On-Chain Decentralized Learning and
Cost-Effective Inference for DeFi Attack Mitigation

Abdulrahman Alhaidari &
School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA

Balaji Palanisamy &
School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA

Prashant Krishnamurthy &
School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA

—— Abstract

Billions of dollars are lost every year in DeFi platforms by transactions exploiting business logic
or accounting vulnerabilities. Existing defenses focus on static code analysis, public mempool
screening, attacker contract detection, or trusted off-chain monitors, none of which prevents exploits
submitted through private relays or malicious contracts that execute within the same block. We
present the first decentralized, fully on-chain learning framework that: (i) performs gas-prohibitive
computation on Layer-2 to reduce cost, (ii) propagates verified model updates to Layer-1, and (iii)
enables gas-bounded, low-latency inference inside smart contracts. A novel Proof-of-Improvement
(Polm) protocol governs the training process and verifies each decentralized micro update as a
self-verifying training transaction. Updates are accepted by Polm only if they demonstrably improve
at least one core metric (e.g., accuracy, Fl-score, precision, or recall) on a public benchmark without
degrading any of the other core metrics, while adversarial proposals get financially penalized through
an adaptable test set for evolving threats. We develop quantization and loop-unrolling techniques
that enable inference for logistic regression, SVM, MLPs, CNNs, and gated RNNs (with support
for formally verified decision tree inference) within the Ethereum block gas limit, while remaining
bit-exact to their off-chain counterparts, formally proven in Z3. We curate 298 unique real-world
exploits (2020 - 2025) with 402 exploit transactions across eight EVM chains, collectively responsible
for $3.74 B in losses. We demonstrate that on-chain ML governed by PoIm detects previously unseen
attacks with over 97% attack detection accuracy and 82.0% F1. A single inference, such as one
made via an external call, typically incurs zero cost. Fully on-chain inference consumes 57,603 gas
(=~ $0.18) for linear models, 143,647 gas (~ $0.49) for CNN(F2, K1), and 506,397 gas (~ $1.77) for
CNN(F8, K4) on L1 (e.g., Ethereum). Our results show that practical and continually evolving DeFi
defenses can be embedded directly in protocol logic without trusted guardians, and our solution
achieves highly cost-effective protection while filling a critical gap between vulnerability scanners
and real-time transaction screening.

2012 ACM Subject Classification Security and privacy — Network security; Security and privacy
— Distributed systems security; Security and privacy — Security protocols

Keywords and phrases DeFi attacks, on-chain machine learning, decentralized learning, real-time
defense

Digital Object Identifier 10.4230/LIPIcs.AFT.2025.35

Funding This material is based upon work supported by the National Science Foundation under
Grant #2020071. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

© Abdulrahman Alhaidari, Balaji Palanisamy, and Prashant Krishnamurthy;
oY licensed under Creative Commons License CC-BY 4.0

7th Conference on Advances in Financial Technologies (AFT 2025).

Editors: Zeta Avarikioti and Nicolas Christin; Article No. 35; pp. 35:1-35:27

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:aba70@pitt.edu
https://orcid.org/0000-0001-6406-9603
mailto:bpalan@pitt.edu
https://orcid.org/0000-0002-0282-0913
mailto:prashk@pitt.edu
https://orcid.org/0009-0004-8598-2126
https://doi.org/10.4230/LIPIcs.AFT.2025.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

35:2

On-Chain Decentralized Learning

1 Introduction

Vulnerabilities in decentralized finance (DeFi) protocols are triggered through transactions [8].
Attackers often do not bypass contract safeguards directly [55], instead they craft transactions
that invoke legitimate functions to trigger state changes that the protocol did not intend.
Exploits occur when contracts proceed with malicious inputs while assuming invariant state
conditions, such as executing a withdrawal without checking balance or allowance or privileged
operations without enforcing access control [50]. These attacks can be single transactions or
atomic sequences that satisfy syntax checks but produce unauthorized asset control. The
execution logic can be formally valid, yet produce outcomes that violate the protocol’s
security assumptions [9]. Vulnerabilities come from code bugs and manipulating contracts.
Attackers often chain operations (for example, in atomic transactions) that appear normal in
unexpected ways to generate exploits [12]. However, most previous work focuses on static
code-level bugs [52] and overlooks protocol-level flaws [68].

Static analysis detects patterns that violate predefined coding conventions, but fails to
capture logic flaws that depend on contract state, cross-function flows, or interactions across
multiple protocols [10]. For instance, Cream Finance lost over $130M through an interaction
with another protocol that allowed borrowing without triggering the appropriate collateral
checks [47]. Formal verification tools prove that certain invariants hold under all code paths
but do not encode financial semantics or simulate attacker incentives. Most verification
frameworks cannot model adversarially composed transaction sequences, in which attackers
combine individually valid operations to produce exploits. Thus, zero-day vulnerabilities
continue to appear in DeFi [68]. Tools for detecting malicious smart contracts assume a time
window between contract deployment and first exploitation [54], during which vulnerabilities
can be analyzed. In practice, attackers often deploy and execute the exploit within a single
block or bypass deployment entirely by sending malicious transactions from externally owned
accounts (EOA) [41].

Other methods, such as post-attack analysis, provide insight into what has happened but
offer no protection. They begin only after an exploit has occurred and rely on retrospective
debugging of protocol states [19]. However, recent attacks in DeFi have compromised
over $79.8 billion in DeFi assets and only $6.7 billion of them have been recovered [18].
This emphasizes a core challenge in shared threat intelligence, particularly for aftermath
attack analysis, where dissemination is often delayed. This delay increases the likelihood
of repeat attacks on existing deployed protocols that may harbor the same unaddressed
vulnerabilities. Methods such as front-running protection [67] monitor public mempools
(public queue of transactions) but miss transactions submitted through private relays such
as Flashbots [25]. While off-chain monitoring systems (e.g., [67, 6, 54]) can detect some
attacks, they typically focus on specific classes (e.g., flash loans, reentrancy). Moreover, their
effectiveness is diminished by latency, which can lead to costly responses (due to gas fees)
and reduced efficacy, particularly against sophisticated attacks [61]. Therefore, there is a
need for protocol-integrated security mechanisms that add an evolving layer of protection
(i.e., Intrusion Prevention System (IPS)) to smart contracts and react in real time without
relying on external entities, such as pre-attack (e.g., auditing) or post-attack (i.e., attack
tracing) countermeasures. On the other hand, DeFi protocols currently lack mechanisms to
evaluate transaction intent during execution other than hard-coded logic, which makes them
vulnerable to attacks that were not anticipated during smart contract design.

Solutions driven by machine learning (ML) show strong capabilities in attack detection
[33, 37]. However, deploying ML models directly to Layer-1 blockchains such as Ethereum
faces major obstacles in computation and storage. The computational demands of ML

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy

algorithms result in prohibitive gas costs. Ethereum’s block gas limits (= 30 million units
per block [26]) impose constraints on the computational complexity of transactions, making
complex ML models impossible to run in a single transaction. A basic model inference might
consume 30-50% of an entire block. Storage costs create another barrier. Saving model
parameters on-chain is extremely expensive [37]. These combined limitations make direct
Layer-1 deployment of ML solutions economically and technically impractical for real-world
deployment.

To address the above-mentioned gaps, we propose a decentralized training architecture
where all model training and governance occur on Layer-2 (L2), while inference is optimized
and happens on Layer-1 (L1) under strict gas constraints (Table 1). In our framework,
an ML model is trained to provide a layer of security for smart contracts running on the
Ethereum (L1) network. Our framework leverages L2 (e.g., Optimism rollup) for intensive
computation and L1 for optimized inference to overcome L1 resource constraints (such as
computation limits and gas fees). The rollup provides cost-effective computation while
inheriting the base blockchain’s security guarantees [60]. Training is performed on L2, and
L1 updates are governed by L2 decentralized nodes, where computation is cheaper, and the
learned model is cryptographically verified and propagated to L1 for inference. Inference
runs at zero cost through read-only classifiers (for example, pure or view functions) or is

fully verified on L.1 embedded in on-chain contracts for real-time transaction classification.

To support a range of use cases, we propose two tiers: fully zero-cost inference (for users
and smart contracts) on L1, and fully on-chain ML on L1. The system acts as a transaction
gatekeeper (i.e., firewall) even for high-throughput or low-value use cases. Our approach is
model-agnostic and supports various ML algorithms, including linear algorithms (e.g., logistic
regression, SVMs) and non-linear models (e.g., neural networks up to 10 layers, including
10-layer convolutional neural networks (CNN)). These models are optimized and serialized
into constant-time evaluation logic fully bounded by L1 constraints. We found that even
low-overhead mechanisms (linear models) are sufficient to detect a wide range of attacks. The
models are trained using micro-steps by decentralized peers based on the collective knowledge
of the DeFi platforms, and their formally verifiable performance matches traditional on-chain
counterparts without approximation, enabling detection of both known and novel transaction
behaviors.

As DeFi exploits evolve over time and to maintain continuous learning of new exploits
as they appear, we introduce the notion of Proof-of-Improvement (Polm). Polm is a
decentralized protocol on L2 that governs and verifies micro-step model training and its
Ll-propagated updates. A deployed model is designed to be shared globally across DeFi
protocols, allowing any platform to contribute by training it on one candidate (malicious or
normal) transaction at a time. These DeFi platforms collectively shape a model that becomes
robust over time and enables unified sharing of attack intelligence. All updates are evaluated
against an on-chain (L2) committed, agreed-upon benchmark of past exploit and benign
transaction data. Updates are accepted only if they demonstrably improve at least one of the
key performance metrics (namely precision, recall, accuracy, or Fl-score) without degrading
others, as evaluated by Polm against the on-chain benchmark and it is verifiable by any
node. Submitters are rewarded in proportion to the verified performance gain, while failed
proposals lose their stake. If a malicious update seemingly improves metrics but enables
a detection bypass, peers can vote to roll back the model to the last stable version. Polm
enables the L1 classifier to evolve with newly emerging exploits without relying on centralized
oversight.

35:3

AFT 2025

35:4

On-Chain Decentralized Learning

Table 1 Comparison of our work with prior on-chain ML studies. DT = Decentralized Training,
MC = Model Consistency (On-/Off-chain), G = Governance, DF = DeFi Focus, IC = Inference
Cost, TM = Trust Model, VM = Validation Method.

Study DT MC G DF IC T™ VM

Our Work v/ vV V Zero/Low Polm On-chain + commit-reveal
ML2SC [42] X Partial" X X High X X

LMST [57] X Partial> X X Mod-High X X

opML [15] x® v /KX Low* AnyTrust Fraud-proof

! Minor mismatches due to PRBMath; 2 Accuracy drop from fixed-point; 3 Training off-chain, validated
via fraud proof; * Optimistic assumption, only O(1) on-chain arbitration.

For our evaluation, since there is no publicly available transaction data for DeFi attacks,
we manually collected 298 confirmed exploit transactions from real DeFi attacks across eight
major blockchains: Ethereum, Binance Smart Chain (BSC), Polygon, Avalanche, Arbitrum,
Fantom, Moonriver, and Base. Our exploit collection generalizes to cover attacks that
exploited smart contract vulnerabilities in the past five years (2020 - April 2025), reported
in news, social media platforms (e.g., X), blogs, and DeFi attack documentation. We utilize
blockchain data from public explorers (for example, Etherscan [22]) and Web3 Remote
Procedure Calls (RPCs) (e.g., using libraries/services like Web3.js [14] and Alchemy [4]),
along with DeFiHackLabs [58], the DeFi Rekt Database [18], and DeFiLlama [19] as ground
truth for guiding historical exploit collection. Each transaction contains the exact exploit
transaction data used by the attacker, as observed by the smart contract at execution
time, including call parameters, sender addresses (EOAs or smart contracts), and relevant
blockchain state at the time of the exploit. In addition, we collected comprehensive metadata
for each attack, including protocol names, exploited functions, attack methods, root causes,
and financial losses. We use these real-world exploits, which collectively caused over $3.74
billion in losses. Our evaluation shows that our approach is highly gas-efficient. CNN and
RNN models governed by our decentralized Polm protocol achieve over 97% recall and up to
an 82% F1-score on unseen DeFi exploits.

Contributions. This paper makes the following contributions:
We design a decentralized learning framework with training and governance on L2 and
enable two tiers: zero-cost inference and fee-optimized inference on L1 for real-time
classification of DeFi transactions.
We introduce Polm, a decentralized L2 protocol that governs model training and propag-
ates verified updates to L1 for inference.
We formally verify inference correctness, model update integrity, and L1/L2 consistency
under gas and computation constraints.
We evaluated our framework on a curated set of 298 manually collected real-world exploits.
It achieves high detection performance: SVM reaches an Fl-score of 80%, and CNN(F4,
K4) achieves 82% F1, 90.04% accuracy, and over 97% recall on unseen exploits. L1
inference is efficient, requiring only 57,603 gas for linear models and 143,647 gas for
CNN(F2, K1). Zero-cost inference is supported via external EVM nodes.

2 Background

Layer 2 Blockchains. Layer 2 (L2) blockchains (e.g., Optimism, Arbitrum, Base) are built
on top of Layer 1 (L1) platforms (e.g., Ethereum, Binance Smart Chain (BSC)) to improve
scalability and reduce costs [56]. In contrast to L1s that execute and store every transaction

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy

directly on-chain [26], L2s batch many transactions and periodically submit compressed
proofs to the L1 [63]. This design allows L2s to offer significantly lower gas fees and faster
execution and inherits the security guarantees from L1 [56]. Notably, L2s support the same
smart, contract logic as LL1s but with relaxed resource constraints, which makes them ideal
for computationally heavy tasks like model training or repeated inference.

Transactions. Transactions are the main component used to facilitate both asset movement
and protocol interactions. A nonce in a transaction acts as a sequence counter to prevent
replay attacks, where the attacker could replicate the transaction. The gas fee, influenced by
user-specified price and the complexity of transactions, determines inclusion priority, while
the gas limit defines the upper computational allowance per transaction [62].

Exploit transactions. Most of the DeFi attacks succeed through a maliciously crafted
sequence of instructions (e.g., internal transactions) [20]. These attacks exploit weaknesses in
smart contracts rather than modifying contract code at the infrastructure level [71]. Attackers
manipulate transaction parameters, call sequences, and attempt to manipulate permission
states through public interfaces to gain unauthorized assets [55].

Mempool and private relays. Blockchain transactions are submitted either through the
public transaction buffer, known as the mempool, or via private relays [25], where the trans-
action is sent directly to miners. Transactions submitted via private relays remain hidden
from the public, whereas those using the mempool are broadcast and await confirmation [13].
Nodes share this queue across the network. The selection of which transactions to include in a
block is typically based on miners/validators’ incentives and the gas fees offered. Transactions
with higher fees are generally prioritized [43]. The mempool is publicly visible, enabling a
brief window during which real-time monitoring can be used to detect malicious behavior,
such as front-running [36]. Since each node maintains a synchronized copy of unconfirmed
transactions, this window supports early threat detection [31]. However, detection is not
always possible due to the complexity of some attacks, and in many cases, the malicious
transaction is submitted directly to miners/validators, bypassing public visibility [46].

2.1 Limitations of Existing Defenses

This section discusses fundamental limitations of existing preventive measures and real-time
defense mechanisms. First, off-chain detection systems such as LookAhead [54] rely on a
temporal gap between transaction submission and execution. When an attacker deploys a
malicious contract and immediately initiates an exploit within a single block, these systems
fail to respond on time. Second, private relay services like Flashbots [25] allow attackers to
bypass mempool-based detection by submitting transactions directly to miners/validators. In
such settings, traditional monitoring tools lose all visibility, allowing stealthy attacks without
external traceability.

Third, signature-based detection methods depend on identifying known function selectors
or matching call patterns against static signatures [6]. This approach fails when attackers
use proxy contracts, delegate calls, or obfuscated logic flows, where surface-level transaction
signatures are intentionally masked. Fourth, current on-chain defenses lack the ability to
validate transaction behavior dynamically during execution. Existing systems either rely
on static pre-deployment audits or basic access control checks, leaving dynamic runtime
behavior, such as unauthorized fund movements or privilege escalations, undetected.

35:5

AFT 2025

35:6

On-Chain Decentralized Learning

Fifth, most prior defenses prioritize contract vulnerabilities rather than transaction
behavior. However, even with this focus, a recent study [10] found that automated tools
can detect only 8% of vulnerabilities. Another study found that existing tools can detect
only 20% of vulnerabilities [68], which leaves 80% undetected. Consequently, they can be
exploited and cause huge financial losses. One reason is that not all bugs are exploitable, and
not all correct logic code is vulnerability-free [50]. Thus, the focus on code logic overlooks
the fact that many exploits occur through crafted transaction sequences exploiting valid
contract interfaces without exploiting traditional code vulnerabilities.

Also, existing solutions typically adopt a centralized approach. Systems that depend on
trusted off-chain detectors or external alert mechanisms inherently introduce single points of
failure and trust dependencies incompatible with DeFi principles. Pre-interaction analysis
tools such as DeFiAligner [28] can detect inconsistencies between a project’s documentation
and on-chain bytecode. However, they do not provide real-time defense against malicious
transaction behavior.

2.2 Limitations of On-Chain ML

Embedding machine learning models into L1 smart contracts is resource-intensive, and
replicating off-chain models directly on-chain can be impossible. L1 blockchains are not
designed for heavy computing [3]. However, inference, if designed without inheriting the
complexity of off-chain models (e.g., using TensorFlow [2], Keras [38], Scikit-learn [39]) yet
performing equivalently, can be feasible if heavy computations are separated from inference.

Previous designs (e.g., [42, 57]) face many practical barriers, including prohibitive gas
costs for inference, inconsistent behavior between off-chain and on-chain models due to
numerical limitations, and incompatibility with smart contract languages lacking native
support for floating-point operations, which causes model output deviation (off-chain vs
on-chain counterpart). For example, the authors in [57] reported inconsistent accuracy
between the PyTorch and on-chain models: 86.00% off-chain versus 81.00% on-chain. The
deployment cost also exceeds the current Ethereum block gas limit, with a reported cost
of 73,721,648 gas. This is more than twice Ethereum’s current block gas limit, which is
approximately 30 million gas units.

Our work achieves exact consistency (formally and empirically verified) between off-chain
and on-chain model outputs. Unlike prior methods, our on-chain design uses an optimized
smart contract that replicates the off-chain model’s behavior without approximation to
achieve the same outcome. This will allow DeFi attacks mitigation dynamically using
practical, low-cost, and fully decentralized on-chain machine learning.

3 DeFi Attacks and Threat Model

The current state of defenses is not sufficient to mitigate the growing threat of unauthorized
fund exploits in Decentralized Finance (DeFi). Recent studies [10, 40, 13, 71, 68] show that
attack techniques are rapidly advancing but defenses remain inadequate. To address these
threats, we need a new defense model based on a real-time, in-protocol (smart contract-level)
transaction classification system that must operate independently of external monitors or
pre-defined signature lists [71], and it must work even when transactions are hidden from the
public mempool. It should also generalize to both known and novel (zero-day) attacks that
exploit DeFi contract flaws. However, statistical methods have shown significant promise in
detecting not only known attacks but also previously unseen zero-day exploits [33]. This
naturally raises several key questions: Can data from past DeFi attacks help us predict and

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy

~ Cluster ® g
— 6 @ 0 © 0.25
c o 1 e® x
2 e 2 @
o 4 O 0.20
o g
:. %
2 @ 0.15
o ® >
© €] e
g, B oo
2 kS
= o
E P < 0.05
°® L
0 5 10 15 1 2 3 4 5 6 7
Principal Component 1 Principal Component

Figure 1 Left: PCA projection of DeFi attack transactions using two principal components with
KMeans clustering (k = 3). Right: The scree plot shows the explained variance ratio per principal
component. Even though PC1 and PC2 capture less than 50% of the total variance, the projection
shows distinct DeFi attack transaction patterns.

prevent future ones? What are the possible designs for trustless, cost-effective, on-chain
inference systems that can evolve with the attack landscape and be governed by decentralized
peers? To answer these questions, we investigate whether real historical exploits exhibit
detectable patterns that statistical techniques can reliably uncover and learn from.

3.1 Empirical Patterns of DeFi Attacks

To explore the feasibility of detecting DeF'i attacks using only transaction data observable

by smart contracts, we analyzed 402 confirmed DeFi exploit transactions (for 298 attacks).

Transaction data includes complete EVM-level execution context such as gas usage, transferred
value, calldata, and block metadata. Since previous studies offer limited analysis of DeFi
attacks from a transactional perspective, we investigate whether exploit transactions exhibit
measurable similarities that support transaction-level detection.

Table 2 Transaction metadata visible to smart contracts during execution.

Attribute Description

msg.sender Sender address (initiator of the call)

msg.value ETH amount sent with the call

msg.data Calldata containing function selector and arguments
tx.origin Original externally-owned sender of the transaction
gas Remaining gas (via gasleft())

gas_price Effective gas price paid (via tx.gasprice)

msg.to Receiving contract’s address (via address(this))

We selected the numerical features observable during smart contract execution (Table 2)
and excluded transaction hashes or addresses. Features were standardized, and dimensionality
was reduced using Principal Component Analysis (PCA). We applied KMeans clustering
with & = 3 to detect grouping behavior across attack transactions.

The PCA projection preserved 46.3% of the variance in two dimensions (Figure 1). Out of
402 exploits, 355 (88.3%) formed a distinct cluster. This suggests high behavioral consistency
across transactions despite protocol and chain differences. Clustering quality was supported
by a Calinski-Harabasz index of 981.78 and a Silhouette score of 0.773, both indicating
well-separated, compact clusters.

35:7

AFT 2025

35:8

On-Chain Decentralized Learning

These findings indicate that DeFi attacks share consistent runtime characteristics. The
ability of PCA + KMeans to cluster these attacks supports the feasibility of transaction-
level classification during execution. We classify the root causes of these attacks into five
empirically supported categories, such as access control failures and business logic flaws.

Exploit Execution Patterns. Despite different root causes, several runtime-level patterns
are consistent across attacks:
Atomicity: 71.2% of exploits execute within a single transaction with no prior on-chain
activity.
Benign interface misuse: 67.5% invoke functions like withdraw(), approve(), or
sweep () with malicious arguments.
Cross-chain replication: Identical bytecode deployments (9.7%) are exploited across
chains [35] (e.g., Hedgey [1]).
These patterns further support the view that exploitability is determined by transaction
behavior rather than only static code.

3.2 Challenges in Real-Time Defense

We identified several key challenges that prevent current systems from defending against

these attacks in real time:

Cl. Private relay invisibility: Transactions sent through Flashbots [25] and similar relays
bypass the public mempool, evading pre-inclusion detection.

C2. Multiple attack paths per contract: A single protocol may contain unrelated flaws,
making static patching or signature detection ineffective.

C3. Benign-looking interfaces: Safe-looking functions are abused with crafted inputs,
undermining static signature-based detection.

C4. Cross-chain propagation: An undetected exploit on one chain quickly propagates to
other protocols with shared logic.

C5. No rollback: Once executed, DeFi transactions are final. Most protocols do not have
pause switches or delayed execution.

3.3 Threat Model and Assumptions

Our system defends against two primary threat scenarios. @ An attacker crafts a malicious
transaction targeting a vulnerable contract. The transaction is evaluated by our on-chain ML
classifier before execution. The attacker may vary calldata, timing, or submission channel
(e.g., private relay), but cannot alter the deployed model or governance system. @ A malicious
peer attempts to poison the training process by submitting manipulated updates that degrade
model performance. The system detects and rejects such updates via on-chain benchmarking.
Insider threats, compromised signing keys, and off-chain infrastructure attacks are out of
scope for this threat model.

4 Decentralized Training, Inference, and Governance Framework

Our objective is to integrate decentralized learning with verifiable and efficient on-chain
detection into the execution paths of DeFi contracts to mitigate exploit transactions in real
time. We address limitations in existing works (e.g., [42, 67, 5, 54, 57]) from two perspectives:
DeFi attack mitigation and on-chain ML design. First, we detect private relay attack
transactions and generalize the detection mechanism to unseen attacks in real time. Second,

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy 35:9

Y KﬁLZ
‘ ‘ M]Cro-Step
o Update
°« ™ 4
- - Solidity Code
/tl;/ Candidate Step
Function
Proof-of- Classify(
Improvement 1t
P _onchain| | X"
Model Rejoct/ (R o >={Accuracy,F1, Model
. i eject ewar Precision, Recall ifiaati
Fixed-Point + stake) recision, Recall} Update Formal Verification
Quantization/ \ viaZ3 /
Serialization Rollback Upz_ﬁate
Weights

L1 Contract Dotestion

DAO Rollback/
Test Set Update

i
T 72 L
eth_call | On-chain !
Inference| Inference H
i

i

Figure 2 Framework overview.

we ensure bitwise consistency between off-chain and on-chain models, and cost-effective
decentralized training and inference. We also guarantee bounded resource consumption, such
as gas fees for training and inference. Furthermore, we introduce a decentralized mechanism
that enables peers (i.e., DeFi platforms) to collectively train ML/DL models (e.g., for attack
defense) by proposing training samples. These proposed updates are transparently governed,
validated, and challengeable by others. An overview of our end-to-end framework is presented
in Figure 2.

Our framework enables decentralized learning by translating traditional off-chain machine
learning and deep learning model architectures into gas-efficient, formally verified Solidity
contracts for blockchain execution via L2 rollups (e.g., Optimism [48]). It supports a
wide range of architectures, from simple to complex, and produces tamper-proof ML /DL
contracts with quantized parameters serialized for on-chain weight propagation (Figure 4).
This capability not only enhances DeFi threat detection but also provides a foundation for
developing adaptive and secure financial systems in other domains. Our approach addresses
the limitations of prior work discussed in Section 2.2. Previous efforts (e.g., [42, 57]) are
impractical and incur high gas costs when deploying complex models on L1, which can be
very complex.

on-chain ;
Micro- steps Update on-chain
update

+ stake

Improved

commit-verify /@ l
Bridge -— °
Message @ @ Weights

@ update 6

& L2 Blockchain 3
Reject
@ Stake slashed

L1 Blockchain

Figure 3 Polm overview.

AFT 2025

35:10

On-Chain Decentralized Learning

In contrast, our design supports full-scale, real-world models without compromising
accuracy due to Solidity’s floating-point limitations, and it enables fully decentralized
training and model updates. To achieve this, we introduce Proof-of-Improvement (Polm), a
decentralized governance protocol that tracks each training step and governs model updates,
as shown in Figure 3. It allows anyone (e.g., any DeFi platform) to incrementally train the
model, effectively proposing updates that improve detection metrics. Updates are predictably
propagated from L2, where computation and verification are performed, to L1, where inference
takes place. Peers can collectively override a propagated model update on L1 in cases of
suspected malicious training (poisoning) by another peer. Overall, our decentralized design
is motivated by DeFi security requirements, and we show that a decentralized, dynamic,
and cost-effective ML /DL-based defense is feasible under current blockchain architectures
enabled by L2, capable of mitigating attacks that have caused billions in financial losses.

4.1 Decentralized Micro-Step Training and Model Evolution

Our system enables verifiable, decentralized training by decomposing the learning process
into micro-step updates. Each micro-step corresponds to a single incremental improvement,
such as retraining on one example or applying a localized adjustment, and is proposed directly
on-chain. All proposals are immediately evaluated using a canonical, public test set stored
on-chain.

Quantized Model

Serialization

[Wo,1, Wo,2, b0 W), W2y, b@)]

Figure 4 Serialization example of quantized model parameters.

Only updates that improve at least one core metric (accuracy, precision, recall, or F1-
score) without degrading any others are accepted. This logic is enforced deterministically by
the Polm contract, which governs model evolution and ensures that every change is auditable,
trustless, and resistant to adversarial manipulation.

Every accepted or rejected update, along with its evaluation results, is permanently
logged on-chain. This guarantees transparent, tamper-proof model provenance and allows
peers to track, audit, or challenge any step of the training process. In contrast to centralized
retraining, this decentralized micro-step protocol allows the model to evolve continuously
and securely, driven entirely by peer contributions and verified in real time on-chain.

4.2 Inference Architecture

In our architecture, we support two cost-effective tiers for executing ML/DL inference
over blockchain networks. Each tier provides a different trade-off between execution cost,
verifiability, and decentralization.

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy

On-chain Logic, Off-chain Execution (zero-cost). In this tier, the model parameters and
execution logic are stored fully on-chain. However, the actual inference computation is
performed off-chain by calling view functions, which are executed by any EVM client. This
tier incurs zero gas cost for DeFi users or protocols while ensuring that the decision logic is
derived directly from verifiable on-chain bytecode and model state. Since every node executes
the same bytecode deterministically, outcomes are consistent and tamper-resistant. This
design is ideal for platforms seeking lightweight classification with full code transparency
and no execution fees.

Fully On-chain Inference (inference verifiable on-chain). Here, the inference is executed
entirely on-chain as part of a state-modifying transaction, typically one that interacts with
a DeFi protocol. The input is passed to the smart contract, which executes the classifier
internally and enforces the classification result. This enables end-to-end verifiability and
enforces decisions during transaction execution (e.g., rejecting or allowing access to protocol
funds). While this incurs gas costs, our optimized design allows even moderately complex
models, such as 10-layer CNNs with quantized integer arithmetic, to execute efficiently within
Ethereum’s gas limits. This tier is suited for scenarios like high TVL or security-critical DeFi
functions, where classification must be verified on-chain without relying on off-chain entities
to interpret results, as the outcome is enforced by on-chain consensus.

4.3 Layer-2 to Layer-1 Computation Separation

Model parameters are updated through decentralized training and governed by the Proof-of-
Improvement (PoIm) protocol on Layer-2 (L2), where gas costs are significantly lower. These
L2-validated model parameters must then be securely and accurately propagated to Layer 1
(L1) for use by inference contracts in either Tier 1 or Tier 2. To ensure that L1 inference
contract parameters do not get tampered with, we employ a commit-verify propagation
mechanism.

Commit to Model Hash (L2). Upon acceptance of a training update (yielding new paramet-
ers ') by the PoIm protocol on L2, the contract computes a cryptographic hash modelHash
= keccak256 (abi.encodePacked(f’)). This hash serves as a tamper-proof commitment to
the new model.

Transmit Commitment (L2 — L1). The L2 contract sends this modelHash to L1 via the
native L2-to-L1 bridge (e.g., Optimism’s L2ToL1MessagePasser). The hash is recorded by
the L1 contract that manages model updates.

Transmit Parameters and Verify (L2 — L1). In a subsequent transaction, the full model
parameters 6’ are transmitted. The L1 contract recomputes the hash and verifies it against
the prior commitment. A mismatch results in the rejection of the update [59].

4.4 Formal Bit-Exact Verification

Weights are scaled by S € [10%,10'8] then packed into int32[] and up-cast to int128
where safe. A fully-connected layer [executes z(") = idiV(W(l)z(l_l) + b0, S) If v > A, sign
consistency holds for all validation inputs. For every compiled model, we prove Va € Z? :
Fon(z) = Forg(x) under fixed-point scale S. We encode both paths as bit-vector (e.g., 256-bit)
formulas and ask Z3 for expr_on # expr_off. All models (linear, CNN, RNN) return unsat,

35:11

AFT 2025

35:12 On-Chain Decentralized Learning

New training round

uses Diest
—_——
Submit training Evaluate on @ Yes Accept Reward
yields (8’,b") on Diest 0« 0 Proposer
No

Reject
&slash stake

Figure 5 Polm protocol update flow. Each proposed model is evaluated on Diest and accepted
only if it improves performance.

giving a machine-checked guarantee of equality. This design-time formal proof offers a strong
guarantee that the compiled on-chain model faithfully implements the intended off-chain
model logic under the specified fixed-point representation for all possible inputs. It ensures
the intrinsic correctness of the model’s translation to Solidity. This is distinct from, yet
complementary to, the operational consistency checks performed during the lifecycle of the
model on-chain. Listing 1 provides an example of a forward pass implemented in Solidity
using fixed-point arithmetic.

Listing 1 Forward pass example for layer [using fixed-point arithmetic
for (uint i = 0; i < d_1; i++) {
z[i] = bias_1T[i];
for (uint j = 0; j < d_{1-1}; j++) {
z[i] += idiv(weights_1[i * d_{1-1} + j] * input[j]l, SCALE);
}

Beyond the formal verification of the model logic itself, our protocol incorporates runtime
consistency checks at critical junctures, such as model updates on L2, propagation to L1,
and sample inferences, to ensure operational integrity in runtime.

Table 3 Analytic MAC bounds for CNN and RNN models with total input dimension d = 3.

Model F K Bound Model U T Bound
CNN2><2 2 2 1714 RNN4><2 4 2 7064
CNNyx2 4 2 3428 RNN 8 4 40160
CNNgys 8 3 4832 8xd

D (2)

4.5 Gas Cost and Runtime Bound Analysis

w-x

Opcode Budget. For every multiply-accumulate (MAC) a < a + “¢* inside classify,
the EVM executes (1) SLOAD(w) = Gg = 100 gas (warm), (2) CALLDATALOAD(z) = G¢ =3
gas, (3) MUL = Gy =5 gas, (4) DIV = Gp =5 gas, (5) ADD = G4 = 3 gas, (6) loop/stack
bookkeeping ~ G, = 8 gas.!

! Berlin fee schedule [21].

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy

Hence, the cost per MAC is gyiac = Gs + G+ Gy + Gp + G4+ G, = 124 gas. ReLU
adds Gr = 5 gas per activation, and bias initialization costs Gg + G4 = 103 gas.

Linear Classifiers (LR / SVM). A linear model with d inputs executes one MAC per feature
and adds a bias. Hence, ‘ Grin(d) =124d + 103 ‘

For logistic regression, we approximate o(z) by a threshold on the logit, therefore no
extra exponentiation is incurred; the cost matches SVM. With d=3 (example feature set) the
bound gives Gpin(3) = 124 x 3 + 103 = 475 gas, which is three orders of magnitude below
the deep models and negligible at call-sites.

CNN Bound. For an input of length d, kernel size K, and F filters, the convolution yields
0o =d— K + 1 positions and evaluates F' o K MACs; the fully connected read-out contributes
a further F o MACs. Thus, \ Genn(d, K, F) = gyac Fo(K +1)+GrFo+ 103 F \ (1).

RNN Bound. Let U be the hidden-state size, T the number of time steps, and dy, = d/T
the per-step input width. A gated update performs U(d;, + U) MAC operations per time
step. The total cost is ’GRNN(d, UT)=gumacTU(din +U + 1) + 15TU‘ (2). We fix the
total input dimensionality d = 3 for both architectures. Table 3 shows the resulting gas
bounds for several example CNN and RNN configurations.

4.6 Decentralized Model Update

Only models that show improvement in multiple evaluation metrics are accepted. No external
oracle trust is required and all updates are verifiable on-chain within strict gas constraints.

Table 4 Notations used.

Symbol Description

0,0 current and proposed weight vectors
b, v current and proposed bias scalars

S scaling constant, S = 10"

Diest = {(wi,y:) =1 on-chain evaluation dataset
z; € RY gy, € {0,1} feature vector and label

fo(¥) classifier parameterized by (0, b)

s stake (in wei) deposited by proposer
M, M', Myq, M metric vectors before/after update
At challenge window (e.g., 1-day)

Proof of Improvement (Polm). Let fy denote the deployed classifier with an immutable
architecture and on-chain weights 6 (see Table 4 for notations). The core of our Polm
mechanism relies on Diest = {(z4,y;)}.;, a canonical evaluation dataset stored directly
on-chain. This dataset is intentionally curated to be compact, yet it is representative of
critical attack vectors and desired model behaviors rather than being an exhaustive list of all
historical transactions. Its manageable size is crucial for enabling efficient on-chain evaluation
of proposed model updates within gas limits. Furthermore, to maintain its relevance and
resist ossification, Dyesy itself is governed by a decentralized peer-based mechanism (e.g.,
DAO voting), allowing for agreed-upon additions, modifications, or removals of test samples
over time (see Figure 5). Let 6’ represent a submitted update. We define the classifier (i.e.,

35:13

AFT 2025

35:14

On-Chain Decentralized Learning

linear) as fy(z) = sign(% Zle 0;z; + b) € {0,1}. We define the evaluation function
as Eval(fy, Diest) — (Acc, F1, Prec, Rec), where all metrics are computed deterministically
using Solidity logic and can be challenged.

New Training Submission. Users can propose a new model update by submitting a new
training sample directly to the PoIm contract, which yields a change (if accepted) in new model
weights 6" and biases b’, and staking a minimum amount of tokens (or, e.g., any ERC20 token).
Each submission must submit a stake, e.g., s > 0. The staked ERC20 serves as collateral for
the proposal. If accepted, the contributor receives: R = s + > crace 71, prec,Rect Ok (M), —
My,). Each coefficient «; > 0 reflects the vault’s value weighting for each metric improvement.

For instance, if the vault has accumulated 1 ETH from failed update attempts, the payout R
is proportionally distributed based on the magnitude of improvement across the four metrics.

Model Update Acceptance. An update ¢’ is accepted if it improves at least one core metric
(accuracy, precision, recall, or Fl-score) without degrading any of the other core metrics
compared to the current model, based on on-chain evaluation over Di.. The contract
enforces this by ensuring that any accepted model update demonstrates improvement in at
least one core metric without degrading others, thereby preventing overfitting a single target
(e.g., maximizing recall while degrading precision). This improvement is verified on-chain on
Drest, which ensures that the proposed model performs better than the current one.

Test Set and Adversarial Update Rollback. We integrate an on-chain DAO mechanism
that allows stakers (e.g, DeFi platforms) to collectively manage both model rollbacks and
Diest test set updates. In our design, participants stake tokens to gain voting rights to
propose and vote on critical actions such as adding or modifying test samples and reverting
model weights (to previously committed L1 update) if suspicious behavior is observed (e.g.,
malicious training sample). In the case of a challenged update (i.e., one that introduces
a loophole but still satisfies the acceptance criteria), a revealed update can be rolled back
within a fixed period (e.g., <7 days). If the new model weights worsen in any performance
metric compared to the previous metrics, the proposer loses their collateral and the proposal
is discarded.

5 Evaluation

This section details our experimental setup, dataset construction, model configurations, and
metrics used to evaluate our proposed framework for on-chain DeFi exploit detection and
mitigation across various machine learning architectures. We also present a quantitative
comparison against a baseline for on-chain ML.

5.1 Experimental Setup

All experiments were run on a machine equipped with an Intel Core i7 CPU and 16GB of RAM,
running Windows 10. Key Python libraries we utilized include scikit-1learn [39], pandas [45]
(e.g., for data manipulation), NumPy [34] (e.g., for numerical operations), web3.py (e.g., for
blockchain interaction), py-solc-x (for Solidity compilation), and the Z3-solver [17] (e.g.,
for formal verification logic).

For blockchain interactions, local L1 and L2 test environments were used. The L2
environment was configured using a Hardhat Network instance forking a live Optimism L2
rollup state (e.g., Optimism Mainnet), facilitating realistic gas calculations and execution

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy

0.8
— Attack

--- Normal 0.6

—— Attack
—== Normal

—— Attack

—== Normal
0.6

0.4+

0.2+

; ; —0.01—
2 3 15 -10
Gas Price

—— Attack Attack

0.84 Normal
0.6
0.4+

0.2+

0.0

4 2

-2 0 2 —2 0
Block Number Block Timestamp

Figure 6 Distributions of normal and attack transactions.

behavior mirroring Optimism’s characteristics. This L2 environment is primarily used for
the decentralized training and Polm mechanism. The L1 environment was simulated using
Anvil[27], configured for persistence across experimental runs to reflect a stable mainnet-like
chain.

Attack Dataset Construction. A significant challenge in evaluating DeFi exploit detection
systems is the general absence of comprehensive, publicly available, raw transaction datasets
suitable for behavioral modeling. While some prior work has focused on smart contract code
analysis [69, 64, 66], readily usable transactional datasets for exploit detection are scarce.
To address this, we undertook a meticulous manual collection and multi-stage verification
process to construct a robust dataset for this study, covering attacks from 2020 to 2025.
Our initial identification of potential exploits involved a broad survey of diverse sources,
including industry security news (e.g., Rekt News [18]), detailed analyses on technical blogs,
discussions on social media platforms (e.g., X), and curated public incident databases such
as the DeFi Rekt Database [18] and DeFiLlama Exploits Dashboard [19]. Incidents and
leads gathered from these channels, often further indexed or summarized by resources like
DeFiHackLabs [58], guided our targeted retrieval of the specific transactions that executed
each confirmed attack.

These transactions are primarily identified by their hashes on public blockchain explorers
(e.g., Etherscan [22], Polygonscan [53]). All transactional records were independently retrieved
and subsequently verified through direct blockchain queries via Web3 RPCs [14] to ensure
authenticity and completeness of call data, receipts, and traces. The primary features
extracted for model input include: gas (gas limit provided by sender), block.timestamp,
func_selector_encoded (a label-encoded representation of the first four bytes of msg.data),
chain ID (label-encoded), msg.sender (label-encoded), tx.origin (label-encoded), and
msg.to (label-encoded), as shown in Figure 6. Numerical features were standardized, and
categorical features were label-encoded. Features such as block.timestamp may overfit
if the same timestamp is found in both training and testing. To mitigate this risk, we
implemented a strict temporal train-test split. Training is exclusively on historical data,
and testing is on future (unseen attacks). Therefore, the model generalizes better based on
transaction behaviors rather than memorizing temporal artifacts. Transaction traces and

35:15

AFT 2025

35:16

On-Chain Decentralized Learning

contract interactions were analyzed to produce contextual annotations, including attack_-
name, links to exploited contract source files, incident report URLs, dates, identified root
causes, and financial loss in USD (normalized to the time of exploit). This process was
applied to transactions across multiple EVM-compatible blockchains, including Ethereum,
Binance Smart Chain (BSC), Polygon, Avalanche, Arbitrum, Fantom, Moonriver, and Base.
Table 5 presents an illustrative subset of these attributes.

Table 5 Example of a subset of fields from our exploit transaction dataset. Full transaction
records include additional attributes such as detailed EVM context, blockchain metadata, and
semantic annotations.

Field Example Description

tx_hash 0x78d7...2df4 Unique identifier of the exploit transaction
msg.sender 0x5aab...30b7 Address that initiated the exploit

msg.value 0 ETH directly transferred in the transaction
gas_used 298210 Total gas consumed during execution
block.timestamp 1688462834 Unix timestamp of the exploit

root_cause Unchecked external call ~ Vulnerability exploited in the contract
loss_USD $1.94M Financial loss via unauthorized token transfers
chain Ethereum Blockchain on which the exploit occurred

*Only a subset of fields is shown here.

We observed that an attack can manifest in a single atomic transaction (approximately
71% of the attacks in our dataset) or across multiple transactions. For multi-transaction
attacks, all constituent transactions were grouped and assigned entirely to either the training
or testing set to prevent data leakage and maintain the integrity of the attack sequence.
The combined dataset of normal and attack transactions was then sorted chronologically by
block.timestamp. Table 6 summarizes the distribution of the unique exploits that informed
the construction of our dataset.

Table 6 Distribution of unique exploits (2020- 2025) and for DeFi financial losses.

Category Count Loss (USD)
Total distinct exploits 298 -
Exploits in training set 202 $1,877,229,549.86
Exploits in testing set 96 $1,858,400,900.66
Total exploits loss - $3,735,630,450.52

The resulting transaction data captures fine-grained, executable-level behaviors and
intricate attacker-victim dynamics. This detailed resolution enables precise detection and
classification of exploits and provides a foundation for exploring potential attack discovery.
The final curated dataset of 298 unique attack vectors, corresponding to confirmed financial
losses exceeding $3.74 billion (as per Table 6), combined with temporally aligned normal
transactions, offers a rich and unique foundation for evaluating real-time defense mechanisms
and rigorously training on-chain classifiers.

Model Architectures. Our framework was evaluated with diverse model architectures, in-
cluding Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and standard classifiers like Logistic Regression (LogReg), Support
Vector Machines (SVM), and Decision Trees (DTs). All models utilized the 7 processed

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy

input features detailed previously. These features are observable by smart contracts during
execution, enabling real-time attack detection. All models were evaluated with fixed-point
parameters (scale 10! to 10'8).

Proof-of-Improvement (Polm) Protocol. Each instance starts from baseline parameters
and their performance metrics (Accuracy, Fl-score, Precision, Recall) on a fixed test set
(Drest). An update is accepted only if it improves at least one metric without degrading
others. Approved parameters are then eligible for propagation to L1 for inference.

Metrics. The performance of our framework was evaluated across three key dimensions: on-
chain inference efficiency (gas costs, bytecode size, throughput, and prediction consistency),
attack detection performance (accuracy, precision, recall, F1-score, and false positive rate),
and model update mechanism costs (PoIm L2 update gas and L2-L1 propagation cost).

5.2 Performance of On-Chain DeFi Exploit Detection

We evaluate the effectiveness of on-chain machine learning classifiers in detecting previously
unseen DeFi exploits. Each model was tested on a hold-out test set Dyt comprising real-
world attacks and benign transactions, temporally separated from the training set to simulate
generalization to zero-day attacks. The unseen exploits in the test set include unique,
protocol-specific attacks from various root causes that are absent from the training set.

We tested a diverse set of models: Logistic Regression (LogReg), Support Vector Machine
(SVM), Decision Tree (DT), Multi-Layer Perceptron (MLP), 15 CNN variants (filters F' €
{2,4,8,10, 16}, kernel sizes K € {1,4,5}), and RNNs with 8 units and with 1 and 7 timesteps
(T=1 and T=7). All models utilized a shared 7-feature input vector, preprocessed via
standardization and label-encoding as described in Section 5.1.

The fully trained CNN variants demonstrated strong detection capabilities, particularly in
terms of recall. Many configurations achieved recall > 0.96, with Fl-scores generally ranging
from ~0.78 to 0.82, and precision reaching up to 0.8077 (CNN (F4, K1)). For instance,
CNN(F4, K4) achieved a high accuracy of 0.9004 and an Fl-score of 0.8200, preventing
an estimated $1,857.6M in losses. This performance marks a significant improvement over
any preliminary simulations where simpler CNN setups might have exhibited degenerate
behavior.

RNN models also showed robust and balanced performance. Specifically, RNN(U=S,
T=1) achieved an accuracy of 0.8517 with a high recall of 0.9792, contributing to $1,858.2M
in prevented losses. The RNN(U=8, T=7) configuration maintained competitive performance,
notably achieving higher precision (0.6607) and a lower false positive count (58 FPs) compared
to RNN(U=8, T=1), with a slight trade-off in recall (0.9479).

Among other classifiers, LogReg and SVM performed well, with SVM achieving the highest
AUC in this set (0.9739) and LogReg attaining perfect recall (1.0000). The Multi-Layer
Perceptron (MLP) also demonstrated strong results, with an accuracy of 0.8665, F1-score
of 0.7823, and a high recall of 0.9688. The DecisionTree, while achieving perfect recall, did
so at the cost of a higher number of false positives (224 FPs), indicating overfitting to the
attack class.

35:17

AFT 2025

35:18

On-Chain Decentralized Learning

Table 7 On-Chain costs, sizes, and Polm dynamics for LogReg, SVM, DT, MLP, CNN, and
RNN models. Ext. cl.: inference by an EVM node.

Model Deploy L2 Deploy L1 L1 Inf. Gas L2 Size L1 Size L2-L1 (Polm) Ext. cl.”
(Gas) (Gas) (Gas) (Bytes) (Bytes) (Gas) (%)
LogReg 1,185,010 722,020 57,603 4,597 3,044 231,168 0
SVM 1,184,998 722,020 57,603 4,597 3,044 231,168 0
DT 878,284 435,490 33414 3352 1,707 96,489 0
MLP 2,137,045 1,116,415 138,173 7,266 4,866 5,754,732 0
CNN(F2, K1) 1,721,688 1,536,046 143,647 6,692 5,834 2,872,940 0
CNN(F4, K1) 2,134,766 1,949,124 244,284 6,692 5,834 4,885,680 0
CNN(F8, K1) 2,961,086 2,775,539 445,562 6,692 5,834 8,911,240 0
CNN(F10, K1) 3,374,357 3,188,810 546,202 6,692 5,834 10,924,040 0
CNN(FlG Kl) 4,614,143 4,428,596 848,126 6,692 5,834 16,962,520 0
CNN(F2, K4) 1,721,688 1,536,046 158,856 6,692 5,834 3,177,120 0
CNN(F4 K4) 2,134,778 1,949,136 274,703 6,692 5,834 5,494,060 0
CNN(F8, K4) 2,961,098 2,775,551 506,397 6,692 5,834 10,127,940 0
CNN(F10, K4) 3,374,369 3,188,822 622,244 6,692 5,834 12,444,880 0
CNN(F16, K4) 4,614,167 4,428,620 969,788 6,692 5,834 19,395,760 0
CNN(F2, K5) 1,721,688 1,536,046 150,304 6,692 5,834 3,006,080 0
CNN(F4, K5) 2,134,778 1,949,136 257,598 6,692 5,834 5,151,960 0
CNN(F8, K5) 2,961,086 2,775,539 472,188 6,692 5,334 9,443,760 0
CNN(F10, K5) 3,374,345 3,188,798 579,482 6,692 5,834 11,589,640 0
CNN(F16, K5) 4,614,143 4,428,596 901,368 6,692 5,834 18,027,360 0
RNN(U8, T1) 3,520,668 3,338,663 561,791 7,413 6,571 11,235,820 0
RNN(U8, T7) 2,437,361 2,255,356 1,131,350 7,413 6,571 22,627,000 0

*Read-only RPC calls consume 0 gas on-chain.

5.3 Efficiency, Cost, and Consistency

We analyze the on-chain operational costs, resource utilization, and behavioral consistency
of the evaluated machine learning models. All quantitative data discussed refer to Table 7,
which details L2 and L1 deployment gas, L1 inference gas, contract bytecode sizes, and key
Proof-of-Improvement (Polm) interaction costs where applicable.

Deployment and Inference Gas Costs. The on-chain footprint of simpler models like
Logistic Regression (LogReg), Support Vector Machines (SVM), Decision Trees (DT), and a
Multi-Layer Perceptron (MLP) showcases varying efficiencies. L2 PoIm contract deployment
gas ranged from approximately 0.88M for the DT to 2.14M for the MLP, while their
corresponding L1 inference contracts were lighter. Notably, L1 inference gas for LogReg,
SVM, and DT was very low (33k—58k gas). The evaluated MLP required approximately 138k
gas for L1 inference, still well within practical limits for on-chain execution.

Convolutional Neural Network (CNN) variants demonstrated a clear trend where both
L2/L1 deployment gas and L1 inference gas scaled with architectural complexity, primarily
driven by the number of filters (F) and kernel size (K). For instance, L2 deployment gas
ranged from approximately 1.72M for CNN(F2, K1) up to 4.61M for larger configurations
like CNN(F16, K1). Similarly, L1 inference gas for these CNNs varied from around 144k
(CNN(F2, K1)) to over 969k (CNN(F16, K4)). Bytecode sizes for CNN L1 inference contracts
were observed to be consistent for models sharing the same kernel size, as changes in filter
count primarily affect the parameter size of the subsequent fully connected layer rather than
the convolutional logic structure itself.

For the Recurrent Neural Network (RNN) models evaluated (both with U=8 units),
the T=1 configuration (processing all 7 features in a single timestep) incurred higher L2
deployment gas (3.52M) compared to the T=7 configuration (processing 1 feature per 7
timesteps, 2.44M L2 gas). This difference is likely attributable to the larger input-to-hidden

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy

T
1
|
1
'
|
1
1
'
!
1
1
1
1
1
1
1
1
1
1
|
| ==+ Full Recovery Scale
1

1

1

T
|
1
|
'
|
1
|
I
!
1
1
1
1
1
1
1
1
|
1
|
|
|
1
1
I

Precision Loss (%)

T
|
1
|
'
|
1
|
'
!
1
1
1
1
1
1
1
1
|
1
|
|
|
1
|
I
|
|

s |
{LogReg |RNN_8
| ICNN_8 [RNN_4
IMLP 1CNN 4 IRNN 2
ICNN_2 1GNN_10 |RNN10
| i |

® N & > © ®
N N N N N N Q Q Q

Scaling Factor (S = 10¥)

Figure 7 Bitwise consistency for different scaling factors of various models.

weight matrix (W) in the RNN(U=8, T=1) model. Conversely, L1 inference gas was
substantially higher for RNN(U=8, T=7) (1.13M gas) than for RNN(U=8, T=1) (0.56M gas),
reflecting the increased number of recurrent steps executed on-chain for the sequence-based
input.

The gas cost for transferring updated model parameters from an L2 Polm contract to its
L1 inference counterpart varied across model types. For SVM and DT, this L2-L1 update was
relatively efficient (96k—231k gas). However, the LogReg and the dynamically trained MLP
exhibited higher transfer costs (5.2M-5.7M gas, respectively), likely due to the encoding or
size of their complete parameter sets being transferred. For the more complex CNN and
RNN models, this L2-L1 parameter transfer for their (typically output layer) updates also
showed significant gas consumption, ranging from 2.8M to over 22M gas, underscoring the
cost implications of updating larger or more intricate models across layers.

Bitwise Consistency Verification. We evaluate empirically how fixed-point quantization
affects on-chain inference consistency under varying scaling factors from 10! to 10'®, using
MLP, logistic regression (LogReg), SVM, CNN, and RNN models (Figure 7). Precision loss
diminishes rapidly as the scale increases, and full recovery (zero bitwise loss across all weights)
is achieved at or above 10'2 for all models. This confirms that fixed-point quantization,
when aligned with sufficiently large scaling factors, can reliably preserve inference semantics
on-chain across diverse architectures, which was also evaluated in terms of the models’
performance.

Polm Resilience Under Adversarial Training. We present Polm resistance against malicious
updates via stress testing. We consider bootstrapping the decentralized model with 50 real
training samples from both classes, and injecting 50% of the training data size as malicious or
fabricated updates. These malicious updates either flip the class label or inject feature-noise.
The 50 real samples are randomly selected from the original attack and normal transaction
data to quantify how Polm reacts when training samples degrade one or more metrics,
and whether such poisoning affects performance. At each new training step, the update
is re-evaluated on the full test set. If accepted by Polm, the model is updated; otherwise,
the current model is retained. We note that the bootstrapping phase influences how Polm
responds to subsequent updates. Overall, PoIm maintains more stable performance than
the original (unfiltered) training process across all metrics on the same test data, as shown
in Figure 8. Green vertical bands indicate accepted training samples, while reddish bands
denote rejected ones. Notably, original linear models (e.g., logistic regression, SVM) suffer
severe degradation without Polm filtering.

35:19

AFT 2025

35:20

On-Chain Decentralized Learning

1.0 1.0
0.8 0.8
> c
o
® 0.6 & 0.6
=) ‘O
3 o
L 0.4 Q04
— LR-orginal — OT-Orginal — lR-Orginal — OT-Orginal
029 T Rrm o orrm 029 T Rim o orem
—— SVM-Orighal — MLp - Original —— SVM-Original — MLp - Original
—= SVM-Poim ==- MLP-Poim —= SWM-Pom ==- MLP-Poim
0.0 0.0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Training Step (by peers) Training Step (by peers)
1.0 1.0
0.8 0.8
=06 0.6
IS —
) w
-4
0.4 0.4
0.2 0.2
—— SVM-Orighal — MLP - Original
—=- SVM-Pom —=- MLP-Poim
0.0 0.0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Training Step (by peers) Training Step (by peers)

Figure 8 PoIm performance under 50% adversarial training samples. Green vertical lines indicate
accepted updates. Red lines indicate rejected ones. PolIm stabilizes performance compared to the
original training.

Inference Throughput. To evaluate real-time classification capability for the zero-cost
eth_call tier, we measured inference throughput using our 10-layer CNN. Table 8 details
these findings, which were obtained by sequentially querying a local Ethereum node. A single
transaction is classified in approximately 68ms. While the average per-sample processing
time for batches of 5 to 50 transactions stabilizes around 88-91ms, this performance enables
a throughput of approximately 11 classifications per second by an off-chain monitoring entity.
Such capacity is comparable to Ethereum’s current average TPS (= 15), suitable for timely
analysis.

Table 8 Inference throughput per second for (e.g., 10-layer) CNN for different transactions as
batches. Ethereum’s current TPS = 15.

Batch Size Total Time (s) Avg Time/Sample (s)

1 0.0680 0.0680
5 0.3890 0.0778
10 0.9150 0.0915
20 1.7650 0.0883
50 4.5580 0.0912

5.4 Baseline Comparison

We compare our framework against ML2SC [42], which compiles MLP models into smart
contracts for on-chain inference. While training in ML2SC is centralized, on-chain ML studies
remain sparse. Our evaluation focuses on gas costs and contract behavior. We re-deployed all
ML2SC MLP contracts, but observed that their design targets batch processing over a fixed
internal dataset of 50 samples. Specifically, their classify () function returns an aggregate
result (e.g., count of correct classifications), whereas our framework supports single-instance
inference.

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy

Table 9 Our framework vs. MI2SC as a baselines [42].

Metric Our Framework Baseline Method (ML2SC [42])

Deployment Gas (Contract + Params) 1.07M - 2.17M gas 1.96M - 2.36M gas (contract code only)

Separate Parameter Setting Gas 0 gas 0.30M - 1.04M gas

Data Setting Gas N/A ~10.63M gas (for 50 internal samples)

Total Setup Gas 1.07M - 2.17M gas ~12.9M - ~14.0M gas

Bytecode Size (Bytes) ~4,224 bytes ~9,425 - ~11,151 bytes

Inference Gas (classification on chain L1) 81k - 261k gas (per call) ~2.0M - ~2.4M gas (for 50 internal samples)

Output Type Prediction (0 or 1) Batch Result (e.g., count like 0 or 14)

Baseline classify() output (e.g., 14 (for MLP 1 layer and 1 neuron), 0 for others) indicates the number of correct predictions from its internal batch.

Deployment and setup costs differ significantly between our approach and the baseline.
Our models embed parameters directly via the constructor and become operational with
1.07M-2.17M gas. In contrast, ML2SC baselines incur higher cumulative setup costs (~12.9M—
14.0M gas) due to separate contract deployment (1.96M-2.36M gas), parameter setting
(0.30M-1.04M gas), and dataset population (~10.63M gas for 50 samples), as detailed in
Table 9. For inference, our framework supports efficient single-input predictions (81k—261k
gas) with measurable throughput (~7.6-8.0 calls/sec), whereas baseline contracts consume
~2.0M-2.4M gas per call, reflecting batch evaluation of 50 internal samples. Their view/pure
classify() functions are not suited for single-instance transactional inference. Finally, our
contracts are smaller in size (~4,224 bytes) compared to baseline contracts (~9,425-11,151
bytes). The results demonstrate the efficiency and suitability of our framework for single-
instance, real-time ML inference on-chain, especially in terms of gas cost and inference
flexibility.

6 Discussion

Transaction Class Imbalance Mitigation. In our decentralized training, the model is
updated incrementally by peers through submitted training samples. If normal transactions
exceed attack samples by a large margin threshold (e.g., 5x), PoIm blocks further normal
samples. Only attack samples are accepted until the balance is restored. This prevents
skewed updates, which would decrease attack transaction detection accuracy.

Trust and Inference Verification. Our system is designed under the assumption that
decentralized participants (i.e., DeFi platforms) perform training on an L2 network. However,
we do not assume these participants are honest. To defend against adversarial training
data injection, we incorporate per-sample verification and adversarial robustness checks at
each training step. Specifically, after each submitted training sample, the Polm evaluates
the model against a fixed, immutable (agreed upon by peers) test set using four metrics:
accuracy, precision, recall, and F1 score. The update is accepted only if it maintains or
improves at least one of these metrics without degrading any others. Otherwise, the training
step is discarded and the data point is excluded from the model. This method is effective
in both cases: when malicious training samples are used or when honest user data fails to
improve the model’s performance. It ensures that even if malicious actors attempt to inject
poisoned or manipulative data, their contributions cannot degrade the classifier’s performance.
Furthermore, all model training steps are conducted on L2 via a verifiable smart contract,
and every accepted update is auditable through its associated state transition and event
log. This guarantees transparency and accountability for each model state change. Once
a model has reached a finalized state on L2 (e.g., by consensus or performance threshold),
its quantized weights are serialized and committed via a cryptographic hash. This hash is

35:21

AFT 2025

35:22

On-Chain Decentralized Learning

propagated to L1 along with the raw weights. The L1 inference contract is a static model
(non-trainable) that accepts the weights only if the hash matches, ensuring the integrity of the
L2-originated model and protecting the L1 blockchain from tampering or weight substitution
attacks. Thus, our architecture enforces correctness and robustness both during training
(via metric-based rejection of adversarial updates) and during propagation (via hash-based
integrity verification), with no reliance on external oracles, centralized validators.

Inference Tiers. Our two-tier inference architecture imposes a trade-off for protocol de-
signers. The zero-cost tier uses eth_call execution. It can be used for protocols that do
not need on-chain inference verifiability, yet get the on-chain verified data, such as wallet
interfaces, warning users of potentially malicious transactions without incurring gas fees.
For fully verified on-chain defense, protocols integrate the fully on-chain tier, which acts
as a gatekeeper (e.g., IPS) by embedding the classification logic interface directly within a
state-modifying transaction.

Future Work. The Polm protocol only accepts updates that yield metric improvements.
This approach might lead to convergence to a local optimum, where no single micro-update
can further improve the model, even if a better global solution exists. Future work could
explore other acceptance criteria, such as stochastic policies like simulated annealing [32],
which would permit occasional slightly degrading steps to encourage broader exploration
of the model space. Also, Polm, similar to other stake-based governance systems, could
be susceptible to centralization if voting rights, represented by tokens (e.g., linear voting),
are openly tradable. A malicious actor could accumulate enough stake to influence the
update of the test set or roll back stable updates. Mitigating this, for example, through
quadratic voting or identity-based mechanisms such as know-your-customer (KYC) [23, 24],
is a potential avenue for future work. Our framework assumes a decentralized and engaged
set of participants (e.g., DeFi protocols themselves) whose long-term incentive is to ensure
model integrity to protect individual DeFi protocols’ funds. Finally, future work may study
sophisticated adversarial strategies. This includes addressing game-theoretic risks such as
front-running and detecting if latent backdoors in model updates exist.

7 Related Work

On-chain AT research seeks transparent, tamper-proof inference but faces the EVM’s fixed-
point arithmetic and gas limits [30, 44, 57, 42, 26]. Translators from ML to smart contract
code such as ML2SC compile MLPs from PyTorch to Solidity, proving feasibility for small
models yet incurring high gas per call on complex networks [57, 42]. For DeFi exploit detection,
LookAhead [54], STING [67], and FlashGuard [5] inspect mempools or historical transactions
to flag and mitigate attacks. Off-chain placement of these systems introduces latency [67],
misses private-relay transactions, and introduces centralized control. Off-chain ML with
on-chain verification is another direction of research. zkML [11], for example, attaches
zk-SNARK [51] proofs to each inference, preserving privacy but multiplying compute and
memory requirements by orders of magnitude [49, 65, 29].

Our cryptographic verification is distinct from zkML systems. ZKML frameworks use
zero-knowledge proofs (e.g., zk-SNARKS) to verify that a specific computation, such as an
ML inference, was executed honestly with a private model [11]. This provides computational
integrity but has substantial overhead. For instance, ZKML needs powerful hardware (up to
1TB of RAM for a distilled GPT-2 model) and can have proving times of nearly an hour [11].

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy

In contrast, our framework employs a much simpler and more gas-efficient commit-verify
scheme. Our approach prioritizes provenance and data integrity over computational privacy
since the DeFi attacks are public. This makes our approach practical for low-cost, real-time
use and suitable for mitigating DeFi attacks.

opML [15] (fraud-proof) treats results as valid unless a verifier proves otherwise, reducing
prover cost at the price of economic guarantees. However, it does not provide cryptographic
security [49, 16]. Agatha applies similar fraud proofs to DNNs on Ethereum [70]. Proposals
for decentralized model marketplaces, federated learning with ZK privacy, and DAO-based
model governance [7] either offload heavy compute or evaluate on limited node sets [15]. In
contrast, our approach is end-to-end, fully audited inference while remaining within L2 and
L1 mainnet gas limits.

8 Conclusion

We presented a fully decentralized and verifiable, on-chain ML /DL framework for real-time
DeFi exploit detection. Our approach enables classification of transactions at execution
time using a deterministic, gas-free inference mechanism embedded in smart contracts. We
proposed Proof-of-Improvement (Polm), a decentralized, stake-based model update protocol
that accepts only provably superior updates. The system guarantees inference consistency,
bounded gas usage, and resistance to adversarial submissions. Empirical evaluation on 298
real-world DeF1i exploits indicates high detection performance and practical feasibility. This
work establishes a new model for integrating ML-driven defenses into DeFi protocols with
minimal latency, overhead, and maximal decentralization.

—— References

1 Hedgey finance. https://hedgey.finance/, 2024. Accessed: 2024-05-08.

2 Martin Abadi. Tensorflow: learning functions at scale. In Proceedings of the 21st ACM
SIGPLAN international conference on functional programming, pages 1-1, 2016.

3 Sa’ed Abed, Reem Jaffal, Bassam J Mohd, and Mohammad Al-Shayeji. An analysis and
evaluation of lightweight hash functions for blockchain-based iot devices. Cluster computing,
24:3065-3084, 2021. doi:10.1007/S10586-021-03324-1.

4 Alchemy. Web3 Development Platform. https://www.alchemy.com, 2024.

5 Abdulrahman Alhaidari, Balaji Palanisamy, and Prashant Krishnamurthy. Poster: Flashguard:
Real-time disruption of non-price flash loan attacks in defi. In Proceedings of the 2024 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’24), page 3, Salt Lake
City, UT, USA, october 14-18 2024. ACM. doi:10.1145/3658644.3691385.

6 Abdulrahman Alhaidari, Balaji Palanisamy, and Prashant Krishnamurthy. Protecting defi
platforms against non-price flash loan attacks. In Proceedings of the Fifteenth ACM Conference
on Data and Application Security and Privacy (CODASPY ’25), pages 1-12, Pittsburgh, PA,
USA, 2025. ACM. doi:10.1145/3714393.3726503.

7 Dana Alsagheer, Lei Xu, and Weidong Shi. Decentralized machine learning governance:
Overview, opportunities, and challenges. IEEE Access, 11:96718-96732, 2023. doi:10.1109/
ACCESS.2023.3311713.

8 Raphael Auer, Bernhard Haslhofer, Stefan Kitzler, Pietro Saggese, and Friedhelm Victor. The
technology of decentralized finance (defi). Digital Finance, 6(1):55-95, 2024.

9 Nic Carter and Linda Jeng. Defi protocol risks: The paradox of defi. Regtech, suptech and
beyond: innovation and technology in financial services” riskbooks—forthcoming @, 3, 2021.

10 Stefanos Chaliasos, Marcos Antonios Charalambous, Liyi Zhou, Rafaila Galanopoulou, Arthur
Gervais, Dimitris Mitropoulos, and Benjamin Livshits. Smart contract and defi security tools:
Do they meet the needs of practitioners? In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, pages 1-13, 2024. doi:10.1145/3597503.3623302.

35:23

AFT 2025

https://hedgey.finance/
https://doi.org/10.1007/S10586-021-03324-1
https://www.alchemy.com
https://doi.org/10.1145/3658644.3691385
https://doi.org/10.1145/3714393.3726503
https://doi.org/10.1109/ACCESS.2023.3311713
https://doi.org/10.1109/ACCESS.2023.3311713
https://doi.org/10.1145/3597503.3623302

35:24

On-Chain Decentralized Learning

11

12

13

14
15

16

17

18
19
20

21

22

23

24

25

26
27

28

29

30

31

Bing-Jyue Chen, Suppakit Waiwitlikhit, Ion Stoica, and Daniel Kang. Zkml: An optimizing
system for ml inference in zero-knowledge proofs. In Proceedings of the Nineteenth European
Conference on Computer Systems, pages 560-574, 2024. doi:10.1145/3627703.3650088.
Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. A survey on ethereum
systems security: Vulnerabilities, attacks, and defenses. ACM Computing Surveys (CSUR),
53(3):1-43, 2020. doi:10.1145/3391195.

Arka Rai Choudhuri, Sanjam Garg, Julien Piet, and Guru-Vamsi Policharla. Mempool privacy
via batched threshold encryption: Attacks and defenses. Cryptology ePrint Archive, 2024.
Web3.js Contributors. Web3.js, 2024. URL: https://github.com/web3/web3. js.

KD Conway, Cathie So, Xiaohang Yu, and Kartin Wong. opml: Optimistic machine learning
on blockchain. arXiv preprint arXiv:2401.17555, 2024. doi:10.48550/arXiv.2401.17555.
Sourav Das, Vinay Joseph Ribeiro, and Abhijeet Anand. Yoda: Enabling computation-
ally intensive contracts on blockchains with byzantine and selfish nodes. arXiv preprint
arXiv:1811.03265, 2018. arXiv:1811.03265.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337-340. Springer, 2008.

De.Fi. Rekt db, 2024. Accessed: 2024-06-07. URL: https://de.fi/rekt-database.
DeFiLlama. DeFi Dashboard. https://defillama.com, 2024. Accessed: 2024-05-14.
Kaustubh Dwivedi, Ankit Agrawal, Ashutosh Bhatia, and Kamlesh Tiwari. A novel classi-
fication of attacks on blockchain layers: Vulnerabilities, attacks, mitigations, and research
directions. arXiv preprint arXiv:2404.18090, 2024. doi:10.48550/arXiv.2404.18090.
Ethereum Foundation. Ethereum improvement proposals. https://eips.ethereum.org/,
2025.

Etherscan. Ethereum blockchain explorer. http://etherscan.io/, 2024.

Andres Fabrega, Amy Zhao, Jay Yu, James Austgen, Sarah Allen, Kushal Babel, Mahimna
Kelkar, and Ari Juels. Voting-Bloc Entropy: A New Metric for DAO Decentralization. In
2025 USENIX Security Symposium (USENIX Security 25), 2025.

Rainer Feichtinger, Robin Fritsch, Lioba Heimbach, Yann Vonlanthen, and Roger Wattenhofer.
Sok: Attacks on daos. In 6th Conference on Advances in Financial Technologies (AFT 2024),
pages 28—1. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPIcs.
AFT.2024.28.

Flashbots. Mitigating MEV in Blockchain. https://www.flashbots.net, 2024. Accessed:
2024-07-23.

Ethereum Foundation. Ethereum, 2024. URL: https://ethereum.org/.

Foundry. Blazing fast, portable and modular toolkit for Ethereum application development
written in Rust. https://getfoundry.sh, 2024.

Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin. Defialigner: Leveraging
symbolic analysis and large language models for inconsistency detection in decentralized
finance. In 6th Conference on Advances in Financial Technologies (AFT 2024), pages 7—1.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPIcs.AFT.2024.7.
Bianca-Mihaela Ganescu and Jonathan Passerat-Palmbach. Trust the process: Zero-knowledge
machine learning to enhance trust in generative ai interactions. arXiv preprint, 2024. doi:
10.48550/arXiv.2402.06414.

Caleb Geren, Amanda Board, Gaby G Dagher, Tim Andersen, and Jun Zhuang. Blockchain
for large language model security and safety: A holistic survey. ACM SIGKDD Explorations
Newsletter, 26(2):1-20, 2025. doi:10.1145/3715073.3715075.

Arthur Gervais, Ghassan O Karame, Karl Wiist, Vasileios Glykantzis, Hubert Ritzdorf, and
Srdjan Capkun. On the security and performance of proof of work blockchains. In Proceedings
of the 2016 ACM SIGSAC conference on computer and communications security, pages 3—16,
2016. doi:10.1145/2976749.2978341.

https://doi.org/10.1145/3627703.3650088
https://doi.org/10.1145/3391195
https://github.com/web3/web3.js
https://doi.org/10.48550/arXiv.2401.17555
https://arxiv.org/abs/1811.03265
https://de.fi/rekt-database
https://defillama.com
https://doi.org/10.48550/arXiv.2404.18090
https://eips.ethereum.org/
http://etherscan.io/
https://doi.org/10.4230/LIPIcs.AFT.2024.28
https://doi.org/10.4230/LIPIcs.AFT.2024.28
https://www.flashbots.net
https://ethereum.org/
https://getfoundry.sh
https://doi.org/10.4230/LIPIcs.AFT.2024.7
https://doi.org/10.48550/arXiv.2402.06414
https://doi.org/10.48550/arXiv.2402.06414
https://doi.org/10.1145/3715073.3715075
https://doi.org/10.1145/2976749.2978341

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
49

Thomas Guilmeau, Emilie Chouzenoux, and Victor Elvira. Simulated annealing: A review

and a new scheme. In 2021 IEEFE statistical signal processing workshop (SSP), pages 101-105.

IEEE, 2021. doi:10.1109/SSP49050.2021.9513782.

Yang Guo. A review of machine learning-based zero-day attack detection: Challenges and

future directions. Computer communications, 198:175-185, 2023. doi:10.1016/J.COMCOM.

2022.11.001.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J
Smith, et al. Array programming with numpy. Nature, 585(7825):357-362, 2020. doi:
10.1038/541586-020-2649-2.

Ningyu He, Lei Wu, Haoyu Wang, Yao Guo, and Xuxian Jiang. Characterizing code clones in
the ethereum smart contract ecosystem. In International Conference on Financial Cryptography
and Data Security, pages 654-675. Springer, 2020. doi:10.1007/978-3-030-51280-4_35.
Lioba Heimbach and Roger Wattenhofer. Eliminating sandwich attacks with the help of game

theory. In Proceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security, pages 153-167, 2022. doi:10.1145/3488932.3517390.

Safak Kayikci and Taghi M Khoshgoftaar. Blockchain meets machine learning: a survey.

Journal of Big Data, 11(1):9, 2024. doi:10.1186/540537-023-00852-Y.

Nikhil Ketkar. Introduction to keras. In Deep learning with python: a hands-on introduction,
pages 97—111. Springer, 2017.

Oliver Kramer and Oliver Kramer. Scikit-learn. Machine learning for evolution strategies,
pages 45-53, 2016.

Wenkai Li, Xiaoqi Li, Yuqing Zhang, and Zongwei Li. Defitail: Defi protocol inspection
through cross-contract execution analysis. In Companion Proceedings of the ACM on Web
Conference 202/, pages 786—-789, 2024. doi:10.1145/3589335.3651488.

Xiaofan Li, Jin Yang, Jiaqi Chen, Yuzhe Tang, and Xing Gao. Characterizing ethereum
upgradable smart contracts and their security implications. In Proceedings of the ACM Web
Conference 2024, pages 18471858, 2024. doi:10.1145/3589334.3645640.

Zhikai Li, Steve Vott, and Bhaskar Krishnamachari. M12sc: Deploying machine learning models
as smart contracts on the blockchain. In 2024 IEEE International Conference on Blockchain and

Cryptocurrency (ICBC), pages 645-649. IEEE, 2024. doi:10.1109/ICBC59979.2024.10634431.

Yulin Liu, Yuxuan Lu, Kartik Nayak, Fan Zhang, LLuyao Zhang, and Yinhong Zhao. Empirical
analysis of eip-1559: Transaction fees, waiting times, and consensus security. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pages
2099-2113, 2022. doi:10.1145/3548606.3559341.

Rischan Mafrur. Ai-based crypto tokens: The illusion of decentralized ai? IET Blockchain,
5(1):€70015, 2025. doi:10.1049/BLC2.70015.

Wes McKinney et al. pandas: a foundational python library for data analysis and statistics.

Python for high performance and scientific computing, 14(9):1-9, 2011.

Johnnatan Messias, Vabuk Pahari, Balakrishnan Chandrasekaran, Krishna P Gummadi, and
Patrick Loiseau. Dissecting bitcoin and ethereum transactions: On the lack of transaction
contention and prioritization transparency in blockchains. In International Conference on
Financial Cryptography and Data Security, pages 221-240. Springer, 2023. doi:10.1007/
978-3-031-47751-5_13.

Nexus Mutual. CREAM Finance Hack. https://nexusmutual.io/claims-stories/
cream-finance-hack, 2025. Accessed: 2025-02-05.

Optimism Foundation. Optimism. https://www.optimism.io/, 2025. Accessed: 2025-02-21.

Zhizhi Peng, Taotao Wang, Chonghe Zhao, Guofu Liao, Zibin Lin, Yifeng Liu, Bin Cao, Long
Shi, Qing Yang, and Shengli Zhang. A survey of zero-knowledge proof based verifiable machine
learning. arXiv preprint arXiv:2502.18535, 2025.

35:25

AFT 2025

https://doi.org/10.1109/SSP49050.2021.9513782
https://doi.org/10.1016/J.COMCOM.2022.11.001
https://doi.org/10.1016/J.COMCOM.2022.11.001
https://doi.org/10.1038/S41586-020-2649-2
https://doi.org/10.1038/S41586-020-2649-2
https://doi.org/10.1007/978-3-030-51280-4_35
https://doi.org/10.1145/3488932.3517390
https://doi.org/10.1186/S40537-023-00852-Y
https://doi.org/10.1145/3589335.3651488
https://doi.org/10.1145/3589334.3645640
https://doi.org/10.1109/ICBC59979.2024.10634431
https://doi.org/10.1145/3548606.3559341
https://doi.org/10.1049/BLC2.70015
https://doi.org/10.1007/978-3-031-47751-5_13
https://doi.org/10.1007/978-3-031-47751-5_13
https://nexusmutual.io/claims-stories/cream-finance-hack
https://nexusmutual.io/claims-stories/cream-finance-hack
https://www.optimism.io/

35:26

On-Chain Decentralized Learning

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Daniel Perez and Benjamin Livshits. Smart contract vulnerabilities: Vulnerable does not imply
exploited. In 30th USENIX Security Symposium (USENIX Security 21), pages 1325-1341, 2021.
URL: https://www.usenix.org/conference/usenixsecurity21/presentation/perez.
Maksym Petkus. Why and how zk-snark works. arXiv preprint arXiv:1906.07221, 2019.
arXiv:1906.07221.

Valentina Piantadosi, Giovanni Rosa, Davide Placella, Simone Scalabrino, and Rocco Oliveto.
Detecting functional and security-related issues in smart contracts: A systematic literature
review. Software: Practice and experience, 53(2):465-495, 2023. doi:10.1002/SPE.3156.
PolygonScan. Polygon Gas Tracker. https://polygonscan.com/gastracker, 2024. Accessed:
2024-08-30.

Shoupeng Ren, Lipeng He, Tianyu Tu, Di Wu, Jian Liu, Kui Ren, and Chun Chen. Lookahead:
Preventing defi attacks via unveiling adversarial contracts. arXiv preprint arXiv:2401.07261,
2024.

Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. Smart contract: Attacks and protections.
Ieee Access, 8:24416-24427, 2020. doi:10.1109/ACCESS.2020.2970495.

Cosimo Sguanci, Roberto Spatafora, and Andrea Mario Vergani. Layer 2 blockchain scaling:
A survey. arXiv preprint arXiv:2107.10881, 2021. arXiv:2107.10881.

Nikumbh Sarthak Sham, Sandip Chakraborty, and Shamik Sural. Generation of optimized
solidity code for machine learning models using llms. arXiv preprint arXiv:2503.06203, 2025.
doi:10.48550/arXiv.2503.06203.

SunWeb3Sec. DeFiHackLabs. https://github.com/SunWeb3Sec/DeFiHackLabs, 2024. Ac-
cessed: 2024-05-08.

Jason Teutsch and Christian ReitwieBiner. A scalable verification solution for blockchains.
In Aspects of Computation and Automata Theory with Applications, pages 377-424. World
Scientific, 2024.

Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid. Blockchain scaling using
rollups: A comprehensive survey. IEEE Access, 10:93039-93054, 2022. doi:10.1109/ACCESS.
2022.3200051.

Xiaojie Wang, Hanxue Li, Ling Yi, Zhaolong Ning, Song Guo, and Yan Zhang. A survey
on off-chain networks: Frameworks, technologies, solutions and challenges. arXiv preprint
arXiw:2311.10298, 2023. doi:10.48550/arXiv.2311.10298.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1-32, 2014.

Zihuan Xu and Lei Chen. L2chain: Towards high-performance, confidential and secure layer-2
blockchain solution for decentralized applications. Proceedings of the VLDB Endowment,
16(4):986-999, 2022. doi:10.14778/3574245.3574278.

Chavhan Sujeet Yashavant, Saurabh Kumar, and Amey Karkare. Scrawld: A dataset of real
world ethereum smart contracts labelled with vulnerabilities. arXiv preprint arXiv:2202.11409,
2022. arXiv:2202.11409.

Zheming Ye, Xiaodong Qi, Zhao Zhang, and Cheqing Jin. Yoimiya: A scalable framework
for optimal resource utilization in zk-snark systems. arXiv preprint arXiv:2502.18288, 2025.
doi:10.48550/arXiv.2502.18288.

Pengcheng Zhang, Feng Xiao, and Xiapu Luo. A framework and dataset for bugs in ethereum
smart contracts. In 2020 IEEFE international conference on software maintenance and evolution
(ICSME), pages 139-150. IEEE, 2020. doi:10.1109/ICSME46990.2020.00023.

Zhuo Zhang, Zhigiang Lin, Marcelo Morales, Xiangyu Zhang, and Kaiyuan Zhang. Your
exploit is mine: Instantly synthesizing counterattack smart contract. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 1757-1774, 2023. URL: https://www.usenix.org/
conference/usenixsecurity23/presentation/zhang-zhuo-exploit.

Zhuo Zhang, Brian Zhang, Wen Xu, and Zhigiang Lin. Demystifying exploitable bugs in
smart contracts. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pages 615-627. IEEE, 2023. doi:10.1109/ICSE48619.2023.00061.

https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://arxiv.org/abs/1906.07221
https://doi.org/10.1002/SPE.3156
https://polygonscan.com/gastracker
https://doi.org/10.1109/ACCESS.2020.2970495
https://arxiv.org/abs/2107.10881
https://doi.org/10.48550/arXiv.2503.06203
https://github.com/SunWeb3Sec/DeFiHackLabs
https://doi.org/10.1109/ACCESS.2022.3200051
https://doi.org/10.1109/ACCESS.2022.3200051
https://doi.org/10.48550/arXiv.2311.10298
https://doi.org/10.14778/3574245.3574278
https://arxiv.org/abs/2202.11409
https://doi.org/10.48550/arXiv.2502.18288
https://doi.org/10.1109/ICSME46990.2020.00023
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhuo-exploit
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhuo-exploit
https://doi.org/10.1109/ICSE48619.2023.00061

A. Alhaidari, B. Palanisamy, and P. Krishnamurthy 35:27

69 Zibin Zheng, Jianzhong Su, Jiachi Chen, David Lo, Zhijie Zhong, and Mingxi Ye. Dappscan:
building large-scale datasets for smart contract weaknesses in dapp projects. IEEE Transactions
on Software Engineering, 2024.

70 Zihan Zheng, Peichen Xie, Xian Zhang, Shuo Chen, Yang Chen, Xiaobing Guo, Guangzhong
Sun, Guangyu Sun, and Lidong Zhou. Agatha: Smart contract for dnn computation. arXiv
preprint arXiv:2105.04919, 2021. arXiv:2105.04919.

71 Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye Wang,
Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. Sok: Decentralized finance
(defi) attacks. In 2028 IEEE Symposium on Security and Privacy (SP), pages 2444-2461.
IEEE, 2023. doi:10.1109/SP46215.2023.10179435.

AFT 2025

https://arxiv.org/abs/2105.04919
https://doi.org/10.1109/SP46215.2023.10179435

	1 Introduction
	2 Background
	2.1 Limitations of Existing Defenses
	2.2 Limitations of On-Chain ML

	3 DeFi Attacks and Threat Model
	3.1 Empirical Patterns of DeFi Attacks
	3.2 Challenges in Real-Time Defense
	3.3 Threat Model and Assumptions

	4 Decentralized Training, Inference, and Governance Framework
	4.1 Decentralized Micro-Step Training and Model Evolution
	4.2 Inference Architecture
	4.3 Layer-2 to Layer-1 Computation Separation
	4.4 Formal Bit-Exact Verification
	4.5 Gas Cost and Runtime Bound Analysis
	4.6 Decentralized Model Update

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance of On-Chain DeFi Exploit Detection
	5.3 Efficiency, Cost, and Consistency
	5.4 Baseline Comparison

	6 Discussion
	7 Related Work
	8 Conclusion

