Ticket to Ride: Locally Steered Source Routing for
the Lightning Network
Sajjad Alizadeh &=

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

Majid Khabbazian &

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

——— Abstract

Route discovery in the Lightning Network is challenging because senders observe only static channel
capacities while real-time balances remain hidden. Existing locally steered schemes such as Speedy-
Murmurs protect path privacy but depend on global landmark trees whose maintenance traffic and
detours inflate latency and overhead.

We present Ticket to Ride (T2R), a locally steered source-routing framework that encodes the
set of channels a payment may traverse into a compact ticket — an approximate-membership filter
keyed with per-hop Diffie-Hellman secrets. Each relay learns only whether its own outgoing edges
are permitted, yielding the same incident-edge privacy as SpeedyMurmurs while eliminating the
need to build and maintain global landmark trees or any other shared routing state.

Extensive simulations on real snapshots — incorporating churn, silent shutdowns, and random
channel saturation — show that T2R boosts end-to-end success by up to 9% and cuts median delay by
1.6x relative to SpeedyMurmurs, all with <1 kB total overhead and no extra handshakes. Because
tickets are processed hop-by-hop and can be prefixed by a trampoline, T2R remains lightweight
enough for resource-constrained IoT nodes.

2012 ACM Subject Classification Networks
Keywords and phrases Lightning Network, Source Routing, Approximate Membership Filters
Digital Object Identifier 10.4230/LIPIcs.AFT.2025.30

Supplementary Material Software (Source Code): https://github.com/sajializ/ticket
archived at swh:1:dir:2ce93a1800d60437bbe7£68216ba888ac79379¢c3

1 Introduction

Payment channel networks (PCNs) such as the Lightning Network (LN) [14] scale blockchains
by locking funds into two-party channels and allowing unlimited off-chain transfers that settle
on-chain only when channels are opened or closed. By moving most activity off the base
ledger, PCNs greatly increase throughput and lower fees, making cryptocurrency payments
competitive with traditional systems.

When a payer lacks a direct channel to the payee, the payment must be forwarded through
intermediaries. The public LN gossip protocol reveals the topology and the fixed capacity of
every channel, yet keeps each side’s balance private. Consequently, path finding is hard: a
route that appears viable may fail at run time because an intermediate hop has insufficient
outgoing liquidity.

All major LN implementations currently employ source routing, including LND [11], Core
Lightning [3], and Eclair [1]. The sender uses a shortest-path search on the public graph, packs
the resulting hop list into an onion (BOLT #4, the LN’s onion routing specification) [10],
and launches the payment. This approach leaves intermediaries passive and often requires
repeated probing or guessing, so routing remains a bottleneck.

© Sajjad Alizadeh and Majid Khabbazian;

oY licensed under Creative Commons License CC-BY 4.0
7th Conference on Advances in Financial Technologies (AFT 2025).
Editors: Zeta Avarikioti and Nicolas Christin; Article No. 30; pp. 30:1-30:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:salizad1@ualberta.ca
mailto:mkhabbazian@ualberta.ca
https://orcid.org/0000-0002-6338-2945
https://doi.org/10.4230/LIPIcs.AFT.2025.30
https://github.com/sajializ/ticket
https://archive.softwareheritage.org/swh:1:dir:2ce93a1800d60437bbe7f68216ba888ac79379c3;origin=https://github.com/sajializ/ticket;visit=swh:1:snp:d9dcd578464bfd36577ef6d159831c4001c5c086;anchor=swh:1:rev:8d87b08409ed505593386c77a88f04265282efbd
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

30:2

Ticket to Ride

The literature now recognizes three broad classes of routing algorithms: (i) algorithms
that keep all control at the source, (ii) multi-path “streaming” schemes that split a payment
across several precomputed paths, and (iii) local algorithms in which nodes along the path
can steer the payment by choosing the next hop on the fly.

Prominent local algorithms include SilentWhispers [12] and SpeedyMurmurs [17]. In
each, intermediaries consult local information to influence the forwarding direction, while the
destination node has been kept concealed from them. Both SilentWhispers and SpeedyMur-
murs share a common architectural premise: they construct an auxiliary overlay — rooted
landmark-trees in SilentWhispers and VOUTE-style spanning trees in SpeedyMurmurs.
More specifically, SpeedyMurmurs assigns every node a compact coordinate vector. Greedy
forwarding then reduces to choosing a neighbor that monotonically improves this coordinate
with respect to the destination. While SilentWhispers and SpeedyMurmurs are conceptually
similar, SpeedyMurmurs refines the idea along several axes: it eliminates the heavy multi-
party distance-vector computation of SilentWhispers, shrinks routing state, and achieves
lower communication latency in micro-benchmarks and real-world snapshots [17]. Following
the authors’ empirical evidence that their embedding outperforms prior landmark routing
both in success rate and end-to-end delay, we adopt SpeedyMurmurs as the representative
local-steering baseline in this work.

Although SpeedyMurmurs achieves low latency and strong path privacy, it imposes a
control-plane burden: multi-tree bootstrap floods, periodic stabilisation beacons, and per-tree
state at every relay. Each drain or failure of a parent edge forces cascaded coordinate updates,
and nodes adjacent to a landmark become fee and censorship choke points. Greedy forwarding
on the embedding can also detour from shortest paths. These inefficiencies motivate a lighter
local-steering scheme that carries all routing hints within each payment itself, removing
global trees entirely.

In this paper, we introduce Ticket to Ride (T2R), a locally steered source routing
framework that eliminates the need for global landmarks or coordinate trees. We implement
this idea with a compact, cryptographically keyed ticket: a privacy-preserving set-membership
structure that lists exactly which outgoing channels the sender allows. Concretely, the ticket
is instantiated using an approximate-membership query (AMQ) filter — such as a Bloom
filter or Golomb—Rice coded set — that trades a tunable false-positive rate for sub-kilobyte
size. Upon receipt, a relay derives a one-hop secret from the sender’s ephemeral public
key, hashes each of its outgoing channels under that secret, and tests ticket membership.
All channels that match are authorized; the relay then ranks them using a local policy —
e.g., lowest cumulative fee if the sender flags cost sensitivity, or highest success probability —
and forwards on the top candidate. Links invisible to the filter are ignored, and the keying
prevents a relay from inferring which edges are authorized for other nodes. The ticket thus
reveals neither the destination’s identity nor the remaining route, guarantees monotonic
progress toward the receiver, and eliminates the churn, choke points, and detour risk inherent
in landmark-tree routing.

Forwarding depends only on per-hop membership tests, so a ticket remains useful even if
its channel list is not up to date': a vanished edge is silently skipped, and an unseen new
edge merely foregoes a shortcut. In any case, channel openings and closures are already
advertised through the routine gossip traffic that every node receives, so the information
needed to refresh the filter circulates at no extra network cost. Because the ticket lists only

! Empirically, Lightning’s topology evolves relatively slowly — channel openings and closures typically
number in the hundreds per day [8], thus a snapshot taken approximately one day earlier usually differs
from the current graph by roughly 1% of edges.

S. Alizadeh and M. Khabbazian

admissible edges, the sender can blacklist nodes or boost preferred channels — a level of
control landmark trees cannot offer. The ticket piggybacks on the handshake message that
neighboring relays already exchange, so it introduces no extra latency or bandwidth. If a
probe fails, the sender drops the offending node and rebuilds the ticket; the new ticket omits
that identifier and guarantees the payment will never be forwarded there again. Such explicit,
sender-driven blacklisting is infeasible in landmark-tree and other purely local algorithms,
where each intermediate node selects its next hop autonomously and the sender has no way
to forbid a particular relay.

SpeedyMurmurs is appealing for lightweight nodes, as it shifts mapping responsibilities
away from the sender, allowing them to remain passive. However, our ticket-based approach
can also accommodate resource-constrained endpoints — such as IoT sensors or mobile wallets
that frequently remain offline. Specifically, we propose a lightweight variant called segment
tickets with trampolines, exploiting the draft trampoline extension [5]. Here, the sender
delegates topology management by selecting a short chain of always-online trampoline nodes,
each responsible for crafting fresh tickets for their respective segments. Thus, trampolines
shoulder the workload of maintaining updated channel filters, making this mode particularly
suitable when both sender and receiver have limited memory or infrequent connectivity to
process topology updates themselves.

As a final contribution, we validate the design through extensive, trace-driven simulations
on recent LN snapshots. Across tens of thousands of random payments, T2R achieves
consistently higher success probability and lower end-to-end delay than SpeedyMurmurs,
with the margin widening in the most demanding scenarios: long source—destination pairs,
heavily saturated channels, and bursty link churn. These results confirm that removing
landmark trees not only lightens the control plane but also yields tangible data-plane gains
in practical, large-scale topologies such as LN.

2 System Model

Overlay graph. We represent the payment-channel network as an undirected multigraph
G = (V, E). Each vertex is a node identified by a long-term public key, and each edge e =
(u,v) € E denotes a bidirectional channel of fixed capacity C\, € N. The directional balances
b(u—wv) and b(v—u) are private, dynamic values that satisfy b(u—v) + b(v = u) = Cyy.

Gossip and topology freshness. Channel openings, closures, and capacity changes are

disseminated by the ordinary LN gossip protocol and reach every honest node within Aggssip-

Our protocol reuses this information and introduces no additional control-plane traffic,
contrasting with the tree-stabilisation beacons required by SpeedyMurmurs.

Communication model. Nodes exchange authenticated, FIFO messages. Delivery latency
is bounded by an unknown constant A; liveness uses this bound, while security arguments
remain delay-agnostic.

Adversary. A static Byzantine adversary corrupts any subset V4 C V with |V4| < f|V] for
constant f < 1, mirroring the threat model of SpeedyMurmurs. Corrupted nodes may drop,
delay, or modify messages and deplete balances but cannot break standard cryptography.

Payments and tickets. To transfer an amount x from a source s to a destination d, the
sender attaches a cryptographically keyed ticket T to the payment packet. The ticket 7 is a
privacy-preserving approximate-membership filter that encodes precisely the set L5 4 C E of
edges the sender authorizes for forwarding.

30:3

AFT 2025

30:4

Ticket to Ride

Local forwarding rule. When a relay u receives (z,), it derives a one-hop secret s,, from
the sender’s ephemeral public key, hashes each adjacent edge (u,v) under that secret, and
tests membership in 7. Edges that match are ranked by a local policy (e.g. lowest cumulative
fee or highest empirical success rate); the highest-ranked authorized edge is chosen as the
next hop. No parent pointers or coordinate updates are maintained.

3 T2R Routing

In T2R , the sender appends to each payment a compact probabilistic set-membership filter
— called a ticket — that, under a per-payment secret key, encodes the set L, 4 of channels
the sender authorizes. The ticket is piggy-backed on the first control frame exchanged by
neighboring nodes. Upon receipt, a relay hashes every outgoing channel with the secret, tests
ticket membership, ranks the authorized matches according to its local policy (e.g., lowest
fee or highest success probability), and forwards the payment on the top-ranked edge.

Despite its modest implementation footprint, the mechanism is expressive: it can emulate
SpeedyMurmurs without constructing landmark trees. A node locally builds the trees, collects
the union of edges that greedy forwarding might traverse, and inserts those identifiers into
the ticket. The converse does not hold — landmark embeddings cannot realize sender-defined
blacklists or per-edge priorities without redesigning the entire coordinate system.

In the remainder of this section, we first present a generic framework for constructing
tickets, then formalize our privacy target — incident-edge privacy — and prove that any
ticket generated by this framework satisfies it. We next introduce TwinTicket, a two-filter
refinement that shrinks the filter size required to reach a given success rate.

3.1 Ticket Design

Our ticket framework comprises two algorithms: ISSUE, executed by an originator (typically
the sender), and OPEN, executed by each intermediate node. The framework relies on two
standard primitives:
A hash function H : {0,1}* — {0,1}", modelled as a random oracle and used solely as a
source of pseudorandom bits.
An approximate-membership query structure (AMQ) that supports three polyno-
mial time operations:
CREATE(m, «v): initializes an empty filter sized for up to m insertions with false-positive
probability at most «;
INSERT(S, e): adds element e to filter S;
QUERY (S, e): returns present with probability < a if e ¢ S, and never returns absent
for an inserted element.

For each node u controlling an authorized channel, the originator derives a unique per-hop
secret using elliptic-curve Diffie-Hellman (ECDH). Specifically, the originator selects an
ephemeral public key PKe,, while each node u has a long-term public key PK, published
through the network gossip. The shared per-hop secret is computed as:

sy < DH(PK,,, PK,,),

where DH denotes an ECDH key exchange, followed by a standard key derivation function
(e.g., HKDF) to yield a uniform x-bit key. Because the sender knows the ephemeral secret and
node u holds the private key corresponding to PK,,, only these two parties can compute the
shared secret s,. Consequently, any ticket entries derived from s, appear indistinguishable
from random to all other nodes. This per-hop shared-secret derivation mirrors the mechanism
already employed by LN’s onion-routing protocol [10].

S. Alizadeh and M. Khabbazian 30:5

Issue Algorithm

Algorithm 1 describes the ticket issuance process. The algorithm accepts as input:
(i) a set of authorized channels C C F,

(ii) the public keys {PK,} of nodes incident to these channels,

(iii) an ephemeral public key PKe, chosen by the sender,

(iv) a target false-positive probability e.

The algorithm initializes an AMQ structure sized according to |C| and e. For each channel
(u,v) € C, the algorithm computes the per-hop secret s,, and inserts the hash value H(v || s,,)
into the AMQ. The resulting AMQ structure is output as the ticket 7.

Algorithm 1 Issug(C, {PK.}, PKep, €).

S + AMQ.CREATE(|C|, €)
for all (u,v) € C do
sy < DH(PK,p, PK,,)
AMQ.INSERT(S, H(v || $u))
end for
return S // ticket T

Open Algorithm

Upon receiving a payment, an intermediate node executes OPEN to determine whether any
of its outgoing channels are authorized by the ticket 7 and, if so, to select one for forwarding.
The algorithm takes as input:

(i) the ticket 7 (AMQ structure) carried with the payment,

(ii) the node’s own long-term public/secret key pair (PK,, SKu),

(iii) the sender’s ephemeral public key PKep (included in the packet),

(iv) a ranking policy RANK(-) (e.g., lowest fee or highest empirical success rate).

First, the node derives its per-hop secret s, < DH(PKep,, PK,). For each outgoing
channel (u,w) € Adj(u) it queries the ticket using the tag H(w || s,). The set of channels
for which the query returns present constitutes the authorized subset A,. If A, is empty
the node aborts the payment locally; otherwise it ranks 4, with RANK and forwards the
payment along the highest-ranked edge.

Algorithm 2 OPEN(7, PKep, PK,,, SKu).
sy <+ DH(PKep, PK,)

Ay 0
for all (u,w) € Adj(u) do
y < H(w | su)

if AMQ.QUERY(T,y) == present then
Ay — Ay U (u,w)
end if
end for
if A, =0 then
abort // no authorized edge
else
(u, w*) < RANK(A,)
forward payment over (u,w*)
end if

AFT 2025

30:6

Ticket to Ride

The choice of RANK is intentionally left flexible. At a minimum, any channel (u, w) whose
local balance cannot cover the payment amount is excluded from consideration. Beyond
that filter, RANK can implement a variety of policies: it may prefer the lowest-fee edge,
adopt the heuristics proposed in Flare [16], or emulate Spider-style congestion metrics [19].
Nevertheless, because each node independently selects its forwarding edge based solely on
local information, the resulting route need not be globally optimal. Designing an effective
ranking strategy is orthogonal to the ticket mechanism itself and remains open for future
exploration. In our evaluation, we simply select uniformly at random among the authorized
edges with sufficient balance.

Incident-edge privacy

A well-formed ticket must limit what any relay can infer about the remainder of the route.
Intuitively, an intermediate node w should learn only whether its own channels are authorized
and nothing about edges it does not control, beyond the unavoidable disclosure of the
ticket’s overall size. We capture this requirement with the indistinguishability notion below.
Let 7 denote the real ticket for a payment (s,d,x) and let 7, be a semi-ticket that keeps
u’s authorized edges intact while masking every other authorized edge by an independent
random A-bit string, so that 7 and 7, contain the same number of inserts. A ticket scheme
satisfies incident-edge privacy if no probabilistic polynomial-time adversary controlling v can
distinguish 7 from 7, with more than negligible advantage in the security parameter \.

» Definition 1 (Incident-edge privacy). Let T be the ticket issued for a payment (s,d,x) and

fix an intermediate node u € V. Construct a semi-ticket 7, in two steps:

(1) Insert into an empty AMQ every authorized channel incident to u.

(2) Insert uniformly random k-bit strings in place of all other authorized channels, so that T
and T, contain the same number of inserts.

A ticket scheme satisfies incident-edge privacy if, for every probabilistic polynomial-time

adversary A controlling only node u,

Pr[A(7) = 1] = Pr[A(7.) = 1]| < negl(k),

where the probabilities are over the randomness of ticket generation and of A, and negl(k) is
negligible in the security parameter x.

The definition formalizes the guarantee that, apart from its own adjacent channels and
the ticket’s length, an intermediate node gains no information about which other edges the
sender has authorized.

» Theorem 2 (Incident-edge privacy of the ticket framework). Assume the hash function H is
modeled as a random oracle and the Diffie—Hellman key exchange is a secure key-agreement
protocol. Then every ticket generated by the ISSUE algorithm in our framework satisfies the
incident-edge privacy property of Definition 1.

Proof sketch. Fix an intermediate node u € V' and a probabilistic polynomial-time distin-
guisher A that corrupts u. Let x denote the global security parameter, and let gy (k) bound
the number of random-oracle queries that A may issue.

Game G (real world). The challenger runs ISSUE to generate the genuine ticket 7 and
hands (7,PKep) to A, which can query the oracle before outputting a bit.

Game G (ideal world). Asin Gy, except that for every authorized channel (v/,v") ¢ Adj(u)
the challenger replaces the tag H(v'||s,/) in 7 with an independently uniform &-bit string.
The resulting structure is exactly the semi-ticket 7,, of Definition 1.

S. Alizadeh and M. Khabbazian

Indistinguishability of Go and G;. The two games differ only in tags for non-adjacent
channels. For such an edge, the real tag in G is

T=H(||sw), $w = DH(PKep, PKy).

Because A lacks the secret key of PK,/, the shared secret s, is computationally indistin-
guishable from a uniform k-bit string. In the random-oracle model, unless A queries H on
the exact pre-image v’||s,/, the value T is random. Replacing T with an independent random
string, as in Gy, therefore changes A’s view only if it guesses v'||s,/.

The probability that A hits any specific x-bit suffix within at most ¢y (k) oracle queries is
qu (k) 27" = negl(x). A union bound over all non-adjacent channels preserves negligibility, so

|Pr[AG°(1) =1] - Pr[A%1(1) = 1]| < qu (k) 27" = negl(x).

Because the adversary’s advantage is negligible, every ticket produced by ISSUE satisfies
Definition 1. |

3.2 TwinTicket

The basic ticket of Section 3.1 stores all authorized channels in a single AMQ. Improving its
accuracy normally means lowering the false-positive rate, which in turn expands the filter.
TwinTicket takes an alternative path: it embeds two AMQs — one that includes authorized
channels and a second that explicitly excludes those few channels misclassified by the first.
In other words, TwinTicket contains
an inclusion filter S, which holds every authorized edge (u,v) € L 4; and
an exclusion filter S, which holds each false positive discovered when the sender
queries S locally. A channel (u,v) is inserted in encoded form H(v||su), identical to
the inclusion encoding.

Forwarding rule. A relay u first tests every adjacent edge against S™. If the result is
present, the relay performs a second test against S; the edge is deemed authorized only if
it is not found there. The relay then ranks all authorized edges using its local policy and
forwards on the highest-ranked candidate.

Benefits. Both the single-filter ticket and the double-filter TwinTicket grow in size as the
target false positive reduces. Simulations in Section 5 show that TwinTicket achieves the
same success probability and delay as a finely tuned single AMQ while using fewer bits. This
space saving does not weaken privacy. Because every unauthorized edge is still added — again
in hashed form — only by its own endpoint, TwinTicket preserves incident-edge privacy: an
intermediate node u learns solely whether each of its channels is allowed or blocked, now
with higher classification accuracy.

4 QOverhead

Unlike SpeedyMurmurs, T2R dispenses with landmark trees altogether, yet it can reproduce
SpeedyMurmurs’ forwarding behavior — simply insert into the ticket every edge the payment
is authorized to traverse. The reverse is impossible: landmark trees cannot (i) exclude specific
channels or nodes, (ii) delegate route selection to third parties (e.g. the receiver), or (iii)
guarantee shortest-path delivery without rebuilding the tree.

30:7

AFT 2025

30:8

Ticket to Ride

The price we pay is the ticket: it must be (i) generated by an originator and (ii) carried
once with the payment. This section quantifies the computational, and communication
overhead of those two steps. We start with analyzing the ticket size.

4.1 Ticket Size

The size of a ticket —i.e., the bit length of the AMQ structure that travels with each payment
— depends on three parameters:
(i) the particular AMQ design employed;
(ii) the target false-positive bound «;
(iii) the number of elements inserted, m.

The literature offers a rich family of AMQ designs, each with its own space—functionality
trade-off. Classic examples include the Bloom filter [4]; the counting Bloom filter, which
supports deletions [7]; the Cuckoo filter [6]; and the Quotient filter [2]. Golomb-Rice coded
sets (GCS) — used in Bitcoin’s compact block filters — achieve near-optimal compression for
static sets by entropy-coding sorted hashes [15]. More recent proposals, such as the Learned
Bloom filter [9], trade a small probability of false negatives for additional space savings. For
fixed set size m and target false-positive rate «, structures like the Cuckoo filter, quotient
filter, or GCS can be more compact than the original Bloom filter but may incur higher
insertion cost, require sorted input, or demand more intricate parameter tuning.

For example, the classic Bloom filter — introduced by Bloom in 1970 — supports only two
operations, INSERT and QUERY, and provides no deletion primitive. With m insertions and
target false-positive probability «, its information-theoretically optimal length is

P { m Ina

_ W—‘ ~ 1.44m logy(1/a) bits, W

obtained with k& = [(¢Bloom/m) In 2] independent hash functions [4].

A second widely deployed AMQ is the Golomb—Rice Coded Set used in Bitcoin block filters
(BIP 158) [15]. A GCS stores the sorted hash values and compresses their gaps with
Golomb—Rice coding, again supporting INSERT and QUERY but requiring no random oracle.
Choosing the Golomb-Rice parameter P = [log,(1/a)] yields a false-positive rate at most «
and an expected length

laes = m(P+1) = m([logy(1/)] + 1) bits. (2)

For the practical false—positive window a € [277, 2715] ticket overhead remains modest.
In a GCS the expected length per element is P + 1 bits, where P = [log,(1/a)]. Thus each
authorized channel costs 8 bits when o = 277 and 16 bits when a = 27'° — only 1-2 bytes
apiece. By contrast, a Bloom filter needs ¢pjoom ~ 1.4410g,(1/) bits per element: about 10
bits (=~ 1.3 B) at @ = 277 and 22 bits (=~ 2.7 B) at a = 2715, The dominant contributor to
ticket length is therefore the element count m: in the practical range o € [271%,277] each
additional authorized channel adds between c=1 and c¢=2 bytes.

If the ticket contains only the channels of a single source-to-destination path, our frame-
work reduces to the single-route source routing that all major Lightning implementations
already employ. Adding more channels, however, gives intermediate nodes additional “steer-
ing” options and thus lowers the probability that an in-flight payment stalls on an exhausted
link.

S. Alizadeh and M. Khabbazian

A natural choice is to populate the ticket with the union of edges that lie on any shortest
path between the sender and the receiver. Although many shortest paths can coexist, the
ticket remains compact: on a recent public Lightning snapshot, authorizing about 126
channels suffices for 90% of randomly chosen source—destination pairs, and 611 channels
cover 99% of such pairs.

4.2 Ticket Generation

Empirical measurements show that the public Lightning graph is remarkably stable: the

average channel lifetime is nearly two hundred of days [21]. Because these modest topology

updates propagate through the standard gossip protocol, a well-provisioned node can maintain
an up-to-date view at virtually no extra cost. Building a ticket therefore needs only this
topology snapshot; rapidly fluctuating balances are irrelevant.

Ultra-constrained senders (IoT tags, single-board wallets) cannot hold the full graph. We
therefore combine our ticket mechanism with trampoline payments and slice the route into
three segment tickets:

(a) Tsw»1, (sender-issued) covers the first few hops from the sender S to the entry
trampoline 77 and is keyed with an ephemeral PKS)) chosen by S.

(b) Tr,—T, (macro ticket, sender-issued) encodes the ordered list of trampoline IDs
Ts, ..., Tk, where T} is supplied by the receiver (see below). Each trampoline T; reads
the next ID, computes its own micro-path to T;41, and attaches a fresh sub-ticket.

(c¢) TR (receiver-issued) steers the last one or two hops from T}, to the receiver R,
optionally biasing the route toward R’s best-funded inbound channel. It is keyed with a
second ephemeral PKgf) chosen by R.

This approach brings the following advantages:

Compactness. The sender and receiver tickets span only a small number of hops

(typically one or two) and the macro ticket is merely two or three compressed pubkeys

(< 70 B). Total header overhead, therefore, stays well under one kilobyte.

Balanced computation. Lightweight senders route only to 77; each trampoline solves

a local micro-routing instance; only trampolines need the global graph.

Privacy. Every ticket is keyed with a fresh Diffie-Hellman secret for each hop, so an

intermediate node learns only whether its outgoing edges are permitted. All other tags

look uniformly random, achieving the same incident-edge privacy as the original T2R.

Fine-grained channel control. When constructing the final segment of the ticket, the

receiver can privilege high-liquidity inbound channels or blacklist unreliable ones. Because

this choice is encoded locally in the ticket and masked by the per-hop key, neither the
sender nor any trampoline node learns which channels were favored.

Minimal invoice overhead. When R responds to an invoice_request (BOLT #12)

or encodes a BOLT #11 invoice, it appends the triple (Tk, PKgi),TTkHR). The extra

payload is < 100 bytes for the ticket plus 33 bytes for the key — well below the 1 kB
capacity of a level-10 QR code — so invoice usability is unchanged.

With this three-ticket trampoline design, even kilobyte-scale devices can therefore utilize
locally steered, privacy-preserving routing without storing the complete Lightning topology.
4.3 Communication and latency overhead

When an intermediate node u forwards a payment over its channel to peer v, it engages in
the standard Lightning commitment handshake. The procedure consists of two full-duplex
rounds:

30:9

AFT 2025

30:10

Ticket to Ride

(1) u sends an update_add_htlc (carrying the onion payload) immediately followed by
commitment_signed.

(2) After validating the update, v replies with commitment_signed and revoke_and_ack,
completing the commit-reveal exchange.

The ticket is piggy-backed on the first update_add_htlc; no extra round trips are
introduced, and only a few hundred bytes are appended to a frame that already averages
~1500 bytes. Importantly, v need not wait for the entire ticket to arrive before it can respond:
the Lightning spec allows a node to send its commitment_signed as soon as the new Hashed
Timelock Contracts (HTLC) has been parsed and validated, while the remaining payload
bytes stream in.

» Example 3 (Latency impact). Assume a single Lightning hop with a round-trip propaga-
tion delay of 80 ms. Because a commitment update consists of two such round trips, the
propagation component alone contributes 160 ms to handshake latency.

Typical ticket (m = 125, a = 0.001%). For a GCS filter with o = 0.00001 the Golomb
parameter is P = [log,(1/a)] = 17, so the ticket length is

{=m(P+1) =125 x 18 = 2250 bits ~ 280 bytes.

At 10 Mbit/s this transmits in ¢ = 2250/(10 x 10°) ~ 0.22ms, seven orders of magnitude
smaller than one RTT.

Worst-case ticket (m = 60000, a = 0.001%). If the sender naively inserted all public
channels the ticket would be

¢ =60000 x 18 = 1080000 bits ~ 130 kB,

which transmits in ¢ = 1080 000/(10 x 10%) = 108 ms, still below a single RTT.

We note that in LN the ticket travels piggy-backed on the initial update_add_htlc;
subsequent frames (commitment_signed, revoke_and_ack) need not wait for the ticket to
finish. SpeedyMurmurs defines latency as the duration of the longest chain of causally
dependent messages in the protocol execution. Because the ticket is outside that critical
chain, its transfer time — whether 0.5 ms or 48 ms — is absorbed during idle link time, leaving
the overall handshake delay dominated by the 160 ms propagation budget.

4.4 Payment Splitting

SpeedyMurmurs can split a payment into partial payments, and send each partial payment
along a different landmark—embedding tree, explicitly to hide the total value from every
individual relay [17]. Achieving this goal requires the protocol to maintain several spanning
trees and to send bookkeeping beacons whenever channels appear, disappear, or exhaust
liquidity.

Our locally steered source routing realizes the same value privacy at virtually no extra
cost. The sender simply issues as many tickets as there are partial payments — each keyed
with its own per—hop secret — and launches the sub-payments concurrently. No additional
control traffic is needed, and ticket construction remains fully local.

S. Alizadeh and M. Khabbazian

In addition, because the sender controls each ticket’s edge set, it can impose explicit
path separations: for two partial payments, the sender may generate disjoint channel sets
whenever the topology allows, thus guaranteeing that no single relay observes every share.
SpeedyMurmurs cannot enforce such disjointness even when multiple landmark-embedding
tree is used.

5 Simulation Methodology and Results

To quantify the practical impact of T2R, we built a LN simulator in Python? and ran all
experiments on a dedicated 32-core workstation with 32, GiB RAM, Ubuntu 20.04 LTS, and
Python 3.11. We benchmarked T2R against SpeedyMurmurs in its single-tree configuration,
the variant that the original paper reports as offering the highest overall performance —
namely, the greatest success rate and the lowest delay — when payments are not split across
trees.

Input graph. All experiments use the public LN gossip dump exported by Pickhardt on
12 April 20223, This snapshot coincides with the historical peak of publicly advertised
LN adoption — both in nodes and in channels* — and has served as a benchmark in prior
LN-routing work. [18] The raw graph contains 14 135 nodes, 60 757 bidirectional channels,
and 9 087 unidirectional channels.

A Lightning channel is backed by a single 2-of-2 multisignature output of capacity C.
At any moment this capacity is split between the two peers. Accordingly, our simulator
models each bidirectional channel as two directed half-channels: (v —v) carries the balance
held by u, and (v—wu) carries the complementary balance owned by v (C' minus u’s share).
Unidirectional channels are represented by a single directed edge.

Connectivity pruning. SpeedyMurmurs can embed its landmark tree only in a strongly
connected graph, thus we restrict the snapshot to its largest strongly connected component,
discarding the 1002 nodes that lie in isolated islands. This pruning is required only for
SpeedyMurmurs; T2R operates correctly on any topology. We also disable every channel the
snapshot marks as inactive, ensuring that the simulator uses only links considered live.

Capacity and initial balances. The snapshot records the on-chain capacity C,, (in satoshis)
of each channel (u,v) but, as usual, not its private directional balances. For our baseline
experiments we assume an even split and assign

blu—v) =bv—u) = $Cy.

To study the effect of systematic skew we repeat the experiments with a fixed global ratio
p € {0.6,0.7,0.8,0.9, 1.0}, setting

b(u—v) = pCuy, b(v—=u) = (1 —p)Cuyp.

These five settings correspond to the (60:40) through (100:0) points on the z-axes of our
figures.

2 https://github.com/sajializ/ticket

3 https://www.rene-pickhardt.de/listchannels20220412. json
* https://bitcoinvisuals.com/lightning, chart “Total public channels / nodes (daily)”

30:11

AFT 2025

https://github.com/sajializ/ticket
https://www.rene-pickhardt.de/listchannels20220412.json
https://bitcoinvisuals.com/lightning

30:12

Ticket to Ride

Failure models. Lightning payments often fail because the sender’s view is stale: a channel
that looks usable in gossip may in fact be unusable when the HTLC arrives. We emulate two
such hidden failure modes.

Silent channel disablement. A fraction p € {10, 20, 30,40,50}% of channels is randomly
marked inactive — neither direction can forward — yet their gossip entries remain unchanged.
This captures maintenance outages or force-closures that have not yet propagated.

Random saturation. We pick k € {10, 20, 30,40, 50}% of channels uniformly at random
and set their forward balance to zero in one direction, b(u—v) = 0, while the reverse edge
still forwards. This models liquidity depletion rather than shutdown.

5.1 Payment Flow Generation

Our goal is to measure how effectively each algorithm discovers a route when one truly exists
under the current liquidity snapshot. Accordingly, every data point in a batch of 50000
payments is generated as follows.

1. Endpoint sampling. Pick source s and destination d uniformly at random from the
pruned graph (s # d).

2. Amount selection. Draw a payment value of A according to the scenario:

One setting of our simulation picks a uniformly random amount between intervals
{10°-102,10%-103, 103-10%, 10%-105, 105-10°} satoshis for each payment.

All other settings pick a random amount A between 102-10% satoshis. We chose this
interval for the amount of the payment because both algorithms have low differences
regarding success rate using this interval, which enables us to examine how other
behaviors of the network affect them.

3. Feasibility of the payment. Before routing, we verify that some optimal path can
carry (s,d, A) under the current liquidity and each channel’s HTLC policy:

Every announcement advertises htlc_minimum_msat and htlc_maximum_msat. A hop

may forward only if htlc_min < A < htlc_max.

A directed edge (u— v) must also have balance(u—v) > A at this moment.

Every channel on the optimal path must be active (not flagged as disabled).
We run a shortest-path search that enforces all of the above constraints. The source
and destination for which no feasible path exists are discarded and resampled, ensuring
every payment is routable in principle, so any failure reflects routing performance, not an
impossible payment.

4. Algorithm trials. Two independent copies of the network are made — one for T2R and
one for SpeedyMurmurs. Each algorithm attempts to route (s,d, A) once on its private
copy:

a. If the attempt succeeds, the simulator decreases the directional balances along the
path and increases the reverse directions, simulating an immediate settle.

b. If it fails, no balances change.

Because the two runs start from identical liquidity and evolve independently, their success

probabilities can be compared without any interference.

5. Ticket generation. For every feasible request we enumerate all s— d paths that satisfy
the public HTLC policy at every hop (htlc_min,,, < A < htlc_max,,,), and the
advertised channel capacity is at least the payment amount A. Every channel-direction
that appears on at least one such path is inserted into the ticket. To ensure that any
residual failure arises from the algorithm rather than ticket collisions, we instantiate the

S. Alizadeh and M. Khabbazian

filter with a near-zero false-positive rate. This setting makes the probability that an
unusable edge is authorized negligible. We examine the false-positive rate on success
ratio later in the simulation.

6. Forwarding behavior. Once a feasible request (s,d, A) is admitted, each algorithm is
invoked ezxactly once; a failure at any hop marks the entire payment as unsuccessful — no
sender-side retry or multipath splitting is performed. Inside the network the two schemes
behave differently:

T2R. Upon receiving the payment an intermediary node chooses one of its outgoing
channels uniformly at random. If that channel both (i) meets the HTLC amount/bal-
ance constraints and (ii) appears in the ticket, the intermediary node forwards the
HTLC along it. Otherwise the node samples another neighbor at random — without re-
placement — and repeats the test until either a suitable channel is found or all neighbors
have been exhausted. If no channel passes the test the payment fails immediately.
SpeedyMurmurs. Each intermediary follows the greedy rule (as explained in their
paper) of the landmark tree: forward to the unique neighbor whose tree distance to
the destination is strictly smaller than its own.

This procedure isolates the algorithms’ ability to find a viable route, not their capacity
to judge when no route exists; it also keeps the liquidity landscape dynamic, as successful
payments progressively update balances — reflecting real Lightning traffic.

5.2 Evaluation Metrics

From each batch of n = 50000 payment attempts we extract two quantities to compare both
algorithms.

1. Success probability. For a batch of n independent payment attempts let S C {1,...,n}
be the index set of payments that are completed successfully. The empirical success
rate is

|S| #successful payments

Psuccess -

n n

2. Average hop count. Denote by h; the hop length of the realized path for a successful
payment i € S. If m = |S| is the number of successes, the sample mean hop count is:

1
h:EZhi.

€S

5.3 Results

Figures 1, 2 demonstrates the behavior of the T2R and the single-tree implementation of
SpeedyMurmurs across four axes: payment amount (a), different initial balances (b), channel
silent disablement (c), and random saturation (d).

Different payment amounts

T2R sustains a >90% first-attempt success rate up to 10° sat, whereas SpeedyMurmurs
already drops to ~ 77% at 10* sat and collapses beyond 10° sat. Redundancy within the
T2R’s multipath findings allows intermediate nodes to avoid unexpectedly empty links without
sender involvement. The number of hops of T2R is considerably lower than SpeedyMurmurs,
meaning for each payment size interval, the T2R finds shorter paths.

30:13

AFT 2025

30:14

Ticket to Ride

—a— T2R —m-- SpeedyMurmurs
a) Success Rate vs Payment Size (sats) b) Success Rate vs Balance Split (%)
100 100 - -
—
~——

80 80
() (V]
= o
© ©

< 60 < 60
n 0
%] %]
[} [V}
S S

S 40 S 40
(2] 2]

20 20

0 0

10°-10% 10%-10° 103-10* 104-10° 10°-10° 60%-40% 70%-30% 80%-20% 90%-10% 100%-0%
Payment Size (sats) Balance Split (%)
c) Success Rate vs Channel Silent Disablement (%) d) Success Rate vs Saturated Channels (%)

100 100

80 80
[]
= =
© ©

< 60 < 60
%] 2]
%] %)
(] [J]
S o

S 40 S 40
a a

20 20

0

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Channel Silent Disablement (%) Saturated Channels (%)

Figure 1 T2R vs. SpeedyMurmurs: success rate (higher is better) under four scenarios — payment
size, balance split, silent channel shutdown, and random saturation.

Different initial balances

T2R shows a higher success rate and a lower average hop per payment for each point of split
capacity. Both approaches experience a notable drop in success rate as the split becomes
extreme. While SpeedyMurmurs completes only a small fraction of payments under the 100:0
skew, T2R retains a modest advantage, successfully routing about one-quarter of payments
by exploiting alternative branches. The hop count remains flat until the extreme imbalance,
but still lower mean hops count and for the T2R .

Silent Disablement

Across the different shutdown portions, T2R consistently outperforms the SpeedyMurmurs
by roughly twelve percentage points in success probability. In every subplot, the T2R’s curve
has a meaningful gap with SpeedyMurmurs. Remarkably, it achieves this gain while still
trimming path length: T2R’s routes are 0.3—0.4 hops shorter compared to SpeedyMurmurs.

Random saturation

T2R achieves higher success rate and a lower mean hop count than SpeedyMurmurs at every
level of saturation:
With only 10 percent saturated edge (k = 10%) T2R holds steady at ~ 95% success,
whereas SpeedyMurmurs slips below 92%.

S. Alizadeh and M. Khabbazian

—a— T2R —m-- SpeedyMurmurs

a) Average Number of Hops vs Payment Size (sats) b) Average Number of Hops vs Balance Split (%)

IS
o)
IS
o)

>
=)
»
=3

————a e — =
———a —--.
~ ~

o= o o N
“u

~

w
&
/
p
w
&

w
o
w
o

N
w«

Average Number of Hops
/
/
Average Number of Hops
N
&

2.0 2.0
10°-10% 10%-10° 10%-10% 104-10° 10°-10° 60%-40% 70%-30% 80%-20% 90%-10% 100%-0%
Payment Size (sats) Balance Split (%)

c) Average Number of Hops vs Channel Silent Disablement (%) d) Average Number of Hops vs Saturated Channels (%)
4.5 4.5

&
=)
>
=)

==
——— e e ———l————p————-n
T E-——

\

w
o
w
o

—— T u

w
o
w
o

N
o

Average Number of Hops

Average Number of Hops

N
=]
g
o

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Channel Silent Disablement (%) Saturated Channels (%)

Figure 2 T2R vs. SpeedyMurmurs: average number of hops (lower is better) under four scenarios

— payment size, balance split, silent channel shutdown, and random saturation.

At the harshest setting (k = 50%), both approaches experience a similar downward trend
in success probability, with SpeedyMurmurs reaching around 66% and T2R retaining a

lead at 74%, a difference of about eight percentage points.

Across the entire sweep T2R’s realized routes remain almost flat at A ~ 3.4 hops,

consistently ~ 0.4 hops shorter than those of SpeedyMurmurs.

Overall, the two algorithms exhibit qualitatively similar behavior under stress, success rates
degrade with increasing imbalance or saturation, but T2R consistently retains a modest

advantage across all scenarios.

5.4 Ticket Size

T2R’s overhead is dominated by the number of encrypted items inserted into its ticket.

Hence, we profile its size under two workloads.

1. W,j: unrestricted pairs. For the same 50000 (s, d) pairs used in the main experiments,
we build the candidate list for each node without capacity or HTLC limits and record | B)|
— the element count in the resulting ticket. Also, for each node, we select all viable pairs.
We ignored all these constraints to reach the absolute worst-case scenario regarding the
number of elements of the ticket, enabling us to provide an upper bound for the size of

the ticket.

2. Wiong: long-distance pairs. To demonstrate the worst case, we generate a separate

batch of 50000 pairs with the shortest path length of > 4 hops; the rest is identical.

30:15

AFT 2025

30:16

Ticket to Ride

Table 1 reports the key statistics (mean, median, 90" and 99" percentiles, and maximum)

of the number of added elements in the ticket in both scenarios.

Table 1 Number of elements per ticket.

Mean Median Pgg Pogg Max
Wan 51.0 11 126 611 2738
Wiong 88.4 34 212 847 2997

Typical payments (Wap). The median ticket carries just 11 elements, while 90 % of
payments stay below 126 elements. With a Bloom filter configured for a target error
f=107% (0.001 %), the 90**-percentile ticket occupies only 377 B, whereas an equally
secure GCS fits in 284 B

Long-distance payments (Wiong). Deliberately selecting endpoints at least four hops
apart roughly doubles the mean element count to 88 and the median to 34. Even so,
90 % of these worst-case payments stay under 212 elements; at the same f = 107> this
translates to 634 B with a Bloom filter and 477 B with a GCS. Even the rare cases of
outlier are controllable: it vanishes once we cap the branch factor K — that is, allow each
node to contribute only a handful of its best channels to the ticket.

5.5 Effect of Ticket False Positives on Success Rate

T2R’s reliability degrades only when an authorized next hop is a false positive: the intermedi-
ary node assumes an unusable edge is valid and finds no real edge left to forward the payment.
To isolate this effect, we run same 50 000 payments from our main simulation under a perfect
network (no disabled or saturated channels, balance split 50:50), and with balance update
after each successful payment. For each payment, the sender inserts m authorized channel
directions and creates a ticket sized optimally for the chosen false positive rate f. Payment
amounts are drawn uniformly at random in the 100-1000 sat interval used elsewhere in the
paper; a payment is declared failed if some intermediary node has no authorized next hop.
Also, we simulate both single ticket and the TwinTicket.

5.5.1 Size of TwinTicket

We sweep the primary ticket’s false-positive target f € {1072,1073,107*,107°}. The sender
builds the TwinTicket by inserting only those node—pairs that collide in the primary ticket,
meaning every pair that triggers a false positive in the primary ticket. Tables 2, 3 report the
resulting element counts under both workloads from Section 5.4.

Table 2 Elements inserted into TwinTicket (72), workload Wai.

False Positive f Mean Median Pgy Pgg Max
1072 40.6 29 92 176 467
1073 4.2 3 10 20 52
1074 0.4 0 1 3 10
1075 0.04 0 0 1 3

S. Alizadeh and M. Khabbazian 30:17

Table 3 Elements inserted into TwinTicket (72), workload Wigng.

False Positive f Mean Median Pgy Pgg Max

10™2 52.8 41 110 206 487
1073 5.8 4 12 22 52
1074 0.5 0 2 4 10
107° 0.05 0 0 1 3

Typical payments (W,y). For the TwinTicket setting we focus on three operating
points that all achieve > 99 % first-attempt success (Table 5 below, which is presented
later in this section, illustrates the success rate based on false positives of the tickets) and
compute their 90*"—percentile sizes under two encodings. We take mgg = 126 authorized
pairs in the primary ticket obtained in Section 5.4.

1. (f1, f2) = (1072,1073), my = 126, my = 92:
a. Bloom Filter: 150B +165B = 315B
b. GCS:126B +126B = 252B

2. (f1,f2) = (1073,1073), my; = 126, mo = 10:
a. Bloom Filter: 226 B +18B = 246 B
b. GCS:174B +14B =175B

3. (f1,f2) = (107%,107%), my = 126, mz = 1:
a. Bloom Filter: 301B +1B = 302B
b. GCS:237B +1B =238B

These figures confirm that even the most redundant ticket (f; = 1072) plus its TwinTicket
remains well below half a kilobyte in Bloom form and under one-third of a kilobyte with
a GCS.

Long-distance payments (Wiong). Taking the 9
(Table 5) and the corresponding 90" —percentile collision counts from Table 3, we obtain:

0P —percentile primary size mgy = 212

1. (f1, f2) = (1072,1073), my = 212, my = 110:
a. Bloom Filter: 254 B + 197 B = 451 B
b. GCS:212B + 152 B = 364 B
2. (1073,1073), my = 212, my = 12:
a. Bloom Filter: 380 B + 22 B = 402 B
b. GCS:292B + 12 B =304 B
3. (1074,1072), my = 212, my = 2:
a. Bloom Filter: 505 B + 3 B =508 B
b. GCS:398 B + 2B =400 B

Even in the long—path scenario the most redundant configuration remains below 0.6 kB
(Bloom filter) and 0.4 kB (GCS) for 90% of payments. Also, same as single ticket scenario,
capping the branch factor K — that is, allow each node to contribute only a handful of
its best channels to the ticket will reduce size of the ticket for outliers.

AFT 2025

30:18

Ticket to Ride

5.5.2 Single Ticket vs Success Rate

We vary the ticket target error probability: f € {1072,1073,10%,1075}. Table 4 lists the
success probability achieved at each tested false-positive target. We additionally calculate
the size the tickets using the 90 -percentile element counts reported in Section 5.4 using
GCS. Once the filter is tightened to f = 10™* = 0.01 % the success rate already exceeds
90 %, and at f = 107° = 0.001 % it climbs to Psucc~99.2%. Lowering f further adds only
fractional improvement.

Table 4 Success rate versus filter error probability.

False-positive target f Success probability [%] Ticket size (Bytes)

1072 15.0% 126B
1073 63.7% 173B
1074 93.5% 236B
107° 99.2% 283B

5.5.3 TwinTicket vs Success Rate

To mitigate collisions we add TwinTicket. The sender constructs primary ticket with error f;
as above, scans for collisions, and inserts those pairs into TwinTicket sized for an independent
error f5. Intermediate nodes accept a neighbor only if it is PRESENT in the primary ticket and
ABSENT in the TwinTicket. We sweep the Cartesian grid fi, fo € {1072,1073,10%,107°}
and report the resulting success matrix in Table 5. We also calculate the aggregate size of
both tickets using the 90*"-percentile element counts for the reported in Section 5.4 using
GCS and the numbers reported in W;.

Table 5 Dual-filter success probability Psucc(f1, f2) [%] (sum of the sizes of both tickets in bytes).

fa
fi 1072 1073 1074 1075
1072 | 96.0% (218B) 99.7% (252B) 100% (298B) 100% (333B)
1072 | 97.9% (183B) 99.4% (187B) 100% (192B) 100% (195B)
107 | 99.0% (237B) 99.8% (238B) 100% (238B) 100% (238B)
107° | 99.8% (283B) 100% (283B) 100% (283B) 100% (283B)

Table 5 demonstrates how quickly the second ticket drives the failures to zero. With
the primary ticket set to f; = 1072 = 1% the success rate already reaches 96 %; tightening
f2 beyond that yields no visible benefit. A practical sweet spot is therefore (fi, f2) =
(1072,1073): it already delivers Psyce > 99.7%. Pushing either filter to 10~ or 10~° achieves
a rise toward 100% but at a sharply higher bit cost than the primary ticket. Choosing
fi =102 and fo = 1072 yields Pyyce > 99 % while the sum of the primary and TwinTicket
is only ~ 180 B.

S. Alizadeh and M. Khabbazian

6 Related Work

Early approaches

The first proposals for payment-channel routing simply ran Dijkstra or A* on the public
graph and probed candidate paths until one cleared liquidity. Because balances evolve with
every transfer and are hidden from third parties, this “trial-and-error” strategy suffers a high
failure rate and leaks balance information through repeated probes.

Lightning-specific schemes

Research quickly turned to designs that respect Lightning’s hop-by-hop HTLC semantics
and privacy constraints. Flare [16] lets each node maintain topology within k& hops and
query the receiver’s neighborhood; it is fast but leaks per-hop liquidity to the sender,
as observed by SpeedyMurmurs’ authors [17]. Multipart approaches try to tame hidden
liquidity by splitting a payment. Spider [19] treats each fragment as a packet and applies
congestion control, boosting aggregate throughput but stretching completion times. Flash [20]
sends “mice” along cached shortest paths and reserves expensive max-flow computation for
“elephants.” Pickhardt—Richter flows [13] formalize the optimization as sequential min-cost-
flow problems, achieving the highest known success probability at the expense of heavy
sender-side computation. To assist lightweight wallets, introduces trampoline payments [5]:
the sender routes to a hub that owns the global graph, and the hub computes the remainder
of the route. Our three-ticket variant (§4.2) extends trampolines with fine-grained, privacy-
preserving steering.

Credit-network lineage

Off-chain credit networks such as Ripple and Stellar store bilateral IOUs on a ledger.
Early Ripple relied on global consensus, exposing the entire path and amount on-chain.
To avoid public state, SilentWhispers [12] used landmark nodes plus secure multiparty
computation, guaranteeing privacy at high communication cost. SpeedyMurmurs [17] used
metric-embedding trees as landmarks, optimizing latency and balancing load, but tree
maintenance remains expensive and cannot encode sender blacklists. Our framework achieves
the same privacy guarantee (no node learns non-incident edges) while discarding global trees
entirely.

Approximate-membership filters

AMQs are a standard tool for compact set representation: Bloom filters [4], counting Bloom
filters [7], Cuckoo filters [6], quotient filters [2], and Golomb—Rice Coded Sets, adopted in
Bitcoin for light-client block filters [15]. We leverage AMQs as “tickets” that travel with a
payment and reveal only incident edges to each hop.

Position of our work

Our T2R, locally steered source routing (i) sidesteps global trees, (ii) inherits incident-edge
privacy from SpeedyMurmurs, and (iii) adds new control knobs — blacklists, receiver-issued
tickets, trampoline segment steering — while keeping header overhead under one kilobyte and
introducing no additional handshake round-trips.

30:19

AFT 2025

30:20

Ticket to Ride

7 Conclusion

This paper demonstrates that global landmarks or embeddings are not a prerequisite for
privacy-preserving routing in payment-channel networks. By replacing them with a compact,
cryptographically-keyed AMQ that travels with the payment, our ticket-based framework
approach (i) removes continuous tree maintenance, (ii) keeps path privacy intact, and (iii)
unlocks new control knobs — blacklisting misbehaving nodes, delegating route choices to
receivers, and steering across trampoline hubs — without protocol round-trips.

In Lightning-sized topologies the TwinTicket configuration achieves > 99 % first-try
success at sub-kilobyte overhead, comfortably outperforming the SpeedyMurmurs baseline in
both robustness and latency. Because ticket size scales linearly with the number (not length)
of authorized channels, operators can trade header bytes for reliability on a per-payment
basis.

—— References

1 ACINQ. Eclair. https://github.com/ACINQ/eclair, 2025. Version 0.9.0, accessed 27 May
2025.

2 Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C. Kuszmaul,
Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P. Spillane, and Erez Zadok. Don’t
thrash: How to cache your hash on flash. Proc. VLDB Endow., 5(11):1627-1637, 2012.
doi:10.14778/2350229.2350275.

3 Blockstream. Core lightning. https://github.com/ElementsProject/lightning, 2025. Ver-
sion 24.02, accessed 27 May 2025.

4 Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422-426, 1970. doi:10.1145/362686.362692.

5 Christian Decker et al. Trampoline onion routing (draft proposal). https://github.com/
lightningnetwork/lightning-rfc/pull/829, 2020. (accessed May 2025).

6 Bin Fan, David G. Andersen, Michael Kaminsky, and Michael Mitzenmacher. Cuckoo filter:
Practically better than bloom. In Aruna Seneviratne, Christophe Diot, Jim Kurose, Augustin
Chaintreau, and Luigi Rizzo, editors, Proceedings of the 10th ACM International on Conference
on emerging Networking Fxperiments and Technologies, CONEXT 2014, Sydney, Australia,
December 2-5, 201/, pages 75-88. ACM, 2014. doi:10.1145/2674005.2674994.

7 Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM Trans. Netw., 8(3):281-293, 2000. doi:
10.1109/90.851975.

8 Florian Grotschla, Lioba Heimbach, Severin Richner, and Roger Wattenhofer. On the lifecycle
of a lightning network payment channel. CoRR, abs/2409.15930, 2024. doi:10.48550/arXiv.
2409.15930.

9 Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for
learned index structures. In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein,
editors, Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 489-504. ACM, 2018. doi:
10.1145/3183713.3196909.

10 Lightning Labs. BOLT #4: Onion routing protocol. ~URL: https://github.com/
lightning/bolts/blob/master/04-onion-routing.md.

11 Lightning Labs. Ind: Lightning network daemon. https://github.com/lightningnetwork/
1nd, 2025. Version 0.18.0-beta, accessed 27 May 2025.

12 Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Silen-
twhispers: Enforcing security and privacy in decentralized credit networks. In
24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. The Internet Soci-
ety, 2017. URL: https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
silentwhispers-enforcing-security-and-privacy-decentralized-credit-networks/.

https://github.com/ACINQ/eclair
https://doi.org/10.14778/2350229.2350275
https://github.com/ElementsProject/lightning
https://doi.org/10.1145/362686.362692
https://github.com/lightningnetwork/lightning-rfc/pull/829
https://github.com/lightningnetwork/lightning-rfc/pull/829
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1109/90.851975
https://doi.org/10.1109/90.851975
https://doi.org/10.48550/arXiv.2409.15930
https://doi.org/10.48550/arXiv.2409.15930
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://github.com/lightning/bolts/blob/master/04-onion-routing.md
https://github.com/lightning/bolts/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/silentwhispers-enforcing-security-and-privacy-decentralized-credit-networks/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/silentwhispers-enforcing-security-and-privacy-decentralized-credit-networks/

S. Alizadeh and M. Khabbazian

13

14

15

16

17

18

19

20

21

Rene Pickhardt and Stefan Richter. Optimally reliable & cheap payment flows on the lightning
network. CoRR, abs/2107.05322, 2021. arXiv:2107.05322.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments. Technical report, Self-published, 2016. Draft. URL: https://lightning.network/
lightning-network-paper.pdf.

Jim Posen. Bip 158: Compact block filters for light clients. https://github.com/bitcoin/
bips/blob/master/bip-0158.mediawiki, 2019.

Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa Osuntokun.

Flare: An approach to routing in the lightning network. White paper, Bitfury Group
Limited, July 2016. URL: https://bitfury.com/content/downloads/whitepaper_flare_
an_approach_to_routing_in_lightning network_7_7_2016.pdf.

Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling payments
fast and private: Efficient decentralized routing for path-based transactions. In 25th Annual

Network and Distributed System Security Symposium, NDSS 2018, San Diego, California,

USA, February 18-21, 2018. The Internet Society, 2018. URL: https://www.ndss-symposium.

org/wp-content/uploads/2018/02/ndss2018_09-3_Roos_paper.pdf.

Sindura Saraswathi and Christian Kiimmerle. An exposition of pathfinding strategies within
lightning network clients. CoRR, abs/2410.13784, 2024. doi:10.48550/arXiv.2410.13784.
Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan, Parimarjan
Negi, Lei Yang, Radhika Mittal, Giulia Fanti, and Mohammad Alizadeh. High throughput
cryptocurrency routing in payment channel networks. In Ranjita Bhagwan and George Porter,
editors, 17th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2020, Santa Clara, CA, USA, February 25-27, 2020, pages 777-796. USENIX Association,
2020. URL: https://www.usenix.org/conference/nsdi20/presentation/sivaraman.

Peng Wang, Hong Xu, Xin Jin, and Tao Wang. Flash: efficient dynamic routing for offchain
networks. In Aziz Mohaisen and Zhi-Li Zhang, editors, Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies, CoONEXT 2019, Orlando,

FL, USA, December 09-12, 2019, pages 370-381. ACM, 2019. doi:10.1145/3359989.3365411.

Philipp Zabka, Klaus-Tycho Foerster, Stefan Schmid, and Christian Decker. Empirical
evaluation of nodes and channels of the lightning network. Pervasive Mob. Comput., 83:101584,
2022. doi:10.1016/J.PMCJ.2022.101584.

30:21

AFT 2025

https://arxiv.org/abs/2107.05322
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://github.com/bitcoin/bips/blob/master/bip-0158.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0158.mediawiki
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_09-3_Roos_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_09-3_Roos_paper.pdf
https://doi.org/10.48550/arXiv.2410.13784
https://www.usenix.org/conference/nsdi20/presentation/sivaraman
https://doi.org/10.1145/3359989.3365411
https://doi.org/10.1016/J.PMCJ.2022.101584

	1 Introduction
	2 System Model
	3 T2R Routing
	3.1 Ticket Design
	3.2 TwinTicket

	4 Overhead
	4.1 Ticket Size
	4.2 Ticket Generation
	4.3 Communication and latency overhead
	4.4 Payment Splitting

	5 Simulation Methodology and Results
	5.1 Payment Flow Generation
	5.2 Evaluation Metrics
	5.3 Results
	5.4 Ticket Size
	5.5 Effect of Ticket False Positives on Success Rate
	5.5.1 Size of TwinTicket
	5.5.2 Single Ticket vs Success Rate
	5.5.3 TwinTicket vs Success Rate

	6 Related Work
	7 Conclusion

