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Abstract
We propose a decentralized asset-transfer system that enjoys full privacy: no party can learn

the details of a transaction, except for its issuer and its recipient. Furthermore, the recipient is not
aware of the sender’s identity. Our system does not rely on consensus or synchrony assumptions,
and therefore, it is responsive, since it runs at the actual network speed. Under the hood, every
transaction creates a consumable coin equipped with a non-interactive zero-knowledge proof (NIZK)
that confirms that the issuer has sufficient funds without revealing any information about her identity,
the recipient’s identity, or the payment amount. Moreover, we equip our system with a regulatory
enforcement mechanism that can be used to regulate transfer limits or restrict specific addresses
from sending or receiving funds, while preserving the system’s privacy guarantees.

Finally, we report on PaxPay, our implementation of Fully Private Asset Transfer (FPAT) that
uses the Gnark library for the NIZKs. In our benchmark, PaxPay exhibits better performance than
earlier proposals that either ensure only partial privacy, require some kind of network synchrony or
do not implement regulation features. Our system thus reconciles privacy, responsiveness, regulation
enforcement and performance.
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1 Introduction

Payments, with and without consensus. Bitcoin [33] revolutionized the world of finance
by proposing a fully decentralized asset-transfer system that allows an open set of users
to consistently exchange assets without any mutual trust. Instead of relying on a central
authority, users repeatedly engage in a form of consensus [22, 18] to maintain a replicated
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ledger – an ever-growing record of all transactions. It was later observed [27, 26] that,
strictly speaking, global consensus, a notoriously hard task [16, 17] that requires partial
synchrony [22, 12], is not necessary in payments. In most common cases, when every account
is maintained by a dedicated user, asset transfer can be implemented in an asynchronous,
responsive way on top of the reliable-broadcast primitive [10] (instead of consensus).

Reliable broadcast is weaker than consensus as it allows the correct users to eventually and
consistently agree on the set of issued transactions but not on their order. However, it turned
out to be strong enough to prevent double spending, a major issue in asset-transfer systems.
This observation gave rise to a series of purely asynchronous, consensus-free asset-transfer
systems [14, 5, 31].

Privacy and regulations in payment systems. However, a decentralized asset-transfer
system, as any replicated service, still faces a vital challenge of preserving privacy of its users.
Indeed, in all the mentioned payment protocols, all transactions are inherently public and
every user’s activities are traceable. Hiding the amount of a payment offers confidentiality
and hiding the identities of the sender and receiver offers anonymity. Fully private payment
systems ought to offer both confidentiality and anonymity. Furthermore, many important
payment applications, such as Central Bank Digital Currency (CBDC) [4], require mechanisms
for regulatory enforcement, such as limiting transaction amounts.

Existing distributed asset-transfer systems ([6, 7, 37, 38, 41, 44, 45], to name a few)
arbitrate a trade-off between the four following aspects: (a) Privacy guarantees, (b)
Model assumptions, (c) Regulation enforcement, and (d) Performance. Reconciling
these four aspects is a onerous challenge, as strengthening one aspect often weakens another.
Table 1 provides a detailed comparison of several payment systems across these dimensions.
This table and its content are detailed and discussed in Section 8.

FPAT and PaxPay. In this paper, we address this challenge. We introduce the abstraction
of Fully Private Asset Transfer (FPAT) that maintains conventional safety and liveness
properties of a payment system (informally, no asset is spent twice and every transaction
takes effect), while at the same time making sure that no transaction’s detail is leaked to a
non-involved party. We then describe the PaxPay protocol, a FPAT implementation over an
asynchronous network. PaxPay has been implemented in Golang using Gnark library [8].

As in UTXO transactions [33], to execute a transfer, the sender spends a set of old coins
it has received earlier and generates a set of new coins of the same total value. Every coin is
uniquely identified by its serial number. Every coin should be signed by a sufficiently large
set (a 2/3 quorum) of validators, i.e., dedicated parties that maintain lists of spent coins and
make sure that no user spends a same coin twice.

The protocol operates in an asynchronous network, where any number of users and less
than one third of validators can be Byzantine (deviating arbitrarily from its algorithm). The
rest of the validators are considered semi-honest (following their algorithm but possibly
sharing their states with the adversary). To ensure that the transfer is legal, several assertions
have to be checked: the total value of the spent coins equals the total value of the new coins,
the user that calls the transfer is the owner of the spent coins, all the coins are properly
signed, etc.

To provide full privacy (confidentiality and anonymity), PaxPay leverages several cryp-
tographic primitives. The legality of transactions is verified within a non-interactive zero-
knowledge proofs (NIZK). A blind signature scheme is used at the validators’ side and these
signatures are verified within the NIZK, allowing not to reveal the coins or their signatures
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when spending them. To verify these signatures efficiently, we implemented the NIZK using
the Groth16 [25] scheme and employed a pairing-based signature scheme [35]. We then selec-
ted a pair of elliptic curves that form a chain to instantiate these cryptographic primitives,
allowing efficient verification of the signature within the NIZK (we refer to Section 7 for
more details).

Regulation. We also describe and implement a regulation enforcement mechanism that
can be built on top of our system. Similar to PEReDi and PARScoin [37, 38], our approach
allows setting limits on individual transfer amounts or the cumulative amount transferred
by a user since they joined the system. However, regulations for CBDCs mandate stringent
measures for Anti-Money Laundering (AML) and Countering the Financing of Terrorism
(CFT). These measures go beyond simply limiting transaction amounts.

PEReDi and PARScoin [37, 38] address these requirements and enable validators to reveal
the details of transfers if needed. This could put at risk the privacy of the users. Their
approach relies on additional trust assumptions, requiring non-Byzantine validators to be
honest (i.e., not to share any information with the adversary) to maintain privacy. We avoid
such extra assumptions by equipping the users with a mechanism to generate cryptographic
proofs for arbitrary statements about the histories of their transactions. It enables extracting
a requested information without disclosing the full content of the transaction histories.

Additionally, we incorporate a novel mechanism, empowering the regulator to impose
sanctions, precluding specific addresses from interactions with other users. This ensures com-
pliance with traditional financial sanctions emitted by the central banks or intergovernmental
organizations (e.g., the UN1) and explicitly required by the European Central Bank for the
digital Euro [4].

The regulatory mechanism is implemented by introducing an additional type of coin,
referred to as the compliance coin. At a time, each user may possess several regular coins,
but only one unique compliance coin. In each transfer, the compliance coin of the sender
must be spent together with the regular coins. Then a new compliance coin containing
the information of the transfer is generated (i.e., signed by a quorum of validators). The
compliance coin thus allows us to keep track records of all the interactions of a user with the
system, which can be seen as a commitment to the transaction history and some aggregated
values. To generate an initially valid compliance coin, before joining the system, the user
must be registered with a regulatory authority.

Our regulation framework incurs very low impact on the transaction throughput. It
mainly affects the transaction proving time (by doubling it compared to the non-regulated
case), which we do not consider a primary performance factor. In contrast, such a mechanism
could be difficult and performance-intensive to implement in other protocols that rely on
Sigma protocols [15], such as UTT [41], Zef [6], Peredi [37], and Parscoin [38], which use
these protocols to construct their NIZKs.

Performance. Finally, we evaluated the performance of PaxPay, in comparison with state-
of-the-art payment systems that provide privacy-preserving and/or regulatory-enforcement
features (cf Table 1). In our benchmark (detailed in Section 7.2), we witness that PaxPay
can process at least 8 times more transactions per second than any of these systems. The
benchmark on AWS EC2 instances demonstrates a throughput of 925 transactions per second.
The performance gains can be explained by the use of Groth16 as a succinct NIZK with low

1 https://main.un.org/securitycouncil/en/sanctions/information
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verification cost. In return, this comes at the cost of heavy computations required to generate
a proof. The time required to create a transfer request with limited computational resources
in PaxPay on a one-core CPU is up to 7s for example. However, given the throughput
gains, this appears to be a good trade-off. Moreover, PaxPay’s design allows for pushing the
throughput even further by parallelizing the validator’s load on several machines.

Full version. The full version of this paper [11] incorporates more details including the al-
gorithms that implement PaxPay, the security proofs, the link toward PaxPay implementation
and additional details on the benchmarks.

Summary. To sum up our contributions:
We formalize the problem by introducing the Fully Private Asset Transfer abstraction
(FPAT).
We propose PaxPay, a protocol that implements a FPAT object, and prove its correctness.
We implement PaxPay in Golang, mainly leveraging on the Gnark [8] library.
PaxPay achieves a true reconciliation of (a) Privacy, (b) Model Assumptions (network
synchrony and trust assumptions for validators), (c) Regulation Enforcement, and
(d) Performance. Unlike earlier works that propose trade-offs, PaxPay excels in each of
these aspects simultaneously, bringing together the best of all these dimensions:

Regarding Privacy, transactions in PaxPay are confidential, fully anonymous, and
unlinkable, ensuring the most robust privacy guarantees.
Regarding Model Assumptions, the system tolerates up to one-third Byzantine
validators, with the remaining validators only required to be semi-honest, and does
not rely on the network synchrony.
Regarding Regulation, PaxPay provides a comprehensive regulation framework
by enabling users to generate cryptographic proofs about their transaction history,
setting spending limits, and incorporating a sanction mechanism preventing sanctioned
addresses to receive or spend funds.
Finally, our implementation outperforms state-of-the-art protocols. Also, we show
that the transaction throughput of PaxPay scales with the computational power of
validators. The system can further increase its supported throughput by distributing
validators across additional machines.

PaxPay can find a variety of use cases such as a standalone payment system, a layer 2
solution on top of a blockchain (brings scalability, compliance, or privacy) or a CBDC.

2 Related work

We overview payment systems related to our work, the summary of our comparative analysis
is presented in Table 1 compares this work with the related works. Additional details about
the comparison can be found in the full version of the paper.

Consensus-free payment systems. Gupta [27] and Guerraoui et al. [26] proposed a payment
system that replaces the conventional consensus-based synchronization with the secure
broadcast primitive [10, 32]. Systems like Astro [14], FastPay [5], Zef [6], PARScoin [38] and
UTT [41] extend this approach, operating without consensus in asynchronous networks.

2 Fully anonymous among all the users (Full) or anonymous among an anonymity set (AS).
3 Semi-Honest (SH) or Honest (H).
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Table 1 Comparison of PaxPay vs. Zcash [19], Lelantus [29], Quisquis [21], Zef [6], UTT [41],
PRCash [44], PEReDi [37] and PARScoin [38].
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PRIVACY PROPERTIES

Confidential transfers ● ● ● ● ● ● ●

Sender-anonymous transfers ● ● ● ❍ ● ●

Receiver-anonymous transfers ● ● ● ● ● ● ● ● ●

Unlinkable transfers ● ● ● ❍ ● ● ● ●

Anonymity strategy2 Full AS AS Full Full Full Full Full Full

MODEL ASSUMPTIONS

Asynchronous network ❍ ❍ ❍ ● ● ❍ ❍ ● ●

Correct validators3 SH SH SH SH SH SH H H SH

REGULATION FEATURES

Limited held amount per user ❍ ❍ ❍ ❍ ❍ ❍ ● ❍ ❍

Limited spendable amount per tx ❍ ❍ ❍ ❍ ❍ ● ● ●

Limited spendable amount in total ❍ ❍ ❍ ❍ ● ❍ ● ● ●

Full asset tracing ❍ ❍ ❍ ❍ ❍ ❍ ● ● ❍

Sanctions ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ●

Provable transaction history ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ●

PERFORMANCE

Transaction throughput (tx/s) 25 ∅ ∅ 88 235 ∅ ∅ ∅ 925

Transaction latency (s) 1000 ∅ ∅ < 1 < 1 ∅ ∅ ∅ < 1

NIZK Proving time (ms) 21K 2378 2110 438 60 100 3100 392 6959

NIZK Verification time (ms) 9 40 251 142 49 96 518 159 5

Private payment systems without regulation. Zerocash [7], Zexe [9], Monero [34],
Quisqus [21] and Lelantus [29] are payment systems built on top of blockchains and consensus.
They provide privacy via NIZKs or ring signatures. Zerocash and Zexe [7, 9] use commitments
stored in Merkle trees and nullifiers to prevent double spending. Each transaction is accom-
panied by an NIZK to provide privacy but these systems offer inherently low transaction
throughput. Monero [34] and Quisquis [21] relies on ring signatures to provide anonymity
but only limits the sender and receiver’s identity to a small subset of the users, known as the
anonymity set. Compared to Monero, Quisquis offers stronger privacy guarantees in certain
scenarios preventing possible de-anonymization.

Lelantus [29, 30] offers privacy via NIZK requires less advanced cryptographic assumptions
than Zerocash or Zexe, for instance it does not require any trusted setup. It also proposes
batch verification for validators.

All payment systems mentioned so far are built on a blockchain and, thus, require
consensus. Baudet et al. [6] describe Zef, a private payment system, that assumes an
asynchronous network but only provides partial anonymity and confidentiality. To improve
performance, the transaction data in Zef is distributed over a set of authorities. Each
authority can be sharded – i.e., distributed over several machines, as in Astro [14] and in
this work.

AFT 2025
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Private payment systems with regulation. PRCash [44], Platypus [45], PEReDi [37],
PARScoin [38] and UTT [41] incorporate certain regulatory features into private payment
systems. A common element in their designs is the reliance on NIZK.

Garman et al. [23] were among the first to address regulation by enforcing policies such
as fixing a spending limit on a system with a similar construction as Zerocash. Their system
has not been implemented and, as it is built on top of Zerocash, it shares the same major
drawbacks.

PRCash [44], as Zerocash, is blockchain-based and operates with commitments but offers
only partial privacy. Regulation features proposed by PRCash are limited: users cannot
spend more than a predefined amount set by the regulator within a certain time window.

UTT [41], a concurrent work to our paper, proposes an asynchronous private payment
system with privacy guarantees, a low transaction latency and a high transaction throughput.
Both UTT and PaxPay protocols follow a similar approach, using coin commitments and
consistent broadcast to create and spend coins in a fully private manner. However, the
regulation features offered by UTT are restricted to the anonymity budget that limits the
amount of anonymous coins that a user can transfer. Compared to UTT, PaxPay offers
a more comprehensive set of regulation features and exhibit better performance, due to
improved NIZK construction.

Platypus [45] offers regulation features of holding limits, receiving limits, and spending
limits. It uses NIZK with low verification costs to increase transaction throughput. However,
unlike other payment systems described in this section, Platypus is a centralized payment
system rather than a distributed one.

PEReDi [37] is an account-based system. The regulation framework enforces spending
and receiving limits for each transaction and imposes restrictions on the maximum amount a
user can hold. Additionally, the system allows validators to trace funds and reveal details of
certain payments. Users encrypt their transaction details with a threshold encryption scheme
so that a quorum of validators can decrypt them. PEReDi needs a synchronous network and
correct (i.e., non-Byzantine) validators must be honest (i.e., strictly follow the protocol and
avoid seeking additional information). In contrast, most systems discussed here (as well as
ours) are designed to tolerate semi-honest correct validators.

Concurrently with this work, the same authors have recently proposed PARScoin [38].
PARScoin enhances PEReDi by allowing asynchronous transactions yet still requires honest
validators and faces limited throughput. PARScoin’s protocol is similar to the one employed
by UTT and our work, relying on Byzantine consistent broadcast. Our work differs from
PARScoin in the NIZK construction which offers better performance, fewer assumptions on
the validators and additional regulations features. Also, neither PRCash, PARScoin nor
PEReDi have conducted latency tests to evaluate the maximum transaction throughput of
their systems, they only provide benchmarks of their primitives (such as the time to prove or
verify a transaction).

Other decentralised privacy-preserving payment systems adopt this auditability approach
such as [3, 36, 13].

Specifications for a responsive and private payment system. In this paper, we introduce
a new specification (inspired by the formalism recently proposed by Albouy et al. [1]), as
existing ones do not address our particular problem. They describe either private payment
systems that cannot be implemented in asynchronous networks [19], asynchronous payment
systems that lack anonymity [26, 14, 31], or non-sequential specifications that do not align
with how specifications are typically defined in the distributed systems literature [37, 38, 41].
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3 Model

3.1 Participants and adversary
The system is composed of two types of participants:

A set U of U users of the payment system.
A set V of N = 3f + 1 validators.

Here f denotes the maximum number of validators that can go Byzantine, i.e., deviate
from the protocol. A non-Byzantine (faithful following the protocol) is called correct. Correct
validators may, however, be semi-honest [20]: a correct party may try to learn as much as
possible from the messages they receive from other parties, which may involve colluding and
pooling their views together. In contrast, honest validators that are not trying to learn any
information. The correct participants are thus following the protocol but they may exchange
information with any other participant (Byzantine or not) to learn as much as possible. As
we shall see, Byzantine participants pose challenges to all correctness aspects of our system
(safety, liveness and privacy), while semi-honest participants affect only privacy.

The adversary A thus controls any number of users and all validators, but at most f

validators can deviate from the protocol. A can be seen as a hybrid adversary between honest
and semi-honest. We assume that A is static and network-ignorant: the set of Byzantine
participants controlled by A is chosen a priori, and A has no information about message
delay between the validators and the other participants. It can delay the messages but must
eventually deliver them. Conventionally, the adversary A is computationally bounded. More
precisely, A is probabilistic polynomial-time (PPT).

Every participant is provided with a pair of distinct public and secret addresses denoted
apk and ask. These addresses are used to identify users and validators. The public addresses
of the validators are known to every participant. Otherwise, a user only needs to know the
identifiers of the users she engages in transfers with.

3.2 Network and communications
Concerning the network, we assume asynchronous but reliable communication. The parti-
cipants can communicate via anonymous, secure, and asynchronous network channels. The
channels do not modify or create messages. If a correct participants sends a message to
a correct one, the message is eventually received, though we assume no bounds on the
communication delays. The sender’s identity is not known to the receiver, but the receiver
can still respond to the sender. No other participant can tell who is the sender or the receiver,
or tamper with the message content. We could use a network based on Syverson et al. [40]
work. We consider that the latency distribution is the same for all the channels.

3.3 Cryptographic tools
Our protocol makes use of several cryptographic tools that we list below. Due to the space
constraints, we only give informal definitions and refer to [24] for more details. Also, in
the algorithms mentioned below, we omit the security parameters taken as inputs. Some
primitives require a setup phase, which will be handled by a trusted third party T . Note
that these setups could be carried out via MPC [20] between the validators.

(k, N)-Threshold Blind Signature Scheme. Tuple of algorithms Πsig= (SETUPSig,

BLIND, SIGN, UNBLIND, AGGREGATE, VERIFYSig) allowing to divide a secret key sk in n

fragments [ski]Ni=1 between n signers, such that valid signatures from any subset of k signers

AFT 2025



3:8 Fast, Private and Regulated Payments in Asynchronous Networks

can be aggregated into a valid signature on behalf of the corresponding public key pkagg.
Each fragment ski has a corresponding public key pki so that a partial signature σi generated
with ski can be verified with respect to pki. Moreover, the signers sign a blinding version m̃

of a message m such that no information on m can be derived from m̃. A valid signature
with respect to m can then be computed. Signature are unforgeable, which means that no
PPT adversary can forge a valid partial signature σi of a message m that correctly verifies
against pki without the knowledge of ski. As a blind signature, this should not also be
possible for a signer to eventually make the link between the signature is has issued, and the
final signature (after UNBLIND and AGGREGATE).

SETUPSig(k, N) → ([ski]Ni=1, [pki]Ni=1, pkagg): Randomized algorithm run by a trusted
party. Takes as input threshold parameters (k, N) and returns a list of N signing keys
[ski]Ni=1 and one corresponding verification key pkagg.
BLIND(m, b) → (m̃): Takes as input a message m and a blinding factor b, returns a
blinded message m̃.
SIGN(m̃, ski) → σ̃i: Takes as input a blinded message m̃ and a secret key ski, and returns
a partial blinded signature σ̃i.
UNBLIND(m̃, σ̃i, b) → σi: Takes as input a blinded message m̃, the blinding factor b used
to blind m and the corresponding partial blinded signature σ̃i, and returns a valid partial
signature σi for the original message m.
AGGREGATE([σi]ki=1) → σ: Takes as input a list of k signatures [σi]ki=1 and produce a
signature σ such that σ is a valid signature on behalf of the public key pkagg if and only
if all σi are valid signatures for distinct public keys pki.
VERIFYSig(m, σ, pk) → b: Takes as input a partial or aggregated signature σ of a message
m and returns a bit b of value 1 if σ is valid with respect to pk and 0 otherwise. The
signature can be a partial or aggregated signature.

Collision-Resistant and Preimage-Resistant Pseudorandom Function Family [24]. A
family of functions PRF = {PRFs : {0, 1}∗ → {0, 1}O(|s|)}s, where s denotes a seed,
computationally indistinguishable from a random function family. Collision-Resistance
means here that it is computationally infeasible to find couples (s, x) ̸= (s′, x′) such that
PRFs(x) = PRFs′(x′). Preimage-Resistance means that it is computationally infeasible, given
y, to find (s, x) such that PRFs(x) = y.

Non-Interactive Zero-Knowledge Proof (NIZK) [24]. A tuple of algorithms Πproof =
(SETUPNIZK, PROVE, VERIFYNIZK) allowing a prover to prove to a verifier that, given a
statement defined by an NP relation R(a, b) and an instance public_input, she knows a
witness private_input such that R(public_input, private_input).

SETUPNIZK(R) → ppNIZK: Randomised algorithm run by a trusted party. Takes as input
a relation R and outputs public parameters ppNIZK (also known as common reference
string). These public parameters are taken as input by the two following algorithms
PROVE and VERIFY, but we omit it to lighten the notation.
PROVE(public_input, private_input, ppNIZK) → π: Randomised algorithm. Takes as inputs
instance and witness. Outputs a proof π such that :
R(public_input, private_input).
VERIFYNIZK(public_input, ppNIZK, π) → b: Takes as input an instance public_input and a
proof π. Outputs 1 if the proof is valid and 0 otherwise.
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Incremental commitment scheme. A tuple of algorithms Πcom = (COM, INCR) that allows
us, given a sequence of messages [mi]ni=1 and a sequence of randomness [ri]ni=1, to produce a
commitment c. The commitment is hiding, i.e., no information on [mi]ni=1 can be derived from
c without prior knowledge on [ri]ni=1. The commitment is also binding, meaning that given
a sequence of couples [(mi, ri)]ni=1 that commits to a value c, it should be computationally
infeasible for a PPT adversary to compute [(m′

i, r′
i)]ni=1 such that [(m′

i, r′
i)]ni=1 ̸= [(mi, ri)]ni=1

also commits to c. The commitment scheme is also incremental: let us consider a sequence
[(mi, ri)]ni=1, its commitment c and a couple (m′, r′). Given the knowledge of c, m′ and r′, it
is possible to compute c′ that commits to [(m1, r1), (m2, r2), ..., (mn, rn), (m′, r′)]:

COM([(mi, ri)]ni=1) → c takes as input a sequence of messages and randomness and
returns the corresponding commitment. COM is hiding and binding.
INCR(c, m′, r′) → c′ takes as input a commitment c of a sequence [(mi, ri)]ni=1, a new
message m′ and a randomness r′. It returns c′, the commitment to the sequence
[(m1, r1), (m2, r2), ..., (mn, rn), (m′, r′)].

4 Fully private asset transfer (FPAT)

State and interface. At the abstract level, the state of the FPAT object is represented as
an array of U positive integer values [vk]Uk=1, one for each user, interpreted as the current
balances of the users’ accounts. Let [vinit

k ]Uk=1 be the initial state of the object. The object
exports two operations: transfer and balance. Assuming that a user u invokes an operation,
they are defined as follows:

transferu(v, w)/r takes as inputs a value v and a user identifier w. It transfers the
amount v from u to w: updates a state [vk]Uk=1 to the state [v′

k]Uk=1 where v′
k = vk + v if

k = w ∧ u ≠ w, v′
k = vk − v if k = u ∧ u ̸= w and v′

k = vk otherwise. It returns a binary
response r = confirm if it succeeds and r = fail otherwise.
balanceu()/vu takes no inputs and returns the value vu stored at location u of the state
[vk]Uk=1.

Let O be a set of FPAT operations – invocations of transfer and balances provided
with matching responses, each associated with a distinct user. Let transferu(∗, ∗)/C (resp.,
transferu(∗, ∗)/F ) denotes a transfer operation invoked by a user u that returns confirm
(resp. fail). For each user u, we define a function totali(O) as follows:

totalu(O) = vinit
u +

∑
transfer∗(v,u)/C∈O

v −
∑

transferu(v,∗)/C∈O

v

totalu(O) is thus defined as the current balance of u after all successful transfers in O complete:
the initial amount owned by u, minus all the funds sent by u plus all the funds received by u

in the set of operation O.
A sequential history S (of FPAT) is a totally ordered set of FPAT operations, let ≺S be

this order. Let S|u denotes the sub-sequence of S consisting of the events of user u. We say
that S is legal if:
1. ∀o = transferu(v, w)/C ∈ S v ≤ totalu({o′ ∈ S : o′ ≺S o})
2. ∀o = balanceu()/v ∈ S v ≤ totalu({o′ ∈ S : o′ ≺S o})
3. If an operation balanceu() returning v1 directly precedes a transferu(v2, w) operation in

S|u, and v2 ≤ v1, then the transfer operation cannot return fail.
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Histories and serializations. Consider an execution of a FPAT algorithm: a sequence of
events produced by the algorithm, such as invocations and responses of FPAT operations,
sending and receiving messages, etc. A local history Li of a user i is the sequence of operations
invoked by i in that execution. We assume that correct users are well-formed – they never
invoke a new operation before the previous one returns, and thus if u is correct, then Lu is
sequential. In case the last operation of Lu is incomplete (not followed by a response), we
can add any matching response and get a completion of Lu. Now a history H is a vector
(L1, L2, ..., L|U|) of local histories, one for each user. Notice that if the history is produced
by an execution of a FPAT algorithm, only the local histories of correct users are of interest
for us: a Byzantine user is not obliged to follow the protocol.

A sequential (FPAT) history S is a serialization of a history H = (L1, L2, ..., L|U|) if for
each correct user u, there exists L̂u, a completion of Lu, such that S|u = L̂u (≺S respects
the local order ≺L̂u

). S can be seen as a global interpretation of the local histories of correct
users. Notice that we allow any operations to be executed by Byzantine users in S, as long
as it “makes sense” to the correct ones.

FPAT-Safety. An implementation of a FPAT-object is FPAT-Safe if and only if, for any
finite history of execution H it produces, there exists a serialization S of H which is legal.

FPAT-Liveness. Liveness ensures that (1) every operation invoked by a correct user
eventually completes and (2) considering two correct users u and w, if w transfers money
to u, then u eventually receives this money. Let us consider the existence of a global time
during the execution of an implemented FPAT object. An implementation of a FPAT-object
is FPAT-Live if:
1. All transfer and balance operations terminate for correct users.
2. Consider a correct user u. For each operation transfer∗(∗, u) completed during the

execution at time t, there exists a time t′ ≥ t such that any operation balance inserted at
time t′′ ≥ t′ will return a value v such that:

v ≥
∑

transfer∗(v+,u)
invoked by correct users
completed before time t

v+ −
∑

transferu(v−,∗)
completed before time t′′

v−

FPAT-privacy. We capture the privacy guarantees of FPAT through a distinguishing game
Gpriv described in details the full version of the paper. FPAT-privacy has important
implications that can be expressed as a collection of properties we use here. Let ϵ be a
negligible function and λ the security parameter. Consider a protocol execution, let H be
its history and UByz the set of users controlled by the adversary, among the U users of the
system. Let o = transferu(v, w) ∈ H be any transfer operation such that u is honest. Then
for each guess (u′, v′, w′) made by an adversary with no prior knowledge, where u′ is the
payment sender, v′ is the value, and w′ is the payment recipient, the following properties
hold:
1. Sender-anonymity: P(u′ = u) ≤ 1

U−|UByz| + ϵ(λ), i.e., the adversary only knows that
the sender is not itself.

2. Receiver-anonymity: If w is honest, then P(w′ = w) ≤ 1
U−|UByz| + ϵ(λ), i.e., the

adversary only knows that the receiver is not itself.
3. Confidentiality: If w is honest, then P(v′ = v) ≤ ϵ(λ), i.e.,the adversary cannot guess

the amount of the transaction.
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These three properties together constitute full privacy. Additionally, FPAT-privacy, as
captured by the distinguishing game Gpriv, implies unlinkability: given two transfers,
no adversary can determine whether the sender, receiver, or amount is the same in both
transfers.

5 PaxPay Protocol

We overview our FPAT implementation below and delegate detailed algorithms and proofs
of correctness to the full version of the paper.

Setup. Every user is identified by her public address apk that is derived from a secret
address ask as follows: apk = PRFask(0) 4

The protocol uses a (2f +1, N)-threshold blind signature scheme, as defined in Section 3.3.
The secret signing keys [ski]Ni=1 are held by each of the validators. The aggregated public
key is denoted by pkagg The protocol will also make use of NIZK, as defined in Section 3.3.
The setup algorithms for these primitives are again described in [11].

Coin structure. A coin is a tuple c = (v, apk, ρ) with:
v the (integer) value of the coin.
apk the public address of the owner of the coin.
ρ the seed of the coin, from which the serial number is derived.

Coins are similar to unspent transactions (UTXO) in Bitcoin: to make a payment, a user
“spends” old coins and creates new coins whose owners are the payment recipients.

Coin validity. Using a quorum of validators signatures (inspired by Byzantine Consistent
Broadcast), we decide whether a coin is valid or not. In concrete terms, a coin is valid if
it has been signed by 2f + 1 validators. During a transfer, several old coins [cold

i ]i∈[1,n] are
spent to create new coins [cnew

j ]j∈[1,m]. To make sure that a coin it not spent twice, a unique
serial number is derived from the coin’s seed ρ as sn = PRFask(ρ). Each validator maintains
a list snList of the old coins’ serial numbers. The coins [cold

i ]i∈[1,n] are considered spent when
a quorum of 2f + 1 validators have appended the corresponding serial numbers [snold

i ]i∈[1,n]
to their snList.

Intuitively, as the computation of snold
i is using the PRF and the secret address of the

payer, no party can link snold
i to ρold

i or apkold
i , and thus the sender-anonymity property is

preserved. The full version of the paper details an algorithm that initializes the balances for
the initial set of users, by creating coins for each of them.5

Local variables. User storage consists of:
apk/ask: its public/secret address pair
coinList = [(ci, σi)]i: the set of coins owned by the user associated with the aggregated
signature of each coin.
rhoList: the list of all seed ρ corresponding to coins received by the user

4 The address generation is detailed in [11] and shows the address generation process by sampling a
random ask and deriving the apk.

5 As discussed in Section 8, depending on the use cases of the system, this algorithm might not be
executed. Instead, users might freely join the system and call a Mint algorithm that provides them with
new coins.
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Validator storage consists of:
sk: its secret signing key
snList: the list of serial numbers identifying spent coins.
signedCoinList: the list of all blinded coins signed by the replica.

Transfer. Assuming a user has enough funds, she can issue payments to several recipients
[apknew

j ]mj=1 in one transfer by sending vnew
j to apknew

j . The full algorithm is described in [11].
The user first chooses n (old) coins denoted [cold

i ]ni=1 and their signatures [σold
i ]ni=1 from her

coinList, where cold
i = (vold

i , apkold
i , ρold

i ), such that the total value of the old coins does not
fall below the total value payed in the transfer:

∑n
i=1 vold

i ≥
∑m

j=1 vnew
j . (Otherwise, the

transfer operation returns fail.) The user then computes the serial number [snold
i ]ni=1 of every

old coin as follows: snold
i = PRFaskold

i
(ρold

i ).
The j new coins are then produced by the user according to the values and

addresses to pay: ∀j ∈ [1, m], cnew
j = (vnew

j , apknew
j , ρnew

j ). ρnew
j is derived as ρnew

j =
PRFρseed

(snold
1 ||...||snold

n ||j) , where ρseed is sampled randomly. This binds each new coin to
the old coins spent for its creation. This way, we make sure that the validators signing cnew

mark the same old coins as spent. Since the value of the chosen old coins might exceed the
value of the new coins, the user also produces a redeem coin cnew

m+1 = (vnew
m+1, apknew

m+1, ρnew
m+1),

with apknew
m+1 = apk and vnew

m+1 the exceeding value. The coins [cnew
j ]m+1

j=1 are then blinded.
The blinding of cnew

j is denoted c̃new
j = BLIND(cnew

j , bj), where bj is a randomly sampled
blinding factor.
The sender of the payment then computes an NIZK with:

public_input : ([snold
i ]ni=1, [c̃new

j ]m+1
j=1 )

private_input : ([cold
i ]ni=1, [σold

i ]ni=1, [askold
i ]ni=1, [cnew

j ]m+1
j=1 , [bj ]m+1

j=1 , ρseed)
This NIZK πtransfer proves the following relations:
1. Serial numbers [snold

i ]ni=1 are correctly derived from the old coins [cold
i ]ni=1.

2. New coins [cnew
j ]m+1

j=1 are correctly derived from the old coins [cold
i ]ni=1.

3. Blinded coins [c̃new
j ]m+1

j=1 are correctly derived from [cnew
j ]m+1

j=1 and [bj ]m+1
j=1 .

4. Signatures [σold
i ]ni=1 of the coin [cold

i ]ni=1 are correct.
5. Private addresses [askold

i ]ni=1 match the public address [apkold
i ]ni=1.

6. The sum of the values of the old coins [cold
i ]ni=1 equals the sum of the values of the new

coins [cnew
j ]m+1

j=1 .
The user can now send the NIZK πtransfer along with the public inputs to all the validators.
The detailed algorithm run by the validators is detailed in [11]. Once a validator receives the
proof:
1. It checks that none of the [snold

i ]ni=1 appears in its snList;
2. It checks that the proof π is correct;
3. If the last two conditions are fulfilled, it adds all [snold

i ]ni=1 to snList, add all [c̃new
j ]m+1

j=1 to
signedCoinList, it signs all the coins [c̃new

j ]m+1
j=1 and returns the blinded partial signatures.

4. If any of the previous conditions is not fulfilled, the validator checks if the blinded coins
[c̃new

j ]m+1
j=1 appear in signedCoinList. If they all do, then the validator still sends back the

signatures. This is done because a Byzantine validator p might receive a transfer request
from a user u and send it to other validators using a private channel. As a result, other
validators might answer p before answering u, preventing u from receiving the signatures
while the old coins are actually spent (their serial numbers would have been added to
snList already).
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Once the user receives 2f + 1 valid partial signatures for the coins [c̃new
j ]m+1

j=1 from
2f + 1 validators, she can unblind and aggregate them to form m + 1 signatures [σj ]m+1

j=1
that are valid signatures for [cnew

j ]m+1
j=1 . She can now send each couple (cnew

j , σnew
j )

to apknew
j . The user apknew

j only accepts the payment if ρnew
j /∈ rhoListapknew

j
and

VERIFYSig(cnew
j , σnew

j , pkagg) == 1.6

Double spending. Consider a coin cold that has been spent. Hence, a set V1 of 2f + 1
validators have claimed to have added snold to their snList, and at least f + 1 out of them
are correct. If a Byzantine user tries to spend cold again, it should collect confirmations
from a set V2 of 2f + 1 validators that will have to add snold in their snList again. Since
there are 3f + 1 validators in total, V1 and V2 have at least one correct validator in common.
It must refuse to sign the second transaction because snold is already in its snList, so double
spending is prevented and FPAT-Safety is guaranteed. The full proof is presented in [11].

Example. Figure 1 depicts a transfer:
1. Alice wants to pay 3 recipients with 2 coins. She generates 3 blinded coins and a matching

NIZK, and sends them to the validators.
2. Each validator checks the validity of the NIZK and that the old coins are not in its snList,

and, if so, sign the blinded coins and add the serial numbers to their snList.
3. Alice receives the signatures.
4. For each coin: once 2f + 1 blinded partial signatures are received, Alice unblinds and

then aggregates them into one aggregated signature.
5. Alice sends the coin tuples and their signatures to their recipients.

6 Regulatory enforcement

PaxPay is designed as a private payment system. As in PEReDi [37], PRCash [44] or
Platypus [45], the protocol can be enhanced to be regulation-compiant. The use of succinct
proofs limits the impact of regulatory enforcement on the system’s performance. This section
describes how to build such a regulatory enforcement on top of the protocol described above.

Our regulatory enforcement is achieved via compliance coins. Each user owns its unique
compliance coin. The coin commits to some data related to the user and all his transactions.
The user must attach the compliance coin to each of it transactions as an input and the
validators will sign the updated compliance coin. Well-formedness of the updated compliance
coin is proved through NIZK. As for a classical coin, the old compliance coin is spent by
revealing its serial number. As a result, a user has one one valid compliance coin at a
time and this coin acts as an append-only tracing mechanism. We introduce the following
regulation features, shown in Table 1:

Limited held amount per user: Users cannot hold more than V max
held .

Full asset tracing: A trusted authority (centralized or decentralized) can reveal the content
of transaction to trace back assets and users activities.
Limited spendable amount per tx: Users cannot spend more than V max

sent in one transfer.
Limited spendable amount in total: Users cannot spend more than V max

total in total.

6 For convenience, we allow the Transfer algorithm to send money to several recipients in a single call, in
contrast with the specification, which allows only one recipient at a time. As explained in the security
proof in [11], this more generic transfer can be seen as a batch of successive transfer calls, each destined
to a single user.
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Figure 1 PaxPay example: Alice pays 3 recipients with 2 old coins.

Sanctions: Users in the sanction list cannot send or receive funds.
Provable transaction history: A user can prove arbitrary statements about her transactions.
For instance, reveal all of her transactions and prove that the revealed set is complete
(no transactions are missing).

Our regulatory construction enforce Limited spendable amount per tx, Limited spendable
amount in total, Sanction list and Provable transaction history. V max

sent , V max
total and SancList

are public parameters chosen and potentially updated by the regulator. The sanction
list SancList is represented as a sorted Merkle tree, which allows efficient proof of non-
membership.

Compliance coin. The compliance coin of a user u is defined as a tuple ccu = (apk, ρ, v, com)
where:

apk is u’s sole public address
ρ the coin seed, as for a normal coin
v is the total amount of money sent so far by u

com is the commitment to the list of all the transfer done by u so far. For each coin
created, it commits the tuple (apk, v) with apk the public key of the receiver and v the
value sent. It uses the incremental commitment introduced in Section 3.3

com allows to trace u’s activities and allows u to prove additional statements on her
transaction history in case of an update of the regulation.

Registration. Adding a user registration process is essential for regulatory enforcement,
to comply with the know-your-customer (KYC) and customer-due-diligence (CDD) checks.
Additionally, it ensures the uniqueness of the compliance coin for each physical user.

To this end, the validator storage is provided with a new list registeredList, the list of the
enrolled users associated with their public key. registeredList is used to make sure that a
physical user can only register once on the system. The registration process is as follows for
the user u:
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1. Generate a random ρ and computes ccu = (apku, ρ, 0, 0) and its blinding c̃cu (with
blinding factor b).

2. Computes an NIZK πregister that takes (c̃cu, apku) as public input and (asku, ccu, b) as
private input. It proves that:
a. c̃cu = BLIND((apku, ρ, 0, 0), b).
b. asku and apku form a correct secret/public address pair.

3. Send to each validator πregister and (c̃cu, apku).
4. Upon correct KYC and CDD proving u’s identity, each validator check if πregister is

correct and that: (u, ∗) /∈ registeredList (u has registered no public address yet). If so,
they sign c̃cu, send it back to u, and add (u, apku) to registeredList.

5. Once u has received 2f + 1 partial signature, she can unblind and aggregates the partial
signatures to form a valid signature for ccu.

The detailed algorithm is described in [11].

Transfer. Section 5 described how a transfer is handled by a user u, by spending n old coins
[cold

i ]ni=1 and creating m + 1 new coins [c̃new
j ]m+1

j=1 to pay m recipients (m coins are created
to pay the recipient and a redeem coin is also created with index m + 1 to get the excess of
money back to u). Now the user also has to update a compliance coin at each payment and
prove that their transfer is compliant. The following additional steps are thus required. She
generates m random values: [rj ]mj=1. The user provides an additional proof πcomply. This
proof takes the following public inputs:

c̃cnew
u the blinding of the new compliance coin

snold
cc the serial number of the old compliance

V max
sent the maximum amount that can be transferred in one transfer

V max
total the total amount of money that u can transfer in her use of the system

SancList the list of addresses under sanctions
πcomply takes the following as private input:

ccold = (apkold
cc , ρold

cc , vold
cc , comold) the old compliance coin

ccnew = (apknew
cc , ρnew

cc , vnew
cc , comnew) the new compliance coin

askold
cc the secret address corresponding to apkold

cc

πcomply should verify the following clauses:
1. ∀i ∈ [1, n], apkold

i = apkold
cc

2. apkold
cc = PRFaskold

cc
(0)

3. apknew
m+1 = apkold

cc

4. apknew
cc = apkold

cc

5. ρnew
cc = PRFρseed

(snold
1 ||...||snold

n ||m + 2)
6. vnew

cc = vold
cc +

∑
1≤j≤m vnew

j

7. com0 = comold ∧ ∀j ∈ [1, m], comj = INCR(comj−1, apknew
j , vnew

j , rj) ∧ comnew = comm

8.
∑

1≤j≤m vnew
j ≤ V max

sent

9. vnew
cc ≤ V max

total

10. apkold
cc /∈ SancList

11. ∀j ∈ [1, m], apknew
j /∈ SancList

Conditions (1) ensures that all the input coins belong to the owner of the input compliance
coin. Condition (2) ensures that u, the user that invokes transfer, is the owner of the
compliance coin. Condition (3) ensures that the redeem coin will belong to u. Conditions (4),
(5), (6) and (7) ensure that the new compliance coin is well-formed. Condition (8), (9) and
(10) ensure that the transfer is compliant. (8) verifies that the amount of the transfer does
not exceed that maximum allowed for a single transfer. (9) verifies that the total amount of
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money sent by u does not exceed that maximum amount. (10) verifies that the sender is
not a user under sanctions. (11) verifies that none of the receivers of the transfer is under
sanction.

The user storage is also augmented with a list comList, in which she stores the tuples
(apk, v, r) that she has used at each transfer. At the end of the transfer described above,
she thus append to comList the following: ∀j, j ∈ [1, m], (apknew

j , vnew
j , rj). She can later use

comList and her compliance coin to prove any statement about her transaction.
Upon receiving correct proofs (πcomply, πtransfer) and their public parameters, the

validators execute the same algorithm as for a non regulated transfer, except that they
verify both πcomply and πtransfer. They can then sign the news coins and then send the
signature back. The detailed algorithm is described in [11].

7 PaxPay implementation and performance

PaxPay implementation in Golang is available on Github. We developed with two
implementations, with and without regulation support. Below we overview the cryptographic
tools we employed and report on the performance of our protocols.

7.1 Cryptographic building blocks

NIZK. NIZK proofs are implemented using the Groth16 [25] protocol. Groth16 allows
for constructing succinct non-interactive arguments of knowledge (SNARKs) with constant
verification complexity, regardless of the complexity of the relation R it attests to. The
relation R is represented by an arithmetic circuit. We instantiate this scheme with the
BW6-761 [28] curve, designed to cycle with the BL12-377 [28] curve, allowing for efficient
pairing verification over BL12-377 within the SNARK.

In the regulated version, each transfer requires two NIZK. For performance reasons, these
two proofs πtransfer and πcomply are merged into a single proof with a unique circuit. The
proof of non-membership in the merkle tree is implemented as follows: the sanction list has
the following form: SancList = [s1, s2, ..., sξ]. SancList is supposed to be published sorted
by the regulator. To verify the non-inclusion of an address apk in the list, we prove that
there exist si and sj such that:

si and sj are elements of SancList.
j = i + 1 (si and sj are consecutive elements of SancList).
si < apk < sj (s1 and sξ are set to 0x00..00 and 0xFF..FF to make sure this constraint
can always be fulfilled).

Hash functions and PRF. To optimize the computational cost of the proving algorithm
in SNARK, we rely on MiMC [2]. MiMC is an arithmetization-oriented, collision-resistant
and preimage-resistant hash function that is efficiently represented as arithmetic circuits.
We use it to derive the the seeds ρ of created coins from the serial numbers sn of spent
coins. The pseudorandom function family PRFx() is derived from a MiMC function H as
PRFx(m) := H(m||x).7

7 The natural way to implement a PRF from a hash function is to consider PRFx := H(m||x), however,
replacing concatenation by an addition in the field does not compromise security in our case while
reducing the computational cost.
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Incremental commitment scheme. The incremental commitment scheme is also derived
from the MiMC function H. Given a commitment comold and a message m to be
added to the commitment with a randomness r, INCR(comold, m, r) is defined as follows:
INCR(comold, m, r) = H(comold||m||r). The commitment function COM is then an iteration
of increments INCR over the sequence of messages and randomnesses provided.

(k, N)-threshold blind signature. Our signature scheme is based on a slightly modified
version of the Coconut scheme [39], which itself is a variant of the Pointcheval and Sanders
signature scheme [35]. Indeed, certain checks originally performed using a sigma protocol
in Coconut are instead handled in the Groth16 proof in our implementation, reducing the
overall verification complexity. We instantiate this scheme with the BLS12-377 curve so that
the verification algorithm, which involves pairings, is efficient in the Groth16 proof. More
details about the construction are given in [11].

7.2 Performance analysis
We now report on our comparative performance analysis.

NIZK Benchmark. We benchmarked our NIZK, implemented using a Groth16 SNARK, on
an Intel i7 @ 2.6 GHz CPU running Ubuntu 22.04. The results are summarized in Table 2.
Each value is based on the average of 10 proving and verification runs. A comparison with
related protocols is provided in Table 1. The data in this table was gathered from the
respective research papers, as the source codes of these protocols were not always publicly
available. However, the CPU used for our benchmark has comparable performance to the
machines reported in those works: they all use Intel Core i7 CPUs except for Zef and UTT.
For Zef and UTT, AWS EC2 instances were used for the benchmark. These two types of
instance have similar CPUs (Intel Xeon Platinum 8175 and 8124).

PaxPay has two implementations: with and without the regulatory feature. The
benchmark was conducted on both. The regulated version, running on a single core, serves
as a reference point. The results indicate that our SNARK verification time is notably short,
taking only 5.6 ms. As shown in Table 1, this verification time is between 8 and 100 times
shorter than the NIZK verification times reported in other works (except for Zcash, which
takes approximately the same time but suffers from other major issues discussed in Section 8).
The verification time is a key metric since slow verification limits the transaction throughput
of the system.

This fast verification comes at the cost of relatively slow proving, requiring nearly 7 s
to generate a proof for a transfer on a single core. However, with 6 cores, the proving time
drops to 2 s.

Table 2 SNARK Proving and Verification Times on an Intel i7 2.6 GHz CPU, running Ubuntu
22.04.

Regulated Not Regulated
1 Core 6 Cores 1 Core 6 Cores

Proving time (ms) 6959
(± 13)

2001
(± 13)

3080
(± 6)

882
(± 5)

Verification time (ms) 5.61
(± 0.20)

5.38
(± 0.28)

5.22
(± 0.15)

4.71
(± 0.85)
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Latency test and transaction throughput. Apart from Zcash, which is already deployed
in real-world use, the only payment systems in the related work to report on their latency
and throughput are Zef [6] and UTT [41]. The performance analyses of UTT and Zef were
performed on different types of AWS EC2 instances (c5.4xlarge for UTT and m5.8xlarge
for Zef). Since the micro-benchmarks show better performance for PaxPay on UTT’s EC2
instance than on the one used by Zef, we chose to use the same instance type as in the Zef
paper for consistency. 8

We thus run our PaxPay implementation on multiple m5.8xlarge instances, assigning
one validator per instance. For each version of PaxPay (regulated and non-regulated), we
conducted two tests: one with each validator running on a single CPU core, and another
with each validator using 16 CPU cores. The results are presented in Figures 2a and 2b. We
consider that the system support a given throughput if the corresponding transaction latency
is smaller than 500 ms. Our regulated implementation achieves the throughput of 100 tx/s
(transactions per second) in the single-core setup and 925 tx/s in the 16-core setup. Under
the same conditions, Zef processes 5 tx/s and 88 tx/s, respectively. UTT processes 235
tx/s using 16 cores.9 For the non-regulated PaxPay implementation, the throughput reaches
115 tx/s in the single-core setup and 1200 tx/s in the 16-core setup.

These promising results can be attributed to the low verification time of the SNARK
presented in the full version of the paper. In the reference setting (regulated implementation
with 1-core validators), the verification of the SNARK takes 9 ms in our implementation
while it takes 142 ms in Zef with the same setting [11].

The difference in performance between the regulated and non-regulated versions is due
to the additional public parameters in the regulated SNARK. This requires validators to
perform more point multiplications on the elliptic curve used in the Groth16 construction.

To improve scalability, validators can be sharded (run on multiple parallel machines) as
in Zef and UTT. The same approach could be applied to our system, though it has not
been implemented. A load balancer could efficiently distribute transfer requests among the
validators by assigning a specific range of serial numbers to each shard of a validator. Upon
receiving a request, the load balancer would determine the appropriate shard to handle it
based on these predefined ranges. Our experiments thus show that PaxPay is scalable. The
throughput can be improved even further by allocating more computational power to the
validators, either by using more CPU cores per validator or by distributing the workload
across additional machines.

8 Discussion and comparison with related protocols

Comparative analysis. Table 1 provides a comparison between PaxPay and the related
protocols. Lelantus appears to outperform Monero across all metrics in the table and offers
larger anonymity sets. We therefore decided to omit Monero from the table. Similarly,
Platypus was not included in the table, as we focus exclusively on decentralized payment
systems. Details and explanations regarding the data presented in the table can be found
in [11].

8 We were unable to build and test the UTT code due to dependencies that broke over time. Since the
UTT authors chose an EC2 instance type on which PaxPay performs better compared to the m5.8xlarge
instance, we consider the results reported in the UTT paper to be suitable for direct comparison.

9 As stated in Zef [6], each authority is distributed over multiple shards, each running in a single core.
The 16-core result is extrapolated from the linear relationship between throughput and the number of
shards per validator, as shown in their paper.
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Figure 2 Latency tests on AWS machines within the same region.

Privacy. As shown in Table 1, PaxPay provides the strongest privacy guarantees, comparable
to those provided by Zcash, whereas some protocols offer reduced privacy guarantees. This
is especially the case for Zef and PRCash.

To ensure full privacy, it is important to hide coin details when creating them with blind
signatures. Yet, when the signatures are verified by validators, some users may still learn
information on the payment.10 UTT circumvents this problem by using a re-randomizable
signature scheme (where both the signature and the signed message can be randomized), but
this solution increases the workload for verifying transactions. Our solution is to verify the
signature within the NIZK, which also decreases the validators workload.

Model assumptions. PaxPay is responsive, meaning it can be implemented in an
asynchronous network. Among the related protocols only Zef, UTT, and PARScoin also
provide responsiveness. All the four protocols are built on some form of Byzantine consistent
broadcast. However, PARScoin requires correct validators (those who follow the protocol) to
be honest, ensuring they do not share any information with the adversary. In contrast, PaxPay
tolerates correct validators being semi-honest, meaning they can share any information they
receive or transmit during the protocol’s execution without compromising the system’s
privacy guarantees.

Regulation. As displayed in Table 1, PaxPay does not support the Limited held amount
per user feature. PEReDi [37] implements this feature, requiring synchrony between sender
and receiver. PARScoin [38] claims a different approach: the sender initiates a transaction
to reduce their balance, and the receiver can asynchronously claim funds later, provided
their balance remains within the imposed limit. However, this method merely limits the
amount a user can hold at a given time, as receivers can bypass it by spending excess funds
before claiming the pending funds they have received. In practice, this mechanism has the
same effect as setting a limit on the amount that can be spent in a single transaction. We
believe that implementing a Limited held amount per user feature is particularly challenging
in a private and asynchronous payment system. Such a feature would require that transfers
atomically change the balances of both the sender and the receiver, to prove that receiver

10 Suppose that, as in Zef [6], we resort to only using blind signatures. Let a user A creates a coin c for
a user B during a transfer o1. A requests the validators to sign the blinded coin c̃, and then sends
the aggregated signature to B. B now spends c during a transfer o2, and in process reveals c and the
(randomized) signature. Even though validators cannot reveal that the coin spent in o2 was created in
o1, A knows c and, thus, can deduce the sender of o2 and a lower bound on the amount spent during o2.

AFT 2025
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balance does not exceed a certain amount after executing the transfer. However, to affect
the balance of a user, privacy typically requires this user to interact with another user or the
validators, in order to provide some secret data known only to him (such as coin data or
account commitments). Yet, asynchrony precludes live protocols from relying on interaction
between senders and receivers. Indeed, in an asynchronous setting, the sender who gets no
response from the receiver cannot distinguish whether this absence of response is caused by
network delays or by the receiver refusing to respond. Implementing Limited Held Amount
per User seems hard when ensuring both asynchrony and privacy.

PaxPay also avoids Full Asset Tracing due to privacy risks. Instead, it allows users to
generate privacy-preserving proofs about their transactions. Let us give a real life example.
A user can prove that her account received funds from multiple addresses, each transfer
being under a certain threshold, demonstrating legitimate income patterns. This proof could
demonstrate that the income pattern of a business is legitimate and consistent with regular
business operations, precluding money laundering (which might involve receiving a large sum
from a single address).

Performance. As mentioned in Section 7.2, PaxPay outperforms all other protocols in
terms of transaction throughput. This performance advantage is directly attributed to its
fast NIZK verification, which surpasses all existing protocols. The only exception is Zcash,
which also benefits from a fast NIZK verification but is constrained by the limitations of its
underlying consensus protocol.

Additionally, the system’s scalability, that is achieved by increasing the computational
power allocated to each validator, further strengthens its practical applicability. The Visa
payment system processed an average of 7, 388 transactions per second in 2024 [43], which
could be supported by PaxPay by distributing each validator across 8 m5.8xlarge EC2
instances each11.

As mentioned in Section 7.2, this high throughput comes at the cost of a relatively slow
transfer proving, requiring between 2 and 7 seconds depending on the user computational
power to prove a transaction. We believe that this delay is acceptable from the user’s
perspective, especially since multiple payments can be aggregated into a single transfer. As
a result, even if a user needs to make numerous payments, she can prove them all within
a single transaction, requiring only one proof. It is worth noting that the statement being
proven in such a case would be larger than for a proof of a single payment, which would still
increase the proving time, though less significantly compared to generating a separate proof
for each payment.

Use cases. Our system is versatile and adaptable to various use cases. It can function as
a standalone payment system, a CBDC, or a scaling solution for an existing blockchain (a
so-called Layer 2). It can be enriched with a Mint and Redeem operations that user would
call to put or retrieve money in/from the system. Depending on the use case, Mint can be
equipped with a proof showing that the user has the right to mint a new coin. For example,
if PaxPay were used as a scaling solution for Bitcoin, the Mint operation would take some
SPV (Simplified payment verification) [33] as input to prove to the validators that some
value has been locked on Bitcoin. The implementation of the Mint and Redeem operations

11 This estimation assumes a direct linear relationship between throughput and the computational power
of the validators, as shown in Zef [6].
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would vary depending on whether the system is deployed as a CBDC or as a Layer 2 solution
for a blockchain. The performance of PaxPay (Section 7.2) and its scaling capacity are key
factors that enable our system to effectively address these use cases.

Bad user behavior. If a user tries to pass two transactions spending the same input coin,
her account might get blocked because she will not get enough signatures for either of the
transactions. In this case, consensus is required to unlock the user’s account [26, 42].

Future work. Our protocol can be reused with some slight modifications to implement the
same functionalities as in Zexe [9], hence not only offering a payment system but private
computation. We can also considerably improve performance of our system by introducing
sharding in the implementation, or improve the usability by moving to a different type of
NIZK with a universal trusted setup.

9 Conclusion

In this paper, we consider the problem of fully-private asset transfer (FPAT). We propose
PaxPay, an asynchronous FPAT protocol, prove its correctness, detail its implementation
in Golang, and analyze its performance. PaxPay leverages succinct non-interactive zero-
knowledge proofs and threshold blind signatures. Our system demonstrates significant
improvements over existing systems, processing transactions at a high rate, while maintaining
full anonymity for the users and responsiveness. PaxPay also ensures regulatory enforcement,
including some features that no other private payment system has managed to provide so far.
The flexibility offered by succinct NIZKs opens avenues for incorporating other regulatory
compliance features with minimal impact on the system’s performance. These elements make
PaxPay suitable for a wide range of applications, from a scaling solution of blockchain to a
standalone private payment system that can be used as a technical layer for CBDCs.
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