology known as the Sui model [36].

These four execution models can be broadly categorized into two distinct classes that aim
to optimize transaction execution. The first class is called the read-write aware execution
which relies on transaction access hints provided by clients to facilitate parallel execution
either through preprocessing in the form of a directed acyclic graph (DAG) or runtime
techniques based on lock profiling. The second class comprises techniques that leverage
run-time execution techniques, such as STM or locks, to optimistically execute transactions.
We call this approach the read-write oblivious execution.

Read-write Aware Execution. Transactions on blockchains such as Solana [33] and Sui [36]
upfront specify the accounts they access in read and write mode during execution. These
access hints are used to enable parallel execution, either through static analysis or by
employing a runtime scheduler that resolves read-write set conflicts and executes transactions
in parallel. Alternatively, a DAG can be constructed from the read-write access sets to
partition transactions into independent groups (iterations in Solana) for parallel execution.
Specifically, Solana’s [33] SeaLevel [37, 38], leverages read-write sets and lock profiling to
execute transactions iteratively. Each iteration involves a locking phase to detect conflicts
and an execution phase where non-conflicting transactions are executed in parallel, while
conflicting transactions are deferred to subsequent iterations until all transactions in the
block are processed. The iteration information is then included in the block by the block
proposer to support parallel execution during validation at the validators.

In contrast, Sui [36] introduces an object-based state model to identify independent
transactions. Objects are shared or exclusively owned, each with a unique identity and owner
address. Dependency identification is simplified by determining whether multiple transactions
access the same shared object. Based on this model, Sui enables parallel execution [15, 16]
where transactions on owned objects are executed in parallel and can completely bypass
consensus, while those on shared objects run sequentially through consensus to avoid conflicts.
Other works, such as ParBlockchain [1] and Hyperledger Sawtooth [30], employ lock-based or
conflict-analysis techniques, while DiPETrans [6] and the efficient scheduler for Sawtooth [25]
utilize DAG-based read-write aware execution.

Read-write Oblivious Execution. In this class, the goal is to execute an ordered set of
transactions in parallel as if they were executed sequentially and arrive at the same state.
The key idea is that some transactions may not be conflicting, i.e, they do not read or write
any common states; hence, can be executed in parallel, enabling execution acceleration that
arrives at the correct sequential result. For the Ethereum model, Dickerson et al. [11] propose,
the first pioneering work on parallel execution of block transactions. They proposed using
pessimistic ScalaSTM for parallel execution at the block proposer and a happen-before graph
for parallel execution at the validators. Later, Anjana et al. [2, 3] proposed an optimistic
STM (OSTM) based multi-version timestamp ordering protocol for parallel execution at

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:5

the proposer, while a DAG-based efficient parallel execution at validators. Saraph and
Herlihy [29] proposed a simple bin-based two-phase approach. In the first phase, the proposer
uses locks and tries to execute transactions concurrently by rolling back those that lead to
conflict(s). Aborted transactions are kept in a sequential bin and executed sequentially in
the second phase. Later, OptSmart [4] proposed an approach that combines the idea of
bin-based approach with the OSTM approach for efficient parallel execution.

In the Aptos model, differed execution of transaction based on preset serializable and multi-
version concurrency control is proposed in the Block-STM [17]. Rather than speculatively
executing block transactions in any order, they employ it on ordered-sets, called the preset
order. Each validator uses Block-STM independently to execute a leader proposal of an
ordered set of transactions in parallel to get the same state. This has currently been
implemented on the Aptos blockchain [5] and is the most promising approach, as it does
not require additional information to be attached to the transactions or in the block for
parallel execution. It has been adopted for execution on the Polygon PoS Chain [26], where
it is already live on the mainnet. The proposer uses Block-STM to execute transactions in
parallel and includes a DAG in the block to allow deterministic and safe parallel execution
at validators. Recently, SeiGiga [31] has also adopted Block-STM.

3 Motivation and Overview

This section motivates the need for parallel execution in blockchain systems and outlines the
benefit of leveraging conflict specification for parallel execution.

Motivation. Naturally, the throughput of STM-based execution varies widely based on
the level of transaction conflicts, aborts, and re-executions (triggered re-validations of the
transaction’s read state), presenting both a challenge and an opportunity to further optimize.

Consider the scenario shown in Figure 1, in which we have two transactions T1 and T2
running concurrently. We consider that T1 must precede T2 in the preset order (denoted
T1 → T2). Without a priori knowledge of read-write conflicts in the set of accounts (states)

Preset Order: T1→T2

T1

read(X1)→0 write(X2, 1) Commit Cycle (T1 ↔T2)
If T1 commits, the execution is not
equivalent to any sequential execution.

T2

read(X2)→0 write(X1, 1) Commit
Committed transactions: T2

(a) Safety violation of preset order T1→T2

T1
read(X1)→0 Abortwrite(X2, 1) read(X1)→1 write(X2, 1) Commit

re-execute T1
T1 commits after T2. Execution is equivalent to T2→T1

T2

write(X1, 1)read(X2)→0 Commit

Committed transactions: T2, T1(b) Safety violation of preset order T1→T2

T1

read(X1)→0 write(X2, 1) Commit

T2

read(X2)→1 write(X1, 1)CommitT2 wait until T1 commits
Committed transactions: T1, T2

(c) Safe execution of preset order T1→T2

Figure 1 Safe execution in preset order: (a) and (b) show unsafe executions due to arbitrary or
incorrect serialization; (c) shows a safe execution where T2 waits for T1 to commit, preserving the
preset serialization order.

AFT 2025

29:6 Efficient Parallel Execution of Blockchain Transactions

Preset Order: T1→T2→T3→T4T1

Commitread(X1)→0 write(X2, 1)

T2

Commitread(X4)→0 write(X3, 3) write(X4, 1)

T3

Commitread(X1)→0 write(X5, 1)

T4

Commitread(X3)→3 write(X4, 2)

(a) Sequential execution in preset order T1 → T2 → T3 → T4

T1

Commitread(X1)→0 write(X2, 1) T1 is the first transaction in the preset order.

T2

Commitread(X4)→0 write(X3, 3)write(X4, 1) T2 is not in conflict with T1, can execute in parallel with T1.

T3

Commitread(X1)→0 write(X5, 1) T3 is not in conflict with T1 and T2,
can execute in parallel with both T1 and T2.

T4

Commitread(X3)→3 write(X5, 2) T4 reads the value written by T2,
and has a write-write conflict with T3,
hence, wait for T2 and T3 to complete.

(b) Parallel execution in preset order T1 → T2 → T3 → T4

Figure 2 Leveraging conflict specifications a priori for parallel execution.

accessed, committing T2 prior to committing T1 may result in a safety violation. To illustrate
this, consider the following execution: T1 reads an account X1 (value 0), following which T2
reads X2 (value 0), followed by a write of a new value 1 to X1. Observe that if T2 commits
at this point in the execution and if T1 writes a new value 1 to X2 after the commit of T2,
then the resulting execution does not respect the preset order in any extension. Clearly, if
T1 commits, the resulting execution is not equivalent to any sequential execution, as shown
in Figure 1a. Alternatively, if T1 aborts and then re-starts, any read of X2 will return the
value 1 that is written by T2, thus not respecting the preset order, as illustrated in Figure 1b.
Consequently, the only possible way to avoid this, requires T2 to wait until T1 commits (see
Figure 1c). Now consider a modification of this execution in which T2 reads X3 and writes
to X4. In this case, T2 does not have a read-from conflict with T1 allowing T1 and T2 to run
in parallel with almost no synchronization. However, this is possible only if threads that
execute these transactions are aware of the conflict prior to the execution.

After studying both read-write oblivious and aware models (taxonomized in Section 2),
we conclude that the approach that leverage conflict specifications is the best way forward. It
can be considered the “Goldilocks” approach which creates conflict specifications to overcome
the limitations of parallel execution imposed by the preset order of transaction. This is what
will allow us to scale with parallel execution efficiently and maximize throughput.

Overview. Consider the execution of four transactions T1−T4 depicted in Figure 2, as a
running example. In Figure 2a, we observe a sequential execution, despite T1 and T2 accessing
different states, limiting throughput. This is, for instance, the case in Ethereum [12] where
transactions are executed sequentially. In contrast, Figure 2b illustrates parallel execution,
where T1, T2 and T3 execute in parallel and improve throughput. However, T4 has a
reads-from conflict with T2 on X3 and therefore must wait for T2 to commit. Moreover, T4
has a write conflict with T3 and must either wait for T3 to commit or employ data structures
that allow tracking of both writes performed to X5 (à la multi-versioning [18]).

As we constructively observe, the states accessed by these transactions can be efficiently
derived a priori to build sound, but possibly incomplete specifications. Depending on how
complete the derived specifications are, this information can be used to minimize runtime
transactional conflicts and thus avoid unnecessary transaction aborts during parallel execution.
However, as the results in this paper show, not only are there rigorous theoretical approaches

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:7

to deriving conflict specifications in smart contract ecosystems like Ethereum, fast techniques
exist to identify a non-trivial number of transactional conflicts within a block, which provide
significant speedup for parallel execution.

4 BTM Execution From Conflict Specifications

In this section, we formally present block transactional memory in the asynchronous shared
memory model, detail our BTM algorithms that leverage conflict specification and satisfy
preset serializability.

4.1 Model
The model of BTM is presented in the standard asynchronous shared memory model [22].

Transactions. A transaction is a sequence of transactional operations, reads and writes,
performed on a set of virtual machine (VM) states. A BTM[1,. . . , n] implementation provides
a set of concurrent processes with deterministic algorithms that implement reads and writes
on accounts using a set of shared memory locations accessed by the n transactions with a
preset order T1 →, . . . , Tn. More precisely, for each transaction Tk, a BTM implementation
must support the following operations: readk(X), where X is an object, that returns a
value in a domain V or a special value Ak /∈ V (abort), writek(X, v), for a value v ∈ V ,
that returns ok or Ak, and tryCk that returns Ck /∈ V (commit) or Ak. The transaction Tk

completes when any of its operations returns Ak or Ck.

Executions, Histories and Conflicts. A BTM execution is a sequence of events performed on
shared memory states by an interleaving of transactions as prescribed by the implementation.
To avoid introducing additional technical machinery that is not strictly necessary to follow
the algorithmic exposition in this paper, we do not define executions using configuration
semantics as is common in traditional shared memory systems [18, 22], although it would be
straightforward to do so.

A BTM history is the subsequence of an execution consisting of the invocation and
response events of operations of the transactions. For a transaction Tk, we denote all objects
accessed by its read and write as Rset(Tk) and Wset(Tk), respectively. We denote all the
operations of a transaction Tk as Dset(Tk). The read set (resp., the write set) of a transaction
Tk in an execution E, denoted RsetE(Tk) (resp. WsetE(Tk)), is the set of objects that Tk

attempts to read (resp. write) by issuing a read (resp. write) invocation in E. The data set
of Tk is Dset(Tk) = Rset(Tk)∪Wset(Tk). Tk is called read-only if Wset(Tk) = ∅; write-only
if Rset(Tk) = ∅ and updating if Wset(Tk) ̸= ∅.

We say Ti and Tj conflict in an execution E if there exists a common state X in Dset(Ti)
and Dset(Tj) such that X is contained within Wset(Ti) or Wset(Tj), or both. Furthermore,
we say that Ti, Tj read-from conflict if Wset(Ti) ∩ Rset(Tj) ̸= ∅ and Ti appears before Tj

in the preset order. Note that the definition of read-from conflict, unlike that of a conflict,
relies on a preset order existing between the two transactions.

Let H be a sequential history, i.e., no two transactions are concurrent in H. For every
operation readk(X) in H, we define the latest written value of X as follows: if Tk contains a
writek(X, v) that precedes readk(X), then the latest written value of X is the value of the
latest such write to X. Otherwise, the latest written value of X is the value of the argument
of the latest writem(X, v) that precedes readk(X) and belongs to a committed transaction
in H. This write is well-defined since H can be assumed to start with an initial transaction

AFT 2025

29:8 Efficient Parallel Execution of Blockchain Transactions

writing to all states. We say that a sequential history S is legal if every read of a state
returns the latest written value of this state in S. It means that sequential history S is legal
if all its reads are legal.

Preset Serializability. Given a set of n transactions with a preset order T1 → T2 → ...→ Tn,
we need a deterministic parallel execution protocol that efficiently executes block transactions
using the serialization order and always leads to the same state, even when executed
sequentially. We formalize this using the definition of preset serializability.

▶ Definition 1 (Preset serializability). Let H be a history of a Block-STM[1,. . . , n] imple-
mentation M . We say that H is preset serializable if H is equivalent to a legal sequential
history S that is H1 · · ·Hi ·Hi+1 · · ·Hn where Hi is the complete history of transaction Ti.
We say that a Block-STM[1,. . . , n] implementation M is preset serializable if every history
of M is preset serializable.

4.2 Algorithm overview
The core idea behind our algorithm is that only independent transactions are executed in
parallel, ensuring that no race conditions arise during execution. For any transaction Tk, if
there exists a transaction Ti ̸∈ cSet(Tk) that precedes Tk in the preset serialization order, the
execution of Tk is deferred until Ti completes (here cSet(Tk) denotes the set of transactions
that do not conflict with Tk). Additionally, each transaction is followed by validation to
ensure that, if two dependent transactions are executed in parallel due to incorrect conflict
specification, the one higher in the preset order can abort and re-execute. Thus, the output
of the algorithm will be the same as that of a sequential execution.

Performance improvement over parallel execution techniques based on Block-STM is
achieved by reducing the number of aborts and re-executions. This is made possible by
leveraging the knowledge of the transaction conflicts: a transaction Tk is executed only
after ensuring that all preceding transactions in the preset order are in its independence set,
cSet(Tk). This targeted execution strategy minimizes conflicts and improves throughput.

Problem Statement. In this section, we ask the following question: given a set of n

transactions T1 →, . . . ,→ Tn and cSet(Tk) for all k ∈ {1, . . . , n}, what are the most efficient
algorithms for implementing Block-STM[1,. . . , n]. We implemented two different algorithms,
leveraging conflict specification in DAG BTM (dBTM) and optimized BTM (oBTM), based on
how the scheduler utilizes the transaction conflict specification for efficient parallel execution.
As explained in Sections 1 and 2, this mechanism for implementing BTM is applicable directly
to the read-write aware models like Sui and Solana in which the BTM is explicitly provided
the transactional read-write sets. More importantly, as we demonstrate in Section 6, we
can efficiently construct conflict specifications for read-write oblivious models like Ethereum
EVM and Aptos MoveVM, even if under-approximate (i.e., incomplete), and still reap the
benefits of our proposed methodologies for implementing BTM.

Leveraging Conflict Specification in DAG BTM (dBTM)

This approach utilizes the conflict specifications (assumed to be correct or overapproximated)
and the preset order to create a DAG, which serves as a partial order and is provided as
input for the scheduler-less execution algorithm. In the DAG, transactions are represented
as vertices, whereas conflicts among transactions are denoted as directed edges. The indegree
field is added with each vertex (transaction) to track dependencies with prior transactions in
the preset order; a transaction becomes eligible for execution when its indegree is zero. A

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:9

transaction is independent if its cSet contains all preceding transactions in the preset order,
resulting in an indegree of zero. During execution, the non-zero indegree transactions wait
for the preceding transactions to commit and clear dependencies. At the time of commit,
the committing transaction decreases the indegree of all dependent transactions.

We now present the the preset-serializable dBTM (Algorithm 1), which leverages conflict
specifications to construct a transaction DAG representing a preset-serializable partial order.

Algorithm 1 dBTM[1,. . . , n]: It is a DAG-based scheduler to execute independent transactions
in parallel. The indegree field of each transaction vertex in the DAG tracks dependencies on
prior transactions. Consider a transaction Tk being executed by a process pk.
Input: T : list of transactions in the block Bi; S: pre-state− state before execution of block Bi;
cSet: specifications for transactions in T .
Shared Locations: indegree[Tk]: the number of transactions in preset order Ti is dependent on;
dependents[k]: the set of transactions dependent upon Tk; a version list ⟨vj⟩ for each state Xj .

1: Fun read k(Xj):
2: if Xj ̸∈ Wset(Tk) then

// Read the latest version of Xj

created by a Ti that precedes Tk.
3: [ovj , i] := read_lvp(Tk, Xj)
4: Rset(Tk) := Rset(Tk) ∪ {Xj , [ovj , i]}
5: return ovj

6: else
// Xj is in Wset (Tk)

7: [ovj , ⊥] := Wset(Tk).locate(Xj)
8: return ovj

9: Fun read_lvp(Tk, Xj):
10: [ov, i] := [0, 0];

// Read the largest version of Xj

created by a Ti that precedes Tk.

11: forall [ovj , i] ∈ Xj do
12: if k > i then
13: [ov, i] := [ovj , i]

14: return [ovj , i]
15: Fun write k(Xj , v):
16: nvj := v
17: if Xj ̸∈ Wset(Tk) then
18: Wset(Tk) := Wset(Tk) ∪ {Xj , [nvj , k]}
19: else

// Xj is in Wset(Tk), update its
current value to v.

20: Wset(Tk) := Wset(Tk).update(Xj , [nvj , k])
21: return ok

22: Fun tryC k ():
// Ensure commit order

23: if indegree[k] ̸= 0 then
24: wait until indegree[k] = 0;

// Write back to shared memory
25: forall Xj ∈ Wset(Tk) do
26: Write(Xj , [nvj , k])

// Clear dependencies
27: forall Ti ∈ dependents(i) do
28: indegree[i]← indegree[i]− 1;
29: return Ck

30: Fun gen_dag(cSet):
31: block_size← size_of(Bi);
32: for k ∈ (0, block_size - 1)) do
33: dependencies[k] := ∅
34: dependents[k] := ∅
35: indegree[k]← 0;

// Compute complement sets
36: for k ∈ (0, block_size - 1) do
37: cSetComp(Tk) ← {j | j < k and j /∈

cSet(Tk)};
// Use cSetComp to build dependencies

38: for k ∈ (0, block_size - 1) do
39: foreach j ∈ cSetComp(Tk) do
40: dependencies[k].add(j)
41: dependents[j].add(k)
42: indegree[k] := |dependencies[k]|
43: return (dependents, indegree)

Implementation state. The DAG is implemented using two primary data structures: 1.
indegree, where indegree[k] denotes the number of preceding transactions in the preset order
that transaction Tk depends on; and 2. dependents, which maps each Tk to a set of its
dependent successors. For each VM state Xi, the algorithm maintains a memory location vi

that stores a set of tuples ([v1, k], [v2, k′], . . .). Each tuple [v, k] represents the value v of Xi

and k is the transaction Tk that wrote that value.

Read implementation. The readk(Xj) function returns the value of state Xj as visible
to transaction Tk. It first checks whether Xj is already present in Wset(Tk) at line 2. If
not, it reads the largest version written by a transaction Ti in shared memory such that

AFT 2025

29:10 Efficient Parallel Execution of Blockchain Transactions

Ti → Tk, using the helper function read_lvp() defined in lines 9–14. This value, along with
its source, is then recorded in Rset(Tk) at line 4. If Xj has already been locally written by
Tk, it is returned directly from the Wset(Tk) at line 7. The helper function read_lvp(Tk, Xj)
(lines 9–14) is invoked by readk to identify the latest version of Xj in the multi-version data
structure created by a transaction that precedes Tk in the DAG. It iterates over all versions
of Xj in shared memory and selects the one with the highest index i < k. This mechanism
ensures multi-version consistency by enforcing serialization semantics across transactions.

Write implementation. The writek(Xj , v) function (lines 15 to 21) stages a write to VM
state Xj with value v in the local context of Tk. If this is the first write to Xj by Tk, an entry
is created in Wset(Tk). If Xj has been written previously, the existing entry is updated with
the new value. This operation does not alter shared memory but updates the local write set.

Commit implementation. The tryCk() function, lines 22 to 29, performs the commit logic
for transaction Tk. It first waits until all dependencies are satisfied, that is, all preceding
transactions in the DAG on which Tk depends are committed and indegree[k] := 0 (line 24).
Then updates the shared memory with writes from Wset(Tk) at line 25. At line 27, it clears
the dependencies of all successor transactions, specifically, for each transaction Ti > Tk where
Tk /∈ cSet(i), it decrements indegree[i] by 1 (line 28). Finally, it returns Ck at line 29.

DAG Generation. The gen_dag(cSet) function, lines 30 to 43, constructs a DAG from the
specification cSet, which maps each transaction Tk to the set of preceding transactions (in
preset order) that Tk is independent of. It initializes the per-transaction data structures
(dependencies := ∅, dependents := ∅, and indegree← 0) in lines 32–35. Then, computes the
complement conflict set cSetComp(Tk) for each transaction Tk ∈ T (line 36), which includes
all preceding transactions of Tk that are not in cSet(Tk). These are the transactions with
which Tk conflicts, and hence it must be conservatively dependent on them in the DAG.
Using cSetComp, the function constructs the dependency edges (lines 38–42). For every Tk

∈ T , the function sets indegree[k] to the cardinality of the dependency set of Tk. Finally, the
function returns references to the dependents and indegree structures at line 43, which are
used as input to DAG-based scheduler for execution.
Proof of Correctness. We prove preset serializability for the Algorithm 1 by adapting the
proof structure from traditional STM literature for the block transactional model [18, 19].
The proof is provided in the extended version on arXiv due to space limitations.

Leveraging Conflict Specification in Optimized BTM (oBTM)

The oBTM algorithm optimizes the Block-STM scheduler by integrating independence
information (i.e., cSet) associated with transactions, which is assumed to be complete and
provided as input. The scheduler is modified to allow transactions that are independent
of all preceding transactions in the preset order to execute without validation. A greater
number of such independent transactions improves the execution efficiency. This method
builds on the existing scheduler of Block-STM [17] for MoveVM and PEVM [28] developed
by the RISE chain [27] for EVM. In the absence of conflict specifications, the algorithm
defaults to optimistic execution as in PEVM and Block-STM.

The design of oBTM, shown in Algorithm 2, leverages the conflict specifications to enable
efficient optimistic execution by minimizing the validation overhead of vanilla PEVM and
Block-STM. Consider a transaction Tk being executed by a process pk.

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:11

Algorithm 2 oBTM[1,. . . , n]: The approach optimizes the Block-STM scheduler to allow
transactions that are independent of all previous transactions to execute without validation.
Consider a transaction Tk being executed by a process pk.
Input: T : list of transactions in the block Bi; S: pre-state− state before execution of block Bi; cSet:

specifications for transactions in T .
Shared Locations: cSet(Tk): set of transactions Ti such that i < k and Tk is independent of Ti.

1: Fun read k(Xj):
2: if Xj ̸∈ Wset(Tk) then

// Read the largest version of Xj

created by a tx Ti preceding Tk.
3: [ovj , i] := read_lvp(Tk, Xj)
4: if [ovj , i].is_estimate then
5: if ¬ add_dependency(Tk, Ti) then
6: retry(Tk)

// If Tk read an estimated value
written by Ti

7: return Ak

8: Rset(Tk) := Rset(Tk) ∪ {Xj , [ovj , i]}
9: return ovj

10: else
11: [ovj , ⊥] := Wset(Tk).locate(Xj)
12: return ovj

13: Fun write k(Xj , v):
14: ovj := v
15: if Xj ̸∈ Wset(Tk) then
16: Wset(Tk) := Wset(Tk) ∪ {Xj , [nvj , k]}
17: else

// Xj is in Wset(Tk), update
current value to v.

18: Wset(Tk) := Wset(Tk).update(Xj , [nvj ,
k])

19: return ok

20: Fun tryC k ():
21: if ∃ Ti /∈ cSet(Tk) : i < k then
22: forall Xj ∈ Wset(Tk) do

// Update Wset (Tk) in shared memory
23: write(Xj , [nvj , k])

// Read set validation
24: if ∃ Xj ∈ Rset(Tk): [ovj , k] ̸= read_lvp(Tk,

Xj) then
// On validation failure, versions of

each Xj ∈ Wset(Tk) are marked as
estimated in shared memory.

25: forall Xj ∈ Wset(Tk) do
26: mark_estimate(nvj , k)
27: return Ak

28: return Ck

29: else
// Tk is an independent transaction.

30: forall Xj ∈W set(Tk) do
31: write(Xj , [nvj , k])

// Skip validation for Tk and commit.
32: return Ck

33: Fun add_dependency(id, blocking_id):
34: if txn_status[blocking_id] == Executed then
35: return false
36: return true

Implementation state. For each state Xi, the algorithm maintains a memory location vi

storing tuples ([v1, k], [v2, k′], . . .), where [v, k] represents a value v written to Xi by Tk.

Read implementation. The readk(Xj) function returns the most recent committed value of
Xj visible to transaction Tk. If Xj /∈Wset(Tk), the latest version written by a predecessor
Ti is read from shared memory at line 3 using function read_lvp() (as discussed in dBTM
algorithm). If the version is an estimate and Ti has not yet committed, add_dependency is
invoked to check if Tk must wait (line 5); if so, Tk retries at line 6. Otherwise, the version
is added to Rset(Tk) for subsequent validation at line 8. If Xj ∈ Wset(Tk), meaning it is
already in transaction’s write set, the value is returned directly from Wset(Tk) at line 11.

Write implementation. The writek(Xj , v) performs a write that assigns a value v to state
Xj by transaction Tk. It first checks whether Xj /∈ Wset(Tk), if so, a new entry [v, k] is
inserted into Wset(Tk) (line 16); otherwise, the existing entry is updated with the new value
v (line 18). This operation does not update in shared memory; instead, it maintains a local
view of writes until commit (line 19).

Commit implementation. The tryCk() function attempts to commit transaction Tk. If Tk

depends on any predecessor transaction(s) in preset, it first updates its Wset(Tk) to shared
memory (a multi-version data structure) at line 23 and then validates its read set Rset(Tk)

AFT 2025

29:12 Efficient Parallel Execution of Blockchain Transactions

against the latest values committed to shared memory at line 24. If validation fails, the
versions written by Tk in the multi-version structure are marked as estimated at line 26,
and Tk aborts by returning Ak at line 27. If validation succeeds, or if Tk is an independent
transaction (its Wset(Tk) is committed to shared memory and validation is skipped), the
function commits Tk by returning Ck at line 28 and line 32, respectively.

5 Implementation and Evaluation of BTM from Conflict Specifications

In this section, we analyze the execution latency and throughput of dBTM and oBTM,
compared to baseline sequential execution and state-of-the-art parallel execution techniques.

5.1 Implementation
EVM Implementation. We compare dBTM and oBTM with PEVM [28], a version of Block-
STM [17] for the EVM developed by the RISE chain [27]. Experiments are conducted on
REVM [8] version 12.1.0, an EVM implementation written in Rust. We used the core data
structures provided by PEVM version 0.1.0 (commit hash f0bdb21) and implemented our
algorithms on top of them. Specifically, we used a hash map to store the cSet, which allowed
us to store both the list of dependent transactions and the indegree of each transaction in
the DAG. A custom parallel-queue is implemented to manage and enable efficient parallel
execution across multiple threads.

We analyzed the performance on both synthetic and historical blocks from Ethereum’s
mainnet. In the EVM, each transaction pays a gas fee to the Coinbase account, which belongs
to the block proposer. As a result, every transaction updates the Coinbase account, leading
to a 100% write-write conflict with all preceding transactions. To address this, we defer the
fee transfer; that is, the gas fees are locally collected per transaction and credited to the
Coinbase account only at the end, after all transactions in the block have been executed.

MoveVM Implementation. We analyzed the performance of our dBTM and oBTM ap-
proaches against the baseline Block-STM [17], which runs DiemVM (an earlier version of
MoveVM) using the test setup from [7]. The evaluation includes two primary workloads: (i)
peer-to-peer (P2P) transfers, as provided in the original test setup [7], and (ii) synthetic
workloads (batch transfers and a generic mixed workload) we designed to mimic diverse
execution patterns. Due to space constraints and for presentation succinctness, we defer the
detailed analysis of BTM on MoveVM to the arXiv version.

Experimental Setup. We ran experiments on a single-socket AMD machine consisting of
32 cores (64 vCPUs), 128 GB of RAM, and running Ubuntu 18.04 with 100 GB of SSD.
The experiments are carried out in an execution setting of in-memory using REVM and
MoveVM, and abstract away the latency of persistent storage access. We ran experiments 52
times, with the first 2 runs designated as warm-up. Each data point in the plots represents
an average throughput (tps) and latency (ms), where each execution is repeated 50 times.

5.2 EVM Analysis
Figure 3 to Figure 6 show the relationship between varying threads or varying conflicts
(α−tail distribution factor) within the block, represented on the X-axis, on two important
performance metrics: throughput (tps), represented by histograms on the primary Y-axis
(Y1), and execution latency (ms), as line graphs on the secondary Y-axis (Y2).

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:13

Construction and Testing of Synthetic Workloads

We conducted experiments on synthetic workloads to analyze throughput and latency under
various execution conditions. A synthetic workload is a computational workload that does
not depend on user input but instead simulates transaction types and concurrency patterns.

We analyzed Ethereum’s Mainnet blocks to generate synthetic workloads and found that
certain accounts (or smart contracts) are predominantly accessed, indicating that historical
blocks exhibit a tail distribution in address access frequency. Based on this observation, we
designed synthetic workloads that reflect varying characteristics of transaction conflicts in
blocks. Following the tail distribution, we evaluated performance across synthetic workloads,
including worst-case and best-case scenarios, enabling a comprehensive assessment of system
behavior under varying levels of conflict within a block. For this, we added another metric
on the X-axis, the parameter α, which represents the heaviness of the tail in the Pareto
distribution [24]. The value of α determines the degree of conflict, as shown in subfigure (b);
smaller values of α correspond to fewer conflicts.
1. ERC-20 Workload (Werc20): This workload simulates multiple ERC-20 smart
contracts, with each contract representing a distinct cluster. Transfer transactions occur
among addresses within each cluster, each of which has its own ERC-20 token. The number
of transactions per cluster is determined using a Pareto distribution [24], while the sender
and receiver addresses are selected uniformly within each cluster. This approach captures the
distribution of transaction loads, resulting in certain clusters receiving higher transactions.
The conflict specifications are derived using the sender, receiver, and contract addresses
accessed by transactions in the block. For testing, we generate 10k ERC-20 transfers across
10k contract addresses (clusters), with each cluster mapped to a unique externally owned
account (EOA) address. Since each contract has a single EOA, transactions are effectively self-
transfers. However, an EOA may initiate multiple transactions within a cluster, potentially
causing conflicts, with a tail factor of α = 0.1.

As shown in Figure 3a, increasing thread count improves performance. In fact, dBTM
achieves peak throughput at 24 threads with 411k tps, compared to 178k tps and 171k tps for
oBTM and PEVM, with an average throughput of 299k, 157k and 143k tps, respectively. In
particular, dBTM achieves a 4× speedup over sequential and a speedup of 2.4× over PEVM.
Latency trends show that optimistic approaches initially reduce execution time, but later
increase it due to higher abort rates. In contrast, dBTM minimizes aborts by leveraging
conflict specifications, reducing both abort and (re-)validation costs. Similarly, in Figure 3b,
with 16 threads, increasing block conflicts leads to a steady performance decline, which is
more pronounced in optimistic approaches due to higher abort rates and increased waiting in
dBTM. At α = 5 (maximum conflicts), all approaches incur a higher overhead and perform
worse than sequential execution.
2. Mixed Workload (Wm): This workload combines 50% native ETH transfers and 50%
ERC-20 transfers, ensuring a balanced representation of both types of transactions. For
ETH transfers, sender and receiver addresses are selected using a Pareto distribution [24].
The number of ERC-20 contracts is set to 25% of the block size, with workload generation
similar to Werc20. As a result, 2.5k contracts (clusters) comprise a block of 10k transactions.

As shown in Figure 4, throughput and latency remain consistent with Werc20 workload.
However, due to 50% ETH transfers (microtransactions) in the block, all approaches show a
noticeable increase in throughput. The average tps is 356k for dBTM, 238k for oBTM, 229k
for PEVM, and 157k for sequential. This translates to speedups of 2.27×, 1.52×, and 1.46×
for dBTM, oBTM, and PEVM, respectively, over sequential execution. The maximum tps of
dBTM increased from 411k to 454k.

AFT 2025

29:14 Efficient Parallel Execution of Blockchain Transactions

2 4 8 16 24 32
0

2

4

6 ·105

1.
01

·1
05

1.
01

·1
05

1.
01

·1
05

1.
01

·1
05

1.
01

·1
05

1.
01

·1
05

1.
11

·1
05

1.
45

·1
05

1.
71

·1
05

1.
5

·1
05

1.
45

·1
05

1.
4

·1
05

1.
17

·1
05

2.
01

·1
05

3
·1

05

3.
77

·1
05

4.
11

·1
05

3.
87

·1
05

1.
07

·1
05

1.
46

·1
05

1.
78

·1
05

1.
73

·1
05

1.
72

·1
05

1.
68

·1
05

Threads

th
ro

ug
hp

ut
(t

ps
)

Block Size: 10k
α: 0.1

Sequential tps PEVM tps dBTM tps oBTM tps

2 4 8 16 24 32
0

30

60

90

120

(a)

0.1 0.25 0.5 1 5
0

2

4

6 ·105

1.
01

·1
05

1.
01

·1
05

1.
01

·1
05

1.
01

·1
05

1.
01

·1
05

1.
5

·1
05

91
,7

68

67
,5

46

56
,8

88

52
,8

96

3.
77

·1
05

3.
19

·1
05

2.
58

·1
05

1.
78

·1
05

81
,8

731.
73

·1
05

1.
07

·1
05

78
,1

47

64
,9

54

58
,8

16

α (tail of the distribution)

Block Size: 10k
Threads: 16

0.1 0.25 0.5 1 5
0

50

100

150

200

ex
ec

ut
io

n
la

te
nc

y
(m

s)

Sequential latency PEVM latency dBTM latency oBTM latency

(b)

Figure 3 ERC-20 transfer workload (Werc20).

2 4 8 16 24 32
0

2

4

6 ·105

1.
57

·1
05

1.
57

·1
05

1.
57

·1
05

1.
57

·1
05

1.
57

·1
05

1.
57

·1
05

1.
55

·1
05

2.
2

·1
05

2.
71

·1
05

2.
59

·1
05

2.
41

·1
05

2.
31

·1
05

1.
61

·1
05 2.

57
·1

05

3.
98

·1
05

4.
36

·1
05

4.
54

·1
05

4.
33

·1
05

1.
47

·1
05

2.
22

·1
05

2.
85

·1
05

2.
73

·1
05

2.
6

·1
05

2.
45

·1
05

Threads

th
ro

ug
hp

ut
(t

ps
)

Block Size: 10k
α: 0.1

2 4 8 16 24 32
0

30

60

90

120

(a)

0.1 0.25 0.5 1 5
0

2

4

6 ·105

1.
57

·1
05

1.
57

·1
05

1.
57

·1
05

1.
57

·1
05

1.
57

·1
052.

59
·1

05

1.
73

·1
05

1.
22

·1
05

1.
05

·1
05

93
,1

14

4.
36

·1
05

3.
42

·1
05

3.
65

·1
05

2.
78

·1
05

1.
42

·1
05

2.
73

·1
05

1.
9

·1
05

1.
34

·1
05

1.
16

·1
05

1.
01

·1
05

α (tail of the distribution)

Block Size: 10k
Threads: 16

0.1 0.25 0.5 1 5
0

30

60

90

120

ex
ec

ut
io

n
la

te
nc

y
(m

s)

(b)

Figure 4 Mixed workload (Wm).

Testing on Real-World Ethereum Transactions

We selected blocks from different historical periods based on major events that may have
impacted Ethereum’s concurrency and network congestion. Each of these blocks allows
us to analyze performance in different historical periods, providing insight into how major
events, such as popular dApp launches and significant protocol upgrades, affect transaction
throughput and network latency. Consequently, this also helps us understand the limitations
of parallel execution approaches under different network conditions, such as the gradual
increase in conflicts in the block and the change in resource requirements over time.

We trace the states accessed by transactions within a historical block using callTracer
and prestateTracer APIs [9], which provide a complete view of the block’s pre-state, the
state required for executing the current block. To derive conflict specifications, the pre-state
file is parsed to identify all EOAs and smart contract addresses accessed within the block.
These addresses form the basis for constructing the conflict specification and serve as the
“ground truth”. Note that to derive specifications for a transaction Tk, all transactions (their
pre-state EOAs and smart contract addresses) preceding it in preset order are considered.

Note that real historical Ethereum blocks contain significantly fewer transactions than to
our synthetic tests. To ensure a representative evaluation, we selected larger blocks from
different historical periods. Specifically, we analyzed two blocks each from the CryptoKitties
contract deployment and Ethereum 2.0 merge periods. We also analyzed two recent blocks
with specific characteristics to demonstrate the worst-case and the best-case parallelism.
1. CryptoKitties Contract Deployment (Wck): The famous CryptoKitties [10] contract
was deployed on block 4605167, after which an unexpected spike in transactions caused
Ethereum to experience high congestion. We analyze block 4605156, which occurred before
the contract deployment, and block 4605168, which took place after the deployment.

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:15

2 4 8 16 24 32

0.2

0.4

0.6

0.8

1 ·105

54
,5

31

54
,5

31

54
,5

31

54
,5

31

54
,5

31

54
,5

3164
,0

59

85
,4

40 94
,6

41

74
,5

16

49
,3

73

41
,5

72

62
,5

45 72
,6

82

68
,8

82

63
,4

25

45
,5

61

41
,5

30

65
,4

35

88
,1

77

93
,1

79

73
,8

46

51
,7

88

45
,1

56

th
ro

ug
hp

ut
(t

ps
)

Block Size: 91
Block: 4605156

Sequential tps PEVM tps dBTM tps oBTM tps

0

1

2

3

4

(a) historical workload: CryptoKitties
2 4 8 16 24 32

0.2

0.4

0.6

0.8

1 ·105

35
,9

61

35
,8

78

35
,8

57

35
,6

80

35
,8

20

35
,6

7642
,4

09

61
,3

35 72
,4

52

61
,7

34

48
,4

00

36
,8

74

36
,8

03

40
,3

19

38
,8

71

34
,1

94

28
,0

98

25
,4

7733
,9

08

67
,4

16 75
,3

01

65
,0

34

44
,3

19

41
,2

22

Block Size: 77
Block: 4605168

0

1

2

3

4

ex
ec

ut
io

n
la

te
nc

y
(m

s)

Sequential latency PEVM latency dBTM latency oBTM latency

(b) historical workload: CryptoKitties

Figure 5 CryptoKitties historical period (Wck).

2 4 8 16 24 32

0.2

0.4

0.6

0.8

1 ·105

20
,5

93

20
,5

93

20
,5

93

20
,5

93

20
,5

93

20
,5

9328
,6

48

49
,3

35

74
,5

44

77
,0

57

62
,2

01

45
,5

01

26
,7

96 35
,2

14

36
,6

03

36
,0

14

34
,2

64

32
,7

94

27
,0

16

47
,6

95

73
,8

80

75
,4

08

61
,2

68

45
,7

79

th
ro

ug
hp

ut
(t

ps
)

Block Size: 253
Block: 15537360

2

6

10

14

(a) historical workload: Ethereum 2.0
2 4 8 16 24 32

0.2

0.4

0.6

0.8

1 ·105

17
,8

72

17
,8

72

17
,8

72

17
,8

72

17
,8

72

17
,8

7226
,3

87

44
,4

33

68
,1

19

82
,0

47

59
,3

55

39
,0

21

20
,7

21

24
,9

45

25
,3

01

23
,8

26

22
,4

30

20
,8

18

23
,2

81

44
,2

36

68
,2

18

83
,0

54

66
,2

60

55
,1

51

Block Size: 173
Block: 15537421

2

6

10

14

ex
ec

ut
io

n
la

te
nc

y
(m

s)

(b) historical workload: Ethereum 2.0

Figure 6 Ethereum 2.0 merge historical period (We2).

2 4 8 16 24 32
1

1.5

2

2.5 ·105

1.
62

·1
05

1.
62

·1
05

1.
62

·1
05

1.
62

·1
05

1.
62

·1
05

1.
62

·1
05

1.
3

·1
05

2.
29

·1
05

2.
15

·1
05

2.
02

·1
05

1.
95

·1
05

1.
88

·1
05

1.
57

·1
05

1.
36

·1
05

1.
16

·1
05

1.
12

·1
05

1.
09

·1
05

1.
01

·1
05

1.
66

·1
05

1.
8

·1
05

1.
94

·1
05

1.
93

·1
05

1.
94

·1
05

1.
82

·1
05

Threads

th
ro

ug
hp

ut
(t

ps
)

Block Size: 1189
Block: 17873752

2

6

10

14

(a) historical workload: worst case

2 4 8 16 24 32
0.2

0.4

0.6

0.8

1 ·104

3,
74

0

3,
74

0

3,
74

0

3,
74

0

3,
74

0

3,
74

0

4,
11

1

5,
99

1

5,
19

6

5,
02

9

5,
00

0

4,
97

8

7,
00

2

7,
24

2

7,
17

2

7,
05

5

7,
05

5

6,
95

7

3,
98

2

6,
82

9

5,
08

1

5,
00

7

5,
05

0

4,
89

5

Threads

Block Size: 136
Block: 17873654

10

20

30

40

ex
ec

ut
io

n
la

te
nc

y
(m

s)

(b) historical workload: best case

Figure 7 EVM: Historical blocks of worst and best-case (Wwb).

Figure 5a demonstrates a significant speedup in parallel execution, while Figure 5b
highlights congestion in the block following contract deployment. In dBTM, conflicts are over-
approximated due to sender and contract address-level conflict specifications, as real blocks
lack read-write and contract storage access-level granularity. This leads to a performance drop
compared to synthetic tests. With complete conflict specifications and larger blocks, dBTM
could achieve superior performance, as observed in synthetic tests. That said throughput
increases with additional threads, peaking at 8 threads, indicating the optimal point for
speedup. Notably, oBTM outperforms other approaches in this workload both before and
after contract deployment. The average tps for oBTM, PEVM, and dBTM drops from 69k,
68k, and 59k, before contract deployment to 54k, 53k, and 33k after deployment. Additionally,
despite smaller blocks in the post-contract deployment, execution time increases for both
sequential and other executors, highlighting the impact of congestion on overall performance.

AFT 2025

29:16 Efficient Parallel Execution of Blockchain Transactions

2. Ethereum 2.0 Merge (We2): The merge [13] took place in block number 15537393,
which changed Ethereum’s consensus to proof-of-stake along with other protocol-level changes
and had an impact on transaction processing, block validation and network traffic in general.
We analyze block 15537360 before the merge and 15537421 after the merge. Compared to
the Wck historical period, the network had experienced an increase in block size and user
activity. As shown in Figure 6, the average throughput for oBTM, PEVM, and dBTM
before the merge was 55k (2.68× speedup over sequential), 56k (2.73× speedup), and 33k
(1.63× speedup), respectively. Post-merge, these values changed to 56k (3.17× speedup), 53k
(2.98× speedup), and 23k (1.29× speedup). Notably, the increased speedup over sequential
post-merge shows the growing parallel execution potential to improve throughput.

3. Worst-case and Best-case Blocks (Wwb): To analyze performance extremes, we
selected Ethereum blocks exhibiting different conflict profiles. The worst-case block, 17873752,
represents maximal conflicts with densely interconnected transactions and consists of 1189
transactions, of which 1129 are ETH transfers, 21 are ERC-20 transfers, and 39 are other
contract transactions. We observed that most ETH transfers interact with the same address,
resulting in a longer dependency chain of length 1104. As a result, the block becomes
inherently sequential, and hence a good choice for worst-case analysis. In contrast, the
best-case block, 17873654, consists predominantly of independent transactions. There are a
total of 136 transactions, including 41 ETH transfers, 18 ERC-20 transfers, and 77 other
contract transactions. We chose this block because it has a significant number of internal
transactions (435) and the length of the longest conflict dependency chain is 50.

As shown in Figure 7a, in the worst-case, for dBTM the tps remains consistently low,
around 100k-137k across all thread counts and 166k-195k for oBTM. This reflects minimal
improvement over the sequential tps of 162k, highlighting the limitation of parallel execution
under blocks with high access-level dependencies. While PEVM at 4 threads shows 1.41×
performance gains over sequential, increasing the threads beyond introduces aborts and
re-executions, resulting in overhead. However, the performance gain could be due to the lazy
update of ETH transfers, which defers balance changes to EOAs until a later stage at commit
time, as well as to independent contract transactions that are computationally intensive
compared to ETH transfers−microtransactions with minimal computational logic. Due to
the overhead of DAG construction, dBTM shows a noticeable performance degradation.
Moreover, 94.95% of the transactions in the block are ETH transfers resulting in smaller
execution latency despite the large block size. The average execution latency for PEVM is
6.36 ms, oBTM is 6.45 ms, that are not significantly less compared to 7.36 ms of sequential
execution, while dBTM incurs slightly higher latency 9.97 ms.

In contrast, the best-case block in Figure 7b shows that oBTM achieves throughput
in the range of 3.9k-6.8k tps, while dBTM ranges from 6.9k-7.2k tps, both significantly
outperforming 3.74k tps of the sequential execution. The average execution latency across
threads is 27.1 ms for oBTM and 19.2 ms for dBTM, compared to 36.36 ms for sequential
and 27.25 ms for PEVM. In terms of average speedup, oBTM achieves a 1.34× improvement
over sequential and performs on par with PEVM, while dBTM shows superior efficiency, with
an average speedup of 1.89× over sequential and a 1.42× speedup over PEVM. Since, this
block contains a higher proportion of smart contract transactions with numerous internal
calls, making it computationally intensive for the VM. Consequently, minimizing aborts and
re-executions yields tangible performance benefits. Notably, dBTM maintains its competitive
edge due to its reduced abort and re-execution overheads.

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:17

Observe that from one historical period to another (even with just these blocks), despite
the block size increasing, the overall throughput has decreased, highlighting the impact of
congestion and resource requirements on overall performance.

Summary. Our EVM analysis highlights the strong performance of dBTM and oBTM,
demonstrating their potential to achieve a near-theoretical maximum parallel execution by
leveraging conflict specifications. With more accurate conflict specifications in historical
workloads, we can expect to achieve even higher speedups over sequential and PEVM. However,
in the absence of conflict specifications, oBTM is expected to perform the same as the optimistic
execution of PEVM. On average, across synthetic workloads, dBTM achieves a maximum
of 4× speedup over sequential and 3.82× over PEVM, while oBTM achieves 1.8× and 1.2×
speedups, respectively. In contrast, across historical blocks, dBTM achieves an average speedup
of 1.22× over sequential and a maximum of 1.7× over PEVM, while oBTM achieves an
average of 1.83× over sequential and a maximum of 1.41× over PEVM.

6 Block Transactional Memory for EVM and MoveVM

Having established the empirical advantages of BTM’s leveraging conflict specifications, we
now present the design of a full conflict analyzer integrated implementation of the EVM paral-
lel execution. We demonstrate with the conflict analyzer that it is possible to algorithmically
implement sound conflict specifications for real Ethereum blocks (cf. Section 6.1). The de-
rived specifications, though might be incomplete, i.e., they may not identify conflict relations
for some class of transactions, can be generated efficiently and thus prove consequential for
maximizing transaction execution throughput (as established in Section 4.2). Additionally,
we present results for a workload adaptive execution leveraging the conflict specifications
for EVM in Section 6.3. We then present a limited set of performance numbers for conflict
analyzer integrated BTM on the MoveVM in Section 6.4. The BTM implementation for
MoveVM leverages a custom-built conflict analyzer that is more conservative than the EVM
conflict analyzer because the Aptos Move memory model is quite different from EVM posing
several challenges for a general specification derivation scheme. The detailed version of the
MoveVM implementation and analysis is delegated to the online arXiv version.

6.1 Conflict Specifications for EVM
Preliminaries. We now detail some technical preliminaries needed to describe the approach
for building conflict specifications in EVM.

▶ Definition 2. Ethereum blockchain is made up of a set of accounts A = AU ∪AC , where
AU is the set of EOAs and AC is the set of contract accounts. Each account a ∈ A is
associated with some data a.balance such that a.balance ∈ a.data where a.balance is the
ETH balance. For an EOA a ∈ AU , a.data = {a.balance} whereas a contract account
usually has fields associated in a.data.

▶ Definition 3. An Ethereum transaction is specified by a tuple (origin, dest,

value, calldata) where origin ∈ AU is the initiator of the transaction, dest ∈ A is the
transaction recipient, value ∈ N is the number of wei sent by origin to dest, calldata is
the accompanying data. An Ethereum transaction T is a simple ETH payment if T.dest ∈ AU

and is a contract transaction otherwise. For the read/write sets it always holds that Rset(T),
Wset(T) ⊆ ∪a∈Aa.data.

AFT 2025

29:18 Efficient Parallel Execution of Blockchain Transactions

▶ Note 4. A real-world Ethereum transaction contains more elements, but for the purpose
of overapproximating read/write sets here, such tuple is a sufficient enough characterization.

▶ Definition 5. For a contract transaction T , the signature of T denoted by T.sig is the
first four bytes of T.calldata that specify the function to call in the contract (T.dest).

▶ Example 6. Consider a situation where an EOA a ∈ AU initiates a transaction T1
calling the function receiveMessage of a Contract b (cf. Listing 1) so the corresponding
tuple is: (origin : a, dest : b, value : 1, calldata : {signature : receiveMessage, arg :
“hello”}). We can see here, that always Rset(T1) = {a.balance, b.balance, b.shouldAccept}.
Notice that whenever T.value > 0 we do have T.origin.balance, T.dest.balance ∈
Rset(T), Wset(T) as the value needs to be deducted from T.origin and added to T.dest. But
either Wset(T1) = ∅ or Wset(T2) = {b.message} depending on the value of b.shouldAccept,
because the message field is updated only if the shouldAccept value is true.

Now, let another EOA account c initiate a transaction T2 with the corresponding tuple
(origin : c, dest : b, value : 0, calldata : {signature : setShouldAccept, arg : false}).
We have Rset(T2) = ∅, Wset(T2) = {b.shouldAccept}. We can see from the read and write
sets characterized here that T1, T2 can never have a read-from conflict if T1 precedes T2
(regardless of the control flow in T1) in the preset order. But if T2 precedes T1, then they
will have read-from conflict since T2 writes to b.shouldAccept and T1 reads from it.

Approach. The EVM conflict analyzer is just labeling simple payments as SimplePayment,
the designated ERC-20 functions with their respective signature and everything else as
exitsContract in line 8. After the labeling, check if a transaction Tj can have read-from
conflicts with some Ti, i < j, we consider multiple scenarios. If Tj is labeled exitsContract,
we simply assume that they do have read-from conflict (line 18). If both Ti, Tj are labeled
as one of the special ERC-20 transactions and interact with the same contract, it just
checks to see if the sender and accounts in the arguments of the functions called for Tj are
disjoint from those of Ti (line 25). This is enough as an ERC-20 contract only affects some
mapping (balances, allowances) in the contract storage with the keys affected being either
the transaction arguments or the initiator (T.origin).

In all other cases, it is enough to check that the origin and destination of Ti is disjoint
from those of Tj (line 30). Since both ERC-20 transactions and simple payments only affect
the source and target of the transactions, this is enough to guarantee independence.

We now go over the Algorithm 3 for transactions interacting with Token contract and
Wallet contract, as shown in Listing 1. Notice that every transaction that calls a function
other than Token.transfer in these two contracts will be labeled as exitsContract and
thus be assumed to conflict with everything else. Therefore, just consider an account a1
initiating a transaction T1 invoking Token.transfer with address a2 and another account
b1 initiating T2 invoking Token.transfer with address a2. Here, both functions are labeled
transfer. Now, to check whether they are independent, one needs to check whether all
a1, a2, b1, b2 are distinct. Now, let T3 be a simple payment of c1 to c3. Of course T3 is labeled
as SimplePayment. Similarly, one only needs to check the distinctness of c1, c2 with respect
to each of a1, T oken and b1, T oken to see if any conflict arises.

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:19

Listing 1 Smart Contracts.
1 contract b {
2 string message = "";
3 bool shouldAccept = true;
4 function receiveMessage(String message) external payable{
5 if(shouldAccept){
6 this.message = message;
7 }
8 }
9 function setShouldAccept(bool shouldAccept) external {

10 this.shouldAccept = shouldAccept;
11 }
12 }
13 contract Token {
14 mapping(address => uint) balances;
15 address priceOracle;
16 function transfer(address target, uint amount) external {
17 require(tokenBalances[msg.sender]>=amount);
18 balances[msg.sender] -= amount;
19 balances[target] += amount;
20 }
21 function turnEtherToToken() external payable{
22 (, bytes memory data) = priceOracle.staticcall(abi.encodeWithSignature("tokenPrice()"));
23 uint tokenPrice = bytesToInt(data);
24 balances[msg.sender] = balances[msg.sender] + (msg.value/tokenPrice);
25 }
26 }
27 contract Wallet {
28 mapping(address => uint) balances;
29 function addToWallet() external payable {
30 balances[msg.sender] += msg.value;
31 }
32 function withdraw(uint amount) external {
33 require(balances[msg.sender]>=amount);
34 balances[msg.sender] -= amount;
35 msg.sender.transfer(amount);
36 }
37 }

Algorithm 3 Output conflict specifications, given as input to Algorithms 1 and 2.
Input: A transaction Tj in a preset order T1 →, . . . ,→ Tn. Output:

S ⊆ {Ti|i < j, Rset(Tj) ∩Wset(Ti) = ∅}.
1: Fun isERC-20 (label):
2: return label ∈ {transfer, transferF rom, approve}
3: Fun erc20Accounts (T):

// Get the affected accounts in an ERC-20
transaction, for instance, a transferFrom()
involves from, to, and the sender address.
Two ERC-20 transfers are independent if
their affected account sets are disjoint.

4: if label ∈ {transfer, approve} then
5: return {T.origin, T.calldata.to}
6: else if label = transferF rom then
7: return {T.origin, T.calldata.from, T.calldata.to}
8: Fun getLabel (T):
9: if T.dest ∈ AU then

10: return SimpleP ayment.
11: sig ← T.sig
12: if sig ∈ {transfer, transferF rom, approve} in

ERC-20 then
13: return T.sig
14: else
15: return exitsContract

16: Fun findCSet(Tj):
17: labelj ← getLabel(Tj)
18: if labelj = exitsContract then
19: return ∅
20: Output← ∅
21: forall 1 ≤ i < j do
22: labeli ← getLabel(Ti).
23: if Ti.origin = Tj .origin or labeli =

exitsContract then
24: continue;
25: if Ti.dest = Tj .dest and isERC-20 (labeli)

and isERC-20 (labelj) then
26: affectedAccountsi ← erc20Accounts (Ti)
27: affectedAccountsj ← erc20Accounts (Tj)
28: if affectedAccountsi ∩

affectedAccountsj = ∅ then
29: Output← Output ∪ {Ti}

30: else if |{Ti.origin, Tj .origin, Ti.dest, Tj .dest}| =
4 then

31: Output← Output ∪ {Ti}
32: return Output

▶ Proposition 7.
Whether T is a simple payment or calls a designated ERC-20 function, only writes to or
reads from accounts T.origin, T.dest.
If T calls an ERC-20 function in transfer, transferFrom, approve, then only T.dest
storage is affected. Assuming that the contract adheres to ERC-20 specifications, as long
as T.origin and accounts in T.data are disjoint from another T ′ calling these specific

AFT 2025

29:20 Efficient Parallel Execution of Blockchain Transactions

functions in T.dest, then different parts of the same mappings in T.dest are modified.
Also, if the contract is implemented as a proxy, we assume that only the proxy contract
can call the parent (no EOA can initiate a transaction directly with the parent contract).

▶ Theorem 8. If the Algorithm 3 outputs an independence set T for a transaction Tj, then
for each T ∈ T in the preset order before Tj, Rset(Tj) ∩Wset(T) = ∅.

Proof. Let T ∈ T in the preset order be before Tj . First note that by the algorithm, if T

label is exitsContract, then it is overapproximated to have read-from conflict with every
transaction before in the preset order. So we can assume T is either a simple payment or an
ERC-20 transaction. Then (according to the definition of simple payment and Proposition 7
and line 8) T only modifies/reads from {T.origin, T.dest} which is guaranteed to be disjoint
from {Tj .origin, Tj .dest} by line 30. Therefore, by line 8 and Proposition 7, Tj only
modifies {Tj .origin, Tj .dest} which is disjoint from the read set of T implying that T does
not have a read-from conflict with Tj . ◀

6.2 Conflict Analyzer Integration with EVM for Parallel Execution
This section presents the analysis of full conflict analyzer integrated with our BTM algorithm
for the EVM. We evaluated the performance of the proposed BTM algorithm on the EVM,
leveraging conflict specification provided by the conflict analyzer.

Implementation Details. We introduced several implementation-level modifications to the
oBTM, resulting in an extended version that we refer to as iBTM. It uses analyzer-provided
dependency information (beyond the sender, receiver, and contract addresses used in oBTM)
to reduce aborts, and applies the lazy update optimization (of PEVM) for native ETH
transfers, while other transactions remain optimistically executed. We choose to perform
tests with iBTM, as it required minimal changes to existing implementation and demonstrates
the potential benefits of the conflict analyzer when integrated with the optimistic execution
of oBTM. Note that for this analysis, we re-run the experiments in our integrated conflict
analyzer setup, and the numbers in Section 5.2 can be treated as the ground truth. The
entire implementation built on top of PEVM which is 8097 lines of code with 4454 lines
added over the original PEVM implementation.

The conflict analyzer is implemented in approximately 700 lines of Rust code. It uses
HashMap that maps each accessed address to a vector of transactions that have interacted
with it. Transactions labeled as exitsContract are pruned in the first pass to reduce the
number of pairs evaluated for independence as a transaction labeled exitsContract is assumed
to conflict with all others. After that if the number of transactions remaining after that
is high enough (a manually set parameter), parallelization is done across 16 threads. In
addition to the implemented version of the conflict analyzer detailed in Section 6.1, we
additionally implemented another strong version of the conflict analyzer. Both of these are
automated completely and proved to be sound (but not complete) if correctly implemented
(cf. Theorem 8). The implemented analyzer main limitation is its inability to deal with non
ERC-20 contracts, marking every transaction to such contracts as dependent on all other
transactions. Strong analyzer main limitation is that when a contract function calls another
contract C not known statically (that is, the address of the C is determined by the input data
of the transaction) one cannot know what sequence of blockchain state manipulations after
that and thus such transactions are marked dependent on everything else. In the case that
C and its payload are known statically, it is rather easy to add more rigorous specifications.
There exist inputs which can make the analyzer derive no independence specification making

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:21

Table 1 Conflict analyzer integrated with iBTM for parallel execution in EVM; metrics from
conflict analysis phase, block composition, and execution performance across different approaches.

Ethereum Historical Blocks Synthetic 10k Blocks

Metric 4605168
(CryptoKitties)

15537421
(Ethereum 2.0)

17873752
(Worst-case)

17873654
(Best-case) ERC-20 Mix

Conflict
Analysis Phase

Conflict Generation Time 18.314 µs 39.00 µs 106.79 µs 30.09 µs 6.06 ms 3.30 ms
Specification Size 627 943 50706 1691 49658226 49824316

Block Stats

Block Size 77 173 1189 136 10000 10000
ETH Transactions 32 33 1129 41 0 5000

ERC-20 Transactions 9 11 21 18 10000 5000
Other Contract Transactions 36 129 39 77 0 0

Dependency Count 10 7 4 0 5683 3215

Average Execution
Time (16 threads)

Sequential 2.107 ms 15.60 ms 7.21 ms 36.63 ms 114.43 ms 72.12 ms
PEVM 1.32 ms 6.93 ms 6.03 ms 27.52 ms 96.75 ms 53.60 ms
oBTM 1.24 ms 6.88 ms 5.99 ms 27.68 ms 88.67 ms 54.14 ms
iBTM 1.23 ms 6.43 ms 5.43 ms 26.85 ms 79.42 ms 39.50 ms

the execution as slow as sequential. To be more precise, we analyze the ERC-20 contracts
by their function signature, so a malicious contract not adhering to ERC-20 specifications
may result in an unsound analysis, however, one can regularly inspect deployed contracts
either manually or automatically to adhere to specifications and analyze only those marked
to adhere to specifications (which can be done by current tools [14, 23]).

Testing on Synthetic Workloads. Table 1 presents comprehensive details of integrated
experiments, including conflict analysis and execution latency on historical Ethereum and
large synthetic blocks. The reported metrics capture statistics from the conflict analysis
phase, including the time required to generate conflict specifications and their size, as well as
block characteristics such as block size, transaction type distribution, and conflict dependency
counts for block. Also report the execution time under three configurations: sequential,
PEVM and iBTM (execution with 16 threads). The goal is to evaluate computational cost
and execution efficiency in both historical and large synthetic blocks.

We choose two synthetic workloads from Ethereum analysis Section 5.2: ERC-20 and
Mix workloads, with a block size of 10k transactions and a fixed conflict distribution factor
α = 0.1, while varying the thread count on X-axis. Figure 8 shows the advantage of the
conflict analyzer in saving the abort and re-execution cost for optimistic execution. As the
thread count increases, in both workloads, ERC-20 transfer (Figure 8a) and Mix (Figure 8b)
a noticeable execution latency improvement can be seen for iBTM over PEVM, highlighting
the benefits of leveraging conflict specifications for execution. The benefit is especially
pronounced for the ERC-20 workload, which contains more uniform transaction patterns.

Testing on Historical Ethereum Blocks. Figures 8c−f illustrates the performance on
Ethereum blocks. We select one block each from the CryptoKitties (same block as in Figure 5b)
and the Ethereum 2.0 workloads (same block as in Figure 6b). We also analyzed performance
on the worst and best-case blocks of the workload in Figure 7. As shown in Figure 8, with
our conflict analyzer, read-write conflict detection improves the performance of iBTM, which
can be clearly observed by comparing the relative performance of PEVM with iBTM. The
performance of iBTM improves in almost all cases compared to PEVM and oBTM with a
noticeable difference, and is expected to improve further with a fully optimized and mature
conflict analyzer. This performance could be due to the reduced number of aborts and
re-executions (re-validations) in the optimistic execution.
To conclude, the proposed iBTM achieves up to a 1.75× speedup over sequential execution
and a 1.33× speedup over PEVM, with an average speedup of 1.24× over PEVM in synthetic
workloads. In historical workloads, it achieves a maximum speedup of 2.43× and 1.14× over
sequential and PEVM, also consistently outperforms PEVM across all evaluated scenarios.

AFT 2025

29:22 Efficient Parallel Execution of Blockchain Transactions

2 4 8 16 24 32
0.75

1

1.25

1.5 ·105

87
,3

90

87
,3

90

87
,3

90

87
,3

90

87
,3

90

87
,3

90

81
,0

82

1.
01

·1
05 1.

12
·1

05

1.
03

·1
05

98
,5

40

93
,5

47

79
,5

22

1.
04

·1
05

1.
13

·1
05

1.
13

·1
05

1.
09

·1
05

1.
07

·1
05

1.
1

·1
05

1.
29

·1
05

1.
32

·1
05

1.
26

·1
05

1.
17

·1
05

1.
09

·1
05

th
ro

ug
hp

ut
(t

ps
)

Block Size: 10k
α: 0.1

Sequential tps PEVM tps oBTM tps iBTM tps

75

100

125

150

(a) synthetic workload: ERC-20 transfer
2 4 8 16 24 32

1

1.5

2

2.5

3 ·105

1.
39

·1
05

1.
39

·1
05

1.
39

·1
05

1.
39

·1
05

1.
39

·1
05

1.
39

·1
05

1.
29

·1
05 1.

65
·1

05

1.
96

·1
05

1.
87

·1
05

1.
82

·1
05

1.
75

·1
05

1.
24

·1
05 1.

56
·1

05 1.
93

·1
05

1.
85

·1
05

1.
77

·1
05

1.
74

·1
05

1.
68

·1
05

2.
18

·1
05

2.
64

·1
05

2.
53

·1
05

2.
53

·1
05

2.
49

·1
05

Block Size: 10k
α: 0.1

25

50

75

100

ex
ec

ut
io

n
la

te
nc

y
(m

s)

Sequential latency PEVM latency oBTM latency iBTM latency

(b) synthetic workload: mix

2 4 8 16 24 32
0.25

0.5

0.75

1 ·105

36
,6

67

36
,6

67

36
,6

67

36
,6

67

36
,6

67

36
,6

67

39
,9

48

62
,8

98 69
,9

34

58
,2

88

45
,6

32

30
,5

9339
,9

89

63
,0

38 68
,6

93

62
,0

73

48
,0

61

29
,6

19

44
,3

77

69
,9

83

67
,6

62

62
,3

60

48
,4

81

27
,4

58

th
ro

ug
hp

ut
(t

ps
)

Block Size: 77
Block: 4605168

1

2

3

(c) historical workload: CryptoKitties
2 4 8 16 24 32

1

2

3 ·104

11
,0

90

11
,0

90

11
,0

90

11
,0

90

11
,0

90

11
,0

90

16
,6

40

25
,4

77

26
,4

14

24
,9

48

24
,1

56

22
,2

60

16
,3

66

24
,7

30 26
,2

41

25
,1

33

23
,7

61

23
,2

18

17
,4

46

25
,2

00 27
,1

31

26
,8

98

25
,9

46

24
,1

93

Block Size: 173
Block: 15537421

5

10

15

20

ex
ec

ut
io

n
la

te
nc

y
(m

s)

(d) historical workload: Ethereum 2.0

2 4 8 16 24 32
1

1.5

2

2.5

·105

1.
65

·1
05

1.
65

·1
05

1.
65

·1
05

1.
65

·1
05

1.
65

·1
05

1.
65

·1
05

1.
85

·1
05

1.
89

·1
05 2.

22
·1

05

1.
97

·1
05

1.
88

·1
05

1.
71

·1
05

1.
43

·1
05

2.
28

·1
05

2.
12

·1
05

1.
99

·1
05

1.
84

·1
05

1.
76

·1
05

1.
89

·1
05

2.
07

·1
05

2.
56

·1
05

2.
19

·1
05

2.
05

·1
05

1.
94

·1
05

Threads

th
ro

ug
hp

ut
(t

ps
)

Block Size: 1189
Block: 17873752

4

6

8

10

(e) historical workload: worst-case

2 4 8 16 24 32
0.25

0.5

0.75

1 ·104

3,
71

3

3,
71

3

3,
71

3

3,
71

3

3,
71

3

3,
71

3

3,
95

6

5,
97

0

5,
04

5

4,
94

2

4,
95

8

4,
85

0

4,
20

3

5,
91

3

5,
07

6

4,
91

4

4,
90

1

4,
96

0

4,
19

9

6,
81

3

5,
14

3

5,
06

5

5,
17

4

5,
17

7

Threads

Block Size: 136
Block: 17873654

15

25

35

45

ex
ec

ut
io

n
la

te
nc

y
(m

s)

(f) historical workload: best-case

Figure 8 Conflict analyzer integrated with EVM: synthetic and historical workloads.

6.3 Adaptive Implementation Based on Conflict Threshold

The advantage of the conflict specification is that it allows us to determine how many
pairwise conflicts exist in a block of transactions. We demonstrate how we can leverage this
for an adaptive implementation that can also handle high-conflict workloads (Figure 9a).
Specifically, by computing a conflict threshold for each block with minimal overhead, we
deterministically fall back to sequential execution in the case of high conflicts.

Figure 9 demonstrate the advantage of an adaptive technique that dynamically selects
the most suitable execution path based on the characteristics of the workload. When α = 0.1,
the iBTM outperforms all other approaches, leading the adaptive technique to choose it for
execution. In contrast, when α = 5, the workload becomes highly sequential, and all parallel
approaches perform worse than sequential execution. The adaptive approach could fall back
to sequential execution; however, there could be small overhead with selecting the optimal
approach; this is offset by significant execution time savings in highly conflicting workloads.
The current adaptive mechanism is implemented and evaluated for two execution paths,
sequential or iBTM, and considers the conflict threshold and block size for decision making.
Exploring additional metrics beyond the conflict threshold and block size, such as available
compute, expected block computation cost, and past n block execution statistics, as well as
different adaptive parallel execution paths (e.g., dBTM, iBTM, PEVM, sequential), remains
ongoing work and may constitute standalone future work.

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:23

2 4 8 16 24 32
0.5

1

1.5

2

2.5 ·105

1.
79

·1
05

1.
8

·1
05

1.
78

·1
05

1.
84

·1
05

1.
88

·1
05

1.
81

·1
05

94
,7

80

92
,3

62

94
,0

39

78
,0

02

72
,3

95

62
,9

46

1.
1

·1
05

1.
11

·1
05

1.
04

·1
05

93
,3

18

89
,9

20

81
,2

67

1.
76

·1
05

1.
73

·1
05

1.
75

·1
05

1.
76

·1
05

1.
77

·1
05

1.
75

·1
05

Threads

th
ro

ug
hp

ut
(t

ps
)

Block Size: 10k
α: 5

Sequential tps PEVM tps iBTM tps Adaptive tps

50

75

100

125

150

175

(a) synthetic workload: worst-case

2 4 8 16 24 32
1

1.5

2

2.5

3 ·105

1.
41

·1
05

1.
41

·1
05

1.
41

·1
05

1.
41

·1
05

1.
41

·1
05

1.
41

·1
05

1.
34

·1
05

1.
78

·1
05

1.
91

·1
05

1.
85

·1
05

1.
79

·1
05

1.
74

·1
05

1.
64

·1
05

2.
24

·1
05 2.

59
·1

05

2.
54

·1
05

2.
47

·1
05

2.
41

·1
05

1.
59

·1
05

2.
17

·1
05

2.
45

·1
05

2.
38

·1
05

2.
26

·1
05

2.
17

·1
05

Threads

Block Size: 10k
α: 0.1

25

50

75

100

ex
ec

ut
io

n
la

te
nc

y
(m

s)

Sequential latency PEVM latency iBTM latency Adaptive latency

(b) synthetic workload: best-case

Figure 9 Adaptive on EVM synthetic workloads.

2 4 8 16 24 32
0

2

4

6

8 ·104

5,
60

2

5,
60

2

5,
60

2

5,
60

2

5,
60

2

5,
60

2

12
,1

21 22
,6

24

40
,6

50

64
,5

16 70
,9

22

73
,5

29

12
,3

15

23
,2

02

41
,8

41

68
,4

93 75
,1

88

76
,9

23

10
,7

99

15
,3

85

15
,0

15

13
,7

74

12
,5

47

12
,2

85

11
,4

68

15
,3

85

14
,8

59

14
,1

24

12
,6

90

14
,3

47

Threads

th
ro

ug
hp

ut
(t

ps
) P2P Workload, Block Size: 10k

Sequential tps Block-STM tps (α:0.1)
iBTM tps (α:0.1) Block-STM tps (α:1.0)
iBTM tps (α:1.0)

0

500

1,500

2,500

Sequential latency Block-STM latency (α:0.1)
iBTM latency (α:0.1) Block-STM latency (α:1.0)
iBTM latency (α:1.0)

(a) P2P transfer workload: α = 0.1 and α = 1.0

2 4 8 16 24 32
0

2

4

6

8 ·104

4,
52

1

4,
52

1

4,
52

1

4,
52

1

4,
52

1

4,
52

1

7,
09

7

13
,6

24

25
,3

81

43
,4

78

44
,4

44

45
,0

45

7,
06

2

13
,4

77

25
,5

10

43
,6

68

47
,6

19

50
,0

00

8,
66

6 16
,5

29

30
,4

88

51
,2

82

55
,8

66

56
,8

18

9,
00

1 16
,4

47

31
,2

50

51
,5

46 58
,8

24 63
,6

94

Threads

Batch Transfer vs Generic Workload, Block Size: 10k

Sequential tps Block-STM tps (Batch)
iBTM tps (Batch) Block-STM tps (Generic)
iBTM tps (Generic)

0

500

1,500

2,500

ex
ec

ut
io

n
la

te
nc

y
(m

s)

Sequential latency Block-STM latency (Batch)
iBTM latency (Batch) Block-STM latency (Generic)
iBTM latency (Generic)

(b) Batch transfer and Generic workloads: α = 0.1

Figure 10 Conflict analyzer integrated with MoveVM: P2P, batch transfer and generic workloads.

6.4 Conflict Analyzer Integration with MoveVM for Parallel Execution
Figure 10 presents the analysis of iBTM for MoveVM on synthetic workloads: P2P, batch, and
a generic transfers that combine P2P and batch transfer in equal proportion. Figure 10 shows
throughput and latency results for MoveVM across different synthetic workloads leveraging
specifications generated by the conflict analyzer. We compared the performance of iBTM
with the baseline sequential and the state-of-the-art Block-STM parallel execution while
varying the thread count from 2-32, with a block size of 10k transactions. In the low-conflict
P2P workload, Figure 10a, where α = 0.1, iBTM scales from 12k-77k tps, reducing execution
latency 3.20×. Block-STM achieves a comparable 73k tps at 32 threads. In high-conflict
P2P, where α = 1.0 (Figure 10a), throughput is modestly from 11k-14k tps. However,
in Figure 10b, the batch transfer workload when α = 0.1 exhibits better scalability, with
iBTM increasing from 7k-50k tps, outperforming Block-STM’s 47k tps. In the generic mixed
workload with α = 0.1 (Figure 10b) iBTM again scales well, improving from 9k-63k tps.
Overall, iBTM consistently outperforms Block-STM and sequential execution, demonstrating
the benefits of leveraging conflict specification for optimistic parallel execution.

7 Discussion and Concluding Remarks

The outstanding objective of this paper is to expose the significance of a execution methodology
that prioritizes leveraging transactional conflict specifications as input for the parallel executor.

AFT 2025

29:24 Efficient Parallel Execution of Blockchain Transactions

We demonstrated how this methodology can be constructive by implementing a state-of-the-
art EVM parallel execution engine. We also demonstrated the methodology for MoveVM and
its empirical benefits. We remark that we chose to exhibit this methodology for the read-write
oblivious execution models of EVM and MoveVM when it would be more straightforward to
implement our algorithms for the read-write aware execution model like Solana, since it does
not require an explicit conflict analyzer. We leave that for a future iteration of the paper.

Localized Fee Markets. Our parallel execution methodology possibly lays the foundation
for more localized dynamic gas fee marketplaces; if dependencies are specified a priori,
transactions occurring in a congested contract of the blockchain state might be processed
separately from others to prevent a localized state hotspot from increasing fees for the whole
network. For example, a popular non fungible token (NFT) mint could create a large number
of transaction requests in a short period of time [21]. A read-write aware blockchain can detect
state hotspots upfront, such as the NFT minting event, to rate limit and charge a higher fee
for transactions containing them [20, 34, 35]. This enables ordinary transactions to execute
promptly, while transactions related to the minting process are prioritized independently
based on the total gas associated with them and resulting congestion.

References

1 Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. Parblockchain: Leveraging
transaction parallelism in permissioned blockchain systems. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pages 1337–1347, Los Alamitos, CA,
USA, July 2019. IEEE, IEEE Computer Society. doi:10.1109/ICDCS.2019.00134.

2 Parwat Singh Anjana, Hagit Attiya, Sweta Kumari, Sathya Peri, and Archit Somani. Efficient
concurrent execution of smart contracts in blockchains using object-based transactional
memory. In Networked Systems, pages 77–93, Cham, 2021. Springer International Publishing.
doi:10.1007/978-3-030-67087-0_6.

3 Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit Somani. An
efficient framework for optimistic concurrent execution of smart contracts. In 27th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP), pages
83–92. IEEE, IEEE Computer Society, February 2019. doi:10.1109/EMPDP.2019.8671637.

4 Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit Somani.
Optsmart: a space efficient optimistic concurrent execution of smart contracts. Distributed
and Parallel Databases, pages 1–53, 2022. doi:10.1007/s10619-022-07412-y.

5 Aptos Labs. The aptos blockchain: Safe, scalable, and upgradeable web3 infrastruc-
ture, August 2022. [August 11, 2022]. URL: https://aptosfoundation.org/whitepaper/
aptos-whitepaper_en.pdf.

6 Shrey Baheti, Parwat Singh Anjana, Sathya Peri, and Yogesh Simmhan. Dipetrans: A frame-
work for distributed parallel execution of transactions of blocks in blockchains. Concurrency
and Computation: Practice and Experience, 34(10):e6804, 2022. doi:10.1002/cpe.6804.

7 Block-stm implementation. [Github, Accessed: January 2024]. URL: https://github.com/
danielxiangzl/Block-STM.

8 BlueAlloy. Revm: A rust implementation of the evm, 2023. [Github, Accessed: January 2025].
URL: https://github.com/bluealloy/revm.

9 Chainstack. Ethereum traceBlockByNumber API Reference, 2025. [Docs, Accessed: January
2025]. URL: https://docs.chainstack.com/reference/ethereum-traceblockbynumber.

10 CryptoKitties. CryptoKitties Webpage, 2024. [Webpage, Accessed: January 2025, Con-
tract Address: 0x06012c8cf97BEaD5deAe237070F9587f8E7A266d, Creation Transaction:
0x691f348ef11e9ef95d540a2da2c5f38e36072619aa44db0827e1b8a276f120f4]. URL: https://
www.cryptokitties.co/.

https://doi.org/10.1109/ICDCS.2019.00134
https://doi.org/10.1007/978-3-030-67087-0_6
https://doi.org/10.1109/EMPDP.2019.8671637
https://doi.org/10.1007/s10619-022-07412-y
https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf
https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf
https://doi.org/10.1002/cpe.6804
https://github.com/danielxiangzl/Block-STM
https://github.com/danielxiangzl/Block-STM
https://github.com/bluealloy/revm
https://docs.chainstack.com/reference/ethereum-traceblockbynumber
https://www.cryptokitties.co/
https://www.cryptokitties.co/

P. S. Anjana, M. Amini, R. Kapoor, R. Parmar, R. Ramesh, S. Ravi, and J. Tobkin 29:25

11 Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen. Adding concurrency to
smart contracts. In Proceedings of the ACM Symposium on Principles of Distributed Computing,
pages 303–312, New York, NY, USA, 2017. PODC ’17, ACM. doi:10.1145/3087801.3087835.

12 Ethereum (ETH): open-source blockchain-based distributed computing platform. [Webpage,
Accessed: January 2025]. URL: https://www.ethereum.org/.

13 Ethereum Foundation. Ethereum 2.0 Merge, 2022. [Blog, Accessed: January 2025]. URL:
https://ethereum.org/en/upgrades/merge/.

14 Etherscan verifier, July 2025. [Website, Accessed: July 2025]. URL: https://etherscan.io/
verifyContract.

15 Mohamed Fouda. The case for parallel processing chains, September 2022.
[Blog, Accessed: January 2025]. URL: https://medium.com/alliancedao/
the-case-for-parallel-processing-chains-90bac38a6ba4.

16 Sui Foundation. All about parallelization, January 2024. [Blog, Accessed: January 2025].
URL: https://blog.sui.io/parallelization-explained/.

17 Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li, Dahlia
Malkhi, Yu Xia, and Runtian Zhou. Block-stm: Scaling blockchain execution by turning
ordering curse to a performance blessing. In Proceedings of the 28th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, PPoPP ’23, pages 232–244,
New York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3572848.
3577524.

18 Rachid Guerraoui and Michal Kapalka. Principles of Transactional Memory, Synthesis Lectures
on Distributed Computing Theory. Morgan and Claypool, 2010.

19 Petr Kuznetsov and Srivatsan Ravi. On the cost of concurrency in transactional memory.
In International Conference on Principles of Distributed Systems (OPODIS), pages 112–127,
2011. doi:10.1007/978-3-642-25873-2_9.

20 Helius Labs. Solana local fee markets: How they work and why they matter, 2024. [Blog,
Accessed: May 2025]. URL: https://www.helius.dev/blog/solana-local-fee-markets.

21 What is lazy minting? introducing a smarter yet economical way to mint nfts, Janu-
ary 2024. [Blog, Accessed: January 2025]. URL: https://www.antiersolutions.com/
what-is-lazy-minting-introducing-a-smarter-yet-economical-way-to-mint-nfts/.

22 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
23 Mythx vulnerability coverage, July 2025. [Website, Accessed: July 2025]. URL: https:

//mythx.io/detectors/.
24 Pareto distribution, 2023. [Wikipedia, Accessed: January 2025]. URL: https://en.wikipedia.

org/wiki/Pareto_distribution.
25 Manaswini Piduguralla, Saheli Chakraborty, Parwat Singh Anjana, and Sathya Peri. Dag-

based efficient parallel scheduler for blockchains: Hyperledger sawtooth as a case study. In
European Conference on Parallel Processing, pages 184–198, Berlin, Heidelberg, 2023. Springer,
Springer-Verlag. doi:10.1007/978-3-031-39698-4_13.

26 Polygon Labs. Innovating the main chain: A polygon pos study in paralleliza-
tion, 2024. [Blog, Accessed: May 2025]. URL: https://polygon.technology/blog/
innovating-the-main-chain-a-polygon-pos-study-in-parallelization.

27 RISE Chain. RISE Chain Webpage, 2024. [Webpage, Accessed: January 2025]. URL:
https://www.riselabs.xyz/.

28 RISE Labs. PEVM: Parallel Ethereum Virtual Machine, 2023. [Github, Accessed: January
2025]. URL: https://github.com/risechain/pevm.

29 Vikram Saraph and Maurice Herlihy. An empirical study of speculative concurrency in
ethereum smart contracts. In International Conference on Blockchain Economics, Security
and Protocols (Tokenomics 2019), pages 4:1–4:15, Dagstuhl, Germany, 2019. OpenAccess
Series in Informatics (OASIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/OASIcs.Tokenomics.2019.4.

AFT 2025

https://doi.org/10.1145/3087801.3087835
https://www.ethereum.org/
https://ethereum.org/en/upgrades/merge/
https://etherscan.io/verifyContract
https://etherscan.io/verifyContract
https://medium.com/alliancedao/the-case-for-parallel-processing-chains-90bac38a6ba4
https://medium.com/alliancedao/the-case-for-parallel-processing-chains-90bac38a6ba4
https://blog.sui.io/parallelization-explained/
https://doi.org/10.1145/3572848.3577524
https://doi.org/10.1145/3572848.3577524
https://doi.org/10.1007/978-3-642-25873-2_9
https://www.helius.dev/blog/solana-local-fee-markets
https://www.antiersolutions.com/what-is-lazy-minting-introducing-a-smarter-yet-economical-way-to-mint-nfts/
https://www.antiersolutions.com/what-is-lazy-minting-introducing-a-smarter-yet-economical-way-to-mint-nfts/
https://mythx.io/detectors/
https://mythx.io/detectors/
https://en.wikipedia.org/wiki/Pareto_distribution
https://en.wikipedia.org/wiki/Pareto_distribution
https://doi.org/10.1007/978-3-031-39698-4_13
https://polygon.technology/blog/innovating-the-main-chain-a-polygon-pos-study-in-parallelization
https://polygon.technology/blog/innovating-the-main-chain-a-polygon-pos-study-in-parallelization
https://www.riselabs.xyz/
https://github.com/risechain/pevm
https://doi.org/10.4230/OASIcs.Tokenomics.2019.4
https://doi.org/10.4230/OASIcs.Tokenomics.2019.4

29:26 Efficient Parallel Execution of Blockchain Transactions

30 Architecture documentaion v1.2. [Whitepaper, Accessed: January 2025]. URL: https:
//sawtooth.hyperledger.org/docs/1.2/architecture/transaction_scheduling.html.

31 Sei Labs. Sei Giga: Scaling the EVM through Parallel Execution, 2024. [Whitepaper, Accessed:
May 2025]. URL: https://github.com/sei-protocol/sei-chain/blob/main/whitepaper/
Sei_Giga.pdf.

32 Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the fourteenth
annual ACM symposium on Principles of distributed computing, pages 204–213, 1995. doi:
10.1145/224964.224987.

33 Solana documentation. [Docs, Accessed: January 2025]. URL: https://docs.solana.com/.
34 Solana fees, part 1, December 2023. [Blog, Accessed: May 2025]. URL: https://www.

umbraresearch.xyz/writings/solana-fees-part-1.
35 SolanaFloor. Solana’s local fee market: A solution to soaring gas prices,

2024. [Blog, Accessed: May 2025]. URL: https://solanafloor.com/news/
solanas-local-fee-market-a-solution-to-soaring-gas-prices.

36 Sui documentation: Discover the power of sui through examples, guides, and concepts. [Docs,
Accessed: January 2025]. URL: https://docs.sui.io.

37 Umbraresearch. Lifecycle of a solana transaction. [Blog, Accessed: January 2025]. URL:
https://www.umbraresearch.xyz/writings/lifecycle-of-a-solana-transaction.

38 Anatoly Yakovenko. Sealevel - parallel processing thousands of smart contracts, Septem-
ber 2019. [Blog, Accessed: January 2025]. URL: https://medium.com/solana-labs/
sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192.

https://sawtooth.hyperledger.org/docs/1.2/architecture/transaction_scheduling.html
https://sawtooth.hyperledger.org/docs/1.2/architecture/transaction_scheduling.html
https://github.com/sei-protocol/sei-chain/blob/main/whitepaper/Sei_Giga.pdf
https://github.com/sei-protocol/sei-chain/blob/main/whitepaper/Sei_Giga.pdf
https://doi.org/10.1145/224964.224987
https://doi.org/10.1145/224964.224987
https://docs.solana.com/
https://www.umbraresearch.xyz/writings/solana-fees-part-1
https://www.umbraresearch.xyz/writings/solana-fees-part-1
https://solanafloor.com/news/solanas-local-fee-market-a-solution-to-soaring-gas-prices
https://solanafloor.com/news/solanas-local-fee-market-a-solution-to-soaring-gas-prices
https://docs.sui.io
https://www.umbraresearch.xyz/writings/lifecycle-of-a-solana-transaction
https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192
https://medium.com/solana-labs/sealevel-parallel-processing-thousands-of-smart-contracts-d814b378192

	1 Introduction
	2 Related Work
	3 Motivation and Overview
	4 BTM Execution From Conflict Specifications
	4.1 Model
	4.2 Algorithm overview

	5 Implementation and Evaluation of BTM from Conflict Specifications
	5.1 Implementation
	5.2 EVM Analysis

	6 Block Transactional Memory for EVM and MoveVM
	6.1 Conflict Specifications for EVM
	6.2 Conflict Analyzer Integration with EVM for Parallel Execution
	6.3 Adaptive Implementation Based on Conflict Threshold
	6.4 Conflict Analyzer Integration with MoveVM for Parallel Execution

	7 Discussion and Concluding Remarks

