Cuttlefish: A Fair, Predictable Execution
Environment for Cloud-Hosted Financial Exchanges

Liangcheng Yu
Microsoft Research, Redmond, WA, USA
University of Pennsylvania, Philadelphia, PA, USA

Prateesh Goyal
Microsoft Reserach, Redmond, WA, USA

Ilias Marinos
Nvidia, Redmond, WA, USA

Vincent Liu
University of Pennsylvania, Philadelphia, PA, USA

—— Abstract

Recent years have seen a rising interest in cloud-hosted financial exchanges. While the public cloud
platforms promise a cost-effective and more accessible option to traders, unfortunately, achieving
fairness in cloud environments is challenging due to non-deterministic network latencies and execution
times.

This work presents Cuttlefish, a fair-by-design cloud execution environment for algorithmic
trading. The idea behind Cuttlefish is the efficient and robust mapping of real operations to a novel
formulation of “virtual time”. With it, Cuttlefish abstracts out the variances of the underlying
network communication and computation hardware. Our implementation and evaluation not only
validate the practicality of Cuttlefish, but also show its operational efficiency on public cloud
platforms.

2012 ACM Subject Classification Networks — Cloud computing; Networks — Network dynamics;
Applied computing — Online auctions

Keywords and phrases Cloud-hosted exchanges, Financial exchanges, Computation and communica-
tion variances, Virtual time overlay

Digital Object Identifier 10.4230/LIPIcs.AFT.2025.33

Related Version Full Version: https://www.microsoft.com/en-us/research/publication/cut
tlefish [57]

1 Introduction

Low-latency algorithmic trading — a subset of the broader securities trading taxonomy — is
pivotal to the efficiency of modern financial markets, promoting accurate and timely pricing of
securities, higher liquidity, and lower trade costs for all investors [31]. The goal of low-latency
algorithmic trading is to create an ecosystem within each exchange where, based on incoming
market data, traders can issue buy and sell orders as quickly as possible to take advantage of
ephemeral market-making and arbitrage opportunities [56]. A sizable fraction of activity in
today’s exchanges is the result of this class of trades [2, 24].

In recent years, exchanges like NASDAQ, CME, LSE, and B3, alongside cloud providers
like Microsoft, Amazon, and Google, have expressed growing interest in exploring the viability
of hosting this type of trading in the cloud [22, 48, 41, 40]. Their interest is rooted in a variety
of factors including better scaling, fewer outages, improved cost savings, and a potentially

© Liangcheng Yu, Prateesh Goyal, Ilias Marinos, and Vincent Liu;
37 licensed under Creative Commons License CC-BY 4.0

7th Conference on Advances in Financial Technologies (AFT 2025).
Editors: Zeta Avarikioti and Nicolas Christin; Article No. 33; pp. 33:1-33:25

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7010-2529
https://orcid.org/0000-0001-7945-1821
https://orcid.org/0000-0002-1901-3157
https://orcid.org/0000-0001-7683-208X
https://doi.org/10.4230/LIPIcs.AFT.2025.33
https://www.microsoft.com/en-us/research/publication/cuttlefish
https://www.microsoft.com/en-us/research/publication/cuttlefish
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

33:2

A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

Execution time difference [us]

ocbdbbNONMEO®®

p8s_v3 E160s_V4 F32s_V2 F725.V2

Figure 1 Execution time differences (candlesticks showing p0.1, Q1, Q2, @3, and p99.9, with
some quantiles visually converging to a single bar) measured with rdtsc for 1M parallel invocations
of two MPs running on separate VM instances within the same region, despite an identical program
(performing a moving average crossover strategy, with each invocation taking ~ 14ps on D8s_ v3),
input market data stream, performance optimizations, and VM type.

broader customer base as, in this model, any Market Participant (MP)! can rent a machine
in the same region as the Central Exchange Server (CES) and participate, bypassing the
logistical hurdles involved in installing and maintaining on-premise hardware [24, 17, 19, 18].
Smaller and newer exchanges (e.g., for cryptocurrency) are particularly interested, as the
cloud can also lower their barriers to entry by eliminating the need for custom infrastructure.

Unfortunately, in addition to the above advantages, cloud-hosted exchanges also face
significant challenges in ensuring fairness for MPs, a primary requirement of exchange ser-
vices [47, 24, 17, 18]. Recent work has noted these exchanges’ issues with unpredictable
network latencies [24, 37, 19], but the sources of unfairness extend beyond the network and
include practicalities like noisy neighbors, thermal fluctuations, or (un)scheduled mainten-
ance [38, 52, 54]. For example, Figure 1 shows the differences between local execution time of
two identical trading programs running on parallel instances in the same Azure region. The
experiment is for a simple program, single-tenancy (in the case of the F72_v2 instance type),
and strict scheduling policies (core pinning, highest kernel scheduling priority, etc.). It further
omits network variability and clock drift effects — two important and difficult-to-control
sources of unfairness. Even so, we can observe significant variability and bias between the
two executions.

Crucially, the magnitude of the variability is immaterial — any difference, no matter how
small, may alter the order in which trades are processed by the CES. We note that some of
these effects also exist in traditional on-premise exchanges; however, cloud-hosting (besides
increasing the sources and magnitude of variability /bias) presents a qualitative change in how
these effects must be handled. In an on-premise deployment, customers are in full control
of their infrastructure — when a machine is slow, it is the customer’s fault. In the cloud,
infrastructure can be slow through no fault of the customer, and the responsibility falls upon
the cloud provider.

In this paper, we tackle an ambitious goal: a cloud execution environment where the
outcome of races between different MPs’ buys/sells is based only on the design of the MPs
rather than (un)lucky performance fluctuations of their underlying cloud infrastructure.
Our approach is similarly ambitious: to change the execution model from one where users
have unfettered access to (virtualized) hardware to one where users provide bytecode-level
programs (closer to a Functions-as-a-Service interface) and cloud providers control their rate
of execution to ensure fairness.

! In low-latency algorithmic trading, MP also refers to the computer program executing the trading
algorithm, terms we use interchangeably.

L. Yu, P. Goyal, I. Marinos, and V. Liu

The resulting system, Cuttlefish?, is an execution environment for a cloud-hosted exchange
that ensures fair, predictable end-to-end execution. Cuttlefish is the first to address execution
variation/bias in cloud-hosted exchanges, but its focus on end-to-end guarantees means that
it also handles deficiencies in the communication guarantees of prior work that specialize in
communication [17, 24, 19]. Further, not only is Cuttlefish able to guarantee these strong
properties, but it is able to do so while offering low latency and high throughput.

Guaranteeing this level of fairness is fundamentally challenging as, in the end, simultaneous
data delivery and synchronous execution is a classic (and under some assumptions impossible)
challenge in distributed systems [20, 13, 55, 24]. Moreover, modern hardware performance is
increasingly unpredictable, complex to reason about, and difficult to verify [38, 52, 54, 60,
12, 4, 32, 3, 9].

Cuttlefish achieves the above using an efficient mapping of real operations to “virtual
time” from a platform-agnostic intermediate representation (IR). This indirection through
virtual time allows us to quantify computation and, critically, to control its advancement
deterministically through the rate-limiting of MP operations — a level of control that is
not possible with real time. This approach enables deterministic and fair operations in
both simultaneous market data release and MP exeuction processes and guarantees fairness,
regardless of the varying latencies in the communication of market data and trade responses
or variations in execution platforms.

This concept of virtual time mirrors that of other applications such as co-simulation [4,
32, 3, 9], which coordinates virtual time for concurrent emulation and simulation processes.
Cuttlefish takes a step further by extending the concept to real-time cloud systems and
developing an end-to-end trading platform. Cuttlefish’s architecture is, thus, a combination
of (1) a platform-agnostic Intermediate Representation (IR) instantiating virtual time per
virtual machine instruction cycle count, along with its expressive programming interface and
lightweight instrumentation for virtual cycle tracking, (2) a runtime execution environment
optimized for co-located MPs, and (3) a protocol to control inflight virtual cycles and handle
variations in the underlying network or compute.

While Cuttlefish represents an extreme point in the design space, our prototype demon-
strates the feasibility and efficiency of its design, deployable to commercial cloud virtual
machines. This paper makes the following contributions:

We propose Cuttlefish, the first fair execution environment for cloud-hosted exchange
that abstracts out the differences in the underlying cloud primitives, tackling execution
fairness and simultaneously addressing persistent gaps in the communication fairness of
existing systems.

We introduce an efficient mapping strategy of the virtual time overlay to real-time
operations while maintaining low latency and high execution throughput to MPs.

We evaluate Cuttlefish using an end-to-end implementation on a real cloud platform. When
serving 100 MPs, Cuttlefish guarantees fairness in both communication and execution,
while introducing low overhead and achieving latency and execution throughput close to
the limits of the underlying cloud hardware.

2 The animal renowned for its ability to see invisible polarized light to discern subtle changes in murky
waters for navigation and communication.

33:3

AFT 2025

334

A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

MP;

Figure 2 Basic structure of cloud-hosted exchanges. All system components are controlled by
the trusted cloud provider.

2 Background

Historically, financial exchanges were bustling places where people would shout orders,
negotiate prices, and physically exchange papers representing ownership of stocks or other
assets. In today’s financial markets, however, the vast majority of trades are executed by
computers rather than by humans, opening up the possibility of so-called algorithmic trading
techniques, now the cornerstone of modern financial markets.

Algorithmic trading refers to the process of making trade decisions with the help of
computer programs. Under this umbrella, low-latency algorithmic trading, which focuses
on fast (e.g., <lms) reactions to real-time market data with minimal human intervention,
has become critical to market efficiency, price discovery, liquidity, and low transaction
costs. These algorithms account for a significant portion of the trading volume in financial
markets [2, 24, 31, 35, 56]. Compared to the broader set of algorithmic trading strategies, the
logic of MPs who participate in low-latency algorithmic trading is relatively simple (designed
for quick reactions) and features highly optimized data path logic [36, 33].

Exchanges that support low-latency algorithmic trading expose a simple top-level abstrac-
tion: (1) the exchange broadcasts market data to all MPs within the exchange, delivered at
time {D}, (2) the MPs analyze the data, and (3) they return buy/sell orders to the exchange
at time {S}, processed in the order of submission.

In the most cases, the market data feed is the sole input into the system, and orders are
handled entirely within the exchange. However, MPs sometimes also integrate outside data
into their strategies. Exchanges can also provide alternative trading interfaces [27], although
these are typically three to four orders of magnitude higher latency and used by MPs for less
latency-critical trading (e.g., those leveraging complex machine learning models). In this
work, we assume that all such external interactions are funneled through the CES (in the
case of alternative trading interfaces) or a special gateway node (Section 7; in the case of
outside data). Clearly, Cuttlefish cannot control the outside world or make it fair, rather,
our focus is only on the variability and bias of communication and execution after it enters
the system through these nodes. We discuss the interaction of Cuttlefish with the broader
ecosystem in Section 11.

Cloud-hosted exchanges. As mentioned, there has been recent interest in cloud-hosted
exchanges for reasons including better scaling, fewer outages, improved cost savings, and
broader access to the financial markets [24, 19, 17, 35].

Figure 2 depicts the main components of these exchanges. At the core of these systems
is the CES, which disseminates market data to all MPs through Release Buffers (RBs) or
equivalents. The communication between CES and MPs typically leverages a reliable message
transport [24, 19]. Then, the MPs — hosted by proxy cloud instances in the same cloud

L. Yu, P. Goyal, I. Marinos, and V. Liu

Table 1 Summary of notations. Each refers to a scalar timestamp in real or virtual time.

Notation Definition

G(x) Wall-clock time when market data x is generated.
D(i, z) Wall-clock time when data z is delivered to MP;.
S(2,9) Wall-clock time trade y is submitted by MP;.

]5(1’) Virtual time assigned by CES for delivering data x.

S(i,y) Virtual time when trade y is submitted by MP;.
CES(t) Virtual time of CES at a wall clock time ¢.
OB(t) Virtual time of OB at a wall clock time ¢.

]\ﬁ(t) Virtual time of MP; at a wall clock time ¢.

é\E/S_l(’Ut) Wall clock time of CES at a virtual time vt.
— 1

OB (vt) Wall clock time of OB at a virtual time vt.
— 1

MP; (vt) Wall clock time of MP; at a virtual time vt.

region as the CES — compute their trading decisions and forward them to the CES.? There,
trades are first enqueued and sorted at the Ordering Buffer (OB) and then processed by the
Matching Engine (ME). The ME finally updates the limit order book and generates a new
batch of market data.

Performance variations of cloud primitives. Unfortunately, despite their attractive prop-
erties, in our conversations with major cloud providers, financial exchanges, and trading
firms, there is still a fundamental distrust of the performance properties of the underlying
infrastructure. In particular, for both exeuction and communication, performance variations
have the potential to invalidate the benefits of careful design, creating a world where MPs
win and lose not on the strength of their algorithms but on purely external factors (e.g.,
temporal variation or provider monitoring/maintenance).

To illustrate, consider the simple scenario of delivering market data x for MP; and MP; in
Figure 3a. Coordinating delivery to ensure D(i,2) = D(j, x) is difficult due to unpredictable
and unbounded path latencies. More importantly, even with simultaneous data delivery, the
same hardware substrate (e.g., same server SKUs), the same software stack (OS and the
MP’s trading algorithm), and the same algorithm, the exeuction time can still vary (e.g., due
to different thermal state). This leads to non-deterministic submission times S(7,y) # S(4,y),
as shown in Figure 3b. In both cases, any disparity, even at nanosecond time scales, can
advantage/disadvantage an MP.

Recent measurements on cloud-hosted exchanges have quantified the danger of latency
spikes in modern clouds [24, 19]. Equally important, however, is the bias and variability in
execution performance, which can also occur for any number of reasons, including everything
from non-deterministic software operations to machine-specific hardware wear and thermal
effects, with prior measurement citing the Coefficient of Variation (CoV) of performance
in bare-metal infrastructure of up to 30% [54, 38]. These are on top of noisy neighbor and
hypervisor effects introduced in cloud deployments. Our benchmarks on Azure cloud, shown
in Figure 1, validate the presence of these biases and variances. Even for single-tenant F72_v2
instances, with all physical cores of the machine reserved, the interquartile range (IQR) is
still 20 ns with disparities exceeding > 1 us at p99.9.

3 Cross-region deployment of VMs is feasible (e.g., through virtual network (VNet) peering [44]), but not
suitable for low-latency communication [24, 19].

33:5

AFT 2025

33:6 A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

% G(x) Wall-clock time % G(z) Wall-clock time
c

T t £ T ¢
161 ors \ 151

N t !

MP; M D(i,) MP; ?l S(i,y)
| |

t £ t

MP, D(j,z)) MP; S(3,y)

(a) Communication unfairness. (b) Execution unfairness.

Figure 3 Simultaneous data delivery and execution fairness are difficult, even under the same
market data, MP algorithm, and execution platform.

While in both cases it may be possible for cloud providers to try to tame this effect, for
instance, by removing all management and telemetry infrastructure or carefully controlling
temperature and wear, resulting in much tighter SLOs, (1) doing so would substantially cut
into the cost and scalability advantages of cloud-hosted exchanges, and (2) this still does not
eliminate disparities that can result in unfairness.

3 Goals and Related Work

Our goal in this work is to create a fair and predictable execution environment where the
outcome of competitions is based on only the properties of MPs’ algorithms rather than luck.
More specifically, we target:

R1 Communication fairness: (a) All MPs should get access to the market data points at
the same time and (b) in the other direction, MP,’s trade should execute before MPy, iff
MP, submits a trade before MP,.

R2 FEzecution fairness: Given any execution of the algorithm on the platform, the submission
time of the generated trades is completely defined by the delivery time of the input data
to the algorithm. Consequently, given R1, for a given trading algorithm, the execution
time to generate the trades should not vary across MPs.

To be practical, MPs should be able to sustain the above requirements while maintaining

low latency and high execution throughput for their trades and algorithms. As previously

noted, we explicitly do not consider the fairness or feasibility of cross-exchange arbitrage,
which is likely impossible in a partial deployment scenario.

Prior work on cloud exchange fairness. Existing cloud-hosted exchanges, despite focusing
exclusively on communication [24, 17, 19], provide incomplete guarantees, even for R1. For
example, CloudEx [17] and Octopus [18] enforce high-resolution clock synchronization among
all RBs and the CES. The CES, upon generating market data at time ¢, assigns a future
release timestamp t + At, with a predefined threshold At,., allowing RBs to forward the
data simultaneously. Similarly, when an inbound trade arrives at an RB at time ¢, the
CES enqueues it to the OB until ¢t + Ay where the delay Ay allows earlier trades to arrive
within this headroom. Unfortunately, even with perfect clock synchronization — a strong
assumption in distributed systems [37] — the guarantees break whenever latency spikes exceed
the threshold. Such latency spikes can occur unpredictably in cloud environments [24, 19, 34].
Configuring conservative threshold values can help (at the cost of performance) but are not
a complete remedy [24, 19, 13].

More recent work, DBO [24, 19], relaxes the requirement of clock synchronization and
proposes logical clocks based on MP response time. Briefly, DBO offloads RBs to local
SmartNICs that measure and tag each MP’s response time, while trades are being ordered

L. Yu, P. Goyal, I. Marinos, and V. Liu

\ Cuttlefish @

CloudEx DBO

Execution fairness

Communication fairness

Figure 4 Recent cloud-hosted exchanges [17, 24, 19, 18] target only communication fairness, but
still struggle to achieve it. We discuss other related works in [57].

accordingly at the OB/CES. This method corrects inaccuracies in simultaneous data delivery
post hoc and provably guarantees Limited Horizon Response Time Fairness for of RI.
However, DBO’s guarantees are limited to a specific trading pattern, namely trigger-point-
based high-speed trades. Trades that do not fit this model (e.g., trades triggered using two
or more data points) are not necessarily fair.

4 Virtual Time in Cuttlefish

Cuttlefish tackles both execution and communication fairness simultaneously. As depicted
in Figure 4, we find that including execution fairness not only serves to present a more
predictable execution platform, it also naturally addresses the fundamental limitations of
existing work on communication.

To guarantee both R1 and R2, our system, Cuttlefish, adopts a “virtual time” abstraction.
Virtual time, as a general concept, is not new — there are many instances where it is beneficial
to have a global and fine-grained notion of dependencies independent of wall-clock time.

Of particular relevance is the use of virtual time in high-fidelity emulation of processes
interacting over a network [3, 32, 9, 4, 23]. In these frameworks, all processes keep a virtual
clock for use in coordinating per-process progress and cross-process events, e.g., network
communication. Unlike wall-clock time, virtual time is controllable: a process’s virtual clock
advances only when it is scheduled. Virtual time is, thus, a stand-in for the expected behavior
of the emulated network. The framework exploits the ability to pause and resume processes
to ensure that all processes are synchronized and events are sequenced correctly according to
their virtual time.

Network emulation vs. low-latency algorithmic trading. Cuttlefish takes an analogous
approach by assigning virtual time to all communication and execution — down to an
instruction level. Like emulation, Cuttlefish benefits from the ability to control the fine-
grained progression of virtual time for each MP (pausing and skipping forward as necessary).
Unlike emulation, however, low-latency algorithmic trading presents a substantially different
set of goals and knobs.

Soft real-time constraints on virtual time progression. Generally, the primary concern
of network emulation is fidelity to a target emulated network. The relationship between
the emulator’s virtual time and wall-clock time is of secondary importance, with the most
important impact being its effect on the end-to-end execution time of emulation. In contrast,
Cuttlefish is a platform for trading real-world financial instruments, so consistent timeliness
is critical, especially in the presence of alternative trading interfaces and external data.

337

AFT 2025

33:8

A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

2 ¢ K \ :
t : vt
MP,; wﬁ(l) v e, \ |§(i,y)
v |
vt 1 vt
MP; D(x) MP; S(j,y)
(a) Communication fairness. (b) Execution fairness.

Figure 5 Communication and execution fairness are achievable in the virtual time domain through
the deterministic control of virtual time passage and the quantification of execution.

Control over input frequency. Emulation’s focus on fidelity also generally assumes a
“correct” emulation target. In contrast, the CES in Cuttlefish has significant control over
market data delivery times — what matters is the fairness of the delivery, not fidelity to any
particular execution. Cuttlefish uses this control to adjust the market data delivery rate in
response to the current load and to allow lagging nodes to catch up.

Cuttlefish virtual time, illustrated. Figure 5 depicts the operation of virtual time in

Cuttlefish. The Cuttlefish CES operates unrestricted in wall-clock time, while the MPs track

and adhere to virtual time. For simplicity, we will ignore component failures but discuss how

Cuttlefish can be extended to handle them in Section 8. The notation used in the figure and

the remainder of the paper are summarized in Table 1.

1. [Figure 5a] For fair market data delivery (R1a), the CES picks and tags a virtual time
D(x) for the release of each data point z. Each MP’s local execution runtime controller
ensures the release accordingly.

2. [Figure 5b] For execution fairness (R2), Cuttlefish provides a deterministic accounting of
compute (in virtual time). Specifically, it counts the instruction cycles executed by its
platform-agnostic virtual machine substrate. This ensures that, for any MP; consuming an
input z at 5(:1:) and producing a trade y, the resulting §(z, y) is deterministic, regardless
of execution performance variations.

3. [Figure 5b] For fair trade ordering (R1b), trades from an MP are marked with the
virtual time at which they are generated, §(z, y1) and §(j, y2). Similar to DBO, Cuttlefish
features an ordering buffer that forwards these trades to the CES based on their generation
virtual time in monotonically increasing order. Thus, the ME processes y; before ys if
and only if S(i,y1) < S(j, y2)-

Strict adherence to virtual time on all MPs ensures both (R1) and (R2). Further, the
CES’s ability to bridge wall-clock and virtual time ensures minimal delta between the two
(Section 8).

5 Design Overview

Instantiating virtual time abstraction end-to-end necessitates several building blocks: How
can we express computation in the virtual time domain (§6.1)?7 How do we execute the
programs efficiently (§7)? How can we track and control the virtual time advancement (§8)?

Architecture. Similar to other cloud-hosted exchanges [24, 19], VMs executing MPs are
co-located in the CES region for low-latency services. Unlike existing systems, however, users
of Cuttlefish build on a platform-agnostic virtual machine substrate clocked by virtual time
cycles, mediating all MPs’ computational and I/O operations through this abstraction.

L. Yu, P. Goyal, I. Marinos, and V. Liu

)

Cuttlefish platform

ol 58 __ ces
@

,@
o =
VTRTe vic e e

S
N CrCH00B

-

Figure 6 Overview of the Cuttlefish platform.

Figure 6 depicts Cuttlefish’s high-level architecture. For simplicity, most of our discussion
will assume homogeneous, single-threaded market participants and the market data stream
as the only input to the ecosystem. We describe the integration of external data in Section 7,
extension to heterogeneous compute in Section 11, and multi-threading support in [57].

Workflow. Building on the typical cloud-hosted exchange architecture, Cuttlefish introduces:

@ MP algorithm representation via eBPF VM bytecode [Section 6]. To account for the
amount of execution deterministically, Cuttlefish leverages a platform-agnostic IR that is
based on the eBPF Virtual Machine (VM)? instruction set. Cuttlefish advances virtual time
based on the consumed number of VM instruction cycles, allowing it to abstract out potential
variances in the underlying infrastructure. Cuttlefish also adapts eBPF user-space libraries to
support a simple but expressive programming interface. Cuttlefish verifies, instruments, and
translates this code from MPs to native assembly for the underlying computation platform
for efficient execution.

@ Virtual time execution runtime (VT-RT) [Section 7]. Cuttlefish develops a runtime
execution environment that can efficiently utilize all available cores to execute the binaries
for MPs allocated to the same cloud VM. It also manages a range of real-time operations
for the responsible MPs, including tracking and advancing the virtual time, data delivery,
and local batching of trades and heartbeat to the central CES for ordering based on the
submitted virtual time.

® Virtual time control (VTC) [Section 8]. Cuttlefish integrates a virtual time control
algorithm for the CES to assign virtual market data release times. By controlling virtual
time assignment, the CES controls how much compute throughput is available to each MP.
This is crucial to mitigating underlying network latency spikes or slowdown in execution
behaviors.

The cost of fairness.
exchanges [47, 24, 19]. This trade-off is intentional, as a slower exchange operating within

Cuttlefish prioritizes fairness, which is the primary concern for

the higher latency bounds of public clouds can still meet market needs, provided it delivers
market data and accepts orders uniformly across all participants [24, 47, 39].

In exchange for fairness, Cuttlefish incurs modest overheads on MP execution. Some
of this is due to the extra instrumentation to track and control virtual time (~2-20%).
More fundamentally, guaranteeing that all MPs have equal opportunity means that system-
wide progress is gated on the slowest node. This limitation is intrinsic to any fair system.
Prior work like DBO and CloudEx noted similar limitations when equalizing network delay;
Cuttlefish incurs the same for execution.

4 A virtual machinery abstraction, not to be confused with physical cloud VMs.

33:9

AFT 2025

33:10

A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

Despite these trade-offs, in our evaluation on a public cloud and 100 MPs (approximately
the maximum scale of most existing exchanges [24, 27]), Cuttlefish incurs low overhead in
both latency and throughput under real-world performance variation, approximating the
limits of the underlying cloud hardware (Section 10.3). If higher throughput is needed, better
hardware or multi-threaded execution ([57]) can help. Also, the observed latency is well
within the requirements of many major exchanges.® Regardless, Cuttlefish still guarantees
fairness and predictability in all cases.

Trust assumptions and threat model. Moving to a cloud-hosted solution fundamentally
requires MPs to trust the cloud provider and trading platform to not steal or manipulate
the MP trading code and execution [17, 19, 24]. Such requirements are typically enforced
through contracts, log auditing, privacy laws, and regulatory bodies such as the SEC, and
the same prohibitions apply here. Recent advances in hardware (e.g., Intel SGX [10]) as
well as efforts in cloud confidential computing [46, 1, 26] could also benefit Cuttlefish by
providing cryptographic attestation and secure enclaves during both instrumentation and
execution. An exploration of these mechanisms is out of the scope of this work.

For the provider’s side of the provider-MP relationship, following prior work [24, 19, 17], we
assume that all core system components — including release and ordering buffers — are trusted
and protected against tampering. As we discuss in Sections 6.2 and 8, Cuttlefish’s abstractions
naturally defend against problematic instructions or program structures. Otherwise, MPs can
utilize the system in arbitrary ways, including trying to slow down virtual time advancement
through interaction with the CES and execution engine.

For all other interactions (e.g., MP-to-MP or to/from malicious third parties), we assume
secure and exclusive communication channels between MPs and Cuttlefish components
using standard public cloud features, such as security groups [24, 19] to prohibit outside
communication with any of these entities. While it is possible that malicious actors may
attempt to indirectly influence these connections, e.g., through datacenter-level DDoS attacks,
cloud providers themselves are already quite capable of mitigating, defending against, and
provisioning for these types of attacks.

6 MP Algorithm Representation
This section elaborates on Cuttlefish’s abstractions and platform-agnostic IR, taking a

top-down approach.

6.1 Programming Interface

Recall from Section 2, MP algorithms consist of processing CES data feeds to make trading
decisions that aim to optimize profit from price disparities, bid-ask spreads, or liquidity
subsidies. To allow users to easily program MP algorithms, Cuttlefish utilizes a simple
event-driven programming interface.

MP handler abstraction. Figure 7 shows a simplified example of how users may express
trading logic with Cuttlefish’s mp_ handler interface.

® A major exchange, IEX, prides itself on fairness with a 700us latency [27, 24].

L. Yu, P. Goyal, I. Marinos, and V. Liu

1 #include <cuttlefish user.h> /* Single include of whitelist APIs */
2 int mp_handler (subscribed_context t* ctz):
if (cta->price) > 100 then

trade_t trade = 1; /* Sell */

submit__trade(&trade); /* Just-in-time trade submission
else if (ctz->price) < 10 then

trade_t trade = 2; /* Buy */

submit__trade(&trade);
update__map(0, &ctx->price);
10 return 0O;

* /
/
/

© 0N o s W

/* Save the history price */

/

Figure 7 An example MP pseudocode in high-level language using Cuttlefish service APIs,
which includes a narrow interface to a KV store for stateful invocations.

An MP’s handlers are invoked serially on each subscribed market data point. Virtual
time advances on every new invocation (in accordance with Rla) and on every execution of
an IR instruction (with a fixed virtual time cost per instruction).

More specifically, for each market data x, the virtual time of M P; is updated according
to the rule MP; = max(D(z),]\7]32) This involves two scenarios: (1) If the prior invocation
finishes before 5(36)7 Cuttlefish advances MP; to the target virtual time and releases the
data; and (2) if the MP handler chose to consume more cycles that ends up overshooting
f)(x),]\/4?z remains unchanged. MPs can submit trades at any point in this process. Each

trade’s ordering is determined by the exact virtual time of the associated submit_trade call.

The cost of each instruction is fixed and public knowledge (for details on the map between
individual IR instruction types to its virtual time cost, see Section 9).

eBPF IR. Although any platform-agnostic runtime could serve as a virtual hardware
substrate, Cuttlefish chooses an IR based on the eBPF VM instruction set. This IR is
compelling for many reasons: it is simple (a 64-bit RISC register machine), it has a mature
ecosystem including support for various language frontends, and it is widely supported
in multiple target architectures including specialized hardware accelerators (e.g., FPGAs,
smartNICs) [5, 30]. More importantly, the simple eBPF Instruction set architecture (ISA)
allows us to easily enforce a constrained memory access model and reason about safety by

verifying MPs’ eBPF bytecode accordingly before execution through static analysis [53, 16, 30].

We note that using the eBPF IR does not mean that we are using the kernel-based eBPF
VM. While the kernel-based VM [16] imposes restrictions that limit expressiveness, e.g., loop
bounds, Cuttlefish does not impose such constraints. Thus, it provides a Turing-complete
interface [16, 53] for trading strategies, and we show examples of these in Table 4.

Usability. Users can write their trading programs directly in eBPF bytecode (and will
likely do so for performance reasons), or they can use more accessible toolchains (such as
11vm’s eBPF backend) to compile the MP expressed in a high-level language like € to the
bytecode and then sent (e.g., as an elf file) as input to Cuttlefish.

Service APIs. To enable user access to Cuttlefish’s trading services, Cuttlefish provides a

single header file that contains main data structures and a whitelist of shared service APIs.

These include: (1) primitive service APIs for trade submission and virtual time facilities, as
well as a runtime context object for accessing real-time market data, current virtual time
MP; (t), and the release virtual time D(x) for the current invocation, (2) a narrow interface
for KV store interactions (e.g., update, lookup) for stateful invocations, and (3) extensible
built-in computational helpers like FF'T — which users can optionally leverage for convenience
— although users can also write their own implementations in the MP handler.

33:11

AFT 2025

33:12

A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

eBPF frontend @] Cuttlefish

+ service API Instrumentation
mp.c l Memory r0->rax
. r1->rdi
' KeBPF -
Native relocation

- m—\[glidation => -
compiler mp.o 'BPF_CALL Translator
instantiation x64

clang -target bpf binary
@ VT tracking @

Figure 8 MP bytecode processing workflow.

6.2 MP Bytecode Processing Lifecycle

Figure 8 illustrates the subsequent processing pipeline of MP bytecode: Cuttlefish first
validates and instruments the bytecode before final JIT compilation to native hardware
binary for safe and efficient execution.

Validation. Cuttlefish ensures the safety of input bytecode through a validation process
similar to that of kernel space eBPF VMs [16, 30]. It rejects programs that attempt memory
interactions beyond the allowed indirect KV store access, such as through dynamic memory
allocation. Additionally, the use of BPF_CALL instructions is restricted to the predefined set of
service APIs in Section 6.1, blocking any attempts to invoke unsupported functions through
illegal opcodes. Further security checks are described in Section 8.

Note that this step requires that MPs trust the cloud provider and the trading platform
operator to not tamper with the ordering of trades or MP code; however, as noted by
prior work, this trust is fundamental to a cloud-hosted paradigm [17, 19, 24]. We discuss
enforcement mechanisms further in Section 11.

Memory relocation and service API instantiation. As MP programs operate within a
constrained memory access environment, Cuttlefish performs memory relocation for those
requesting access to KV maps. In particular, it dynamically resolves and replaces symbolic
references in the KV map API’s BPF_CALL instructions with the appropriate memory address
during eBPF bytecode loading. This indirection process and the dynamically assigned
addresses are invisible and inaccessible to the MPs.

Virtual time tracking instrumentation. To track the virtual time efficiently, Cuttlefish
takes a passive, non-intrusive approach via binary rewriting [4, 58], shown in Figure 9:

(1) Basic block segmentation: The bytecode is split into basic blocks (BBs) — straight-
line sequences of instructions without branches — to facilitate batched virtual time
increments Avt. In addition to BPF_JMP call sites, trade submission calls also serve as
instrumentation points for capturing the most recent virtual time as the trade needs to
be tagged accordingly. For large blocks, Cuttlefish inserts dummy trade submission calls
for timely updates of virtual time progress of the MP.

(2) Virtual time increment instruction: Cuttlefish emits native machine code (two instructions
for x64) at the epilogue of each block to update MP;’s virtual time by addressing the
memory location storing]\//[\ﬁl during JIT translation.

(3) Offset correction: The instrumentation also updates the offsets for the JMP instructions.
The absence of indirect jumps in the eBPF assembly simplifies this step.

L. Yu, P. Goyal, I. Marinos, and V. Liu

0000000000000000 <mp_handler i>: eBPF asm
0: 85 00 00 00 Ob 00 00 00 call 11 BB1
: 7b 0a £8 ££ 00 00 00 00 *(u64 *) (£10 - 8) = r0
: bf a2 00 00 00 00 00 00 r2 = r10
: 07 02 00 00 £8 £f £f £f r2 += -8
431801 00/.00100-00 00_00_00/00_00.00.00.00:00-00 rl = 0 11"
6: 8500 00 00 0a 00 00 00 BB2
7: bf 01 00 00 00 00 00 00
8: 67 01 00 00 20 00 00 00
9: 77 01 00 00 20 00 00 00
_10: b7 00 00 00 01 000000 _ _ _ ro=1 ____} _____
11: 55 01 01 00 00 60 00 00 iF 71 15 0 goto| +1f<LEBO_2>
12: b7 00 00 00 00_00 00_00

13: 95 00 00 00 00 00 00 00

MP, += Avt
I
— | 49 BB FO DE BC 9a 78 56 34 12 'HWasm
{MP,(t)} | ; add qword ptr [rll], 8 I (x64)
\ 49 81 03 08 00 00 00 l

——— e~

Figure 9 Virtual time update instrumentation.

Finally, instead of the slower eBPF interpreter, Cuttlefish adapts eBPF JIT translator to
compile IR bytecode into native binaries (e.g., x86_64). This two-tier compilation ensures
fair, platform-agnostic virtual time tracking and efficient execution on native hardware.

7 Cuttlefish Execution Runtime

Cuttlefish features a practical runtime architecture efficiently implementable on modern
clouds. We describe a single VM’s execution runtime (Figure 10); extending to multiple is
straightforward.

Communication with CES. Cuttlefish runtime interfaces with CES via the data dispatcher
and the trade aggregator, both exchanging data streams over a reliable transport layer.

Data dispatcher. The dispatcher manages inbound market data, each coming with an
assigned virtual release time.

Trade Aggregator. The trade aggregator gathers tuples from MPs, each comprising a
trade decision y and its virtual submission time S (i,y). These tuples are locally sorted
by submission time, batched, and sent to the OB for global sorting. The aggregator is
additionally responsible for sending heartbeats to the CES to indicate the latest virtual time
reached by all local MPs. The OB uses these heartbeats to decide when it can forward the
trade with the lowest virtual submission time in its buffer to the CES safely (i.e., there are
no in-flight trades with lower virtual time). This localized handling of sorting and heartbeat
calculations enhances the CES’s scalability.

Local execution workflow. Cuttlefish’s runtime allows consolidating multiple MPs into
multi-core VMs for efficiency. It also maximizes CPU utilization (for execution-throughput)
and eliminates blocking operations along the data path (for latency). Central to its workflow
are the worker threads that execute MPs in parallel, each affined to a dedicated CPU core
and configured to run a loaded MP binary. Interaction with the dispatcher and aggregator is
streamlined using lock-free, cache-efficient Single-Produce-Single-Consumer (SPSC) rings to
minimize processing latency.

The worker threads operate in a busy loop with minimal stalls (e.g., context switching)
during the execution. It first polls a batch of command items that contain market data from
the command ring. For each market data x processed by MP;, the worker thread updates
the virtual time and invokes the binary with the new market data immediately. Each worker
then runs hardware binaries instrumented for uninterrupted virtual time advancement, as

33:13

AFT 2025

33:14

A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

~ Command ring KVstore {MPi(t)}
(z, D()) Data E
_____ dispatcher e \%
thread 2 @@ RIW ﬂ?ﬁt+: Auvt
S(i par
{0509} a0 o o |
mp_l.0
e, A0 JFEQAOr — $S77 5

min{j\ﬁl ®)} thread
Heartbeat

Affined worker
threads

Trade ring

Network
=] —
communication

stack Execution runtime

Figure 10 Overview of Cuttlefish’s execution runtime.

outlined in Section 6.2. During execution, MP handlers access the KV store in a thread-safe
manner and invoke the redirected function that enqueues trades to the ring with a virtual
submission time of the submit_trade calls.

External data handling. In addition to supporting internal data feeds from the CES,
Cuttlefish also accommodates external data sources. These interactions are done through a
designated gateway (GW) node, as shown in Figure 6, which enforces an additional virtual
time latency comparable to that of the public Internet.® Just as with current exchanges,
we expect that MPs can and will leverage a variety of optimization for these messages,
e.g., microwave [7, 6] and satellite [25, 51, 28] networks to surpass wireline ¢ limitations,
and/or employ human oversight to tweak parameters in response to changing conditions or
unexpected events. Cuttlefish’s goal is only to ensure that the post-GW transmission and
delivery of the data is fair and predictable. MPs can access the data through the subscribed
data context input to the handler, just as they do with normal CES data. We detail the
mechanism in [57].

8 Virtual Time Control

So far, we have discussed how the CES broadcasts data and processes aggregated trades
from MPs in the order of their virtual submission times at the OB. Another key role of the
CES in Cuttlefish is to assign the virtual release time, l~)(sc), tagged to each market data =
for delivery by runtime engines. Intuitively, this virtual time assignment process resembles
congestion control but concerns regulating the rate of virtual time progression rather than
bytes on a wire.

Objectives. Cuttlefish’s virtual time control targets two goals:

1. Minimizing latency (L(vt) = b\é_l(vt) — éES_l(vt)), defined as the time difference
between the CES releasing market data with virtual time vt (@Sﬁl(vt)) and when the
OB hears from all MPs until vt (5@71(%)). In simple terms, latency here refers to the
minimum time between when market data is produced at the CES and when a trade

from an MP using this data can be executed. This definition extends previous end-to-end
latency concepts [24] for trades ordered per virtual time.

6 A modern commodity switch can provide Thps capacity [49, 50], which is sufficient to handle typical
quantities of external data to exchanges. The GW can scale beyond a single node with a shared clock.

L. Yu, P. Goyal, I. Marinos, and V. Liu

< L(v
Execution
slowdown

(a) Increased network latency. (b) Slower execution.

Figure 11 Examples when the latency gets impacted by environmental conditions. For the
purpose of illustration, the diagram simplifies the discrete steps on events of market data release,
invocation, and trade response receipt.

2. Maximizing overlay exzecution-throughput 8 = Avt/At. This represents the rate of virtual
time advancement at the CES or, equivalently, the number of IR instruction cycles
available to each MP (per unit of wall-clock time) to process the incoming market data.

Note that neither of these goals affects correctness, fairness, or predictability. Rather,
a good virtual time assignment is important for purely performance reasons. Specifically,
virtual time assignment that is too slow can limit the execution-throughput of the exchange,
even when the underlying MPs are capable of supporting a higher virtual-time throughput.
Conversely, virtual time assignment that is too fast can increase worst-case L(vt) due to
MPs that are lagging behind.

Methodology. As Cuttlefish seeks to guarantee fairness across all MPs, stragglers (depicted
in Figure 11) can influence virtual time control. Stragglers can arise for two reasons.
First, increased network latencies delay market data delivery to MPs, slowing virtual time
progression. For example, in Figure 11a, a spike in latency from CES to an MP results in
latency growth from L(vt;) to L(vte). In reality, network latencies for both paths (CES-
to-MP or MP-to-OB) can affect L(vt). Virtual time assignment should try to mitigate the
effect of such spikes. Second, execution slowdowns at an MP (e.g., due to change in processor
frequency) can reduce the rate of virtual time progression, cumulatively affecting latencies if
these slowdowns are prolonged. Figure 11b illustrates a simplified example of this effect.
To account for them, Cuttlefish presents an easy-to-reason-about approach by coupling
its virtual time assignment with real-time evolution. We detail the assignment algorithm in
[57]. The key idea of our algorithm is similar to that of BBR congestion control protocol [8].
In particular, Cuttlefish measures 7;, which is the estimated computational capability of MP;
(i.e., how many virtual cycles can the executing engine of MP; process per unit wall-clock
time). We then control the virtual time progression rate based on the bottleneck compute
capacity, min(7;). Similar to BBR, Cuttlefish applys a window cap on the max “in-flight”
virtual time as a guardrail to prevent excessive virtual time assignment in worst-case scenarios.

Failure handling. As described, any MP failure will halt the progress of virtual time. Cut-
tlefish incorporates timeouts at the CES to detect such events.” Because of the determinism
of virtual time, with periodic check-pointing of the MP state, the CES can restart and/or
relocate such failed components.

7 Spurious timeouts may degrade performance, but will not affect fairness.

33:15

AFT 2025

33:16

A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

We further note that eBPF uses predefined key-value stores for managing state, which
makes identifying state and replicating it straightforward. Cuttlefish is also amenable to
replication of the MPs themselves. This approach can potentially mask the impact of failures
on virtual time progression (§10.4).

An alternate choice would be to remove the failed MP from the VTC assignment and
trade-forwarding logic, and then do a clean restart. The failed MP incurs unfairness in this
case. In some abstract sense, Cuttlefish is subject to a CAP-theorem-like limitation: here,
the choice is between fairness and progression of virtual time progress in case of failures.

CES failure. CES fault tolerance is beyond the scope of this work; to the best of our
knowledge, existing CESes also rely on state replication (e.g., of the order book) for fault
tolerance.

Security. While MP code will run alongside other MPs and Cuttlefish components, Cuttlefish
benefits greatly from its IR abstraction, basis in virtual time, and validation process (Sec-
tion 6.2). Potentially problematic instructions or program structures (e.g., attempts to
access system memory or cycle counters for creating side channels) are explicitly disallowed.
Communication is similarly restricted. As mentioned in Section 5, Cuttlefish adopts a model
that forbids MP-to-MP communication similar to prior proposals [24, 19]. However, whereas
prior work punts on enforcement, Cuttlefish’s constrained runtime provides natural avenues
to guarantee it.

Within the confines of the system, the main potential avenue of attack for MPs is the
manipulation of virtual time. Note that MPs with fewer instructions per invocation do not
affect system-wide progress, as virtual time advances independently. Instead, MPs might try
to deliberately slow their virtual time advancement speed for a chance to influence min(7;)
(if they are the slowest MP in the system) by picking sequences of instructions that have the
largest ratio of real-time cost to virtual-time cost. Conversely, if they are already the slowest
MP, they could speed up to try to accelerate virtual time advancement. Within Cuttlefish,
there is no advantage to manipulating the advancement speed; instead, differences only arise
in interactions with external communication and events. We note that the impact is limited:
Cuttlefish’s GW ensures that external coordination is inefficient (Section 7) and the extent
of manipulation is constrained to the gap between the “slowest” virtual program and the
second slowest MP. In the end, however, the critical guarantee that Cuttlefish provides is
that any variability in virtual time advancement speed is experienced equally by all MPs.

9 Implementation

To demonstrate Cuttlefish’s practicality, we developed and ran a prototype on standard
public cloud VMs [43].

Processing MP handler programs. Cuttlefish supports the end-to-end workflow for MP
handlers described in Section 6, exposing a single-header interface for Cuttlefish’s virtual
time services. For verified eBPF bytecodes provided by users, Cuttlefish embeds virtual
time tracking transparently through binary writing, while achieving high performance by
leveraging the existing eBPF JIT compiler to emit native code [30].

Virtual time cost of instructions. By default, Cuttlefish assigns the virtual time for eBPF
instructions based on the equivalent hardware instructions on standard CPU models (e.g.,
x86_64) and leveraging previous studies that have extensively quantified their costs per

L. Yu, P. Goyal, I. Marinos, and V. Liu 33:17

100 100.00 100.00 100.00 99.81 100 99.82
= 80 | 7632 80
°
e %0 e °0 TS
% 40 A RT 0 40 RT 00
S
‘® 20 20
w 4
0 T 0 T
1 100 10000 10000
MP instruction count difference MP instruction count difference
(a) Same VM. (b) Different VM types.

Figure 12 Cuttlefish guarantees 100% fairness ratio, whereas FIFO and RT-based ordering can
only approximate even when M P, spends non-negligible number of instructions more than M P,.

machine cycles or reciprocal throughput in modern hardware architecture [14]. For example,
BPF_ADD is assigned one virtual time unit, with other operations, including handler invocation
and BPF_CALL instructions for built-in service APIs such as the access to the KV store, scaled
accordingly. In Cuttlefish, the relatively small eBPF instruction set [29] simplifies the process.
While actual instruction cycle times (e.g., memory accesses) can vary in wall-clock time
due to microarchitectural effects such as caching, these variances are abstracted away in
the virtual time domain. The idea behind such an assignment is to, as much as possible,
reduce the dependency of 7 on the IR instructions used by the MP in its code. However,
exchanges can customize their cost model according to their needs — as long as the models
are transparent, the system is fair and predictable.

Supporting efficient execution in virtual time. Cuttlefish employs a reliable, message-based
transport [42] for its dispatcher and trade aggregator thread, interfacing with the CES/OB.
Worker threads are affined to dedicated cores and are responsible for invoking MP handlers.
To facilitate communication between workers and the data dispatcher, Cuttlefish uses a
cache-efficient, lock-free Single Producer/Single Consumer circular buffer implementation to
instantiate the market and trade rings respectively as detailed in Section 7.

10 Evaluation

10.1 Unfairness in the Cloud

Ordering mechanisms. In addition to Cuttlefish, we examine:

Response Time (RT) based ordering, which ranks trades by MP processing time. Since
CloudEx and DBO either require high-resolution clock synchronization or SmartNIC
support — hard to replicate in our environment — we use (1) as a proxy to evaluate behaviors
(potential execution unfairness) of CloudEx under perfect network communication fairness
and that of DBO’s logical clock based on response time. Under identical execution
conditions, RT-based ordering should yield 100% fairness ratio.

FIFO ordering, which processes trades by OB arrival time. Under ideal network and
execution conditions, FIFO should also achieve 100% fairness.

Setup. We consider two MPs. MP;, executes N additional primitive IR instructions than
MP,, with all other aspects being identical. In theory, an identical network and execution
environment must always prioritize the trades of MP, over those of MP, triggered by the
same market data. To quantify fairness, we define fairness ratio as the fraction of MP, trades
were (correctly) ordered ahead of corresponding trades from MP,.

AFT 2025

33:18 A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

Table 2 L(vt) for 100 MPs: Cuttlefish achieves § = 3279M vt/s with avg. Tmin = 3702M vt/s.

Latency (us)
avg. p50 P90 P99 p99.9

MaxRTT 52.04 47.74 49.95 55.85 144.2
Cuttlefish 54.19 50.82 53.49 68.46 166.3

We run experiments on Azure, with one VM operating as CES to generate market data
messages at ~100 ps intervals. We examine two scenarios: (a) MP, and MP, run on identical
VMs with Intel(R) Xeon(R) Platinum 8272CL CPU @ 2.60GHz; (b) MP}, uses Intel(R) Xeon(R)
Platinum 8272CL CPU @ 2.60GHz while MP, running on a different CPU Intel(R) Xeon(R) CPU
E5-2673 v4 @ 2.30GHz. In approach (2), we use lightweight, high-resolution rdtsc counters —
leveraging constant tsc support across modern processor cores — to measure CPU time at fine
granularity and piggyback the measurement with the data for OB ordering. A caveat of this
experiment is that the fairness ratio for (1) and (2) can be impacted by the specifics of how
the MP algorithm is executed. To reduce this impact, we execute the algorithm using the
Cuttlefish runtime environment, which uses strategies like core pinning, CPU isolation, and
DPDK to minimize the impact of the OS on execution and network. Further and alternative
optimizations (e.g., IPU-based network offload) could further reduce this impact, though
other variability would still remain.

Observation. Figure 12a shows the fairness ratios of different ordering mechanisms when
two MPs operate on the same type of VMs. In this case, FIFO ordering exhibits significant
unfairness as the VM of MP, experiences a higher RT'T compared to that of MP,. When
MP, executes N = 10000 more instructions than MP, per invocation, the fairness ratio
only improves to 78.8%. On the other hand, RT-based ordering shows resilience to network
latency disparities. Nevertheless, it incurs about 48% unfairness for N = 1, attributable to
execution time variances. Despite the mitigation effect of increasing N, RT-based ordering
still incurs 0.18% unfairness rate, even at N = 10000.

Figure 12b presents a different scenario (b) where MP, operates on a VM with a slower
processor and significantly higher RTT from the CES. FIFO’s unfairness remains pronounced
at higher N values. RT-based ordering, in turn, experiences a substantially reduced fairness
ratio due to the disparity in processor frequencies. E.g., with N =1 or N = 100, RT-based
ordering’s fairness ratio drops below 5%. Throughout these scenarios, Cuttlefish consistently
maintains deterministic and 100% fairness ratio. Cuttlefish’s fairness guarantee by design
remains unaffected by variations in underlying computational power and network latency.

10.2 Performance of Cuttlefish

We evaluate the performance cost of Cuttlefish for fairness, focusing on end-to-end latency
L(vt) and execution throughput 6 (Section 8). We run Cuttlefish in the Azure cloud
environment using Standard_F16s_v2 instances. Our setup includes a CES VM with a
ConnectX-4 NIC and Intel Xeon Platinum 8272CL CPU @ 2.60GHz. We use 10 VMs to host
100 MPs and another for the gateway, all in the same VNet/region. The CES broadcasts
market data at ~ 100us intervals.

We also compare the performance of Cuttlefish against its limits (max network latency and
minimum compute capability T,,;, across MPs). To ensure a fair comparison, we measured
both network latencies of messages and the computational capabilities of the cores for each
MP’s core under identical environmental conditions. We record timestamps when market

L. Yu, P. Goyal, I. Marinos, and V. Liu

Table 3 Under higher RTT and background noise: avg. Tmin = 2488M vt/s and § = 2373M vt/s.

Latency (us)
avg. p50 P90 P99 p99.9

MaxRTT 112.0 101.0 113.7 640.3 2984
Cuttlefish 1155 104.2 116.8 6745 2996

Table 4 Example textbook algorithmic trading technical analysis indicators that we have expressed
with Cuttlefish’s MP handlers.

Abbreviation Algorithm

bbs Bollinger Bands Strategy

bmm Basic Market Making

ema EMA Mean Reversion

macd Moving Average Convergence Divergence
macs Moving Average Crossover Strategy

mmacs Multiple Moving Average Crossover Strategy
obv On Balance Volume (OBV) + EMA

psar Parabolic SAR

rsi Relative Strength Index

sma SMA Mean Reversion

data arrive at the VM (¢1) and when the corresponding trade response leaves the VM (ts), as
well as when they leave (o) and arrive at the CES machine (¢3). We then calculate the RTT
per VM based on (t3 — to) — (t2 — t1) without needing high-resolution clock synchronization.
MaxRTT across VMs is the highest latency across VMs corresponding to the same market
data release. Similarly, we measure 7,,;, using rdtsc counters.

Table 2 compares Cuttlefish’s end-to-end latencies against the MaxRTT across various
percentiles. The observed latency discrepancies are attributed to the data flow operations
of Cuttlefish, including ring management, batching, and virtual time assignment. Despite
trading off some latency for fairness, Cuttlefish shows a commendably low p99.9 tail latency
within a typical public cloud setting, in part due to minimal barriers in data release and
MP execution. Further, Cuttlefish exhibits a execution-throughput of 3279 M vt /s, which
is close to Tmin = 3702M vt/s.® In a separate experimental setup, shown in Table 3, we
incorporated a VM with a comparatively slower processor at 2.3 GHz frequency and a higher
RTT. Cuttlefish adapts well, incurring a modest latency overhead and approximating latency
bounds even under stressed conditions.

10.3 Instrumentation Cost

Section 10.2 evaluates the performance of Cuttlefish against latency and throughput limits,
showing the end-to-end costs associated with online operations of the virtual time overlay.
This subsection investigates the static overhead due to virtual time tracking instrumentation.
In particular, we evaluate the impact of this instrumentation on compute capacity.

To quantify the cost, we conducted a stress test under a worst-case scenario: invoking
the handler at maximum rate through market data in-memory. Our tests covered various
programs shown in Table 4, each with different computational logic and memory access
patterns. While these algorithms are simple versions of what is actually used in practice,
they demonstrate that, as expected, the Turing completeness of our language is expressive

8 This number should not be directly compared with native cycles /s on a superscalar processor [14, 3].

33:19

AFT 2025

33:20

A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

1.4x107
= 1.2x107
s 1x107 s
E . 8x1o0f B
£ = 6 il v e
6x10 g (t)
S 6 - (2)
= 4x10 auet® MP@) »
g 2x108 MP(t) —
> 0 n n
0 500 1000 1500 2000 2500 3000 3500
008 ™ M@ (7acd aCMACS GOV psal (st gmd
t [us]
Figure 13 Overhead of virtual time instru- Figure 14 Virtual time series upon a failed
mentation across MP handlers in Table 4. MP replica.

enough to support a wide range of trading algorithms, such as those for statistical arbitrage
or directional trading. Interestingly, the interface is also sufficiently intuitive to allow GPT-4
to generate the core algorithmic trading programs that are fully compatible.

As shown in Figure 13, the tracking instructions incur 2-20% overhead in throughput as
compared to the vanilla executable, depending on the basic block and branch patterns in
the program. In particular, those with thinner loop blocks exhibited a higher virtual time
tracking cost. Note the evaluations involve raw algorithms. Cuttlefish can also mitigate the
virtual time tracking overhead by providing common computational blocks (often involving
intensive loops) as a BPF_CALL helper, thus reducing the virtual time tracking breakpoints.

10.4 Exploiting Determinism in Virtual Time For Fault Tolerance

To speed up recovery in the event of failures (§8), Cuttlefish can replicate the execution
of an MP handler across different machines by exploiting the deterministic virtual time
progression across replicas. A physical replica gets integrated as usual with Cuttlefish’s
virtual time overlay, however, the OB processing the trade that arrives earliest in real-time
across the replicas to advance the virtual time for the logical MP. This helps improving the
fault-tolerance of Cuttlefish. Figure 14 illustrates a case where Cuttlefish replicates a single
MP across 2 different VMs. When a replica MPY fails (by killing the worker thread), the
virtual time of the logical MP still proceeds as the other replicas Mp? keeps updating its
virtual time. With Cuttlefish, the service provider may trade the cost of replication (and the
associated traffic overhead) for lower latency and reliability. Beyond fault tolerance, such
replication can also help reduce the latency of Cuttlefish [11].

11 Discussion and Future Work

Cuttlefish explores an admittedly extreme design point, but one that provides strong guaran-
tees, presents an attractive and general interface, and is amenable to efficient implementation.
It also happens to fit with existing calls from the financial community and SEC to reduce the
barrier to entry for retail traders [35, 6, 7]. The entrenchment of existing exchange architec-
tures means that it is unlikely Cuttlefish will supplant traditional exchanges; however, only
time can tell if its tradeoffs allow it to carve out a small, sustainable segment of the market.
Even so, as computer scientists, we argue that exploring the challenges and opportunities of
this design is worthwhile. This section briefly discuss how Cuttlefish potentially fits into the
broader cloud/financial ecosystem.

Heterogenous hardware backends. While Cuttlefish currently focuses on a CPU-based
interface and runs on common x64-based cloud VMs, the choice of eBPF IR allows operators
to benefit from a broader ecosystem, including mature toolchains that compile eBPF bytecode
to ARM64 [30] or offload it to accelerators such as FPGAs [5, 15].

L. Yu, P. Goyal, I. Marinos, and V. Liu

In the extreme case, virtual time is flexible enough to support differentiated instance
types and price points. For example, clouds could charge more money for more memory or
faster processing (via scaled-up virtual time throughput); they could also sell instances with,
for example, 8 CPU cores and 4 FPGAs (by leveraging alternative eBPF backends and the
techniques in [57]). While this type of support is well out of scope for this paper, one could
imagine an IaaS abstraction as rich as traditional cloud offerings, but where each compute
device is metered using virtual time.

Interaction with the broader market ecosystem. Securities represent and interact with
global assets, and Cuttlefish is only designed to mediate the low-latency algorithmic trading
API of the specific exchanges that adopt it; financial activity can occur outside the exchange
and even through the slower alternative APIs of an adopting exchange.

In all cases, Cuttlefish eliminates variability and bias between MPs in the exchange.
While it potentially also slows them compared to the rest of the world, for securities listed
solely at the adopting exchange, Cuttlefish will still be the fastest way to issue buy/sell
orders (Section 7). Securities cross-listed at multiple exchanges (Cuttlefish or otherwise) may
present opportunities for arbitrage, but that is no different than today, and crucially, the
Cuttlefish-enabled cloud platform will never be the determiner of which MP wins the race.
As others have noted [47, 24, 7, 19, 39], this prioritization — fairness over pure latency — is a
desirable one.

Scalable deployment. Our prototype currently runs with 100 MPs, with the CES broad-
casting market data at approximately 100us intervals. In this setup, the primary bottleneck
lies in the CES, which must serialize inbound data ingestion and outbound market data
dissemination. One can mitigate bottlenecks with faster processors and high-bandwidth
NICs for the CES, which translate to scalability directly. “Beefier” VM SKUs on the MP
side can also help, as Cuttlefish’s execution runtime is also designed to scale up with the
number of cores, which allows greater MP co-location per machine. To that end, modern
cloud providers can offer “beefy” VM SKUs with over 100 vCPUs [45].

As the number of MPs increases further, components like OB can be scaled out using
a distributed architecture: multiple OB instances can be deployed, each responsible for a
disjoint subset of RBs (e.g., sharded by trading symbol). These distributed OBs can safely
dequeue and batch pending trades, forwarding them to a final merge layer colocated with
the matching engine (ME) for order finalization [24].

In parallel, Cuttlefish can benefit from ongoing advances in cloud networking infrastructure.
Techniques such as traffic admission control and prioritization [21, 59] can reduce or bound
end-to-end latencies. Additionally, scalable multicast engines [26, 47, 18] can help scale CES’s
market data dissemination, enabling high-rate, low-latency delivery to a larger number of
participants.

12 Conclusion

This paper presents Cuttlefish, a fair-by-design execution environment for low-latency al-
gorithmic trading that can run on commercial public clouds. With its virtual time overlay,
Cuttlefish abstracts out the variances in the underlying communication and computation
hardware, while maintaining low latency and high execution throughput.

33:21

AFT 2025

33:22

A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

—— References

1

10

11

12

13

14

15

16

17

Amazon Web Services. Cryptographic attestation, 2024. URL: https://docs.aws.amazon.co
m/enclaves/latest/user/set-up-attestation.html.

Matteo Aquilina, Eric B Budish, and Peter O’Neill. Quantifying the high-frequency trading"
arms race": A simple new methodology and estimates. Technical report, Working Paper, 2020.
Vignesh Babu and David Nicol. Precise virtual time advancement for network emulation.
In Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, pages 175-186, 2020. doi:10.1145/3384441.3395978.

Vignesh Babu and David Nicol. Temporally synchronized emulation of devices with simulation
of networks. In Proceedings of the 2022 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, pages 1-12, 2022. doi:10.1145/3518997.3531020.

Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli, Giuseppe
Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro Palumbo, Luca Petrucci, and
Roberto Bifulco. hXDP: Efficient software packet processing on FPGA NICs. Communications
of the ACM, 65(8):92-100, 2022. doi:10.1145/3543668.

Eric Budish. High-frequency trading and the design of financial markets, 2023. URL:
https://www.youtube.com/watch?v=0wQjTedWSUM.

Eric Budish, Peter Cramton, and John Shim. The high-frequency trading arms race: Frequent
batch auctions as a market design response. The Quarterly Journal of Economics, 130(4):1547—
1621, 2015.

Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson.
BBR: Congestion-based congestion control. Communications of the ACM, 60(2):58-66, 2017.
doi:10.1145/3009824.

Gong Chen, Zheng Hu, and Dong Jin. Integrating I/O time to virtual time system for
high fidelity container-based network emulation. In Kalyan Perumalla, Margaret Loper,
Dong (Kevin) Jin, and Christopher D. Carothers, editors, SIGSIM-PADS ’22: SIGSIM
Conference on Principles of Advanced Discrete Simulation, Atlanta, GA, USA, June 8 - 10,
2022, pages 37-48. ACM, 2022. doi:10.1145/3518997.3531023.

Victor Costan and Srinivas Devadas. Intel SGX explained. TACR Cryptol. ePrint Arch.,
page 86, 2016. URL: http://eprint.iacr.org/2016/086.

Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM,
56(2):74-80, 2013. doi:10.1145/2408776.2408794.

Dmitry Duplyakin, Alexandru Uta, Aleksander Maricq, and Robert Ricci. On studying CPU
performance of CloudLab hardware. In 2019 IEEE 27th International Conference on Network
Protocols (ICNP), pages 1-2. IEEE, 2019. doi:10.1109/ICNP.2019.8888128.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288-323, 1988. doi:10.1145/42282.42283.
ewasm. Determining wasm gas costs, 2023. URL: https://github.com/ewasm/design/blob
/master/determining_wasm_gas_costs.md.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh,
Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, et al. Azure
accelerated networking: SmartNICs in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), pages 51-66, 2018.

Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska, Jorge A Navas, Noam
Rinetzky, Leonid Ryzhyk, and Mooly Sagiv. Simple and precise static analysis of untrusted
linux kernel extensions. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1069-1084, 2019. doi:10.1145/3314221.3314590.
Ahmad Ghalayini, Jinkun Geng, Vighnesh Sachidananda, Vinay Sriram, Yilong Geng, Balaji
Prabhakar, Mendel Rosenblum, and Anirudh Sivaraman. CloudEx: A fair-access financial
exchange in the cloud. In Proceedings of the Workshop on Hot Topics in Operating Systems,
pages 96-103, 2021. doi:10.1145/3458336.3465278.

https://docs.aws.amazon.com/enclaves/latest/user/set-up-attestation.html
https://docs.aws.amazon.com/enclaves/latest/user/set-up-attestation.html
https://doi.org/10.1145/3384441.3395978
https://doi.org/10.1145/3518997.3531020
https://doi.org/10.1145/3543668
https://www.youtube.com/watch?v=OwQjTedWSUM
https://doi.org/10.1145/3009824
https://doi.org/10.1145/3518997.3531023
http://eprint.iacr.org/2016/086
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1109/ICNP.2019.8888128
https://doi.org/10.1145/42282.42283
https://github.com/ewasm/design/blob/master/determining_wasm_gas_costs.md
https://github.com/ewasm/design/blob/master/determining_wasm_gas_costs.md
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3458336.3465278

L. Yu, P. Goyal, I. Marinos, and V. Liu

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Junzhi Gong, Yuliang Li, Devdeep Ray, KK Yap, and Nandita Dukkipati. Octopus: A fair

packet delivery service. arXiv preprint arXiv:2401.08126, 2024. doi:10.48550/arXiv.2401.

08126.

Prateesh Goyal, Ilias Marinos, Eashan Gupta, Chaitanya Bandi, Alan Ross, and Ranveer
Chandra. Rethinking cloud-hosted financial exchanges for response time fairness. In Proceedings
of the 21st ACM Workshop on Hot Topics in Networks, pages 108-114, 2022. doi:10.1145/35
63766.3564098.

James N Gray. Notes on data base operating systems. Operating systems: An advanced course,
pages 393-481, 2005.

Matthew P Grosvenor, Malte Schwarzkopf, lonel Gog, Robert NM Watson, Andrew W Moore,
Steven Hand, and Jon Crowcroft. Queues don’t matter when you can JUMP them! In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), pages
1-14, 2015.

CME Group. CME group signs 10-year partnership with Google cloud to transform global
derivatives markets through cloud adoption, 2019. URL: https://www.cmegroup.com/media
-room/press-releases/2021/11/04/cme_group_signs_10-yearpartnershipwithgooglecl
oudtotransformglob.html.

Diwaker Gupta, Ken Yocum, Marvin McNett, Alex C. Snoeren, Amin Vahdat, and Geoffrey M.
Voelker. To infinity and beyond: Time-warped network emulation. In Larry L. Peterson and
Timothy Roscoe, editors, 8rd Symposium on Networked Systems Design and Implementation
(NSDI 2006), May 8-10, 2007, San Jose, California, USA, Proceedings. USENIX, 2006. URL:
http://www.usenix.org/events/nsdi06/tech/gupta.html.

Eashan Gupta, Prateesh Goyal, Ilias Marinos, Chenxingyu Zhao, Radhika Mittal, and Ranveer
Chandra. DBO: Fairness for cloud-hosted financial exchanges. In Proceedings of the ACM
SIGCOMM 2023 Conference, pages 550-563, 2023. doi:10.1145/3603269.3604871.

Mark Handley. Delay is not an option: Low latency routing in space. In Proceedings of the
17th ACM Workshop on Hot Topics in Networks, HotNets '18, pages 85-91, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3286062.3286075.
Muhammad Haseeb, Jinkun Geng, Ulysses Butler, Xiyu Hao, Daniel Duclos-Cavalcanti, and
Anirudh Sivaraman. Poster: Jasper, a scalable and fair multicast for financial exchanges in the
cloud. In Proceedings of the ACM SIGCOMM 2024 Conference: Posters and Demos, pages
3638, 2024. doi:10.1145/3672202.3673728.

IEX. The cost of exchange services, 2019. URL: https://finansdanmark.dk/media/mstbpqg2
3/iex-and-market-data-cost-2019.pdf.

CFA Institute. SpaceX is opening up the next frontier for HF'T, 2019. URL: https://blogs.

cfainstitute.org/marketintegrity/2019/06/25/spacex-is-opening-up-the-next-fro
ntier-for-hft/.

Internet Engineering Task Force (IETF). BPF instruction set specification, v1.0, 2023. URL:
https://datatracker.ietf.org/doc/draft-ietf-bpf-isa/.

iovisor. uBPF: User space eBPF vm, 2023. URL: https://github.com/iovisor/ubpf.
Andrei A. Kirilenko and Andrew W. Lo. Moore’s law versus murphy’s law: Algorithmic
trading and its discontents. The Journal of Economic Perspectives, 27(2):51-72, 2013. URL:
http://wuw.jstor.org/stable/23391690.

Jereme Lamps, David M Nicol, and Matthew Caesar. Timekeeper: A lightweight virtual
time system for linux. In Proceedings of the 2nd ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, pages 179-186, 2014. doi:10.1145/2601381.2601395.
Christian Leber, Benjamin Geib, and Heiner Litz. High frequency trading acceleration using
FPGAs. In 2011 21st International Conference on Field Programmable Logic and Applications,
pages 317-322. IEEE, 2011. doi:10.1109/FPL.2011.64.

Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei Xu. PrintQueue: Performance diagnosis
via queue measurement in the data plane. In Proceedings of the ACM SIGCOMM 2022
Conference, pages 516529, 2022. doi:10.1145/3544216.3544257.

33:23

AFT 2025

https://doi.org/10.48550/arXiv.2401.08126
https://doi.org/10.48550/arXiv.2401.08126
https://doi.org/10.1145/3563766.3564098
https://doi.org/10.1145/3563766.3564098
https://www.cmegroup.com/media-room/press-releases/2021/11/04/cme_group_signs_10-yearpartnershipwithgooglecloudtotransformglob.html
https://www.cmegroup.com/media-room/press-releases/2021/11/04/cme_group_signs_10-yearpartnershipwithgooglecloudtotransformglob.html
https://www.cmegroup.com/media-room/press-releases/2021/11/04/cme_group_signs_10-yearpartnershipwithgooglecloudtotransformglob.html
http://www.usenix.org/events/nsdi06/tech/gupta.html
https://doi.org/10.1145/3603269.3604871
https://doi.org/10.1145/3286062.3286075
https://doi.org/10.1145/3672202.3673728
https://finansdanmark.dk/media/mstbpq23/iex-and-market-data-cost-2019.pdf
https://finansdanmark.dk/media/mstbpq23/iex-and-market-data-cost-2019.pdf
https://blogs.cfainstitute.org/marketintegrity/2019/06/25/spacex-is-opening-up-the-next-frontier-for-hft/
https://blogs.cfainstitute.org/marketintegrity/2019/06/25/spacex-is-opening-up-the-next-frontier-for-hft/
https://blogs.cfainstitute.org/marketintegrity/2019/06/25/spacex-is-opening-up-the-next-frontier-for-hft/
https://datatracker.ietf.org/doc/draft-ietf-bpf-isa/
https://github.com/iovisor/ubpf
http://www.jstor.org/stable/23391690
https://doi.org/10.1145/2601381.2601395
https://doi.org/10.1109/FPL.2011.64
https://doi.org/10.1145/3544216.3544257

33:24

A Fair, Predictable Execution Environment for Cloud-Hosted Financial Exchanges

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Jaime Lizarraga. Increasing competition and improving transparency in U.S. equity markets,
2022. URL: https://wuw.sec.gov/news/statement/lizarraga-rule-605-20221214.

John W Lockwood, Adwait Gupte, Nishit Mehta, Michaela Blott, Tom English, and Kees
Vissers. A low-latency library in FPGA hardware for high-frequency trading (HFT). In 2012
IEEE 20th annual symposium on high-performance interconnects, pages 9-16. IEEE, 2012.
doi:10.1109/HOTI.2012.15.

Jennifer Lundelius and Nancy A. Lynch. An upper and lower bound for clock synchronization.
Inf. Control., 62(2/3):190-204, 1984. doi:10.1016/30019-9958(84)80033-9.

Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan Stutsman,
and Robert Ricci. Taming performance variability. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), October 2018. URL:
https://www.flux.utah.edu/paper/maricq-osdil8.

Vasilios Mavroudis and Hayden Melton. Libra: Fair order-matching for electronic financial
exchanges. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies,
pages 156-168, 2019. doi:10.1145/3318041.3355468.

Microsoft. B3 partners with microsoft and oracle for systems migration to the cloud, 2022.
URL: https://news.microsoft.com/es-x1/b3-partners-with-microsoft-and-oracle-£
or-systems-migration-to-the-cloud.

Microsoft. Empowering the future of financial markets with London Stock Exchange Group,
2022. URL: https://blogs.microsoft.com/blog/2022/12/11/empowering-the-future-o
f-financial-markets-with-london-stock-exchange-group/.

Microsoft. Machnet, 2023. URL: https://github.com/microsoft/machnet/tree/main.
Microsoft. Microsoft azure: Cloud computing services, 2023. URL: https://azure.microsof
t.com/en-us/.

Microsoft. Azure virtual network peering, 2024. URL: https://learn.microsoft.com/en-u
s/azure/virtual-network/virtual-network-peering-overview.

Microsoft. Sizes for virtual machines in Azure, 2025. Accessed July 2025. URL: https:
//learn.microsoft.com/en-us/azure/virtual-machines/sizes/overview.

Microsoft Azure. Confidential computing, 2024. URL: https://azure.microsoft.com/en-u
s/solutions/confidential-compute.

Andy Myers, Brian Nigito, and Nate Foster. Network design considerations for trading systems.
In Proceedings of the 23rd ACM Workshop on Hot Topics in Networks, pages 282-289, 2024.
doi:10.1145/3696348.3696890.

NASDAQ. Nasdaq and aws partner to transform capital markets, 2021. URL: https:
//www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-transform-capital-mar
kets-2021-12-01.

Arista Networks. Arista 7132lb datasheet. URL: https://www.arista.com/assets/data/p
df /Datasheets/7132LB-Datasheet.pdf.

Arista Networks. Arista 7135lb datasheet. URL: https://www.arista.com/assets/data/p
df /Datasheets/7135LB-Datasheet.pdf.

John Osborne. High-frequency trading over LEO, 2022. URL: https://josborne.ca/high-f
requency-trading-over-1leo/.

Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed
computations: In search of the holy grail. Distributed computing, 7(3):149-174, 1994. doi:
10.1007/BF02277859.

SeaHorn Project. Seahorn: Extending eBPF verification with static analysis, 2019. URL:
https://seahorn.github.io/seahorn/crab/static’%20analysis/linux%20extensions/eb
p£/2019/07/04/seahorn-ebpf .html.

Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan Rellermeyer, Carlos
Maltzahn, Robert Ricci, and Alexandru Iosup. Is big data performance reproducible in modern
cloud networks? In 17th USENIX symposium on networked systems design and implementation
(NSDI 20), pages 513-527, 2020. URL: https://www.usenix.org/conference/nsdi20/pre
sentation/uta.

https://www.sec.gov/news/statement/lizarraga-rule-605-20221214
https://doi.org/10.1109/HOTI.2012.15
https://doi.org/10.1016/S0019-9958(84)80033-9
https://www.flux.utah.edu/paper/maricq-osdi18
https://doi.org/10.1145/3318041.3355468
https://news.microsoft.com/es-xl/b3-partners-with-microsoft-and-oracle-for-systems-migration-to-the-cloud
https://news.microsoft.com/es-xl/b3-partners-with-microsoft-and-oracle-for-systems-migration-to-the-cloud
https://blogs.microsoft.com/blog/2022/12/11/empowering-the-future-of-financial-markets-with-london-stock-exchange-group/
https://blogs.microsoft.com/blog/2022/12/11/empowering-the-future-of-financial-markets-with-london-stock-exchange-group/
https://github.com/microsoft/machnet/tree/main
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/overview
https://azure.microsoft.com/en-us/solutions/confidential-compute
https://azure.microsoft.com/en-us/solutions/confidential-compute
https://doi.org/10.1145/3696348.3696890
https://www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-transform-capital-markets-2021-12-01
https://www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-transform-capital-markets-2021-12-01
https://www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-transform-capital-markets-2021-12-01
https://www.arista.com/assets/data/pdf/Datasheets/7132LB-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7132LB-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7135LB-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7135LB-Datasheet.pdf
https://josborne.ca/high-frequency-trading-over-leo/
https://josborne.ca/high-frequency-trading-over-leo/
https://doi.org/10.1007/BF02277859
https://doi.org/10.1007/BF02277859
https://seahorn.github.io/seahorn/crab/static%20analysis/linux%20extensions/ebpf/2019/07/04/seahorn-ebpf.html
https://seahorn.github.io/seahorn/crab/static%20analysis/linux%20extensions/ebpf/2019/07/04/seahorn-ebpf.html
https://www.usenix.org/conference/nsdi20/presentation/uta
https://www.usenix.org/conference/nsdi20/presentation/uta

L. Yu, P. Goyal, I. Marinos, and V. Liu

55

56

57

58

59

60

Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems. distributed-systems.net,
3 edition, 2017.

Wikipedia Contributor. Algorithmic trading, 2024. URL: https://en.wikipedia.org/wiki/
Algorithmic_trading.

Liangcheng Yu, Prateesh Goyal, Ilias Marinos, and Vincent Liu. Cuttlefish: A fair, predictable
execution environment for cloud-hosted financial exchanges, November 2024. URL: https:
//www.microsoft.com/en-us/research/publication/cuttlefish-a-fair-predictable-e
xecution-environment-for-cloud-hosted-financial-exchanges/.

Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert Van Renesse. REM: Resource-
efficient mining for blockchains. In 26th USENIX Security Symposium (USENIX Security 17),
pages 1427-1444, 2017. URL: https://wuw.usenix.org/conference/usenixsecurity17/t
echnical-sessions/presentation/zhang.

Yiwen Zhang, Gautam Kumar, Nandita Dukkipati, Xian Wu, Priyaranjan Jha, Mosharaf
Chowdhury, and Amin Vahdat. Aequitas: Admission control for performance-critical RPCs in
datacenters. In Proceedings of the ACM SIGCOMM 2022 Conference, pages 1-18. ACM, 2022.
doi:10.1145/3544216.3544271.

Yuxuan Zhao, Dmitry Duplyakin, Robert Ricci, and Alexandru Uta. Cloud performance vari-
ability prediction. In Companion of the ACM/SPEC International Conference on Performance
Engineering, pages 35—40, 2021. doi:10.1145/3447545.3451182.

33:25

AFT 2025

https://en.wikipedia.org/wiki/Algorithmic_trading
https://en.wikipedia.org/wiki/Algorithmic_trading
https://www.microsoft.com/en-us/research/publication/cuttlefish-a-fair-predictable-execution-environment-for-cloud-hosted-financial-exchanges/
https://www.microsoft.com/en-us/research/publication/cuttlefish-a-fair-predictable-execution-environment-for-cloud-hosted-financial-exchanges/
https://www.microsoft.com/en-us/research/publication/cuttlefish-a-fair-predictable-execution-environment-for-cloud-hosted-financial-exchanges/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhang
https://doi.org/10.1145/3544216.3544271
https://doi.org/10.1145/3447545.3451182

	1 Introduction
	2 Background
	3 Goals and Related Work
	4 Virtual Time in Cuttlefish
	5 Design Overview
	6 MP Algorithm Representation
	6.1 Programming Interface
	6.2 MP Bytecode Processing Lifecycle

	7 Cuttlefish Execution Runtime
	8 Virtual Time Control
	9 Implementation
	10 Evaluation
	10.1 Unfairness in the Cloud
	10.2 Performance of Cuttlefish
	10.3 Instrumentation Cost
	10.4 Exploiting Determinism in Virtual Time For Fault Tolerance

	11 Discussion and Future Work
	12 Conclusion

