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Abstract
Perpetual futures – swap contracts without expiration dates – are the most widely traded derivatives
in cryptocurrency markets. Traditional perpetual trading relies on order books, which require
substantial bilateral liquidity and face challenges in high-volatility environments. In this paper, we
introduce pvpAMM, a peer-to-peer perpetual trading protocol based on automated market maker
(AMM) principles. The protocol enables efficient settlement of long-short mismatched markets
and drives positions toward equilibrium: when the minority leveraged side wins, their returns are
amplified compared to conventional perpetual contracts, while the opposite occurs when the majority
side prevails. We also propose arbitrage mechanisms to maintain economic equilibrium within the
pvpAMM system. By incorporating liquidity providers (LPs), the protocol aligns more closely with
traditional order book trading. Numerical experiments validate our theoretical findings.
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1 Introduction

1.1 Background
Perpetual contracts have emerged as the cornerstone of cryptocurrency derivatives trading,
enabling leveraged speculation and hedging without requiring holders to roll over the un-
derlying asset. Dominating digital asset markets with daily volumes exceeding $100 billion,
they surpass traditional futures in both liquidity and accessibility [3]. However, their unique
structure – continuous funding payments, no expiration, and 24/7 settlement – introduces
critical challenges for maintaining balanced markets during extreme volatility or unilateral
trading pressure.

Traditional implementations rely on centralized limit order books (CLOBs), where
execution requires matching long and short order volumes. While straightforward, this
mechanism proves fragile in skewed markets: liquidity providers face asymmetric risks that
widen spreads, increase fees, and may cause market failure [5]. The zero-sum nature of
derivatives exacerbates these issues, as directional exposure imbalances cannot be resolved
without substantial trader costs.

We present a paradigm-shifting solution through the first complete automated market
maker (AMM) framework specifically engineered for perpetual futures, which
systematically addresses the persistent position imbalance problem while simultaneously
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enhancing capital efficiency and trader profitability. Unlike traditional AMM designs originally
conceived for prediction markets [6] or simple spot trading [9, 12], our protocol introduces
leveraged, state-aware liquidity provisioning that dynamically adjusts pricing curves
and exposure limits in response to real-time market conditions. This innovative approach
enables the autonomous absorption of unilateral order flow without dependence on external
arbitrageurs or centralized liquidity pools, representing a fundamental advancement in
decentralized finance infrastructure. Our solution finally bridges the critical architectural
gap that has forced perpetual contracts to remain tethered to centralized order book models
despite their inherent incompatibility with DeFi’s core principles.

Our research makes three foundational contributions to decentralized derivatives markets:
A leveraged trading protocol resolving position imbalances, with profitability comparisons
against traditional order books.
Novel arbitrage mechanisms that sustain economic equilibrium, detailing liquidity
providers’ role in maintaining protocol stability.
Comprehensive agent-based simulations evaluating protocol efficacy through diverse
participant interactions.

1.2 Related Work
Perpetual contracts were first suggested by Shiller in [24] as a means of hedging illiquid
assets, and they later gained widespread popularity as a method for taking leveraged positions
in cryptocurrency markets [11]. The existing literature on perpetual futures primarily focuses
on descriptive evidence. For instance, Alexander et al. [3] found that BitMEX derivatives
lead the price discovery process across major Bitcoin spot exchanges. Hung et al. [23]
identified significant pricing effects and breakpoints in market efficiency. Additionally, some
researchers have addressed the challenges of perpetual trading by proposing derivatives with
alternative return structures. For example, D. White proposed a perpetual contract with
returns proportional to some power of the spot price in [27], leading to the creation of a
decentralized perpetual protocol on the Ethereum blockchain called Squeeth [21]. However,
this protocol splits total liquidity and does not resolve the issue of unequal positions.

AMMs have been utilized in various applications within the DeFi ecosystem, primarily
popularized by token swap protocols [2, 4, 13]. They have also been adapted for several DeFi
applications, including crypto options (e.g., Hegic [28]), rate swaps (e.g., Voltz [16]), and
NFT exchanges (e.g., Caviar [10]). There is emerging research on the economic implications
of AMMs; however, much of it focuses on the incentives for liquidity provision, particularly
the relationship between transaction fees and impermanent loss [15, 17, 8].

In the context of derivatives, a virtual AMM (vAMM) model has been implemented,
which differs slightly from the conventional AMM. In a vAMM, there is no proper asset
pool that supports the counterparty risk, resulting in under-collateralization. Due to this
under-collateralization, many vAMMs maintain an insurance pool to cover potential losses.
However, this can lead to adverse selection by traders when liquidations do not occur in
a timely manner. Some researchers have even argued that perpetual contracts designed
through vAMMs resemble a Ponzi scheme that cannot be sustained [2]. In [14], GMX X4
introduced a peer vs. peer (pvp) mechanism for executing perpetual contract transactions
via AMMs. LionDex later referenced this design in [18], but their analysis was restricted to
narrow use cases – primarily liquidity pool initialization and single-price updates, without
accounting for multi-period price dynamics. Their model also suffers from mathematical
inconsistencies, particularly in modeling the effect of leverage on returns (see Section 2.3 for
a detailed critique).
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2 Preliminaries

2.1 Notations
Let Pt denote the spot price of the underlying asset at time t. Contract positions are indexed
by i, j, k. For position j, let tj denote its creation time and Tj its clearing time, with the
ordering t1 ≤ t2 ≤ t3 ≤ . . . assumed without loss of generality. The collateral for the position
j is mj > 0, and the leverage is bj , where bj > 0 indicates a long position, bj < 0 a short
position, and bj = 0 designates a liquidity provider(LP) role.

At time tj , the user borrows an amount mj |bj | to acquire nj = mjbj/Ptj units of the
underlying asset. Ignoring liquidations, the conventional value of position j at time t, where
tj ≤ t < Tj , is given by:

wroughj (t) = mj︸︷︷︸
collateral

− mjbj︸ ︷︷ ︸
cash borrow

+ njPt︸ ︷︷ ︸
spot value

= mj · (1 − bj + bj
Pt
Ptj

).

Position j will be liquidated if wroughj (t) falls below a specified threshold. Specifically, the
bust time for j is defined as:

τj = inf{t ∈ [tj , Tj ] : 1 − bj + bj
Pt
Ptj

≤ ϵ},

where inf denotes the infimum, and ϵ ∈ [0, 1) is typically set to 0. When the set is empty, we
adopt the convention inf ∅ = ∞, which implies no liquidation occurs before Tj . Let I(·) be
the indicator function, with I(x) = 1 if x is true and I(x) = 0 otherwise. The conventional
value of the j-th perpetual contract over [tj , Tj ] is:

wj(t) = wroughj (t) · I(τj ≥ t) = mj · (1 − bj + bj
Pt
Ptj

) · I(τj ≥ t),

Note that τj depends only on bj and {Ps : s ≥ tj}, so the process {wj(t) : t ≥ tj} is
adapted to the filtration generated by (tj ,mj , bj , {Ps : s ≤ t}).

2.2 pvpAMM Dynamics
In an AMM-based protocol, a liquidity pool serves as the sole counterparty for each transac-
tion, utilizing a conservation function to algorithmically price positions and restrict price
movements to predefined trajectories [29]. A perpetual AMM protocol typically involves two
types of interaction mechanisms: (1) the establishment, clearing, and liquidation of leveraged
positions; (2) the provision and withdrawal of liquidity. These interactions must be specified
in a way such that desired invariant properties are upheld.

To illustrate the problem addressed by the pvpAMM protocol, we consider the simplest
scenario where all positions remain active post-creation. Similar analysis in more complex
scenarios leads to analogous conclusions (see B.2). For time t where:

t1, t2, t3, ... ≤ t ≤ T1, T2, T3, . . . τ1, τ2, τ3 . . .

the total assets in the liquidity pool are:

mpool(t) =
∑

j:tj≤t≤Tj

mj ,

AFT 2025
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and the total value of all positions is:

wpool(t) =
∑

j:tj≤t≤Tj

wj(t).

The primary challenge for pvpAMM is to distribute the available collateral mpool(t) to
individual position values wpvp

j (t) when mpool(t) ̸= wpool(t), preserving protocol solvency
and economic incentives. A straightforward method is to distribute funds in proportion to
their conventional worth:

wnaturalj (t) = wj(t)
wpool(t)

·mpool(t).

▶ Proposition 1. limt→tj +
(
wnaturalj (t) −mj

)
< 0 if wpool(tj) > mpool(tj), reducing the

incentive to create new positions.

▶ Proposition 2. limt→tj +
(
wnaturalj (t) −mj

)
> 0 if wpool(tj) < mpool(tj), leading to a

flash-loan attack where an attacker profits by borrowing mj at tj and exiting immediately.

The proofs of these propositions (Appendix A.1) demonstrate the insufficiency of this
natural approach.

2.3 GMX’s Solution

To rectify the cash-wealth imbalance, GMX introduced an intermediate token, LPT. Let
λgmx(t) represent the price of LPT, and Bj(t) the LPT balance for position j at time t. The
protocol functions as follows:

Establishment: Bj(tj) = mj/λ
gmx(tj), effectively purchasing LPT with mj .

Price Updates: for ∆Pt = Pt+1 − Pt, Bj(t+ 1) = Bj(t) · (1 + bj∆Pt/Pt).
Liquidation: position j is liquidated if Bj(t) ≤ 0 at any time tj ≤ t ≤ Tj

Clearing: at t = Tj < τj , the position holder receives Bj(Tj) · λgmx(Tj) back.
Some specific numerical examples are given in B.1. Actually we have:

▶ Proposition 3. Bj(t) → (mj/λ
gmx(tj))

(
Pt/Ptj

)bj as the time interval for price updates
∆t → 0.

The proof is provided in Appendix A.2. In DeFi implementations, spot prices update with
each on-chain operation. Consequently, frequent operations compound leverage’s effect on
LPT balances exponentially, resulting in exponential position value growth.

3 Mechanisms

In this section, we present the mathematical framework governing our pvpAMM protocol. We
begin by defining the PLT token system and establishing the fundamental value conservation
properties. The dynamics of leveraged positions are then analyzed, with particular attention
to the evolution of the scaling parameter ψ(t). Finally, we derive the stochastic differential
equation for ψ(t) and examine its probabilistic characteristics. The results provide a complete
specification of the core mechanisms of the protocol.
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3.1 PLT Token

The defining idea of our pvpAMM is “concentrated collateral and proportional worth": all
collateral mj and worth wj(t) for leveraged positions is pooled together, and the actual worth
w̃j(t) of each contract j is realized in proportion to its conventional value. We incorporate a
strategy from the GMX model, where mj is divided by the current (cash)/(position value)
scaling factor upon entering the pool. For better understanding, we introduce an intermediate
token named PLT(PvpAMM Liquidity Token), priced at λpvp(t). When a position j is
established, an amount of mj/λ

pvp(tj) PLT is recorded. As time progresses, the position’s
PLT balance is adjusted to wj(t)/λpvp(tj) at time t, and its value in the pvpAMM pool is
calculated as:

w̃j(t) =
(

wj(t)
λpvp(tj)

)
· λpvp(t).

The price of PLT, λpvp(t), is determined by the ratio of total collateral to total PLT balance:

λpvp(t) =
∑
jmj∑

j (wj(t)/λpvp(tj))
.

w̃j(t) measures the amount of numéraire that the j-th contract can retrieve if cleared at
time tj ≤ t < τj , Tj . The PLT price λpvp(t) acts as a normalization factor, ensuring that the
total value of all contracts equals the remaining cash amount, the conservation function for
our pvpAMM protocol can be written as:

∑
j

mj =
∑
j

(
wj(t)
λpvp(tj)

)
· λpvp(t) =

∑
j

w̃j(t), for t > tj .

The PLT mechanism operates similarly to a casino’s chip system. Just as a casino
maintains a fixed cash reserve backing all chips in circulation, the protocol pools all collateral
to back PLT tokens. When traders open positions, their collateral converts to PLTs at the
current exchange rate, much like purchasing casino chips with cash. The PLT price fluctuates
based on the aggregate performance of all open positions - when collective gains exceed losses,
the PLT appreciates, and vice versa. Traders closing positions redeem their PLTs at the
prevailing rate, ensuring the system remains fully collateralized at all times. This creates a
self-balancing ecosystem where value flows naturally between participants while maintaining
systemic solvency.

For computational convenience, we set ψ(t) = 1/λpvp(t), and get:

∑
j

mj =
∑
j

wj(t)ψ(tj)
ψ(t) , for t > tj . (1)

▶ Proposition 4. The scaler function ψ(t) satisfies:

ψ(t) =
∑
j:tj<t≤Tj

wj(t)ψ(tj)∑
j:tj<tmj

for t > tj . (2)

By setting the initial value ψ(0) = 1, we have one definite and unique solution for ψ(·). It is
continuous, and ψ(t) > 0 unless no live contracts exist at time t.

AFT 2025
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Proof. The expression for ψ(t) can be derived directly from equation (1). We assume at
any time there is at least one contract live, this can be easily satisfied by setting up a long
contract at time 0 with leverage b ≤ 1, which will never bust. From (2) we know ψ(·) is
left-continuous. Since wj(t) is continuous for t > tj , it is seen from (2) that ψ(t) is continous
over t that is not the event times t1, t2, ...

For the position creation time tk, we may find that

lim
t→t+

k

ψ(tk) =
∑
j:tj<tk≤Tj

wj(tk)ψ(tj) + wk(tk)ψ(tk)∑
j:tj<tk mj +mk

=

(∑
j:tj<tk mj

)
ψ(tk) + wk(tk)ψ(tk)(∑

j:tj<tk mj

)
+ wk(tk)

= ψ(tk),

the continuity of ψ(t) is thus proved.
To show ψ(t) > 0 with at least one live contract at time t, we define t∗ = inf{t : ψ(t) = 0},

with the convention of inf ∅ = ∞, then ψ(t) > 0 for all t < t∗. If t∗ is finite, the numerator
in (2) will converge to 0 as t ↑ t∗. This implies there are live contracts right before t∗, and
they all bust at t∗, which cannot happen as we assumed there is always one live contract at
any time. ◀

Note that the calculation of ψ(t) in (2) only involves ψ(s) for s < t, indicating an
iterative algorithm for computing ψ(t). We can iteratively determine ψ(t) based on all
previously computed values of ψ(·) at the event times tj , Tj that occur before t. Additionally,
if there are no events for establishing or clearing positions in the time interval [a, b], the sets
{j : tj < a ≤ Tj} and {j : tj < b ≤ Tj} are identical. Under this condition, we have:

ψ(b)
ψ(a) =

∑
j:tj<b≤Tj

wj(b)ψ(tj)∑
j:tj<a≤Tj

wj(a)ψ(tj)
. (3)

with the continuity of ψ(·), this formula may be used to efficiently compute ψ.

3.2 Leveraged Positions
In this section, we clarify the state transitions of the defined pvpAMM market when operating
with leveraged positions. Consider two trading positions, i = 1 for Alice and j = 2 for
Bob. To demonstrate the system’s behavior across different stages, we specifically consider a
scenario where t1 < t2 < T1 < T2 < τ1, τ2. The trading activities in our protocol function as
follows:

Initialization. we initialize ψ(t) = 1 for t ≤ t1.
Establishment. for t1 < t ≤ t2,

ψ(t) = w1(t)ψ(t1)
m1

= w1(t)
m1

, w̃1(t) = w1(t)
ψ(t) ≡ m1.

Alice can close her position at any time during this period to reclaim her collateral m1, it
occurs without any profit or loss, as there is no counterparty involved.
For t2 < t ≤ T1:

ψ(t) = w1(t)ψ(t1) + w2(t)ψ(t2)
m1 +m2

= w1(t) + w2(t)(w1(t2)/m1)
m1 +m2

.

{
w̃1(t) = w1(t)ψ(t1)/ψ(t) = w1(t) m1+m2

w1(t)+w2(t)(w1(t2)/m1)

w̃2(t) = w2(t)ψ(t2)/ψ(t) = w2(t)(w1(t2)/m1) m1+m2
w1(t)+w2(t)(w1(t2)/m1)

where w̃1(t) and w̃2(t) represent the amounts each position would receive if closed at
time t, w̃1(t) + w̃2(t) ≡ m1 +m2.
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Clearing. Alice closed her position at time T1, withdrew w̃1(T1) = w1(T1)/ψ(T1) from
the pool. for T1 < t ≤ T2:

ψ(t) = w2(t)ψ(t2)
m1 +m2 − w1(T1)ψ(t1)/ψ(T1) , w̃2(t) = w2(t)ψ(t2)/ψ(t) ≡ m1 +m2 − w̃1(T1).

The above discussion illustrates how ψ(·) is updated and its role in the trading process.
For any leveraged position, the presence of a counterparty is not strictly necessary. Even
with only positions in the same direction, such as all long positions, trading can still proceed.
In this case, the less leveraged positions effectively act as short positions(“relatively short”).

Numerical examples can be found in Appendix B.2.

3.3 Pricing Equation
For the interval tj < t < s < τj , we have:

w̃j(s)
w̃j(t)

= wj(s)ψ(tj)/ψ(s)
wj(t)ψ(tj)/ψ(t) =

(
ψ(t)
ψ(s)

)
wj(s)
wj(t)

.

This suggests that, from the traders’ perspective, the ratio ψ(t)/ψ(s) determines whether
their profit(or loss) is greater or less than those in a conventional perpetual setup.

For notational simplicity, let

ξ(t) =
∑
j:tj<t≤Tj

Ptmjbjψ(tj)/PtjI(τj ≥ t)∑
j:tj<t≤Tj

wj(t)ψ(tj)
=
∑
j:tj<t≤Tj

Ptnjψ(tj)∑
j:tj<t≤Tj

wj(t)ψ(tj)
. (4)

Observe that ξ(t) is left-continuous, it represents the balance of long and short positions in
the pool: sign (ξ(t)) = sign

(∑
j:tj<t<Tj

nj(t)ψ(tj)
)

. ξ(t) > 0 means that the weighted long
shares, adjusted by ψ(tj), are heavier than the weighted short shares, and vice versus.

▶ Theorem 5. The scalar function ψ(t) satisfies the stochastic differential equation:

dψ(t)
ψ(t) = ξ(t)

Pt
dPt. (5)

Suppose the price process satisfies

dPt
Pt

= µ(t)dt+ σ(t)dBt

with Bt a standard Brownian motion, and µ(t), σ(t) continuous functions. If µ(t) ≡ 0,
namely, the price process is a martingale, then ψ(t) is a positive martingale. In this case,
E[ψ(t)] = 1 for all t, and ψ(t) converges almost surely as t → ∞.

Proof. Equation (5) directly follows from differentiating both sides of equation (2). If Pt
follows geometric Brownian motion, we have

ψ(t) = exp
{∫ t

0
ξ(s)[σ(s)dBs + µ(s)ds] − 1

2

∫ t

0
[ξ(s)σ(s)]2ds

}
when µ(t) ≡ 0, dψ(t) = ψ(t)ξ(t)σ(t)dBt, ψ(t) is a local martingale, given that ψ(t) is positive,
it is also a true martingale by the positive martingale property [19]. Then, E[ψ(t)] = ψ(0) = 1,
ψ(t) is bounded in expectation. By the Martingale Convergence Theorem, ψ(t) converges
almost surely to some limit as t → ∞. ◀

AFT 2025
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Suppose ξ(t) > 0, i.e. the weighted long positions are heavier than short positions, as
seen from an interpretation of equation (5), ψ(t) increases (or decreases) along with the
increase (or decrease) of Pt. If Ps > Pt, ψ(t) increases, and all long positions, the majority
of the pool, get their profit from the difference (Ps − Pt). Note that the increase in ψ(t)
suggests a diminished return compared to the conventional perpetual. Specifically, if Alice
establishes the same position in a conventional setup and Bob does so in our protocol, Bob’s
instantaneous return will be lower than Alice’s.

Conversely, if the pool (majority) is incorrect and Pt decreases, ψ(t) also decreases. The
decrease in ψ(t) implies a better return compared with a conventional perpetual. The same
interpretation holds for the case where ξ(t) < 0.

In summary, our protocol favors the overall performance of the pool. If the pool is correct,
the established contracts yield worse returns than those in conventional perpetuals. If the
pool is incorrect, the contracts yield better returns. For an individual position, the best
return occurs when its direction is correct while the pool is wrong, whereas the worst return
happens when the individual contract direction is incorrect but the pool is right.

4 Security Analysis

Security is paramount in DeFi protocols, particularly for innovative systems like pvpAMM.
This section examines the security of our protocol from four aspects: (1) arbitrage maintains
market equilibrium through price-stabilizing flows, (2) liquidity providers ensure stability via
deposit/withdrawal dynamics, (3) flash loan resistance emerges from bounded profit potential,
and (4) oracle reliability depends on feed accuracy and update frequency. These properties
collectively ensure robustness against smart contract exploits, strategic manipulations, and
data integrity threats.

4.1 Arbitrage Mechanisms for System Balance
In traditional perpetual contract trading markets such as centralized exchanges, prices of
perpetual contracts are determined by secondary market transactions, and quantitative
analysis between the spot and perpetual markets can identify arbitrage-free prices [1]. In
contrast, our pvpAMM model determines the value of a position primarily through the price
of PLT, denoted as ψ(t). This value influences the strategies for position entry and exit, and
arbitrageurs effectively trade overψ(t). Unlike in CEX, ψ(t) in pvpAMM is unaffected by
secondary market transactions or market tendencies towards long or short positions; the
determination of ψ(t) follows exclusively from the stochastic differential equation defined in
Section 5. The pvpAMM protocol introduces an arbitrage mechanism that attracts minority
orders, automatically balancing the long-short ratio by driving ξ(t), as defined in 4, toward
zero.

▶ Theorem 6. Arbitrage opportunities exist when ξ(t) ̸= 0.

Proof. For simplicity, assume Pt = 1, and let s = t+ ∆t, where ∆t is small. At time t, user
j borrows (ξ(t) + 2) dollars to: (1) purchase ξ(t) spot assets, (2) use 1 dollar as collateral to
open a position in the conventional market with leverage (−b), and (3) use another 1 dollar
as collateral to open a position in our pvpAMM with leverage b. The arbitrage behavior here
occurs in a short period of time, so the funding fee in the conventional perpetual market is
negligible. The portfolio consists of the following four components:

Conventional perpetuals: CP (s) = 1 + b− bPs
pvpAMM perpetuals: PV P (s) = (1 − b+ bPs) (ψ(t)/ψ(s))
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Spot: SP (s) = Psξ(t)
Cash: CASH(s) = −(ξ(t) + 2)

From (5) and Pt = 1, we have:

ψ(s) − ψ(t)
ψ(s) = ξ(t)∆Pt − ξ(t)2(∆Pt)2 + o((∆Pt)2).

The complete derivation appears in Appendix A.4. Note that portfolio(t) = 0, and the
portfolio value at time s is given by:

portfolio(s) = CP (s) + PV P (s) + SP (s) + CASH(s)

= [1 + b− bPs] +
[
(1 − b+ bPs)

(
ψ(t)
ψ(s)

)]
+ [Psξ(t)] + [−(ξ(t) + 2)]

= − [b(Ps − 1) + 1]
(
ψ(s) − ψ(t)

ψ(s)

)
+ [Psξ(t) + 2] − (ξ(t) + 2)

= − (b∆Pt + 1)
(
ξ(t)∆Pt − (ξ(t)∆Pt)2 + o((∆Pt)2)

)
+ (Psξ(t) + 2) − (ξ(t) + 2)

= ξ(t)(ξ(t) − b)
(
(∆Pt)2 + o((∆Pt)2)

)
.

The portfolio is positive when arbitrageur set:

b

{
< ξ(t), if ξ(t) > 0
> ξ(t), if ξ(t) < 0

When ξ(t) > 0, open a position with leverage b < ξ(t) implies relatively short position in
pvpAMM, thereby driving ξ(t) downward. Vice versa when ξ(t) < 0, open a position with
leverage b > ξ(t) implies relatively long position in pvpAMM, thereby driving ξ(t) upward.
The arbitrage opportunities exist when ξ(t) ̸= 0. ◀

4.2 Liquidity Provision and Market Stability
Liquidity provision is a key mechanism for enhancing stability in decentralized finance (DeFi)
systems – a critical factor in ensuring protocol security. In pvpAMM, liquidity providers
act as counterweights to dominant pool positions, mirroring the stabilizing role of market
makers in traditional perpetual markets.

By letting bj = 0 for the j-th contract, we get a liquidity position:

wj(t) = mj , w̃j(t) = wj(t)
ψ(tj)
ψ(t) = mj

ψ(tj)
ψ(t) .

this position will profit from a decrease in ψ(t). Under the condition that ξ(t) > 0, a decline
in ψ(t) indicates a fall in Pt, meaning the liquidity position is opposite to the direction of
the majority of the pool’s positions. This is precisely the role of the LP, as it partially acts
as a counterparty to the pool majority. Let b1 = 0, i.e. the first position be an LP position,
actually, we may regard the first LP position establishment point tk as the process origin.
We have:

▶ Theorem 7. Liquidity position makes the worth of our pvpAMM position closer to a
conventional perpetual. Specially,

lim
m1→∞

w̃j(t)
wj(t)

= 1, ∀ j ̸= 1, t1 < tj < t < Tj < T1.
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Proof. for t1 < t < T1,

lim
m1→∞

ψ(t) = lim
m1→∞

m1 +
∑
j ̸=1:tj<t≤Tj

wj(tj)ψ(tj)
m1 +

∑
j ̸=1:tj<tmj −

∑
j:Tj<t

wj(Tj)ψ(tj)/ψ(Tj)
= 1,

then

lim
m1→∞

w̃j(t)
wj(t)

= lim
m1→∞

ψ(tj)
ψ(t) = limm1→∞ ψ(tj)

limm1→∞ ψ(t) = 1. ◀

Generally, traders interacting with the pool for leveraged positions have to reimburse LPs
for supplying assets and living with the volitality of ψ(t). This compensation comes in the
form of swap fees that are charged on each position, and then distributed to liquidity pool
shareholders [20]. Let δ be a small percentage of the trading fee, the pvpAMM protocol with
fees is designed as follows:

w̃j(t) = (1 − δ)I(bj ̸= 0)wj(t)
ψ(tj)
ψ(t) ,

ψ(t) =
∑
j:tj<t≤Tj

wj(t)ψ(tj)∑
j:tj<tmj −

∑
j:Tj<t

(1 − δI(bj ̸= 0))wj(Tj)ψ(tj)/ψ(Tj)
.

(8)

4.3 Resistance to Flash Loan Attacks
Flash loan attacks – a prevalent threat in DeFi, as outlined in Proposition 2 – leverage rapid,
uncollateralized borrowing to artificially distort market conditions. While earlier pvpAMM
iterations were susceptible to such exploits, our protocol eliminates this vulnerability by
preventing unanticipated profits from immediate position entry and exit, as formalized below.

▶ Theorem 8. The proposed pvpAMM protocol as 3.1 is resistant to flash loan attacks, i.e.,
there is no unanticipated profit from an immediate exit after entry.

Proof. This follows directly from the continuity of ψ(t) 2: limt→t+
j
ψ(t) = ψ(tj), thus

lim
t→t+

j

w̃j(t) = lim
t→t+

j

wj(t)
ψ(tj)
ψ(t) =

(
lim
t→t+

j

wj(t)
)(

lim
t→t+

j

ψ(tj)
ψ(t)

)
= mj . ◀

4.4 Oracle Price Feed Security
In decentralized finance (DeFi), accurate and timely price updates are critical to the func-
tionality of the protocol, particularly for perpetual decentralized exchanges such as GMX
and Jupiter. These platforms depend on oracles to provide asset price data, which underpins
position valuation and overall protocol stability. However, oracles introduce potential attack
vectors, including off-chain data manipulation, update latency, and centralization risks, all of
which may compromise system integrity [26].

To mitigate these risks, modern DeFi protocols employ advanced oracle mechanisms. For
example, Jupiter Perp integrates the Signal Oracle, a collaborative solution with Jupiter
that enables compute-efficient multi-asset price updates in a single transaction, ensuring low
latency and high reliability. Additionally, it supplements security with the Pyth Oracle for
redundancy [25].

Decentralized oracle networks like Chainlink further enhance robustness by aggregating
data from multiple sources, reducing manipulation risks. These systems use cryptographic
attestations to verify data providers and employ aggregation methods to derive consensus
prices – often accompanied by confidence intervals to indicate reliability [7].
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5 Simulation

To validate the properties of our proposed pvpAMM protocol, we conducted numerical
simulations. These simulations define a simulated underlying price process and explore how
different types of agents interact with the protocol. The simulation runs for a predetermined
number of time steps, updating prices and evaluating policies for introducing new agents at
each step.

5.1 Market and Agents
The underlying market price is updated at each time step (after all agents have completed
their actions) using the formula:

Pt → Pt · eσX+µ

where X ∼ N (0, 1) is drawn from a normal distribution, and µ, σ ∈ R represent the mean
returns and market volatility. In our simulation, we set µ = 0 and σ = 0.01. The initial price
P0 is set to 1.0, with the timestep defined as dt = 1

100000 .
We analyze the performance of positions in a simple market with three different types of

users, where the leverage factor bj and the collateral mj are defined as in Section 2.1. The
users and their default values are set to be:

Alice, who joins at t1 = 1, uses no leverage, i.e. b1 = 0, with a m1 = 1000 collateral.
Bob, who joins at t2 = 1000, uses 3× leverage long, i.e. b2 = 3, with a m2 = 1500
collateral.
Chris, who joins at t3 = 2000, uses 2× leverage short, i.e. b3 = −2, with a m3 = 1000
collateral.

We assume that price fluctuations are relatively small and users have a low leverage ratio,
ensuring no position will be liquidated. The variables ψ(t), wj(t), w̃j(t) for j = 1, 2, 3 are
updated through equations 2, 2.1, 3.1, respectively.

5.2 Results

Figure 1 ψ(t) and Pt are derived by averaging data from 500 experimental sets. It can be seen
that ψ(t) is steady and exhibits lower volatility compared to Pt.
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To investigate the property of ψ(t), multiple experiments with different price series Pt
are conducted, we calculate ψ(t) and take their mean as our final value. The results, shown
in Figure 1, indicate that ψ(t) consistently fluctuates around its expected value of 1.0, with
lower volatility compared to Pt.

The unique properties of our proposed pvp model under various market conditions are
experimentally verified as follows:

5.2.1 No Counterparty Needed
Extreme market conditions often exhibit a clear one-sided sentiment, such as a bull market
where all participants expect prices to rise, or a bear market where everyone anticipates a
decline. In such scenarios, market makers are not necessary in our model to allow trader
activities. For instance, in a bullish market where all traders anticipate an upward movement,
their expectation of rising prices is reflected in the leverage of their trades: the stronger their
belief in the price increase, the higher their leverage will be.

For example, if Bob takes a b2 = 3× long position, while Chris opts for a b3 = 2× long
position, both entering at t2 = t3 = 1 with collateral amounts of m2 = m3 = 1000. Results
shown in Figure 2a indicate that when the price rises, Bob achieves a positive return while
Chris incurs a loss. Conversely, if the price drops – indicating a misjudgment by all traders,
the outcomes reverse. Despite both being long positions, Chris is effectively at a disadvantage
compared to Bob, whose smaller position yields returns akin to being short.

To further illustrate the impact of leverage, we conducted additional experiments where
b2 = 2, b3 = 3,m2 = 3000, and m3 = 2000, ensuring that m2 · b2 = m3 · b3. Even under these
conditions, Bob’s position beats Chris’s when the market price increases, and vice versa when
price drops, see 2b. This reinforces the conclusion that leverage is the critical factor: for
long positions, less leveraged traders effectively act as relative short against more leveraged
traders. A similar conclusion applies to short positions.

(a) Long positions with different contract
positions.

(b) Long positions with same positions but
different leverage.

Figure 2 Normalized agent return dynamics in a single-sided pvpAMM environment. The left
figure depicts return dynamics for varying contract values, where m2 · b2 > m3 · b3, b2 · b3 > 0, the
right figure shows dynamics for equal contract values but differing leverage, with m2 · b2 = m3 · b3,
and b3 > b2 > 0. This demonstrates that the agent with higher leverage and a contract position
aligned with the market direction achieves greater profits.

5.2.2 Auto Rebalancing in Unbalanced Positions
In a normal market where users hold differing directional views, the pvp protocol naturally
encourages a balance between the long and short sides through economic incentives. It offers
higher returns for the minority side while providing the majority side with lower but more
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stable returns. Figure 3 illustrates the dynamics of agent positions in this context. Bob,
representing the minority, achieves a return that exceeds the conventional return when the
price series Pt trends upwards. Conversely, Chris, as the majority, incurs a negative return,
however, this loss is less severe than what would be experienced in a conventional perpetual
market.

(a) Position values for Bob, the majority party. (b) Position values for Chris, the minority party.

Figure 3 Comparison of pvpAMM position value w̃j(t) (in blue) and traditional perpetual position
value wj(t) (in red), with the horizontal dashed line representing the initial collateral amount. Bob
represents the majority party in the protocol, while Chris is the minority party. It is evident that
when Bob wins, i.e., when the curves are above the dashed line, w1(t) > w̃1(t), indicating that the
return on the pvp position is lower than the traditional return. Conversely, for Chris, w2(t) < w̃2(t).
This demonstrates that the pvp protocol can maintain equilibrium between long and short positions
through economic incentives.

For liquidity providers in the protocol, Figure 4 illustrates the impact of the LP’s
principal on w̃Bob at t = 50000. As the LP position m1 increases, Bob’s returns in the pvp
protocol, w̃2(t), gradually converge to those of the traditional perpetual contract w2(t). This
observation aligns with our derivations presented in 4.2.

Figure 4 t = 50000, effect of LP principal m1 on agent Bob’s position value w̃2(50000). As the
LP principal m1 increases, w̃2(50000) converges to the conventional perpetual worth w2(50000).

6 Conclusion

We have detailed the design and implementation of pvpAMM, a peer-to-peer automated
market maker (AMM) for perpetual contract transactions. The system proves particularly
effective in markets with asymmetrical long and short positions, enabling a robust secondary
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market without traditional market makers or liquidity providers. The elimination of liquidity
providers allows pvpAMM to extend derivative trading into smaller or markedly skewed
market conditions, offering customized trading opportunities. Additionally, pvpAMM applies
to prediction markets, where it can utilize trading behaviors to extract price insights and
forecasts.

In deploying pvpAMM via blockchain smart contracts, careful attention is required for
price determination to ensure the smooth handling of leveraged positions. The industry often
adopts a multi-source oracle strategy to ensure reliability and accuracy, as elaborated in [30].
We include Solidity-based code for the critical modules of pvpAMM here, such as position
opening, closing, and liquidation, to serve as a practical reference for readers [22].

Perpetual contracts are pivotal in finance, particularly within the cryptocurrency sector,
where they traditionally depend on order books or liquidity pools with liquidity providers as
counterparties. Our pvpAMM design addresses this reliance by introducing a new asset type,
PLT. Analyzing PLT’s behavior under various spot price processes are left as future work.
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A Proofs

A.1 Proofs for Natural Worth Allocation in pvpAMM

We provide proofs for propositions within Section 2.2, which demonstrate that the natural
worth allocation wnatural

j (t) = wj(t)/wpool(t) · mpool(t) leads to disincentives for creating
new positions when wpool(tj) > mpool(tj) or vulnerabilities to flash-loan attacks when
wpool(tj) < mpool(tj).
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Proof.

lim
t→t+

j

wnaturalj (t) −mj =
(

lim
t→t+

j

wj(t)
)

·

( limt→t+
j
mpool(t)

limt→t+
j
wpool(t)

)
−mj

= mj ·
(

mpool(tj) +mj

wpool(tj) + wj(tj)

)
−mj

= mj ·
(
mpool(tj) +mj

wpool(tj) +mj

)
−mj

= mj ·
(
mpool(tj) − wpool(tj)

wpool(tj) +mj

)
. ◀

A.2 Proof for LPT Balance in GMX’s Solution
We prove Proposition 3, which states that the LPT balance for position j in the GMX
protocol converges to

Bj(t) →
(

mj

λgmx(tj)

)(
Pt
Ptj

)bj

as the time interval for price updates ∆t → 0.

Proof. The price of LPT remains consistent across all positions and follows the equation:

λgmx(t) =
∑
jmj∑

j Bj(t)
=

∑
jmj∑

j

t∏
s=tj

(
mj

λgmx(tj)

)(
1 + bj(

∆Ps
Ps

)
)

︸ ︷︷ ︸
LPT balance for position j

.

then
t∏

s=tj

(
1 + bj

(
∆Ps
Ps

))
= e
∑

s
log(1+bj( ∆Ps

Ps
)) ∼ e

∑
s
bj( ∆Ps

Ps
)

= e
bj

∫ t

tj

dP
P = e

bj log
(

Pt
Ptj

)
=
(
Pt
Ptj

)bj

. ◀

A.3 Conservation and Continuity in pvpAMM with Position Clearing
In Section 3.1, we derived the conservation function and the scaler function ψ(t) for the
pvpAMM protocol assuming all positions remain active after creation (see Proposition 2).
Here, we extend the analysis to include position clearing at times Tj , showing that the
conservation function holds and that ψ(t) remains continuous at position creation (tk) and
clearing (Tk) times.

Conservation Function∑
j:tj<t

mj =
∑

j:tj<t≤Tj

wj(t)λ(t)/λ(tj) +
∑
j:Tj<t

wj(Tj)λ(Tj)/λ(tj)

and∑
j:tj<t

mj =
∑

j:tj<t≤Tj

wj(t)ψ(tj)/ψ(t) +
∑
j:Tj<t

wj(Tj)ψ(tj)/ψ(Tj).
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Continuity of ψ(t)
Proof. For the position creation time tk, we may find that

lim
t→t+

k

ψ(tk) =
∑
j:tj<tk≤Tj

wj(tk)ψ(tj) + wk(tk)ψ(tk)∑
j:tj<tk mj −

∑
j:Tj<tk

wj(Tj)ψ(tj)/ψ(Tj) +mk

=

(∑
j:tj<tk mj −

∑
j:Tj<tk

wj(Tj)ψ(tj)/ψ(Tj)
)
ψ(tk) + wk(tk)ψ(tk)(∑

j:tj<tk mj −
∑
j:Tj<tk

wj(Tj)ψ(tj)/ψ(Tj)
)

+ wk(tk)

= ψ(tk),

and for the clearing time Tk, we have:

lim
t→T+

k

ψ(Tk) =
∑
j:tj<Tk≤Tj

wj(Tk)ψ(tj) − wk(Tk)ψ(tk)∑
j:tj<Tk

mj −
∑
j:Tj<Tk

wj(Tj)ψ(tj)/ψ(Tj) − wk(Tk)ψ(tk)/ψ(Tk)

=

(∑
j:tj<Tk

mj −
∑
j:Tj<Tk

wj(Tj)ψ(tj)/ψ(Tj)
)
ψ(Tk) − wk(Tk)ψ(tk)(∑

j:tj<tk mj −
∑
j:Tj<tk

wj(Tj)ψ(tj)/ψ(Tj)
)

− wk(Tk)ψ(tk)/ψ(Tk)

= ψ(Tk). ◀

A.4 Derivation of ψ(t) Dynamics for Theorem 6
We provide the detailed derivation for the expression of ψ(s)−ψ(t)

ψ(s) used in the proof of
Theorem 6.

Proof.

ψ(s) − ψ(t)
ψ(s) = ψ(s) − ψ(t)

ψ(t) + ψ(s) − ψ(t) = (ψ(s) − ψ(t))/ψ(t)
1 + (ψ(s) − ψ(t))/ψ(t) (1)

= dψ(t)/ψ(t)
1 + dψ(t)/ψ(t) = dψ(t)

ψ(t) −
(

dψ(t)
ψ(t)

)2
+ o

((
dψ(t)
ψ(t)

)2
)

= ξ(t)dPt
Pt

− ξ(t)2
(

dPt
Pt

)2
+ o

((
dPt
Pt

)2
)

= ξ(t)∆Pt − ξ(t)2(∆Pt)2 + o((∆Pt)2). ◀

B Numerical Examples

B.1 GMX’s LPT Solution
Use USD as the default numéraire. At time t0, Alice places a long order with 200 USD, 2×
leverage. Bob places a short order with 100 USD, 3× leverage.

1. t = t0, the initial spot price Pt0=100, the initial LPT price λgmx(t0) = 1.
Alice’s LPT amount, B1(t0) = m1/λ

gmx(t0) = 200.
Bob’s LPT amount, B2(t0) = m2/λ

gmx(t0) = 100.
Total collateral is mpool = m1 +m2 = 300.
Total LPT amount is B(t0) = B1(t0) + B2(t0) = 300.
New LPT price λgmx(t0) = mpool/B(t0) = 1.
Alice’s position value wgmx1 (t0) = B1(t0) · λgmx(t0) = 200.
Bob’s position value wgmx2 (t0) = B2(t0) · λgmx(t0) = 100.
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2. t = t1, assume the spot price rises 10% to Pt1 = 110.
Alice’s LPT amount, B1(t1) = B1(t0)(1 + b1 × 10%) = 200 × (1 + 2 × 10%) = 240.
Bob’s LPT amount, B2(t1) = B2(t0)(1 + b2 × 10%) = 100 × (1 − 3 × 10%) = 70.
Total collateral is mpool = m1 +m2 = 300.
Total LPT amount is B(t1) = B1(t1) + B2(t1) = 310.
New LPT price λgmx(t1) = mpool/B(t1) = 0.9677.
Alice’s position value wgmx1 (t1) = B1(t1) · λgmx(t1) = 232.2581.
Bob’s position value wgmx2 (t1) = B2(t1) · λgmx(t1) = 67.7419.

3. t = t2, assume the spot price rises 10% to Pt2 = 121.
Alice’s LPT amount, B1(t2) = B1(t1)(1 + b1 × 10%) = 240 × (1 + 2 × 10%) = 288.
Bob’s LPT amount, B2(t2) = B2(t1)(1 + b2 × 10%) = 70 × (1 − 3 × 10%) = 49.
Total collateral is mpool = m1 +m2 = 300.
Total LPT amount is B(t2) = B1(t2) + B2(t2) = 337.
New LPT price λgmx(t2) = mpool/B(t2) = 0.8902.
Alice’s position value wgmx1 (t2) = B1(t2) · λgmx(t2) = 256.3798.
Bob’s position value wgmx2 (t2) = B2(t2) · λgmx(t2) = 43.6202.

B.2 pvpAMM’s PLT Solution
Use USD as the default numéraire. At time t0, Alice places a long order with 200 USD, 2×
leverage. Bob places a short order with 100 USD, 3× leverage.

1. t = t0, the initial spot price Pt0=100, the initial PLT price λpvp(t0) = 1.
Alice’s PLT amount, B1(t0) = m1/λ

pvp(t0) = 200.
Bob’s PLT amount, B2(t0) = m2/λ

pvp(t0) = 100.
Total collateral is mpool = m1 +m2 = 300.
Total PLT amount is B(t0) = B1(t0) + B2(t0) = 300.
New PLT price λpvp(t0) = mpool/B(t0) = 1.
Alice’s position value w̃1(t0) = B1(t0) · λpvp(t0) = 200.
Bob’s position value w̃2(t0) = B2(t0) · λpvp(t0) = 100.

2. t = t1, assume the spot price rises 10% to Pt1 = 110.
Alice’s PLT amount, B1(t1) = w1(t1)/λpvp(t0) =

(
200 − 200 × 2 + 200×2

100 × 110
)
/1 =

240.
Bob’s PLT amount, B2(t1) = w2(t1)/λpvp(t0) =

(
100 + 100 × 3 − 100×3

100 × 110
)
/1 =

70.
Total collateral is mpool = m1 +m2 = 300.
Total PLT amount is B(t1) = B1(t1) + B2(t1) = 310.
New PLT price λpvp(t1) = mpool/B(t1) = 0.9677.
Alice’s position value w̃1(t1) = B1(t1) · λpvp(t1) = 232.2581.
Bob’s position value w̃2(t1) = B2(t1) · λpvp(t1) = 67.7419.

3. t = t2, assume the spot price rises 10% to Pt2 = 121.
Alice’s PLT amount, B1(t2) = w1(t2)/λpvp(t0) =

(
200 − 200 × 2 + 200×2

100 × 121
)
/1 =

284.
Bob’s PLT amount, B2(t2) = w2(t2)/λpvp(t0) =

(
100 + 100 × 3 − 100×3

100 × 121
)
/1 =

37.
Total collateral is mpool = m1 +m2 = 300.
Total PLT amount is B(t2) = B1(t2) + B2(t2) = 321.
New PLT price λpvp(t2) = mpool/B(t2) = 0.9346.
Alice’s position value w̃1(t2) = B1(t2) · λpvp(t2) = 265.4206.
Bob’s position value w̃2(t2) = B2(t2) · λpvp(t2) = 34.5794.
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B.3 LONG positions only in pvpAMM
Use USD as the default numéraire. At time t0, Alice places a long order with 200 USD, 2×
leverage. Bob places a long order with 100 USD, 3× leverage.

1. t = t0, the initial spot price Pt0=100, the initial PLT price λpvp(t0) = 1.
Alice’s PLT amount, B1(t0) = m1/λ

pvp(t0) = 200.
Bob’s PLT amount, B2(t0) = m2/λ

pvp(t0) = 100.
Total collateral is mpool = m1 +m2 = 300.
Total PLT amount is B(t0) = B1(t0) + B2(t0) = 300.
New PLT price λpvp(t0) = mpool/B(t0) = 1.
Alice’s position value w̃1(t0) = B1(t0) · λpvp(t0) = 200.
Bob’s position value w̃2(t0) = B2(t0) · λpvp(t0) = 100.

2. t = t1, assume the spot price rises 10% to Pt1 = 110.
Alice’s PLT amount, B1(t1) = w1(t1)/λpvp(t0) =

(
200 − 200 × 2 + 200×2

100 × 110
)
/1 =

240.
Bob’s PLT amount, B2(t1) = w2(t1)/λpvp(t0) =

(
100 − 100 × 3 + 100×3

100 × 110
)
/1 =

130.
Total collateral is mpool = m1 +m2 = 300.
Total PLT amount is B(t1) = B1(t1) + B2(t1) = 370.
New PLT price λpvp(t1) = mpool/B(t1) = 0.8108.
Alice’s position value w̃1(t1) = B1(t1) · λpvp(t1) = 194.5946.
Bob’s position value w̃2(t1) = B2(t1) · λpvp(t1) = 105.4054.

3. t = t2, assume the spot price rises 10% to Pt2 = 121.
Alice’s PLT amount, B1(t2) = w1(t2)/λpvp(t0) =

(
200 − 200 × 2 + 200×2

100 × 121
)
/1 =

242.
Bob’s PLT amount, B2(t2) = w2(t2)/λpvp(t0) =

(
100 − 100 × 3 + 100×3

100 × 121
)
/1 =

163.
Total collateral is mpool = m1 +m2 = 300.
Total PLT amount is B(t2) = B1(t2) + B2(t2) = 403.
New PLT price λpvp(t2) = mpool/B(t2) = 0.7444.
Alice’s position value w̃1(t2) = B1(t2) · λpvp(t2) = 180.1489.
Bob’s position value w̃2(t2) = B2(t2) · λpvp(t2) = 119.8511.
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