
Proxying Is Enough: Security of Proxying in TLS
Oracles and AEAD Context Unforgeability
Zhongtang Luo # Ñ

Purdue University, United States

Yanxue Jia # Ñ

Purdue University, United States

Yaobin Shen #Ñ

Xiamen University, China

Aniket Kate #Ñ

Purdue University, United States
Supra Research, United States

Abstract
TLS allows a client to securely obtain data from a server, but does not allow the client to offer
the data provenance to an external node. TLS oracle protocols are used to solve the problem.
Specifically, the verifier node, as an external node, is convinced that the data is indeed coming from
a pre-defined TLS server, while remaining unable to access the client’s credentials (e.g., password).
Previous TLS oracle protocols such as DECO (CCS 2020) enforced the communication pattern of
server-client-verifier and utilized a novel three-party handshake process during TLS to ensure data
integrity against potential tempering by the client. However, this approach introduces a significant
performance penalty on the client and the verifier. Most recently, some works have proposed to
reduce the overhead by putting the verifier (as a proxy) between the server and the client such that
the correct TLS transcript is available to the verifier. Nevertheless, these works still rely on heavy
two-party secure computations or zero-knowledge proofs. In this work, we push the proxy model to
the extreme, where the verifier only needs to forward messages without performing any other heavy
computational operations when only the credentials should be protected and the data retrieved from
the server could be open to the verifier. Surprisingly, we prove that the thorough proxy model is
enough to guarantee security in some common scenarios, allowing a saving of 60–90% in running
time under common scenarios.

We first formalize the proxy-based Oracle protocol and functionality that allows the verifier
to directly proxy client-server TLS communication, without entering a three-party handshake or
interfering with the connection in any way. We then show that for common TLS-based higher-level
protocols such as HTTPS, data integrity to the verifier proxy is ensured by the variable padding
built into the HTTP protocol semantics. On the other hand, if a TLS-based protocol comes without
variable padding, we demonstrate that data integrity cannot be guaranteed. In this context, we then
study the case where the TLS response is pre-determined and cannot be tampered with during the
connection. We propose the concept of context unforgeability and show that data integrity can also
be guaranteed as long as the underlying Authenticated Encryption with Associated Data (AEAD)
satisfies context unforgeability. We further show that ChaCha20-Poly1305 satisfies the concept while
AES-GCM does not.

2012 ACM Subject Classification Security and privacy → Block and stream ciphers; Security and
privacy → Security protocols

Keywords and phrases Oracle, TLS, AEAD, Key Commitment

Digital Object Identifier 10.4230/LIPIcs.AFT.2025.4

Related Version Full Version: https://ia.cr/2024/733

Funding This work is supported partially by the National Science Foundation under grant CNS-
1846316 and a gift from Supra Labs.
Yaobin Shen: Yaobin Shen is supported by the National Key Research and Development Program of
China (2024YFB4504800), and the National Natural Science Foundation of China (62402404).

© Zhongtang Luo, Yanxue Jia, Yaobin Shen, and Aniket Kate;
licensed under Creative Commons License CC-BY 4.0

7th Conference on Advances in Financial Technologies (AFT 2025).
Editors: Zeta Avarikioti and Nicolas Christin; Article No. 4; pp. 4:1–4:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luo401@purdue.edu
https://zhtluo.com
https://orcid.org/0009-0006-7520-1466
mailto:jia168@purdue.edu
https://yanxue820.github.io/
https://orcid.org/0000-0002-3425-2885
mailto:yaobin.shen@xmu.edu.cn
https://sites.google.com/view/yaobin
https://orcid.org/0000-0002-9549-4538
mailto:aniket@purdue.edu
https://www.cs.purdue.edu/homes/akate/
https://orcid.org/0000-0003-2246-8416
https://doi.org/10.4230/LIPIcs.AFT.2025.4
https://ia.cr/2024/733
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

4:2 Proxying Is Enough

󰁰

Bank A

󰀄

Alice

TLS

{Req, Username: Alice, Password: 4523}

{Res, Username: Alice, Credit: 780}

󰀑

Verifier

󰛳

Blockchain

I confirm that Alice’s
credit score exceeds 750.

Figure 1 A use-case example. Alice queries Bank A about her credit score via TLS. The
verifier/oracle attests to the blockchain about Alice’s credit score, by intervening in the TLS
communication.

Acknowledgements We would like to thank Madhavan Malolan and Kirill Kutsenok from the
Reclaim Protocol for helpful discussions and suggestions.

1 Introduction

Transport Layer Security (TLS) [24, 25] has been widely used to establish a secure communi-
cation channel between a client and a server, enabling secure data access (we refer to such
data as TLS-protected data). However, TLS relies on symmetric encryption and both the
client and the server can obtain the key. This enables the client to build a ciphertext for any
data and falsely claim that it comes from the server. Thus, TLS does not allow the client to
prove the provenance and integrity of the data to third parties, limiting the propagation of
data. In particular, many decentralized applications on the blockchain need to access the
TLS-protected data as third parties. Due to the TLS limitation, we cannot rely on each
client to feed data into the blockchain. Therefore, a type of service called Oracle [5, 7] was
proposed to feed TLS-protected data into blockchains while guaranteeing the provenance
and integrity of data.

A straightforward way to implement the service is to allow a verifier to act as the client to
access data from the server. Unfortunately, this approach compromises the client’s security
and privacy, as the verifier needs to obtain the client’s credentials. Therefore, a desirable
way is to allow the verifier to participate in the communication between the client and the
server to prevent the client from modifying the data, but without obtaining additional private
information.

In Figure 1, we give a use case to explain how the oracle works: There is an application on
the blockchain that activates a rental contract if “Alice’s credit score exceeds 750”. Alice uses
her password to request the credit score from bank A, through a TLS connection. The verifier
participates in the TLS communication without learning request and response messages
but can check if Alice’s credit score in bank A exceeds 750. If so, the verifier submits the
confirmation information to the blockchain, and then the rental contract is activated.

For some applications, only request should be hidden from the verifier, and the response
could be open to the verifier. As in the above example, Alice may be willing to open {Res,
Username: Alice, Credit: 780} to the verifier; however, she does not want to reveal the
password in the request to the verifier, as the verifier can obtain more sensitive information
using the password. On the other hand, there are also some applications where protecting the

Z. Luo, Y. Jia, Y. Shen, and A. Kate 4:3

󰁰

Server
󰀄

Client
󰀑

Verifier

2PCReq.

Resp.

(a) 2PC-based TLS Oracle
[33, 31, 9, 6].

󰁰

Server
󰀄

Client
󰀑

Verifier

2PCReq.

Resp.

(b) Proxy-but-2PC TLS Oracle
[33, 16].

󰁰

Server
󰀄

Client
󰀑

Verifier

Req.

Resp.

Req.

Resp.

(c) Proxy-based TLS Oracle
(this work).

Figure 2 Design frameworks in the previous works use a 2PC protocol to prevent the client from
forging a message. In contrast, in our work, the client and the server interact with each other as in
TLS, but the messages between them are forwarded by the verifier.

response is also necessary, e.g., the response includes bank statements. An oracle protocol
designed for the former scenario can be adapted to the latter by incorporating zero-knowledge
proofs, allowing the client to prove that the data in response satisfies a specific predicate
without revealing the data to the verifier.

As bringing clients’ private data securely and selectively to blockchains is a problem of
immense interest, a few academic [33, 32, 26, 16, 31, 9] and industrial [4, 22] efforts in this
direction are already available. Earlier works typically involve modifying the TLS server-side
code [26] or utilizing trusted hardware [32]. While the approaches remain an interesting
theoretical probability, typical servers are reluctant to use modified TLS, and the usage of
trusted hardware introduces additional trusted entities. Hence both approaches see limited
use.

(Proxy-but-)2PC-based TLS Oracle. In a seminal work, Zhang et al. [33] proposed DECO,
which overcomes this practicality barrier without making any changes to the TLS server-
side code and using any trusted hardware. The core reason why the client in TLS can
forge the TLS data is that the symmetric encryption and authentication key generated
in the TLS session is shared by the client and the server (please see Section 2 for more
details). DECO [33], essentially splits the role of the client in typical TLS into two parties,
as shown in Figure 2a, so that the client cannot learn the entire symmetric encryption and
authentication key. In particular, the client and the verifier collaboratively communicate
with the server using secure two-party computation (2PC). Moreover, while the client and
the verifier collaborate, it is only the client that communicates with the server as in TLS. We
call this design as “2PC-based TLS oracle” protocol. Later, the subsequent works [31, 9, 6]
also follow the model.

In addition, Zhang et al. [33] also discussed another design framework, where the verifier
acts as a proxy to communicate with the sender but the verifier still needs to perform
2PC with the client, as shown in Figure 2b. We call this design as “proxy-but-2PC based
TLS oracle” protocol. Xie et al. [31] proposed a solution in this model that utilizes a
garble-then-prove scheme.

We can see that the previous works all rely on heavy 2PC between the client and the
verifier. A natural question is “Is there a secure TLS oracle solution that can totally avoid
heavy 2PC between the client and the verifier?”

Proxy-based TLS Oracle. To answer this question, in this work, we consider a pure
proxy-based TLS oracle as shown in Figure 2c, where the verifier only needs to forward
the messages generated by the client and the server, without additionally introducing any
heavy computation, which directly implies better performance. In addition, compared with
the (proxy-but-)2PC-based TLS oracles, the proxy-based oracle enables better compatibility
across different TLS versions, as the verifier only needs to forward messages. Moreover, the
proxy-based oracle not only does not modify server-side code but also achieves client-side
non-modification.

AFT 2025

4:4 Proxying Is Enough

Given that AEAD (Authenticated Encryption with Associated Data) is the core building
block of TLS, we investigate the security of two AEAD schemes, AES-GCM and ChaCha20-
Poly1305, which are overwhelmingly used in TLS 1.2/1.3 with an adoption rate of over
99% [29]. Based on the security of AEAD, we systematically conduct an investigation that
outlines the boundary between security and insecurity of the proxy-based TLS oracle protocol.
Surprisingly, we find that the proxy-based TLS oracle can be securely used in two prevalent
situations, HTTPS (see Section 6) and prefixed relevant data (see Section 7).

1.1 Contributions

Formalization. We provide an oracle ideal functionality and formalize the notion of the
above proxy-based TLS oracle protocol that allows the verifier to directly proxy client-server
TLS communication. The definitions allow us to analyze its security in this paper but can
also be applied to different versions of TLS and a comparison between oracle protocols. We
consider them to be of independent interest.

Impossibility. Based on the above definitions, we also prove that if the underlying AEAD
scheme satisfies key commitment, the proxy-based TLS oracle protocol can securely realize
the oracle ideal functionality in Figure 11. On the other hand, in Section 5, we find that
without the key commitment, an adversarial client can potentially forge a message to the
verifier.

Therefore, we know that the key commitment is sufficient and necessary to guarantee
the security of the proxy-based TLS oracle protocol. However, the AEAD schemes currently
used in TLS do not satisfy the key commitment, according to previous research [10, 1], which
means that the proxy-based TLS oracle protocol is not secure without specific constraints.

Possibility. Fortunately, we observe that the real-world application scenarios provide some
practical constraints such that the proxy-based TLS oracle can be used securely.

HTTPS. In Section 6, we define a new notion called “variable padding” in Definition 6, and
prove that when the plaintext contains a sufficiently long variable padding, AES-GCM and
ChaCha20-Poly1305 satisfy the key commitment, which means that the proxy-based TLS
oracle is secure in this case. Notably, we show that the TLS-based HTTPS protocol, which
is used in over 85% of all web pages [23], contains a sufficiently long variable padding, and
thus the proxy-based TLS oracle protocol can be securely used on it.

Prefixed relevant data. In Section 7, we focus on the constraint where the response plaintext
is prefixed and not changeable by the client once the connection is established. For example,
in practice, the client cannot arbitrarily modify his age, salary, social security number, etc.
To analyze the security in this case, we propose a new cryptographic property, context
unforgeability, and prove that AES-GCM is not secure yet, ChaCha20-Poly1305 is secure
with respect to context unforgeability. In addition, we prove that as long as the TLS uses a
context-unforgeable AEAD scheme, the proxy-based TLS oracle is secure.

New AEAD Security Property. Besides being used for analyzing the security of the proxy-
based TLS oracle, the newly proposed context unforgeability precisely bridges the gap in the
security analysis of AEAD, and thus may be of independent interest.

https://eprint.iacr.org/2024/733.pdf#figure.caption.12

Z. Luo, Y. Jia, Y. Shen, and A. Kate 4:5

Server W Verifier V Client P

Two-party Handshake Phase
Transcript T Transcript T

Record Phase
Request cq Request cq

Response cr Response cr

key/nonce key/nonce

(m, (kr, nr))

Figure 3 Our Proxy-based Oracle Protocol. The server and the client perform as in TLS, but
the messages are forwarded by the verifier. Finally, the client sends a message m, a key/nonce pair
(kr, nr) to the verifier, such that the verifier can verify that cr could be decrypted to the message m

using the key/nonce pair (kr, nr). When the client does not want to open the entire message m to
the verifier, the client can use a zero-knowledge proof protocol to generate a proof π to the verifier
to convince her that there is a message m that is decrypted from cr and satisfies a predetermined
requirement. The proof for data is orthogonal to our work. The detailed specification is defined in
ΠProxy (see Figure 7).

2 Technical Overview

In practice, a client P can retrieve a message m from a server W via TLS. An Oracle protocol
aims to allow the client P to prove to a verifier V that the message m is indeed obtained
from the server W and satisfies a predetermined requirement (e.g., age is greater than 18).
Typically, there are two cases: one is that the message m can be open to the verifier, called
“public mode”, and the other is that the client does not want to leak the entire m to the
verifier, called “private mode”. The protocol for the public mode can be transformed to that
for the private mode by using a zero-knowledge proof with the opening information in the
public mode as witness. Therefore, for simplicity, here we focus on the public mode, and we
also show the private mode in Section 4.

In this work, we assume that server W is always honest, while client P and verifier V
can be malicious. The key idea of our work is to use verifier V as a proxy to prevent client
P from tampering with the message m. Therefore, we also assume that verifier V reliably
connects to server W, i.e., verifier V can ensure that she indeed connects with server W
and the communication messages cannot be tampered with by others (including client P).
The assumption has been accepted by other proxy-setting systems [28]. Based on the above
assumptions, we design a proxy-based oracle protocol as illustrated in Figure 3 and obtain a
series of theoretical results summarized in Figure 4. Next, we will detail how we obtain these
results.

TLS relies on authenticated encryption with associated data (AEAD), a symmetric-key
primitive, to achieve integrity and confidentiality of exchanged messages. As shown in
Figure 3 (ignoring the verifier), TLS consists of a two-party handshake phase and a record
phase. After the two-party handshake phase, the server W and the client P both obtain a
key/nonce pair1 of AEAD to encrypt and decrypt the server’s messages. Then, in the record

1 Here, we ignore the other key/nonce pair for encrypting and decrypting the client’s messages, as this
work mainly focuses on preventing the client from forging the server’s messages.

AFT 2025

4:6 Proxying Is Enough

Proxy-based TLS Oracle Protocol (ΠProxy, Figure 7)
(Section 4)

Key commitment necessary and sufficient
to achieve FStd

Oracle. (Section 5)
(However, the AEADs in TLS

do not satisfy key commitment.)

Key commitment is satisfied.
(Section 6)

FVP
Oracle can be securely realized.

(Section 6)

Context unforgeability is satisfied.
(Section 7)

FFix
Oracle can be securely realized.

(Section 7)

Without any restrictions (FStd
Oracle, Figure 11)

Used on application-layer protocols

With variably padded messages
(Definition 6) e.g., HTTPS

Without variably padded messages
e.g., Facebook Messager

Related data is fixed during query.
(FFix

Oracle, Figure 12)
Without any other restrictions.

(FVP
Oracle, Figure 11)

Figure 4 Main contributions. We first give a proxy-based TLS oracle protocol ΠProxy and a
functionality FStd

Oracle without any restrictions. Then, we observe that key commitment is necessary
and sufficient to achieve FStd

Oracle; however, the AEADs used in TLS are not key committing in general.
Fortunately, real-world applications come with different restrictions on the plaintext response:
1. Plaintexts are variably padded (e.g., HTTPS), and we denote the functionality as FVP

Oracle.
2. Relevant data is immutable during the query (e.g., age), and we denote the functionality as

FFix
Oracle.

When applying the AEADs in TLS to variably padded messages when the padding is known by the
verifier in advance, we show that key commitment is satisfied, and thus FVP

Oracle can be achieved. In
addition, we prove that regardless of whether the plaintexts are variably padded or not, ChaCha20-
Poly1305 in TLS satisfy a newly proposed property, context unforgeability, which is sufficient to
achieve FFix

Oracle.

phase, the server W and the client P communicate with each other using the key/nonce pair
generated by the handshake phase. We can see that the client P also holds the key/nonce
pair of AEAD. Therefore, the client P can use the key/nonce pair to encrypt another distinct
message m′ to generate a ciphertext c′

r, and falsely claim that c′
r is retrieved from server W .

Note that here we discuss the original TLS without the verifier as a proxy.
To address the problem, previous works [33, 9, 31, 6, 16] prevent client P from obtaining

the whole key by splitting the key into two parts, each of which is obtained by client P and
verifier V respectively. Specifically, client P and verifier V collectively fulfill the role of the
client in TLS through a secure two-party computation (2PC) protocol. However, compared
with the original TLS protocol, introducing a 2PC protocol incurs significant extra costs,
which raises a question: Is it possible to avoid 2PC protocols?

Preliminary Attempt. We observe that in the attack above, client P uses the AEAD
key/nonce pair to generate a new ciphertext c′

r ̸= cr, where cr is the original ciphertext from
server W. The essence of previous works [33, 9, 31, 6, 16] is to ensure that client P cannot

Z. Luo, Y. Jia, Y. Shen, and A. Kate 4:7

obtain the complete AEAD key before he commits the message. Our preliminary attempt
is to ensure that verifier V can directly obtain the ciphertext cr from server W, such that
verifier V can recognize any modifications on the ciphertext cr. To this end, we treat verifier
V as a proxy that forwards and records the messages between server W and client P, as
shown in Figure 3. In this way, the ciphertext cr cannot be modified by client P. Moreover,
verifier V records the transcript T generated during the handshake phase. Therefore, client
P can provide (m, (kr, nr)) to verifier V to prove the following three statements: he holds a
key/nonce pair (kr, nr) that can decrypt cr to a message m; the message m satisfies a preset
requirement; the key/nonce pair (kr, nr) is derived from the transcript T .

Obviously, once obtaining (m, (kr, nr)), the verifier can verify the first two statements
directly2. However, the verifier cannot verify the third statement, since it involves private
information (namely, the secret used in Diffie-Hellman Handshake) held by the client (please
see Figure 6 for more details). Note that if the client provide the private information used
in Diffie-Hellman handshake process to the verifier, the verifier can know all the keys and
nonces, and thus the verifier can decrypt the request ciphertext (cq in Figure 3) to learn the
credential.

Using a zero-knowledge proof to prove the third statement is a straightforward way.
However, the hash function used in TLS 1.2/1.3 to derive key/nonce is SHA256, which is not
SNARK (Succinct Non-interactive Argument Knowledge)-friendly [13]. A concurrent and
independent work by Ernstberger [12] have tried to reduce the cost for proving the statement.
However, their results showed that the proof for this statement still occupies the cost 90% in
the public mode and the cost 60% in the private mode (see Table 1). Therefore, to further
reduce the overhead, we delve deeper into the potential of eliminating the proof that the
key/nonce pair is derived from the transcript T (i.e., the above statement 3).

Eliminating the Proof of Key Origin. As shown by the previous research [10, 1], the
AEAD schemes used by TLS do not satisfy the key commitment property (see Lemma 3); an
adversary can efficiently construct a ciphertext c and two distinct key/nonce pairs (k1, n1)
and (k2, n2), such that c can be decrypted to two distinct messages m1 and m2 by using
(k1, n1) and (k2, n2) respectively. At first glance, in our proxy-based oracle protocol, client P
cannot launch the above attack, since client P seems unable to construct the ciphertext sent
by server W . However, we observe this is not true, since client P obtains the key/nonce pair
(k, n) as soon as completing the handshake phase. Then, client P can construct a ciphertext
c such that it can be decrypted into m and m′ under key/nonce pair (k, n) and another
key/nonce pair (k′, n′) respectively. Moreover, m′ meets the predetermined requirement,
while m does not. Subsequently, the client can change the record in server W to m through
external interactions, so that server W produces and sends the ciphertext c. Finally, client
P can use (k′, n′) to convince verifier V that m′ satisfying the preset requirement is the
corresponding plaintext. For example, if the message is about bank balance, client P can
adjust his balance to m = 10, and then prove that balance m′ = 1000 by using (k′, n′) (see
Section 5).

2 Given that HTTP is a stateless protocol, to avoid using the same key the verifier obtained for future
rounds of interaction, the client can terminate the current connection with the server and handshake
again to restart one. For other protocols, we note that TLS 1.3 supports a key update mechanism
(see Figure 6) that allows us to refresh the key/nonce pair for subsequent communications without
needing another handshake.

AFT 2025

4:8 Proxying Is Enough

With Variable Padding. According to the above analysis, we know that key commitment is
necessary for a secure proxy-based oracle protocol without proving that the key is derived
from a given transcript. Fortunately, we observe that if the plaintext is well-formatted as
seen in HTTPS (or more formally, has a variable padding), the adversary cannot break the
key commitment. Intuitively, even if the adversary can generate (c, k, n, m) and (c, k′, n′, m′),
the probability that m and m′ are both well-formatted is negligible (see Section 6).

In practice, HTTPS (using TLS on the application layer protocol HTTP) satisfies the
above condition, since HTTP headers are variably padded [20]. Therefore, our proxy-based
oracle protocol without proving the key origin and 2PC protocols is secure with HTTPS.
While HTTPS is one of the most popular protocols and thus the current results are already
sufficient to address a wide range of application scenarios, we also discuss if our proxy-based
oracle protocol can be securely used for other protocols whose messages are not variably
padded.

Without Variable Padding. In the above attack, we assume that client P can arbitrarily
modify the record in server W. However, in some scenarios (e.g., ages, stock prices and
insurance numbers), client P is not able to perform modifications. In these cases, the
AEAD used in TLS only needs to satisfy a weaker security property: given a ciphertext c,
a key/nonce pair (k, n) and the corresponding message m, the adversary cannot construct
another key/nonce pair (k′, n′) such that c can be decrypted to another message m′. In
Section 7, we formally define this security property as context unforgeability (CFY-security)
and systematically investigate if the AEADs (including AES-GCM and ChaCha20-Poly1305)
used in TLS satisfy this new security property. We prove that AES-GCM does not satisfy
the context unforgeability, whereas ChaCha20-Poly1305 does.

Hierarchical Security of AEAD. Besides designing an efficient proxy-based oracle protocol,
our newly proposed security property, context unforgeability, bridges the gap in the security
analysis of AEAD, as shown in Figure 5. Interestingly, combined with the previous properties,
context commitment3 [10, 15, 18] and context undiscoverability [18], the hierarchical security
of AEAD precisely corresponds to the hierarchical security of hash functions.

3 Preliminary

We briefly outline the relevant background knowledge on TLS, the definition and security
properties of Authenticated Encryption with Associated Data (AEAD).

Notations. We use |m| to denote the bit-length of a string m, and m[i : j] to represent its
substring starting at i (0-based) with length (j − i), and m||n to denote the concatenation of
strings m and n. We represent the set size as |S|.

3.1 TLS
Transport Layer Security (TLS) is a family of communication protocols designed to provide
end-to-end security over a computer network. Its most prominent use remains to be HTTPS,
the web-browsing protocol that sees day-to-day use. TLS 1.3 is the latest protocol in the
TLS family, defined in August 2018 [24].

3 The works [10, 15] first proposed the key commitment problem. Then Bellare et al. [2] extended to
committing nonce and associated data, and Menda et al. [18] summarized them as context commitment.

Z. Luo, Y. Jia, Y. Shen, and A. Kate 4:9

Collision Resistance

Hash

Second-preimage Resistance

Preimage Resistance

Context Commitment [10, 16, 19]

AEAD

Context Unforgeability (Our Work)

Context Undiscoverability [19]

Figure 5 Hierarchical Security of AEAD. Both hash and AEAD can be abstracted as a map:
x → y; in AEAD, x includes key k, nonce n, and associated data A, and y refers to ciphertext c.
The first level (collision resistance and context commitment) refers to the fact that an adversary
cannot efficiently compute y and two different x and x′ such that x and x′ map to y. The second
level (second-preimage resistance and context unforgeability) refers to the fact that given x and y

where x → y, an adversary cannot efficiently compute x′ ̸= x such that x′ also maps to y. The third
level (preimage resistance and context undiscoverability) refers to that given y, an adversary cannot
efficiently compute x such that x maps to y.

There are two main protocols in TLS. The handshake protocol negotiates a symmetric
key to be used in the record protocol. The record protocol manages the transmission of
messages, using an authenticated encryption with associated data (AEAD) cipher suite to
ensure confidentiality and integrity. An overview of TLS is available in Figure 6.

Authenticated Encryption with Associated Data. Nonce-based authenticated encryp-
tion with associated data (AEAD) schemes [17] are employed in TLS to ensure data con-
fidentiality and integrity. An AEAD scheme consists of the following four algorithms
(AEAD.Setup, AEAD.Gen, AEAD.Enc, AEAD.Dec). We refer to Full Version’s Appendix A for
a full definition.

Cipher Suites in TLS. TLS supports a handful number of cipher suites [24], with AES-GCM
and ChaCha20-Poly1305 being the most popular and enabled in OpenSSL by default [30].
Notably, all cipher suites in TLS adopt a block-based construction – the plaintext and the
associated data are packed into a series of fixed-size blocks (p1, p2, . . . , pn) and (a1, a2, . . . , am),
which is then processed by the algorithm to produce the ciphertext.

AES-GCM. AES-GCM is the most widely used cipher suite in TLS and the only cipher suite
that must be implemented by every application under the specification. In AES-GCM, all the
computation is done over the field GF(2128). The ciphertext is obtained by ci = pi+Ek(n+i),
where E is the AES block cipher.

AES-GCM also ensures authenticity by using an authentication tag t = Ek(n) +∑m+n+1
i=1 siEk(0)m+n+2−i. where s = (a, c, m∥n) is a concatenation of a, c and their length.

For further information, we refer the reader to the specification for clarity [11].

ChaCha20-Poly1305. ChaCha20-Poly1305 is an alternative to AES-GCM. In ChaCha20-
Poly1305, encryption is done similarly to AES-GCM: ci = pi + Hk(n + i), where H is the
ChaCha20 stream cipher.

4 We note that there is a difference between the IV in the TLS protocol and the nonce in the AEAD
scheme. In both AES-GCM and ChaCha20-Poly1305 of the RFC specification [17], IV is limited to 96
bits, while the nonce used in the encryption is derived from IV by padding and can be longer.

AFT 2025

https://eprint.iacr.org/2024/733.pdf#appendix.A

4:10 Proxying Is Enough

Server W Client P

Diffie-Hellman Handshake MSMS

(CATS0, SATS0)(CATS0, SATS0)

CWK0 = H(key, CATS0)
CWIV0 = H(iv, CATS0)
SWK0 = H(key, SATS0)
SWIV0 = H(iv, SATS0)

c1 = EncCWK0 (CWIV0 + s, Req)
Req

c2 = EncSWK0 (SWIV0 + s, Res)
Res

· · ·

Key update (TLS 1.3)

(CATS1, SATS1)(CATS1, SATS1)

Figure 6 An overview of a TLS session between a client and a server. After establishing a master
secret MS with a Diffie-Hellman handshake in the handshake protocol, the parties derive the 0-th
client/server application secret (CATS0, SATS0). They then derive the client write key CWK, the
client write IV4 CWIV, the server write key SWK, and the server write IV SWIV. The values are
used in the communication, together with the sequence number s to ensure the uniqueness of each
IV. Additionally, in TLS 1.3, each party can also trigger a key update event that refreshes the
application secret.

However, the authentication tag computation in ChaCha20 is different from AES-GCM
due to the usage of Poly1305. First, two 128-bit variables (r, s) = Hk(n)[0 : 256] are sampled
from the stream cipher. Then, the authentication tag t = s +

∑m+n+1
i=1 sir

m+n+2−i where
s = (a, c, m∥n∥08) is the concatenation of associated data, ciphertext and their length as in
AES-GCM. The computation of t is done over GF(2130 − 5), then truncated to 128 bits. For
details, we refer the reader to the RFC specification [21].

Key Update. TLS 1.3, the latest TLS version, also supports an operation known as a key
update. The operation allows any party to refresh the secret (i.e., CATSi and/or SATSi in
Figure 6) used on either or both sides. The new secret is generated based on a hash of the
old secret, and the new keys and IVs are derived from the new secrets based on the same
rule as shown in Figure 6.

3.2 Context Attacks of AEAD
In the proxying oracle protocol, we need to discuss the possibility that an adversarial prover
deceives the verifier by providing a symmetric key that does not correspond to the one in
the handshake yet still decrypts the ciphertext. This corresponds to the concept of context
discovery and commitment attacks, first summarized by Menda et al. [18]. Here we outline a
couple of specific definitions that will be useful in our cases. We use † to denote a specification
of the more general case discussed by Menda et al.

Context Discovery Attack. A context discovery (CDY) attack refers to the adversary’s
capability to come up with some part of the context (i.e. a key and/or a nonce) that
decrypts the given ciphertext without error, although not necessarily to the original plaintext.
Formally:

Z. Luo, Y. Jia, Y. Shen, and A. Kate 4:11

▶ Definition 1 (Context Discovery). Fix some AEAD parameter pp and a corresponding
AEAD oracle Π. The game CDY† is defined as:
1. The challenger samples a random ciphertext c from some ciphertext space and its corre-

sponding decryption context (k, n, a).
2. The challenger sends (c, a) to some adversary A.
3. The adversary wins if it outputs a valid context (k′, n′, a) that decrypt c successfully.

The adversary’s q-advantage ∆A
CDY† is defined as the probability it wins under q queries to

the AEAD oracle Π.

Context Commitment Attack. A context commitment (CMT) attack refers to the adver-
sary’s capability to come up with some context (e.g. ciphertext) and provide two interpreta-
tions of it. Formally, the game is defined as:

▶ Definition 2 (Context Commitment). Fix some AEAD parameter pp and a corresponding
AEAD oracle Π. The game CMT† is defined as:
1. The challenger samples and sends (k, n) to some adversary A.
2. The adversary wins if it outputs a ciphertext c and two valid contexts (k, n, a) and (k′, n′, a)

with (k, n) ̸= (k′, n′) that decrypts c successfully.
The adversary’s q-advantage ∆A

CMT† is defined as the probability it wins under q queries to
the AEAD oracle Π.

Rationale for the Definition. As Menda et al. [18] have pointed out, there exist many
variations of commitment attacks with different limitations on the key, nonce and associated
data. Here we observe that in TLS the verifier cannot access the key and the nonce but can
access the associated data. Therefore, the adversary (i.e., client P) can only manipulate
the key and the nonce. Based on the fact, we pick the above definition that matches our
scenario. Nevertheless, we observe that our definition of CDY and CMT is a specification of
the granular security framework proposed by Menda et al., and we defer the discussion of
the general abstraction to Full Version’s Appendix B.

Relationship between CMT and CDY. Menda et al. proved that CMT security implies
CDY security, assuming that there is a non-negligible probability that a ciphertext can be
decrypted under two different contexts (known as context compression). They also make an
analogy that CDY is to CMT as a preimage attack is to a collision attack on a hash function.
The required security for AEAD in proxying is a little more lenient than CDY but a little
more strict than CMT. We will define an in-between game, the context forgery (CFY) attack,
and discuss the relation between the three games in Section 7.2.

Key Commitment Attacks. The two major cipher suites in TLS, AES-GCM and ChaCha20-
Poly1305, are not key committing under this definition. The concrete attack is well-studied
and presented in multiple works [1, 18, 10].

▶ Lemma 3 (Key Commitment Attacks). For AEAD ∈ {E-GCM, H-Poly1305}, where E is
an ideal cipher modeling AES and H is a random function modeling ChaCha20, there exists
an adversary that queries the oracle at most q times and wins CMT† with probability at least
2−32q.

AFT 2025

https://eprint.iacr.org/2024/733.pdf#appendix.B

4:12 Proxying Is Enough

There are a server W, a client P (i.e., prover), and a verifier V, and server W behaves the
same as in TLS. A predicate P(·) is to decide if the response from W satisfies some condi-
tions (e.g., age is greater than 18). A boolean value Modep indicates whether the execution is
in a private mode.
Handshake phase:

The client P and server W run TLS handshake protocol (see Section 3.1 for more details)
via verifier V (i.e., the messages generated during handshake protocol execution are
forwarded by V) to obtain the pair of initial client and server application keys
(CATS0, SATS0);
The client P and server W both compute (CWK0, CWIV0)← TLS.Derive(client, CATS0)
and (SWK0, SWIV0)← TLS.Derive(server, SATS0);

Request phase:
The client P computes c← AEAD.EncCWKi (CWIVi, a, Q), where i is initialized as 0 and
increases by 1 with each key update (described below), and a is the associated data in
TLS 1.3;
The verifier V forwards (c, a) to server W;

Response phase:
Get the query Q = AEAD.DecCWKi (CWIVi, a, c), and obtains the response R according to
the current dataset;
Generate c′ = AEAD.EncSWKi (SWIVi, a, R) and sends (c′, a′) to verifier V;
After receiving the response ciphertext (c′, a′) from server W, verifier V forwards (c′, a′)
to client P;
The client P computes m = AEAD.DecSWKi (SWIVi, a′, c′), if m ̸=⊥, the process continues,
otherwise it aborts;

Prove phase:
The client P proves that the response satisfies the conditions defined by the predicate P(·)
as follows:

Modep = 0: m does not involve private information:
∗ The client P sends m and (SWKi, SWIVi) to verifier V;
∗ The verifier V checks if m = AEAD.DecSWKi (SWIVi, a′, c′) and P(m̃) = 1 where m̃ is

the pertinent information extracted from m, output 1 if both conditions hold true,
and 0 otherwise.

∗ The client P and server W update (CATSi, SATSi) to (CATSi+1, SATSi+1) and
further compute (CWKi+1, CWIVi+1) and (SWKi+1, SWIVi+1) using the key update
mechanism (see Section 3.1 for more details).

Modep = 1: m involves private information:
∗ The client P generates a proof π′ by invoking FNIZK (see Full Version’s

Appendix A.2) [14] to prove that he knows m, m̃ and (SWKi, SWIVi) such that
m = AEAD.DecSWKi (SWIVi, a′, c′) and m̃ is extracted from m, and sends π′;

∗ If π′ is verified successfully, verifier V outputs 1, otherwise 0.

Protocol ΠProxy

Figure 7 Proxy-based Oracle Protocol.

4 Proxy-based Oracle Protocol

Our proxy-based oracle protocol ΠProxy (shown in Figure 7) is parameterized by a predicate
P(·). There are a server W, a client P and a verifier V. The client P aims to prove that
P(R) = 1 where R is from server W , to verifier V . To prevent client P from altering the data
received from server W , we use verifier V as a proxy to relay the messages between server W
and client P. Our protocol ΠProxy consists of four phases: (1) handshake phase, (2) request
phase, (3) response phase, and (4) prove phase. Next, we detail the four phases, and define
the functionality FStd

Oracle in Figure 11 in Full Version’s Appendix C.1.

https://eprint.iacr.org/2024/733.pdf#figure.caption.12
https://eprint.iacr.org/2024/733.pdf#subsection.C.1

Z. Luo, Y. Jia, Y. Shen, and A. Kate 4:13

In the handshake phase, client P and server W perform the TLS handshake protocol, and
the communication messages are relayed by verifier V. Then, the client and the server can
obtain the pair of initial client/server application key (CATS0, SATS0), and derive the client
write key/IV pair (CWK0, CWIV0) and the server write key/IV pair (SWK0, SWIV0) (see
Section 3.1 for more details). Later, (CWK0, CWIV0) and (SWK0, SWIV0) would be updated,
so we use (CWKi, CWIVi) and (SWKi, SWIVi) to denote the currently used key/IV pairs.

In the request and response phases, client P and server W still follow the specification of
TLS to generate the request ciphertext c under (CWKi, CWIVi) and the response ciphertext
c′ under (SWKi, SWIVi). The verifier V is responsible for relaying the two ciphertexts.

In the prove phase, client P can choose the public mode (i.e., Modep = 0) or the
private mode (i.e., Modep = 1). In the public mode, client P opens the response m and
the server write key/IV pair (SWKi, SWIVi) to verifier V. Then, verifier V checks if the
response ciphertext c′ can be decrypted to m using (SWKi, SWIVi) and P(m̃) = 1 where
m̃ is the pertinent message extracted from m. If the verification is successful, verifier V
outputs 1, otherwise, outputs 0. Since that (SWKi, SWIVi) is opened and cannot be used
for the subsequent communications, client P informs server W to update (CWKi, CWIVi)
and (SWKi, SWIVi) to (CWKi+1, CWIVi+1) and (SWKi+1, SWIVi+1) by using the key update
mechanism (see Section 3.1 for more details). In the private mode, the client P invokes FNIZK
to generate a proof π′ proving that he holds a server write key/IV pair (SWKi, SWIVi) that
can decrypt the response ciphertext c′ to m and P(m̃) = 1 where m̃ is the pertinent message
extracted from m. If the proof π′ is valid, the verifier V outputs 1, otherwise, outputs 0.

5 Vulnerability in Unrestricted Setting

While it is tempting to reason the protocol’s security on general TLS connections, unfortu-
nately, as we confirm the intuition of previous works [33, 16], the proxy-based oracle protocol
is not secure if we only consider the oracle with unrestricted setting FStd

Oracle. We present our
findings below.

▶ Theorem 4. When the underlying AEAD is vulnerable to key-committing attacks
(see Lemma 3), there exists some server W and predicate P(m) such that the protocol ΠProxy
does not realize the functionality FStd

Oracle (see Figure 11 in Full Version’s Appendix C.1).

Proof. Recall that in key-committing attack (see Definition 2), the adversary (i.e., the client
P) can generate a ciphertext c and two contexts (k, n, a) and (k′, n′, a), where (k, n) ̸= (k′, n′),
such that the ciphertext c can be successfully decrypted under the two contexts. At first
glance, the key-committing attack is not applicable to our scenario, as it is the server that
generates the response ciphertext c. However, since the client P can obtain (k, n) after
the handshake phase and the associated data a can be known beforehand according to the
specification of TLS [25, 24], the client P can manipulate the data stored by the server
through a side channel to build a ciphertext c. For instance, the client’s balance in some
bank can be manipulated by withdrawing or saving funds. Specifically, we then construct an
attacker A that does the following:

A starts the protocol. It starts handshaking with the server W through verifier V to
obtain (k, n).

A builds a ciphertext c and another context (k′, n′) ̸= (k, n), such that m = Deck(n, a, c)
and m′ = Deck′(n′, a, c) through traditional key commitment attacks (see Lemma 3).

A modifies the server-side data to m via side-channel methods, such that the verifier V
receives and records the response ciphertext c.

A uses (k′, n′) to convince the verifier V that m′ is the plaintext. ◀

AFT 2025

https://eprint.iacr.org/2024/733.pdf#figure.caption.12
https://eprint.iacr.org/2024/733.pdf#subsection.C.1

4:14 Proxying Is Enough

HTTP/1.1 200 OK
Date: Sat, 30 Dec 2023 18:52:39 GMT
Server: Apache/2.4.52 (Ubuntu)
Last-Modified: Mon, 11 Dec 2023 01:10:39 GMT
ETag: "25c9-60c319a24a0d5-gzip"
Accept-Ranges: bytes
Vary: Accept-Encoding
Access-Control-Allow-Origin: *
Content-Length: 9673
Connection: close
Content-Type: text/html

Figure 8 An HTTP response header from an Apache server. The first two lines (status code and
date) can be used as a generic variable padding for all HTTP responses.

A real-life attack scenario can also be found in the famous Facebook attack [10]. In the
Facebook attack, the attacker constructs a specific ciphertext after the handshake, when it
knows the symmetric key that will be used in the communication. It has the server store
this ciphertext, which it will decrypt later using a different key other than the one in the
handshake.

Nevertheless, not all hope is lost. We observe that the attack in the theorem exploited
the fact that the AEAD scheme in TLS is not key-committing. In fact, as we will see in the
theorem below, ΠProxy realizes FStd

Oracle if and only if the underlying AEAD is key-committing.

▶ Theorem 5. Given a secure AEAD with key commitment security (see Lemma 3), protocol
ΠProxy shown in Figure 7 can securely realize the oracle functionality FStd

Oracle (see Figure 11
in Full Version’s Appendix C.1) in the FNIZK-hybrid model, against a static active adversary
who can corrupt client P or verifier V.

We refer the readers to Full Version’s Appendix E for proof details.

6 Variable Padding and HTTPS Server

The previous section shows that key commitment is necessary and sufficient for a secure
oracle protocol. However, with all that being said, key committing is simply not a property
present in the current TLS protocol. Fortunately, we find that all HTTPS responses contain
an HTTP header at the start of the plaintext, which can be used to prevent key-committing
attacks. In this section, we define a notion called variable padding to capture the padding-like
structure existing in HTTPS responses. Furthermore, we prove that when considering
plaintexts with variable padding, both AES-GCM and ChaCha20-Poly1305 are secure against
key-committing attacks. Next, we first give more details about variable padding.

6.1 Variable Padding
Figure 8 contains a typical response header from an Apache server. The sample header

has 308 bytes of text – enough for 19 blocks of AES. Albertini et al. [1] have shown that
AEAD schemes can be made key-committing with 4 blocks of fixed padding. However,
we observe that an adversarial prover in our game has some wiggle room for the header,
because it may be able to determine parameters such as HTTP status code and response
date. Nevertheless, we find its capability highly constrained, since all of these parameters
have limited ranges of value. For instance, the HTTP status code has only 63 variations. If
we take a rather generous time window of one hour between the response of the server and
the receival of the verifier, then the response date has no more than 3600 different variations.
This motivates us to define the concept of variable padding: padding with limited variations
controlled by the adversary.

https://eprint.iacr.org/2024/733.pdf#figure.caption.12
https://eprint.iacr.org/2024/733.pdf#subsection.C.1
https://eprint.iacr.org/2024/733.pdf#appendix.E

Z. Luo, Y. Jia, Y. Shen, and A. Kate 4:15

▶ Definition 6 (Variable padding). Consider a set S that consists of only λ-bit strings. We
say that a string m is variably padded by S, if the λ-bit prefix of m is in S.

For instance, consider the sample header in Figure 8. We can easily verify that the first
54 bytes consist of only the status code and the date as the variable parameters. Therefore,
we can assert that there exists a 54-byte string set S with |S| = 63 × 3600, such that all
response plaintext produced by this particular server is variably padded by S.

Application to Generic HTTPS Servers. While to achieve the tightest security bound, the
specific padding and length should be analyzed on a per-server basis, we can nevertheless
demonstrate a generic bound based on the HTTP status code and date header.

▶ Corollary 7. Every valid HTTP response is variably padded by a 54-byte string set S with
|S| = 63t if it follows good practice and is received within t seconds.

This corollary is verified by noticing that RFC 7231 requires any server with a reasonable
clock to send the date header, and states “it is good practice to send header fields that contain
control data first, such as. . . Date on responses”. Notably, both Apache and Nginx, the
two popular HTTP server implementations, have Server and Date as the first two response
headers; meanwhile, the HTTP header with a date takes at least 54 bytes.

6.2 Key Commitment with Variable Padding
Next, we consider an adversarial prover’s advantage with a variably padded plaintext, in
AES-GCM and ChaCha20-Poly1305. Since the verifier has access to the ciphertext transcript,
the attacker needs to come up with some ciphertext c and two pairs of key and nonce
((k, n), (k′, n′)) such that both Deck(n, a, c) and Deck′(n′, a, c) give a plaintext variably
padded by some S.

Analysis on AES-GCM. We first formalize our statement for AES-GCM.

▶ Theorem 8 (GCM Key commitment with variable padding). Assume E is an ideal block
cipher with l-bit block size and (Enc, Dec) is a GCM scheme defined on E. The adversary’s
advantage of constructing a ciphertext c, an associated data a, and two key/nonce pairs
((k, n), (k′, n′)) such that both Deck(n, a, c) and Deck′(n′, a, c) give a plaintext variably padded

by some λ-bit string set S within q queries to E is at most ϵ = q2|S|2

2λ−2v+1

(
2l

2l−b

)b+1
, where

b = ⌊ λ
l ⌋ and v is the bit-length of IV.

Proof. We first fix a key/nonce pair (k, n) and two prefixes (s, s′) and consider the bad
event BAD where there exists another key/nonce pair (k′, n′) and a ciphertext c such that
Deck(n, a, c) has prefix s and Deck′(n′, a, c) has prefix s′. Let us upper-bound the probability
Pr(BAD) as follows.

We assume that the λ-bit prefix spans across b blocks and λr extra bits, which means
that λ = l · b + λr. We know that for some ciphertext c, Deck(n, a, c) has prefix s and
Deck′(n′, a, c) has prefix s′. Therefore, according to the AES-GCM encryption process, the
following equation set holds:

Ek(n + 1) + s[0 : l] = c[0 : l] = Ek′(n′ + 1) + s′[0 : l],
Ek(n + 2) + s[l : 2l] = c[l : 2l] = Ek′(n′ + 1) + s′[l : 2l],

...
Ek(n + b + 1) + s[bl : λ] = c[bl : λ] = Ek′(n′ + b + 1) + s′[bl : λ].

AFT 2025

4:16 Proxying Is Enough

.λr

0 (n + 1) (n + b) 2l − 1

2l elements

Ek:

.λr

0 (n′ + 1) (n′ + b) 2l − 1

Ek′ :

Figure 9 A representation of Ek and Ek′ as permutations. The shaded part in Ek′ is uniquely
determined from the shaded part in Ek.

Recall that we consider fixed (k, n) and prefixes s and s′. Therefore, the equation set above
tells us that b blocks and λr extra bits of Ek′ are also fixed. Next, we calculate how many
Ek′ can satisfy the requirement.

Because E is an ideal cipher and block size is l bits, both Ek and Ek′ are permutations
on 2l elements. In Figure 9, we show the results of the permutation on the 2l elements.
We assume that from (n + 1)-th block to (n + b)-th block are fixed and the first λr bits in
the (n + b + 1)-th block are also fixed. We can see that the remaining (l − λr) bits in the
(n + b + 1)-th block can be randomly chosen from {0, 1}l−λr . Once the remaining (l − λr)
bits in the (n + b + 1)-th block are chosen, the (b + 1) blocks are fixed. Then, the remaining
(2l −b−1) blocks have a total of (2l −b−1)! possible assignments. Therefore, the upper bound
of the number of Ek′ satisfying the above requirement is given by |Ek′ | ≤ 2l−λr (2l − b − 1)!.

Without considering the above requirement, Ek′ could be randomly chosen from (2l)! per-
mutations. Hence the probability of BAD happening is at most Pr(BAD) ≤ 2l−λr (2l−b−1)!

(2l)! <

2l−λr

(2l−b)b+1 = 1
2λ

(
2l

2l−b

)b+1
.

Now the total probability is bounded by the summation of all different keys the adversary
tests (note that the adversary queries E at most q times) and all different nonces and prefixes,

so ∆A <

(
q

2

)
︸︷︷︸
keys

· 22v︸︷︷︸
nonces

· |S|2︸︷︷︸
prefixes

· Pr(BAD) < q2|S|2

2λ−2v+1

(
2l

2l−b

)b+1
. ◀

Since in TLS, the nonce n for AES-GCM is uniquely determinely by a 96-bit IV, we have
v = 96. Plugging in the generic HTTP padding with λ = 8 × 56 bits, l = 128 bits, |S| = 63t

and a generous t = 3600 seconds gives us ϵ ≤ 2−221q2. Note that
(

2l

2l−b

)b+1
≈ 1.

Therefore, the protocol is secure on HTTPS servers.

Analysis on ChaCha20-Poly1305. Similarly, below we demonstrate the security of ChaCha20-
Poly1305.

▶ Theorem 9 (Poly1305 Key commitment with variable padding). Assume H : Z|k| ×Z|n| → Zl

is an ideal random function representing ChaCha20 and (Enc, Dec) is a Poly1305 scheme
defined on H. The adversary’s advantage of constructing a ciphertext c, an associated data
a, and two key/nonce pairs ((k, n), (k′, n′)) such that both Deck(n, a, c) and Deck′(n′, a, c)
give a plaintext variably padded by some λ-bit string set S within q queries to H is at most
ϵ = q2|S|2

2λ−2v+1 , where v is the bit-length of IV.

Z. Luo, Y. Jia, Y. Shen, and A. Kate 4:17

Proof. The only difference in the analysis between AES-GCM and ChaCha20-Poly1305
is that AES is a random permutation and ChaCha20 is a random function. Therefore,
following a similar analysis, we can bound the probability of getting a bad random function
to Pr(BAD) ≤ 2l−λr (2l)2l−b−1

(2l)2l = 2l−λr

(2l)b+1 = 1
2λ . Therefore, the overall probability is bounded

by ∆A <
(

q
2
)

· 22v · |S|2 · Pr(BAD) < q2|S|2

2λ−2v+1 . ◀

Similarly, in TLS, the nonce n for ChaCha20-Poly1305 is uniquely determined by a 96-bit
IV. Therefore, we have v = 96. Plugging in the generic HTTP padding with λ = 8 × 56 bits,
l = 512 bits, |S| = 63t and t = 3600 seconds gives us ϵ ≤ 2−221q2.

An application of Theorem 8 and Theorem 9 gives us the following desired security
property.

▶ Theorem 10. Assume TLS uses either AES-GCM or ChaCha20-Poly1305. Fix some set
variable padding S of polynomial size. Let FVP

Oracle denote the same functionality as FStd
Oracle,

except that the server’s response is guaranteed to be variably padded by S. Protocol ΠProxy
shown in Figure 7 can securely realize the oracle functionality FVP

Oracle defined in Figure 11
in the FNIZK-hybrid model, against a static active adversary who can corrupt client P or
verifier V.

The proof follows a direct application of the above analysis on AES-GCM and ChaCha20-
Poly1305 to Theorem 5.

7 Beyond HTTPS: without Variable Padding

We have shown that proxying is secure over HTTPS thanks to the variable padding. Nonethe-
less, exploring the potential usage of proxying over home-bake protocols is still an interesting
topic from a theoretical perspective. We have seen that proxying is not secure given any
home-bake protocol: the Facebook attack [10] is a practical counter-example. Therefore, we
must restrict the adversarial prover’s power to some extent. In this section, we explore the
scenario where the prover must fix the server’s response before the protocol. This is common
in many daily scenarios. For instance, an adversarial prover should not be able to change his
age depending on the handshake secret.

We formalize the intuition as functionality FFix
Oracle in Figure 12 in Full Version’s Ap-

pendix C.2. Unlike the functionality FStd
Oracle, the functionality FFix

Oracle obtains the data related
to client P, denoted as DataP , from the environment E , before the handshake phase. Then,
in the response phase, the functionality FFix

Oracle applies the query Q to DataP to obtain the
response R. This reflects that DataP is fixed before the handshake phase.

7.1 Context Forgery Attack
What we are considering is akin to a forgery attack: our adversarial attacker must come up
with an additional explanation of the ciphertext provided by the server. We notice that the
context discovery (CDY) attack on AEAD (see Definition 1) considered by Menda et al. [18]
is closely related to our problem, but there are notable differences.

Specifically, the adversarial P considered by us has more knowledge than what is described
under the CDY model in Menda et al. [18], since he knows the original context (i.e., key/nonce
pair) of the ciphertext. Moreover, he also has a different goal in mind: he cannot just find any
context that decrypts the ciphertext – he has to find one that is different from the original
context. Based on these differences, we propose a new model named context forgeability

AFT 2025

https://eprint.iacr.org/2024/733.pdf#figure.caption.12
https://eprint.iacr.org/2024/733.pdf#figure.caption.13
https://eprint.iacr.org/2024/733.pdf#subsection.C.2
https://eprint.iacr.org/2024/733.pdf#subsection.C.2

4:18 Proxying Is Enough

(CFY) and relate this to the second-preimage attack on a hash function, similar to how CDY
is to CMT as a preimage attack is to a collision attack. More formally, we can define the
context forgery attack game as:

▶ Definition 11 (Context Forgery). Fix some AEAD parameter pp and a corresponding
AEAD oracle Π. The game CDY† is defined as:
1. The challenger samples a random ciphertext c from some ciphertext space and its corre-

sponding decryption context (k, n, a).
2. The challenger sends (c, k, n, a) to some adversary A.
3. The adversary wins if it outputs a valid context (k′, n′, a) with (k, n) ̸= (k′, n′) that

decrypts c successfully.
The adversary’s q-advantage ∆A

CDY† is defined as the probability it wins under q queries to
the AEAD oracle Π.

Analysis on AES-GCM. AES-GCM is known for various commitment weaknesses [10], and
it is not difficult to intuit that it is not secure in this scenario. Since a CDY attack implies
a CFY attack (see Corollary 16), we can use ideas that Menda et al. [18] proposed for the
CDY attack to give an attack for CFY.

▶ Theorem 12. There is an attack under CFY† that breaks E-GCM with probability at least
q

233 , assuming E is an 128-bit ideal block cipher.

Proof. For simplicity, let us consider a message with one block of ciphertext and no associated
data. If we obtain some key k, nonce n and the only ciphertext block c from the input, the
tag t follows the definition of GCM where t = Ek(n) + Ek(0)2c + Ek(0). Now suppose we
sample some other key k′ ̸= k, then we have the following equation, given the fixed tag t and
ciphertext block c that t = Ek′(n′) + Ek′(0)2c + Ek′(0).

It is obvious that given (Ek′(0), c, t), Ek′(n) can be solved using the above equation.
Moreover, since Ek′ is reversible, we can solve for n′. In AES-GCM the nonce must end with
(031∥1), so this particular n′ has 1

232 probability of satisfying the requirement. Observing that
this try of k′ uses two queries of E (that is, one is for Ek′(0) and the other is for decrypting
Ek′(n′)), we can bound the success probability of q queries to q

233 . ◀

The above attack can be generalized to any length of associated data and ciphertext, as
discussed by Menda et al. [18]. Moreover, many works [18, 10] have shown that AES-GCM
polyglot ciphertext can be decrypted to different meaningful plaintext under different keys.

Analysis on ChaCha20-Poly1305. To analyze game CFY† under ChaCha20-Poly1305, we
first abstract its authentication tag computation mechanism as t = poly(r) + s, where poly
is a polynomial whose coefficient depends only on the concatenation of the associated data
and the ciphertext, and (r, s) = H(k, n)[0 : 256] is the secret generated by the ChaCha20
pseudorandom function. We then demonstrate its security in CFY†.

▶ Theorem 13. The adversary’s advantage in CFY† when attacking H-Poly1305 is no more
than q

2128 , where q is the number of queries the adversary made to H and H(k, n) is a 512-bit
random oracle.

Proof. We start by fixing some key and nonce (k′, n′) the adversary has queried for the first
time. Observe that since H is a random oracle, Pr (H(k′, n′) = h) is a uniform distribution
regardless of any prior queries. Therefore, (r′, s′) = H(k′, n′)[0 : 256] is also uniformly
distributed over the whole range. Now observe that in order for (k′, n′) to satisfy the tag

Z. Luo, Y. Jia, Y. Shen, and A. Kate 4:19

requirement, we have poly(r′) + s′ = t = poly(r) + s. Rearrange and we have s′ − s =
poly(r) − poly(r′). Observe that for some fixed s, s′ − s is still uniformly distributed over
Z/2128Z. Denote ∆p(r′) = poly(r) − poly(r′). We can bound the probability of (k′, n′)
satisfying the tag requirement Pr(BAD) by Pr(BAD) =

∑
i∈Z/2128Z Pr(s′ −s = i) Pr(∆p(r′) =

i) = 1
2128

∑
i Pr(∆p(r′) = i) = 1

2128 . Since the attacker makes q queries, we bound the
probability to q

2128 . ◀

Protocol Security Under CFY. We demonstrate that the proxying protocol ΠProxy realizes
FFix

Oracle as long as the underlying AEAD is secure under CFY†.

▶ Theorem 14. Given a secure AEAD with context unforgeability security under CFY†, the
protocol ΠProxy shown in Figure 7 can securely realize the functionality FFix

Oracle in Figure 12
in the FNIZK-hybrid model, against a static active adversary who can corrupt client P or
verifier V.

We refer the readers to Full Version’s Appendix F for the full proof.

7.2 Relationship between CMT, CFY and CDY
An interesting observation is that a similar hierarchy exists concerning CDY, CFY and CMT
just like the hash function. CMT-security implies CFY-security, and CFY-security implies
CDY-security assuming context compression. We provide our insight in the following two
corollaries and defer a formal proof on the generalized case under Menda et al.’s framework
to Full Version’s Appendix B.

▶ Corollary 15. For some AEAD Π and any adversary A that wins the CFY† game with
advantage ∆A

CFY† , there exists an adversary B that wins the CMT† game with advantage
∆B

CMT† = ∆A
CFY† .

The relationship between CFY and CDY, on the other hand, is not so clear-cut. While
a CDY attack on an AEAD scheme often implies a CFY attack, it is not universally true.
In the case where a ciphertext cannot be decrypted under two different contexts (i.e., the
following BadCtx event), a CDY attack may be easy but a CFY attack will be impossible.
However, similar to the analysis of Menda et al. on CDY, we can bound the advantage of
the adversary with the probability of BadCtx:

▶ Corollary 16. For some AEAD Π and any adversary A that wins the CDY† game with
advantage ∆A

CDY† , there exists an adversary B that wins the CFY† game with advantage ∆B
CFY†

such that ∆B
CFY† ≥ 1

2 (1 − Pr[BadCtx])∆A
CDY† , where BadCtx is the event that for a randomly

sampled (K, N, M, A), the resulting ciphertext C can only be decrypted when the associated
data is A.

8 Evaluation

Due to the fact that the related works’ implementations are close-sourced, including
DECO [33], the work by Xie et al. [31], Janus [16], ORIGO5 [12], we conduct an em-
pirical survey to outline the cost that can be saved by our technique in Table 1, using
numbers reported in these papers. We split the result from these papers into the following
three parts, and our result in this paper can eliminate the cost in key-related assurance:

5 The end-to-end codebase in ORIGO (https://github.com/opex-research/tls-oracle-demo) is
open-sourced, but the zero-knowledge component (https://github.com/opex-research/tls-zkp) is
not.

AFT 2025

https://eprint.iacr.org/2024/733.pdf#figure.caption.13
https://eprint.iacr.org/2024/733.pdf#appendix.F
https://eprint.iacr.org/2024/733.pdf#appendix.B
https://github.com/opex-research/tls-oracle-demo
https://github.com/opex-research/tls-zkp

4:20 Proxying Is Enough

Table 1 Time comparison between various related works, using AES-GCM as the cipher suite.
Shaded parts represent the cost we can save with our result. For reference, ORIGO [12] measured
the TLS overhead to be 1.26 s under 1 Gbps WAN network. DECO tested query and record layer
assurance separately, but did not report response size.

Work Scenario Record
Type

Resp. Key-Related Record
Size Off. On. Off. On.
(B) (s) (s)

ORIGO [12]
(Groth16) Circuit1 Open2

(32 B) 1429 22.47 1.08 10.55 0.61

ORIGO [12]
(Plonk) Circuit Open

(32 B) 1429 27.51 14.84 13.99 7.67

Janus [16] LAN Open
(256 B) 2048 3.94 4.79 1.13 2.08

Xie et al. [31] LAN – 1024 – 0.614 –
DECO [33]

(512 B Query) LAN – – 2.28 0.42 –
DECO [33]

(512 B Query)
WAN

(100 Mbps) – – 22.81 5.20 –
DECO [33]

(1 KB Query) LAN – – 2.50 0.47 –
DECO [33]

(1 KB Query)
WAN

(100 Mbps) – – 24.59 7.42 –

DECO [33] Circuit Binary
Options3 – – – 12.97

DECO [33] Circuit Age
Proof – – – 3.67

DECO [33] Circuit Price Dis-
crimination – – – 12.68

1. Local computation of proof circuit.
2. Selective opening of a substring of the response.
3. DECO designed some scenarios where the prover proves a specific statement.
4. Xie et al.’s work only reported the online computation cost of 2-party computations.

1. TLS proxy overhead: cost associated with TLS proxying and network cost.
2. Key-related assurance: cost associated with ensuring key commitment. Some prior

work [33, 31, 16] utilizes 2PC protocols to generate query since the key is split between
the client and the oracle. Here, we consider the processes of three-party handshake and
relevant 2PC to be in this category, since our result does not need to split the key, and
eliminates these costs.

3. Record layer assurance: cost on proving statements in the record layer.

Based on empirical data, in the simple case where everything that needs to be hidden
resides in the request and the record layer assurance does not need to be deployed, we can
achieve around a 90% saving in running time by eliminating key-related assurance. On the
other hand, if we consider typical record layer assurance protocols deployed by these works,
we can achieve around a 60% saving in performance, depending on the complexity of the
record layer circuit.

9 Related Work

AEAD Commitment Security. It is known that a lot of AEAD schemes do not have the
most robust commitment security. One prominent example of an exploit is the attack on
Facebook Messenger by Dodis et al. [10]. Commitment security on AEAD has received
a lot of research since around that time [15, 8]. Menda et al. provided a generalization
and analysis on the topic [18], which we leverage in this paper. Albertini et al. analyzed
several possible ways to fix popular AEAD schemes [1]. Our work builds and extends on the
framework by Menda et al. [18] and gives it a practical scenario. With this toolset, we are
able to reason the security of proxying and give concrete security bounds with proof.

Z. Luo, Y. Jia, Y. Shen, and A. Kate 4:21

TLS Proxy & Oracle Protocols. Using TLS under multi-party scenarios has been investi-
gated a number of times under different scenarios [19, 3, 14, 27]. TLS oracle protocols have
also recently been studied by a variety of academic papers. Earlier results often include
modifying the TLS server to some extent and using trusted hardware which are considered
not universal [32, 26]. DECO by Zhang et al. [33] in 2020 is one of the first papers that
combines a TLS oracle with zero-knowledge proof to preserve user privacy over a general
TLS server. Janus by Lauinger et al. [16] demonstrates an efficient two-party computation
that optimizes the performance of zero-knowledge proof by the client. A work in a similar
direction by Xie et al. [31] uses the garble-then-prove technique instead. DIDO by Chan et
al. [9] proposes further optimization based on TLS 1.3. ORIGO [12], an independent and
concurrent work of ours, observed that the ZK proof for key derivation can be optimized.

Meanwhile, there is also significant industry effort on this topic. The recent Reclaim
Protocol [22] provides an implementation that is based purely on proxying without the
three-party handshake but provides no security proof of the integrity of the data. Thus our
work is also a theoretical discussion of the industry effort that validates its usage under
common scenarios but also points out its limitations.

10 Conclusion and Discussion

In this paper, we formalize the notion of a proxy TLS oracle protocol that does not enter any
communication between the client and the server like previous works. We first reason for its
limitation on arbitrary TLS protocols, confirming the intuition of previous works. We then
prove that the proxy protocol is secure under an application layer protocol with a variable
padding, such as HTTPS. We further explore the scenario where the application layer does
not provide variable padding. We show that if the adversary cannot tamper with the response
after establishing the connection, context unforgeability (CFY) of the underlying AEAD
is sufficient to demonstrate security. We analyze the cipher suites in TLS, and find that
AES-GCM does not satisfy the property, but ChaCha20-Poly1305 does.

Multi-Round Support. We observe that the NIZK proof of the protocol does not reveal the
key/nonce pair used in the communication. Therefore, our protocol naturally supports the
client and the server communicating in multiple rounds after a handshake connection, as in
the original TLS.

In practice, when the data do not involve privacy, the client can choose to directly reveal
the key/nonce pair and data to the verifier, rather than using the NIZK proof. In this case,
since HTTP is a stateless protocol, the client can terminate the connection and handshake
again to start a new one for future rounds. Moreover, we note that TLS 1.3 supports a key
update mechanism (see Figure 6) that allows us to refresh the key/nonce pair for subsequent
communications without needing another handshake.

Side-Channel Connection. Our protocol does not stop an adversarial client from connecting
to the server simultaneously without proxying through the verifier. In fact, when the web
server is not restricted in its response, there is an attack using a side channel connection
(see Theorem 4), and we prove that the HTTPS response format can be used to defend
against the attack. Moreover, in our scenario, the purpose of the client is to have the data
obtained from the server validated by the verifier so that the data can be submitted to the
blockchain. Therefore, the client has no motivation to bypass the verifier when he tries to
acquire the data.

AFT 2025

4:22 Proxying Is Enough

BGP Attacks and Proxy-Server Connection Hijacking. In the main body of the paper, we
assumed that the verifier has a trusted connection to the TLS server. Indeed, the problem is
not meaningful if the server is not trusted or if there is no trusted way to access the server,
since there would not exist any root of trust under this scenario.

Here, we note that if the client can adaptively corrupt the connection between the verifier
and the TLS server, it can first establish the connection with the real server and obtain the
HTTPS certificate, and then hijack the connection to transmit the message with the master
secret it knows. This attack works even if the verifier pins the server certificate in advance,
but requires the client to adaptively corrupt the connection.

References
1 Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie Schmieg.

How to abuse and fix authenticated encryption without key commitment. In Kevin R. B. Butler
and Kurt Thomas, editors, USENIX Security 2022, pages 3291–3308. USENIX Association,
August 2022. URL: https://www.usenix.org/conference/usenixsecurity22/presentatio
n/albertini.

2 Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing authenticated encryption.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume
13276 of LNCS, pages 845–875. Springer, Heidelberg, May / June 2022. doi:10.1007/978-3
-031-07085-3_29.

3 Karthikeyan Bhargavan, Ioana Boureanu, Antoine Delignat-Lavaud, Pierre-Alain Fouque,
and Cristina Onete. A formal treatment of accountable proxying over TLS. In 2018 IEEE
Symposium on Security and Privacy, pages 799–816. IEEE Computer Society Press, May 2018.
doi:10.1109/SP.2018.00021.

4 Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve Ellis, Ari Juels,
Farinaz Koushanfar, Andrew Miller, Brendan Magauran, Daniel Moroz, et al. Chainlink 2.0:
Next steps in the evolution of decentralized oracle networks, 2021. URL: https://chain.link/.

5 Vitalik Buterin. Ethereum white paper: A next-generation smart contract and decentralized
application platform. https://finpedia.vn/wp-content/uploads/2022/02/Ethereum_whit
e_paper-a_next_generation_smart_contract_and_decentralized_application_platform
-vitalik-buterin.pdf. Accessed: March 28, 2024.

6 Sofía Celi, Alex Davidson, Hamed Haddadi, Gonçalo Pestana, and Joe Rowell. Distefano:
Decentralized infrastructure for sharing trusted encrypted facts and nothing more. Cryptology
ePrint Archive, Paper 2023/1063, 2023. URL: https://eprint.iacr.org/2023/1063.

7 Chainlink Foundation. What is the blockchain oracle problem? https://blog.chain.link/
what-is-the-blockchain-oracle-problem/. Accessed: March 28, 2024.

8 John Chan and Phillip Rogaway. On committing authenticated-encryption. In Vijayalakshmi
Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng, editors, ES-
ORICS 2022, Part II, volume 13555 of LNCS, pages 275–294. Springer, Heidelberg, September
2022. doi:10.1007/978-3-031-17146-8_14.

9 Kwan Yin Chan, Handong Cui, and Tsz Hon Yuen. DIDO: data provenance from restricted
TLS 1.3 websites. In Information Security Practice and Experience, pages 154–169. Springer
Nature, 2023. doi:10.1007/978-981-99-7032-2_10.

10 Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message
franking: From invisible salamanders to encryptment. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 155–186. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96884-1_6.

11 Morris Dworkin. Recommendation for block cipher modes of operation: Galois/counter mode
(GCM) and GMAC. Technical Report NIST Special Publication (SP) 800-38D, National
Institute of Standards and Technology, Gaithersburg, MD, 2007. doi:10.6028/NIST.SP.80
0-38D.

https://www.usenix.org/conference/usenixsecurity22/presentation/albertini
https://www.usenix.org/conference/usenixsecurity22/presentation/albertini
https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.1109/SP.2018.00021
https://chain.link/
https://finpedia.vn/wp-content/uploads/2022/02/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://finpedia.vn/wp-content/uploads/2022/02/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://finpedia.vn/wp-content/uploads/2022/02/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://eprint.iacr.org/2023/1063
https://blog.chain.link/what-is-the-blockchain-oracle-problem/
https://blog.chain.link/what-is-the-blockchain-oracle-problem/
https://doi.org/10.1007/978-3-031-17146-8_14
https://doi.org/10.1007/978-981-99-7032-2_10
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38D

Z. Luo, Y. Jia, Y. Shen, and A. Kate 4:23

12 Jens Ernstberger, Jan Lauinger, Yinnan Wu, Arthur Gervais, and Sebastian Steinhorst.
ORIGO: Proving provenance of sensitive data with constant communication. Cryptology
ePrint Archive, Paper 2024/447, 2024. URL: https://eprint.iacr.org/2024/447.

13 Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofneg-
ger. Poseidon: A new hash function for zero-knowledge proof systems. In Michael Bailey
and Rachel Greenstadt, editors, USENIX Security 2021, pages 519–535. USENIX Association,
August 2021. URL: https://www.usenix.org/conference/usenixsecurity21/presentatio
n/grassi.

14 Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and Michael Walfish. Zero-knowledge
middleboxes. In Kevin R. B. Butler and Kurt Thomas, editors, USENIX Security 2022, pages
4255–4272. USENIX Association, August 2022. URL: https://www.usenix.org/conferenc
e/usenixsecurity22/presentation/grubbs.

15 Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing au-
thenticated encryption. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part III, volume 10403 of LNCS, pages 66–97. Springer, Heidelberg, August 2017. doi:
10.1007/978-3-319-63697-9_3.

16 Jan Lauinger, Jens Ernstberger, Andreas Finkenzeller, and Sebastian Steinhorst. Janus: Fast
privacy-preserving data provenance for TLS 1.3. Cryptology ePrint Archive, Report 2023/1377,
2023. URL: https://eprint.iacr.org/2023/1377.

17 David McGrew. An Interface and Algorithms for Authenticated Encryption. RFC 5116,
January 2008. doi:10.17487/RFC5116.

18 Sanketh Menda, Julia Len, Paul Grubbs, and Thomas Ristenpart. Context discovery and
commitment attacks - how to break CCM, EAX, SIV, and more. In Carmit Hazay and Martijn
Stam, editors, EUROCRYPT 2023, Part IV, volume 14007 of LNCS, pages 379–407. Springer,
Heidelberg, April 2023. doi:10.1007/978-3-031-30634-1_13.

19 David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn, Diego R.
López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and Peter Steenkiste. Multi-
context TLS (mcTLS): Enabling secure in-network functionality in TLS. In ACM SIGCOMM
2015, volume 45, pages 199–212. ACM Press, August 2015. doi:10.1145/2829988.2787482.

20 Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys, Paul J. Leach,
and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, June 1999.
doi:10.17487/RFC2616.

21 Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 7539, May
2015. doi:10.17487/RFC7539.

22 Reclaim Protocol. Reclaim protocol: Claiming and managing self-sovereign credentials, 2023.
URL: https://www.reclaimprotocol.org/.

23 Q-Success. Usage statistics of default protocol https for websites. https://w3techs.com/te
chnologies/details/ce-httpsdefault. Accessed: April 10, 2024.

24 Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August
2018. doi:10.17487/RFC8446.

25 Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, August 2008. doi:10.17487/RFC5246.

26 Hubert Ritzdorf, Karl Wüst, Arthur Gervais, Guillaume Felley, and Srdjan Capkun. TLS-N:
Non-repudiation over TLS enablign ubiquitous content signing. In NDSS 2018. The Internet
Society, February 2018. URL: https://www.ndss-symposium.org/wp-content/uploads/201
8/02/ndss2018_09-4_Ritzdorf_paper.pdf.

27 Sijun Tan, Weikeng Chen, Ryan Deng, and Raluca Ada Popa. MPCAuth: Multi-factor
authentication for distributed-trust systems. In 2023 IEEE Symposium on Security and
Privacy, pages 829–847. IEEE Computer Society Press, May 2023. doi:10.1109/SP46215.20
23.10179481.

AFT 2025

https://eprint.iacr.org/2024/447
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity22/presentation/grubbs
https://www.usenix.org/conference/usenixsecurity22/presentation/grubbs
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-319-63697-9_3
https://eprint.iacr.org/2023/1377
https://doi.org/10.17487/RFC5116
https://doi.org/10.1007/978-3-031-30634-1_13
https://doi.org/10.1145/2829988.2787482
https://doi.org/10.17487/RFC2616
https://doi.org/10.17487/RFC7539
https://www.reclaimprotocol.org/
https://w3techs.com/technologies/details/ce-httpsdefault
https://w3techs.com/technologies/details/ce-httpsdefault
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC5246
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_09-4_Ritzdorf_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_09-4_Ritzdorf_paper.pdf
https://doi.org/10.1109/SP46215.2023.10179481
https://doi.org/10.1109/SP46215.2023.10179481

4:24 Proxying Is Enough

28 Liang Wang, Gilad Asharov, Rafael Pass, Thomas Ristenpart, and abhi shelat. Blind certificate
authorities. In 2019 IEEE Symposium on Security and Privacy, pages 1015–1032. IEEE
Computer Society Press, May 2019. doi:10.1109/SP.2019.00007.

29 David Warburton. The 2021 TLS telemetry report. https://www.f5.com/labs/articles/t
hreat-intelligence/the-2021-tls-telemetry-report. Accessed: April 10, 2024.

30 The OpenSSL Wiki. Tls1.3, 2023. URL: https://wiki.openssl.org/index.php/TLS1.3.
31 Xiang Xie, Kang Yang, Xiao Wang, and Yu Yu. Lightweight authentication of web data

via garble-then-prove. Cryptology ePrint Archive, Report 2023/964, 2023. URL: https:
//eprint.iacr.org/2023/964.

32 Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier: An
authenticated data feed for smart contracts. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages
270–282. ACM Press, October 2016. doi:10.1145/2976749.2978326.

33 Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels. DECO:
Liberating web data using decentralized oracles for TLS. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1919–1938. ACM Press, November
2020. doi:10.1145/3372297.3417239.

https://doi.org/10.1109/SP.2019.00007
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://wiki.openssl.org/index.php/TLS1.3
https://eprint.iacr.org/2023/964
https://eprint.iacr.org/2023/964
https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1145/3372297.3417239

	1 Introduction
	1.1 Contributions

	2 Technical Overview
	3 Preliminary
	3.1 TLS
	3.2 Context Attacks of AEAD

	4 Proxy-based Oracle Protocol
	5 Vulnerability in Unrestricted Setting
	6 Variable Padding and HTTPS Server
	6.1 Variable Padding
	6.2 Key Commitment with Variable Padding

	7 Beyond HTTPS: without Variable Padding
	7.1 Context Forgery Attack
	7.2 Relationship between CMT, CFY and CDY

	8 Evaluation
	9 Related Work
	10 Conclusion and Discussion

