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Abstract
Electronic voting has occupied a large part of the cryptographic protocols literature. The recent
reality of blockchains – in particular, their need for online governance mechanisms – has brought
new parameters and requirements to the problem. We identify the key requirements of a blockchain
governance mechanism, namely correctness (including eliminative double votes), voter anonymity,
and traceability, and investigate mechanisms that can achieve them with minimal interaction and
under assumptions that fit the blockchain setting.

First, we define a signature-like primitive, which we term sharp anonymous multisignatures (in
short, ♯AMS) that tightly meets the needs of blockchain governance. In a nutshell, ♯AMSs allow any
set of parties to generate a signature, e.g., on a proposal to be voted upon, which, if posted on the
blockchain, hides the identities of the signers/voters but reveals their number. This can be seen as a
(strict) generalization of threshold ring signatures (TRS).

We next turn to constructing such ♯AMSs and using them in various governance scenarios –
e.g., single vote vs. multiple votes per voter. In this direction, although the definition of TRS does
not imply ♯AMS, one can compile some existing TRS constructions into ♯AMS. This raises the
question: What is the TRS structure that allows such a compilation? To answer the above, we
devise templates for TRSs. Our templates encapsulate and abstract the structure that allows for
the above compilation – most of the TRS schemes that can be compiled into ♯AMS are, in fact,
instantiations of our template. This abstraction makes our template generic for instantiating TRSs
and ♯AMSs from different cryptographic assumptions (e.g., DDH, LWE, etc.). One of our templates
is based on chameleon hashes, and we explore a framework of lossy chameleon hashes to understand
their nature fully.

Finally, we turn to how ♯AMS schemes can be used in our applications. We provide fast (in
some cases non-interactive) ♯AMS-based blockchain governance mechanisms for a wide spectrum of
assumptions on the honesty (semi-honest vs malicious) and availability of voters and proposers.
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1 Introduction

Since the emergence of Bitcoin [53] in 2009, the world of cryptocurrencies and blockchain
platforms has witnessed a surge in popularity. One of the distinguishing features of these
blockchain platforms is their decentralized nature, wherein decision-making authority is
distributed among various actors within the ecosystem.

There are two basic governance mechanisms: off-chain governance, as seen in Bitcoin and
Ethereum, and on-chain governance, exemplified by projects like Algorand [17], Tezos [32],
and EOS. While off-chain governance allows core contributors to work more seamlessly,
it contradicts the philosophy of decentralization. Conversely, on-chain governance faces
technical challenges, and this area of research is still relatively new and in its early stages.

Regardless of the governance mechanism used, blockchain platforms face a common
vulnerability: community divisions, often resulting in hard forks. A hard fork arises when
stakeholders disagree on a critical change, leading to some sticking with the current chain
while others adopt the new one. Alternatively, competing updates may further fragment
the community. These divisions can erode cohesion, devalue the platform, and jeopardize
security. Security concerns are paramount, as a reduced number of resources supporting a
fork can make it susceptible to attacks like 51% attacks.

On-Chain Governance and Voting Systems for Improvement Proposals

On-chain governance formalizes decision-making by embedding governance rules directly
into the blockchain protocol, offering a transparent and verifiable process for implementing
upgrades. At the heart of this system lies the voting mechanism, which determines how
stakeholders collectively approve or reject proposals that shape the network’s evolution. The
integrity and security of this voting process are therefore critical: any vulnerability can
undermine trust, distort consensus, and jeopardize the decentralized nature of the ecosystem.

Generally, there are three periods for on-chain governance: the posting, voting, and
announcement periods. The developers submit their improvement proposals to the blockchain
during the posting period. Then, in the voting period, eligible voters participate in the voting
protocol to vote for their preferred proposals. Finally, the voting result is announced in the
announcement period, and the most voted proposal is elected.

There are several foundational requirements for a robust voting system.
Correctness. The accuracy of the voting result is perhaps the most important property. A

key goal here is to prevent double-voting, wherein a voter casts more than one vote on
the same or different proposals. This act of multiple-voting contradicts the standard
single-vote setting, wherein each voter is restricted to voting only once, irrespective of the
proposal chosen. We emphasize that the permissibility of multiple-voting is contingent
upon the specific application. In this context, double-voting includes instances where
a malicious voter attempts to cast more than one vote for a single proposal, and such
duplications are promptly nullified.

(Unconditional) Anonymity of Voters. A crucial factor to consider in blockchain systems
is their immutability. Once signatures are uploaded, they remain permanently etched in
the system. This implies that over time, the authorship of a linkable or traceable ring
signature [50, 27] could potentially be unveiled due to inadequacies in the underlying
computational assumptions.2 Therefore, for optimal applicability in blockchain gover-
nance, the assurance of unconditional anonymity (i.e., the anonymity does not rely on any
hardness assumptions) is one of the imperative features of a voting system in blockchain.

2 Even assuming unconditionally anonymous linkable ring signatures [48, 18], the resulted protocol still
suffers from a quadratic signature size.
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Traceability. If a malicious voter attempts to vote twice, we need to have an efficient mecha-
nism to trace its identity. Note that this traceability property is a relaxation/fallback of
the above strong correctness to allow for more practical constructions. Indeed, traceability
is irrelevant if double-voting is infeasible.

Receipt-freeness. It should be impossible to generate a proof that a voter indeed cast an
intended vote for others to see. This property has been widely studied [2, 3, 10, 23, 24,
35, 37, 39, 40, 45, 46, 47, 52, 54, 59].

Cryptographic Mechanisms for Blockchain Voting/Governance Systems

In pursuing our objective to design a voting system that ensures traceability and unconditional
anonymity, we encounter inherent challenges when leveraging traditional cryptographic tools
such as signature schemes or Multi-Party Computations (MPC).
Linkable Ring Signatures (LRS). Linkable ring signatures (LRS) [50] are a prevalent tool

in constructing e-voting systems. In LRS, a user can sign a message on behalf of a
group/ring while maintaining anonymity. Moreover, if a user signs twice for the same
message and on behalf of the same group, these signatures are “linked”, making it evident
that they originate from a single actual signer. This inherent linkability property of
LRS plays a vital role in preventing double-voting. However, it’s important to note
that the link algorithm in LRS does not disclose the specific identity of the signer when
two signatures are linked. Consequently, LRS does not fulfill the traceability property,
implying that a malicious voter engaging in double-voting may go unpunished. This lack
of traceability can undermine the system’s balance and fairness, necessitating additional
measures to ensure accountability and uphold the integrity of the voting process.

Traceable Ring Signature. An alternative approach is to employ traceable ring signa-
tures [27], where the link algorithm establishes the link between signatures and discloses
the signer’s identity. However, unconditional anonymity is compromised in traceable ring
signatures, as proved in [18]. Striking a balance between traceability and unconditional
anonymity in ring signatures appears challenging, presenting a fundamental trade-off
within this cryptographic context.

Multi-Party Computation. Multi-party computation (MPC) [64, 31, 9, 15] appears to be
the ultimate solution to the above voting problem. MPC allows n parties to compute any
given function on their inputs securely so that no malicious party (or coalition) can learn
the inputs of other parties (privacy), and no party can affect the output any more than
choosing their own input. MPC can directly be used to realize our voting functionality
by having each voter submit their votes and output the appropriate tally. MPC-privacy
(which can be information-theoretic [9, 15, 57]) will ensure unconditional anonymity;
MPC-correctness (for the appropriate function) can ensure our above voting correctness
property. Traceability is a more elusive goal, but it can also be achieved by so-called
identifiable MPC [38] (which ensures that upon aborting the identity of a cheater is
revealed).3
Unfortunately, despite its very general functionality, MPC is also not the right solution
to our problem: For starters, information-theoretic MPC needs an honest majority of the
parties [31], an assumption which is unrealistic in our setting.4 Even if one is willing to

3 In our blockchain governance application, we need a property which is stronger than identifiability,
namely public verifiability, which informally ensures that an abort provides a cheating certificate that
can be verified even by a non-MPC party later on, e.g., [4].

4 Although there are solutions which replace the honest majority of parties assumption with an assumption
on the resource distribution, e.g., honest majority of hashing-power or stake [28], they come at a high
cost in terms of blockchain utilization – multiple on-chain rounds – which renders them mainly of
theoretical interest.
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resort to security with (identifiable) abort and no fairness,5 we still need to implement
Byzantine broadcast – which requires in the worst case a polylogarithmic in the party-set
size – or use again several on-chain rounds. Even given broadcast, turning an MPC
protocol identifiable above into one with guaranteed output delivery (which is needed
in our application) would require restarting the computation whenever it aborts (and
potentially removing the identified cheater); this would again yield a larger number of
rounds which is undesirable.

From Signature Schemes to an Interactive Structure

The above discussion highlights the inherent challenge of satisfying all requirements simulta-
neously. However, despite this seemingly conflicting nature, there is a way to address it. In
this work, we provide a positive answer by proposing a structured approach embedded in the
signature generation process. We carefully define an interactive structure – a simple protocol
– within the signature generation. This structured approach is a key innovation that enables
us to design a signature scheme that simultaneously conceals individual identities while
revealing the number of signers involved. This dual property is a critical advancement for
secure and reliable e-voting systems. We call this new signature protocol Sharp Anonymous
Multisignatures (♯AMS). The term “sharp” is used in analogy with complexity theory, as in
♯P , indicating that the signatures output the number of valid signers rather than a mere
validity bit. Meanwhile, “anonymous” denotes that the signers’ identities remain hidden.
Equipped with these properties, ♯AMS is a perfect fit for e-voting systems, especially in the
context of blockchain governance. We discuss the details of our contributions below.

1.1 Our Contributions

♯ Anonymous MultiSignatures

Our first and major contribution is proposing and formalizing a new concept of signing
protocol, dubbed ♯AMS that tightly meets the needs of blockchain governance. The protocol
allows any set of parties to collaborate jointly and outputs unconditionally anonymous
signatures. To compare with threshold ring signatures (TRS), ♯AMS does not need the
threshold and always generates a valid signature regardless of the number of parties, and the
verification algorithm reveals the number of parties. Regarding the number of parties as a
threshold, which may vary every signing, this can be seen as a strict generalization of TRS.

Generic Compiler from TRS with A Flexible Threshold

Despite the above separation of TRS and ♯AMS, it turns out that several instantiations of
TRS actually possess a flexible threshold property, i.e., these TRSs can change the threshold
depending on the actual number of signers.

To characterize the class of TRSs that admit such a lifting to ♯AMSs, we provide a
generic template for TRSs that (1) abstracts many such “liftable” schemes, and (2) admits
a generic compiler to transform to ♯AMS. Several existing TRS constructions can be seen
as instantiations of our template, which implies that those TRS schemes are more versatile
than previously known.

5 This is already a discount in security that should be avoided.
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♯AMS Constructions from Chameleon Hashes

Using the above, we provide concrete ♯AMS schemes from (lossy) chameleon hashes in a
black-box model – which covers the post-quantum case. In a nutshell, we propose the
following types of constructions:
C1. A basic construction with three communication rounds. This construction achieves

unconditional anonymity.
C2. A fault-tolerant variant of C1 – for an arbitrary number of corruptions – without any

overhead. This construction achieves unconditional anonymity and public verifiability.

Voting Systems from ♯AMS Constructions

Since anyone can verify the number of signers from a ♯AMS signature, we can immediately
turn the constructions into voting systems. Furthermore, we develop a conditioned key
generation paradigm to enable the single-vote setting.
V1. A basic system implemented by C2. This allows multiple voting. The system can tolerate

malicious voters (those who claimed to vote but later quit). Including the posting period
and the announcement period, voting can be completed within two on-chain blocks.

V2. A round-optimal system implemented by C1 in the multiple-vote setting by leveraging
one-time key generation. This system satisfies the “vote-and-go” property.

V3. A variant of V2 for the single-vote setting, based on the conditioned key generation
paradigm. V3 requires one additional on-chain round when there are malicious users.
However, if the maximum number of proposals is known in advance, the voting process
still requires only two on-chain blocks, as in V1 and V2.

Notably, our voting systems possess several desirable properties, which are discussed in
depth in the full version [19]. We briefly introduce these properties here:
On-Chain. The vote will be uploaded on the blockchain and cannot be altered further. All

our systems achieve this property.
Vote-and-go. Voters can leave immediately after casting their vote (by sending their cryp-

tographic information on the vote) without any interaction. V2 and V3 achieve this
property.

Vote-Count Concealment. Voters remain unaware of the current vote count (and therefore
of the votes of others) until the results are announced. V2 and V3 achieve this property.

▶ Remark 1 (On receipt-freeness). We would like to mention that our protocols do not satisfy
receipt-freeness properties due to their simple structure. Any voting scheme that requires
voters to choose their own randomness, like ours, is vulnerable to a well-known generic
receipt-freeness attack [37]. In such an attack, a malicious voter can generate randomness
using a one-way function and later provide the input to the one-way function to prove the
source of the randomness. To resolve this problem, one would need to rely on a much more
complex system (e.g., [37] assumes homomorphic encryption, an honest assumption on the
authorities, and many other assumptions). While this is an intriguing and interesting open
problem, we are focusing on proposing a new signature protocol, ♯AMS, and thus leave this
problem for future research.

A Framework of Lossy Chameleon Hashes

As a by-product, we explore a framework of lossy chameleon hashes, including its relationship
with existing cryptographic primitives (e.g., lossy identification and lossy encryption) and
more concrete constructions from various assumptions. See Fig. 1 for details.

AFT 2025
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Lossy
Chameleon Hashes

Lossy
Identification

Lossy
Public-Key Encryption

Re-Randomizable
Encryption

Concrete
Assumptions


LWE, SIS
DDH
etc.

+ commitment recoverity
strong special soundness

+ efficient opening

×

[36]
+ efficient collision

[16, 55]

Figure 1 A framework for lossy chameleon hashes (solid arrows: shown in this work; dashed line:
shown in previous works [16, 55, 36]).

1.2 Related Works

We refer to the full version [19] for more related works on multisignatures, threshold signatures,
and ring signatures.

Threshold Ring Signatures. ♯AMS in this paper are highly related to threshold ring
signatures (TRS) [11]. An (n, t)-TRS scheme allows t or more members to generate a ring
signature together, and the actual signers remain anonymous. The verification algorithm in
TRS will output either 0 or 1, indicating the validity w.r.t. the threshold t. Differently, by
defining ♯AMS, we emphasize the property that the verification outputs exactly the credibility
of the signature, i.e., how many users have participated in the generation. This holds even
against malicious users who behave wantonly when signing. For example, a malicious user
may quit at the middle or contribute senseless results in the signing process. Therefore,
♯AMS is strictly stronger than TRS.

There are many threshold ring signature schemes [49, 14, 63, 20] whose threshold t is
changeable every signing. By adding t into the message to be signed, a TRS scheme with a
flexible threshold can be tuned to a ♯AMS scheme.

Graded Signatures. Kiayias, Osmanoglu, and Tang [43] proposed the concept of graded
signatures that allow a combiner/user to combine a set of different signatures w.r.t. the
same message to a “consolidated” signature. Meanwhile, the consolidated signature leaks
the actual number of signatures used to consolidate the graded signature and nothing else,
which is the same as a ♯AMS scheme. However, graded signatures [43] have two phases in
signing, which means that every participant has to sign by themselves and then pass their
signature share to someone for consolidation. Due to such a definition, graded signatures
cannot achieve unconditional anonymity. Therefore, ♯AMS provides more robust security.

Meanwhile, a trusted authority is required in graded signatures for generating global key
pairs. The concrete instantiation in [43] relies on building blocks like structure-preserving
signatures and Groth-Sahai proofs [33] and consequently cannot achieve post-quantum
security.
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Blockchain Governance and E-voting. Beck et al. [5], Pelt et al. [60], and Kiayias and
Lazos [42] discussed the core properties for blockchain governance in multiple disciplines.
Khan et al. [41], Venugopalan and Homoliak et al. [61], and Gersbach et al. [30] also focused
on blockchain governance, especially based on decision-making processes and voting in terms
of game-theoretical analyses.

Many papers in various fields have studied e-voting systems that combine blockchain and
cryptographic primitives to realize distributed and decentralized voting systems. However,
the cryptography community, which is the one that can technically contribute the most, has
less interest in the topic. A few papers introduce e-voting systems derived from advanced
cryptographic primitives such as linkable ring signatures. In terms of ring signatures, Lyu et
al. [51] and Russo et al. [58] present systems that use blockchain, smart contracts, and
ring signatures. Most of the other blockchains’ e-voting systems rely not only on simple
cryptographic primitives but also heavily on complex functionalities, e.g., smart contracts
and zero-knowledge proofs. Note that our proposed solutions can simplify their approaches
much since ♯AMS provides not only privacy and authenticity but also signatures with the
corresponding number of signers in the primitive level.

1.3 Technical Overview

This subsection briefly overviews the techniques and concepts used in this paper.

Formalization of ♯AMS

We start from formalizing ♯Anonymous Multisignature (♯AMS) and its security definitions.
Suppose a group of t users, {Ui}i∈G, wants to sign a message msg together, and the resulting
signature σ reveals only the number of participants t and nothing else. We refer to t as the
credibility of the signature.

The first issue is the anonymity property, which means that the identities of the t actual
signers are hidden among the total of n users (n ≥ t). Besides, as a (group) signature scheme,
♯AMS should ensure unforgeability; namely, any adversary controlling fewer than t users
cannot forge a valid signature on a new message that shows a credibility of t.

As we discussed above, if every signer Ui contributes their share using their own secret
key and the signature is simply a concatenation of different shares (as in linkable/traceable
ring signatures), it seems impossible to achieve both unconditional anonymity and traceabil-
ity [18].6 Therefore, we focus on interactive signing processes and introduce a moderator P

in the signing protocol. To generate a ♯AMS signature, each signer communicates only with
P and not with other signers. It is P ’s responsibility to count the number of participants and
finally produce a ♯AMS signature. In this case, even a signer cannot de-anonymize a ♯AMS
signature (i.e., they remain unaware of the other participants). P can be a member of G or
not, and is assumed to be honest. We believe this is a simple yet reasonable assumption; see
more discussion in Section 3. Even if a malicious P leaks the quorum of signers later, their
own identity would be revealed at the same time, and consequently, P would face punishment
from the system.

6 In the application of voting systems, if double voting is feasible, then traceability is necessary.

AFT 2025
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Generic Compiler from Threshold Ring Signatures

A ♯AMS scheme directly implies a threshold ring signature (TRS) scheme since the verification
algorithm Ver in ♯AMS returns the real number of participants in the signing process, while
Ver in TRS returns only a single bit. Therefore, the definition of ♯AMS is stronger than that
of TRS.

Nevertheless, we surprisingly notice that many TRS schemes (e.g., [49, 14, 13, 62, 34])
possess a flexible threshold property. Namely, the threshold t does not need to be fixed when
generating the public/secret key pairs; it can be changed in every signing session. Motivated
by this, we design a generic compiler that tunes any TRS scheme with a flexible threshold
into a ♯AMS scheme:

A participant P among the signers is selected randomly as the moderator in ♯AMS.
P knows the quorum of signers, hence the number t. To generate a ♯AMS signature on
message msg, it starts the TRS signing protocol on the message (msg||t) and outputs the
TRS signature σ̃ and t as the final ♯AMS signature.
In the verification of ♯AMS, if σ̃ is valid in TRS, then the threshold t is returned.

Thanks to this compiler and the rich literature on TRS, we immediately obtain many
♯AMS schemes from well-studied TRS schemes, based on the DL assumption [14], the RSA
assumption [49], the SIS assumption [13], the code assumption [22], and others.

C1: Construction from (Lossy) Chameleon Hashes

A chameleon hash (CH) function [44] is a special hash function indexed by a hash key hk,
which is associated with a trapdoor td. It takes as input two parts: a message m7 and
randomness r. On the one hand, given only the hash key, it is hard to find a collision. On
the other hand, with the help of the trapdoor, finding collisions becomes easy.

Chameleon hashes can be converted into signature schemes via the well-known Fiat-Shamir
paradigm [26], where hk and td serve as the public key and the signing key, respectively. To
sign a message msg, the signer first randomly samples dummy values m̄ and r̄, and then
uses its trapdoor to find a randomness r for m so that it collides with (m̄, r̄) on h, where
m = H(msg, h) with H(·) a random oracle and h the chameleon hash value of (m̄, r̄).

Now, we extend this idea to the ♯AMS setting. Suppose there are n users, and each
user Ui has its own hash key hki and trapdoor tdi. We borrow the idea of the t-out-of-n
zero-knowledge proof from [21] by Cramer, Damgård, and Schoenmakers. That is, given n

random values mi, the group of signers can find t random values ri that create collisions. For
the message msg, we design a ♯AMS signature in the form of σ = (t, m1, . . . , mn, r1, . . . , rn),
where m1, . . . , mn are required to satisfy the following linear equations.

a1,1m1 + a1,2m2 + ... + a1,nmn = u1,

a2,1m1 + a2,2m2 + ... + a2,nmn = u2,

...

at,1m1 + at,2m2 + ... + at,nmn = ut.

(1)

Here, the coefficients (ai,j) are public parameters, and (u1, . . . , ut) are the outputs of hash
function H(h1, . . . , hn, msg, t) (modeled as a random oracle), with (h1, . . . , hn) being the
corresponding chameleon hash (CH) values. To satisfy Eq. (1), at least t trapdoors are
necessary to determine the corresponding randomness ri, thereby proving that at least t

users have participated in the signing process.

7 Note that the message m in chameleon hashes is different from the message msg to be signed in signature
schemes. Here, we slightly abuse the terminology to keep consistent with previous works.
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Instead of using the above linear equations, we can also set a polynomial g of degree at
least n− t and require that

g(0) = u, g(i) = mi for all i ∈ [n], where u = H(h1, . . . , hn, msg, t). (2)

The security of the CH-based signature scheme, as well as our ♯AMS scheme, is based on
the collision-resistance property of the underlying chameleon hash scheme. However, the
reduction in the security proof is not black-box since it relies on the forking lemma [7] to find
a collision. Inspired by the ideas of lossy trapdoor functions [56] and lossy encryption [6, 36],
we define lossy chameleon hashes (LCH) in this work to enable a black-box reduction in the
security proof. An LCH scheme operates in two modes: the collision mode, which behaves as
a standard CH, and the lossy mode, where a lossy hash key is used instead of a normal hash
key, and the adversary (even if computationally unbounded) cannot find randomness for a
random message that hashes to a previously chosen hash value.

We present an efficient instantiation of LCH from the learning with errors (LWE) as-
sumption and the short integer solution (SIS) assumption. We also explore the relationship
between LCH and other primitives, including lossy identification schemes [1], re-randomizable
encryption, and lossy encryption [6, 36]; see Fig. 1 and more details in the full version [19].

C2: Fault-Tolerant Variant

For better application in blockchain governance, we consider a variant of the above con-
struction in the faulty signer setting. A faulty signer may quit in the middle of the protocol
or return malicious results to the moderator. To address this, we develop a fault-tolerant
variant of our ♯AMS scheme. This is possible because our (L)CH-based ♯AMS scheme has
“backward compatibility”: namely, even if a voter quits in the middle, by exposing the identity
of the faulty voter, the moderator can still output a signature with credibility (t− 1). More
precisely, let F be the set of faulty signers. In the fault-tolerant ♯AMS scheme, we tailor the
signature into the form

σ′ :=
(
t, F, {mi, ri}i∈[n]\F , {hi}i∈F

)
.

If {mi}i∈[n] satisfy the linear equation (1) or (2), then the verification algorithm will output
(t− |F |) instead of t. Consequently, the voters in F will lose their anonymity as a cost of
their malfeasance.

V1: Blockchain Governance via ♯AMS Schemes

♯AMS directly implies a voting protocol since a ♯AMS signature reveals the number of signers.
The protocol consists of the following four periods using scheme C2:
1. The posting period, in which each developer publishes their improvement proposal on the

blockchain.
2. The declaration period, in which each voter (a signer in ♯AMS) signals their willingness

to support a proposal by sending a hash value of a dummy message and randomness to
the developer.

3. The signing period, in which the developer performs the signature algorithm based on
the number of supporters. Specifically, developers compute all mi values according to the
received hi and Eq. (1) or (2). They then return the mi values to the supporters, who
use their trapdoors to find collisions ri and send them back to the developer. This helps
the developer complete the generation of the ♯AMS signature.

AFT 2025



5:10 Blockchain Governance via Sharp Anonymous Multisignatures

4. The announcement period, in which each developer uploads their ♯AMS signature to the
blockchain. The voting result is then included in the block and published across the
network.

Our protocol enables multiple improvement proposals to compete for votes, and the
proposal with the most votes is elected.

To generate a ♯AMS signature, the developer needs three rounds of interaction with its
supporters during the signing period. This opens the door to faulty attacks by malicious
voters: for instance, a voter may send hi and claim to participate, but then abort or
send incorrect randomness r′ after receiving m from the developer. Thanks to our fault-
tolerant ♯AMS scheme, such attacks do not compromise the entire voting system, since a
(fault-tolerant) ♯AMS signature always reveals the true number of (honest) participants.

V2: Round Optimization

Notice that in the protocol above, voters must wait for the message mi from the developer
after declaring their support. To achieve the “vote-and-go” property, we further optimize
the protocol to a single round. Our idea is to use ♯AMS in a one-time paradigm. That is,
voters Ui, regardless of whether they intend to vote for a proposal, generate a new hash key
and trapdoor pair (hk

(j)
i , td

(j)
i ) for some proposal by developer Pj . Then, supporters of Pj

secretly send their trapdoors to Pj using a standard public-key encryption scheme. With
knowledge of all secret keys, Pj can generate a ♯AMS signature without further interaction
with the supporters. To prevent a malicious developer from generating one-time hash keys on
their own, we additionally require every hash key to be accompanied by a signature proving
the authority of its owner.

V3: Single-Vote Setting via the Conditioned Key Generation Paradigm

We further extend the above protocol to the single-vote setting, where each user in the voting
system can vote for at most one proposal. Since there are multiple developers Pj , each with
their own proposal, every voter Ui now needs to generate multiple key pairs {(hk

(j)
i , td

(j)
i )},

where the superscript (j) indicates the key pair is for the j-th proposal.
The protocol as previously described does not work in the single-vote setting because

a malicious voter could vote on different proposals using different trapdoors. We employ
the same method used in constructing ♯AMS to prevent multiple votes. Recall that to
vote on a proposal IP (j) (i.e., participate in the signing process for that proposal), user Ui

must possess the trapdoor td
(j)
i corresponding to the hash key hk

(j)
i specifically designed for

IP (j). Suppose there are p proposals (IP (j1), ..., IP (jp)), then Ui must generate p hash keys
(hk

(j1)
i , ..., hk

(jp)
i ). We apply a so-called conditioned key generation paradigm, which sets a

restriction among the p hash keys so that the voter can know at most one trapdoor.
Let HK be the space of hash keys for (lossy) chameleon hashes, and let B = (bi,j) ∈

HK(p−1)×p be a matrix of full rank. Define hk⊤
i = (hk

(j1)
i , ..., hk

(jp)
i )⊤. We require B ·hki =

ĥki, where ĥki ∈ HKp−1 is the output of some hash function H(IP (j1), ..., IP (jp), i).
If H(·) behaves as a random oracle, then to satisfy the above equation, every user can

know at most one trapdoor among the total p hash keys. Consequently, the single-voting
property is achieved.
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1.4 Roadmap
This paper is organized as follows. In Section 2, we introduce the definitions of (lossy)
chameleon hashes. The definition and security properties of ♯AMS are formally described
in Section 3. We provide a generic transformation for most threshold ring signature (TRS)
schemes in Section 4. In Section 5, we propose an efficient construction of ♯AMS from (lossy)
chameleon hashes ((L)CH). Section 6 presents three voting systems and their applications
in blockchain governance. We refer to the full version [19] for more details, including basic
notations, cryptographic primitives, more security notions of ♯AMS and formal proofs.

2 Preliminaries

▶ Definition 2 (Chameleon Hashes [44]). A chameleon hash (CH) scheme consists of the
following three algorithms. Namely CH = (Gen, Hash, TdColl).

(hk, td)← Gen(1λ): The key generation algorithm takes as input the security parameter
1λ, and outputs a hash key hk and a trapdoor td. W.l.o.g., we assume hk implicitly
determines the message space M, the randomness space R, and the hash space H.
h ← Hash(hk, m, r): The hash algorithm takes as input hk, a message m ∈ M and a
randomness r ∈ R, and outputs the hash value h := Hash(hk, m, r).
r′ ← TdColl(td, m, r, m′): The trapdoor collision algorithm takes as input the trapdoor
td, a message-randomness pair (m, r) and another message m′, and outputs r′ such that
Hash(hk, m, r) = Hash(hk, m′, r′).

We introduce lossy chameleon hashes (LCH) as follows.

▶ Definition 3 (Lossy Chameleon Hashes). A lossy chameleon hash (LCH) scheme consists
of four algorithms, LCH = (Gen, LGen, Hash, TdColl), where Gen, Hash, TdColl are defined as
in Def. 2, and LGen is defined as follows.

hk ← LGen(1λ): The lossy key generation algorithm takes as input the security parameter
1λ, and outputs a lossy hash key hk.

We explore a detailed framework of LCH in the full version [19].

3 Sharp Anonymous Multisignatures

In this section we formally define sharp anonymous multisignatures and their security notions.
Let n be the total number of signers, G ⊆ [n] be a group of signers, and t = |G|.

▶ Definition 4 (Sharp Anonymous Multisignatures (♯AMS)). A sharp anonymous multisignature
(♯AMS) scheme ♯AMS = (Gen, Sign, Ver) consists of the following three algorithms/protocols:

(vk, sk1, ..., skn) ← Gen(1λ, n). The key generation algorithm Gen takes as input the
security parameter λ and the number of signers n, and outputs a verification key vk, and
signing keys (sk1, ..., skn) for different signers. W.l.o.g., we assume that vk is implicitly
contained in every ski.
σ ← Sign(msg, P, G ⊆ [n], {ski}i∈G). The signing protocol takes place between a moderator
P and a group of signers G ⊆ [n], where P takes as input vk and the message msg, and
each signer Ui ∈ G takes msg and its own secret key ski as input. The moderator P can
be a member of [n] or not. Finally, P outputs a signature σ.
If we focus solely on the algorithmic properties of the signing process, we will ignore the
moderator P by denoting it as σ ← Sign(msg, G ⊆ [n], {ski}i∈G).
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t ← Ver(vk, msg, σ). The verification algorithm Ver takes as input the verification key
vk, a message msg and a signature σ, and outputs a number t ∈ [n] ∪ {0}, indicating the
number of signers for this signature.8
We say a signature σ (w.r.t. a message msg) is t-valid (resp., invalid), if Ver(vk, msg, σ) =
t (resp., Ver(vk, msg, σ) = 0).

Correctness. For any (vk, sk1, ..., skn)← Gen(1λ, n), any message msg, any group G ⊆ [n]
of honest signers, any honest moderator P , and σ ← Sign(msg, P, G, {ski}i∈G), it holds that
Ver(vk, msg, σ) = |G|.

In the above definition, we assume all users’ keys are generated via a centralized algorithm
Gen, which is more generalized and covers the case where there is a trusted setup. In this
work, we focus on the non-trusted setup case, and each user samples its own key pair and
then publishes the public key. Moreover, we focus on cryptographic property of ♯AMS and
do not consider the details of the signing protocol, e.g., adaptive corruptions during the
running, protocol rounds, and just provide a proof-of-concept use of ♯AMS.

We require the unforgeability and anonymity for the security of ♯AMS.
Unforgeability. The adversary that controls less than t participants cannot forge a
signature that is t-valid.
Anonymity. From a signature the adversary learns nothing about the quorum of the
signers G that contributed to the signature, except the size |G|.

We formalize the security definitions via the following security experiments.

▶ Definition 5 (Unforgeability of ♯AMS). Consider the following unforgeability experiment
Expunforg

♯AMS,A(λ) between the challenger C and the adversary A.
1. A sets the maximum number of signers n.
2. C generates (vk, sk1, ..., skn)← Gen(1λ, n) and passes vk to A.
3. A has access to two oracles O(·, ·, ·) and Ocorr(·). Here the signing oracle O(msg, P, G)

returns σ ← Sign(msg, P, G, {ski}i∈G) (with P the moderator) and adds (msg, σ) into the
set S. The corruption oracle Ocorr(i) returns ski.

4. Finally A outputs (msg∗, σ∗).

Let t∗ ← Ver(vk, msg∗, σ∗). Expunforg
♯AMS,A(λ) outputs 1 if

(1) t∗ > t′, where t′ is the total number of queries to Ocorr(·); and
(2) A never asks O(msg∗, P, G) such that |G| = t∗.

Define by Advunforg
♯AMS,A(λ) the probability that Expunforg

♯AMS,A(λ) outputs 1. We say that ♯AMS
is unforgeable, if for all PPT adversary A, the advantage Advunforg

♯AMS,A(λ) is negligible in λ.

▶ Remark 6 (On the Formalization of Unforgeability). One might wonder why we require “A
never asks O(msg∗, P, G) s.t. |G| = t∗” at the end of the experiment. Intuitively, a more
“reasonable” definition should allow A to win, if it asks O(msg∗, P, G) with |G| = t∗, and
later forges a t∗-valid signature σ∗ from a different set G′ ≠ G. However, since the identities
are hidden from the signature, the challenger cannot detect whether σ∗ comes from a group
G′ that is different from G (i.e., whether A wins in a non-trivial way). Therefore, to prevent
trivial attacks, in Def. 5, A is prohibited to query O(msg∗, P, G) with |G| = t∗.

8 Note that vk contains information of [n] so we omit [n] from the input of Ver, which will be explicitly
denoted for TRS schemes because of consistency from previous works.
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▶ Definition 7 (Strong Unforgeability). Consider the strong unforgeability experiment
Exps-unforg

♯AMS,A (λ), which is defined as Expunforg
♯AMS,A(λ) in Def. 5, except that condition (2) is

replaced with
(2’) (msg∗, σ∗) /∈ S.

Define by Advs-unforg
♯AMS,A (λ) the probability that Exps-unforg

♯AMS,A (λ) outputs 1. We say that ♯AMS
is strongly unforgeable, if for all PPT adversary A, the advantage Advs-unforg

♯AMS,A (λ) is negligible
in λ.

In the full version [19] we also define the weak unforgeability and (strong/weak) unforge-
ability under static corruptions.

Now we formally define the strong anonymity of ♯AMS.

▶ Definition 8 ((Unconditionally) Strong Anonymity of ♯AMS). Consider the following strong
anonymity experiment Exps-anony

♯AMS,A (λ) between C and A.
1. A sets the maximum number of signers n.
2. C generates (vk, sk1, ..., skn)← Gen(1λ, n) and passes vk to A. Meanwhile, C randomly

samples a bit b
$← {0, 1}.

3. A has access to two oracles O(·, ·, ·, ·, ·) and Ocorr(·), where the signing oracle
O(msg, P0, G0, P1, G1) returns σ ← Sign(msg, Pb, Gb, {ski}i∈Gb

) if |G0| = |G1| and ⊥
otherwise, and the corruption oracle Ocorr(i) returns ski.

4. Finally A outputs b′.

Exps-anony
♯AMS,A (λ) outputs 1 if b′ = b. Let Advs-anony

♯AMS,A (λ) := |Pr[Exps-anony
♯AMS,A (λ) ⇒ 1] − 1/2|.

We say that ♯AMS has strong anonymity (resp., unconditional and strong anonymity) if for
all PPT (resp., computationally unbounded) adversary A, the advantage Advs-anony

♯AMS,A (λ) is
negligible in λ.

The aforementioned definition requires that anonymity holds even if all secret keys are leaked
(that is why we formalize it as “strong” anonymity). In the above definition, if we restrict
that A cannot ask Ocorr(i) with i ∈ (G0 − G1) ∪ (G1 − G0) for all (G0, G1) involved in
O(·, ·, ·, ·, ·), then we define the anonymity where it might be easy to decide whether a signer i

has participated in the generation of a signature with the knowledge of ski. This is somewhat
similar to the so-called culpability property in [50]. In other words, one signer is able to claim
the authorship of some (ring) signature by revealing its secret key (and some other private
information, if necessary) to the public.

4 Generic Compiler of ♯AMS from TRS with A Flexible Threshold

In this section, we provide a generic transformation for threshold ring signature (TRS)
schemes with flexible threshold, which implies that such TRS schemes are more versatile
than their original definitions. We refer to the full version [19] for the definition and security
of TRS, and a detailed discussion for the relationship between TRS and ♯AMS.

Generic compiler from TRS with flexible threshold to ♯AMS. Here, we show the most
generalized version of compilers without considering optimization. We will take a deeper
look at specific cases in the next section. Let TRS = (Gen, TSign, Ver) be a TRS scheme with
a flexible threshold. We design ♯AMS scheme ♯AMS as follows.

Gen(1λ, n). For i = 1, ..., n, invoke (pki, ski)← TRS.Gen(1λ). Return vk := (pk1, ..., pkn)
and {ski}i∈[n].
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Sign(msg, P, G ⊆ [n], {ski}i∈G). Every signer Ui where i ∈ G first sends a HELLO
message to the moderator P so that P will know the number of signers t := |G|. Then,
the t signers run the threshold signing protocol TRS.TSign(msg||t, [n], vk, G, {ski}i∈G)
with P works as a moderator. Let σ̃ be the output of TRS.TSign. Finally, P outputs
σ := (t, σ̃) as a ♯AMS signature.9

Ver(vk, msg, σ). Parse σ = (t, σ̃). If TRS.Ver(t, [n], vk, msg, σ̃) = 1 then output t. Other-
wise, output 0.

The security of ♯AMS constructed above inherits from the security of the underlying TRS
scheme, and we omit the detailed proof here.

5 Constructions of ♯AMS from Lossy Chameleon Hashes

In this section we propose efficient constructions of ♯AMS from lossy chameleon hashes (LCH)
in a black-box way.

5.1 Formalization of Constraint Functions

First we introduce the definition of constraint functions, an important tool in constructing
the t-out-of-n proofs [21].

▶ Definition 9 (Constraint Functions). Let n, t be positive integers, n ≥ t ≥ 1, and M, U be
two finite sets. We call Fθ : (Z+ × Z+ ×Mn × U)→ {0, 1} a series of constraint functions
indexed by θ, if it has the following properties.

Fθ(n, t, m1, ..., mn, u) is efficiently evaluated.
There exists an efficient and deterministic algorithm f(·), such that f(n, t, m1, ..., mn)
outputs the unique u (if it exists) satisfying Fθ(n, t, m1, ..., mn, u) = 1.
For any G ⊆ [n] and |G| = t, there exists two efficient sample algorithms sfwd and sback

that both output (m1, ..., mn, u), and the two distributions are identical.
Forward sample algorithm sfwd(n, t, G) first samples {mi}i∈[n], and then computes u

according to Fθ.
Backward sample algorithm sback(n, t, G) first randomly chooses {mi}i∈[n]\G and u,
and then computes {mi}i∈G according to Fθ.

Interdependency.
If Fθ(n, t, m1, ..., mn, u) = Fθ(n, t, m′

1, ..., m′
n, u) = 1, then either (m1, ..., mn) =

(m′
1, ..., m′), or there are at least t different i ∈ [n] such that mi ̸= m′

i.
For randomly sampled u and u′, if Fθ(n, t, m1, ..., mn, u) = Fθ(n, t, m′

1, ..., m′
n, u′) = 1,

then with overwhelming probability there are at least t different i ∈ [n] such that
mi ̸= m′

i.
Randomness. Conditioned on Fθ(n, t, m1, ..., mn, u) = 1, if u distributes uniformly, then

either there exist at least t different i ∈ [n] such that mi distribute uniformly, or
for any i ∈ [n], mi distributes uniformly.

We refer to two instantiations of Fθ from linear equations and polynomial interpolation
in the full version [19].

9 If σ̃ itself already contains a threshold t then P just outputs σ := σ̃.
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5.2 C1: Interactive ♯AMS
Now, we describe our generic construction of ♯AMS from (lossy) chameleon hashes ((L)CH)
as follows. We note that the underlying building blocks (LCH or CH) affect only the way of
security proofs but not the construction itself.

Construction. Let LCH = (Gen, LGen, Hash, TdColl) be a lossy chameleon hash scheme with
message space M a field. Let Fθ : (Z+ × Z+ ×Mn × U)→ {0, 1} be a constraint function
indexed by θ. H(·) : {0, 1}∗ → U is a hash function that is modeled as a random oracle.

(vk, sk1, ..., skn) ← Gen(1λ, n). For i ∈ [n], invoke (hki, tdi) ← LCH.Gen(1λ). Return
vk := (hk1, ..., hkn) and {ski}i∈[n] := {tdi}i∈[n].
Sign(msg, P, G, {ski}i∈G).

1. For every signer i ∈ G, it samples m̄i
$←M, r̄i

$← R, and sends hi ← Hash(hki, m̄i, r̄i)
to the moderator P .

2. The moderator counts t := |G| from the received messages.
3. For i ∈ [n] \G, P samples mi

$←M, ri
$← R and computes hi ← Hash(hki, mi, ri).

4. P invokes u← H(vk, h1, ..., hn, msg||t).10 Then it computes {mi}i∈G according to the
backward sample algorithm sback(·) of Fθ such that

Fθ(n, t, m1, ..., mn, u) = 1.

For i ∈ G, P sends mi to signer i.
5. For i ∈ G, signer i computes ri ← LCH.TdColl(tdi, m̄i, r̄i, mi) and sends ri to P .
6. Finally P outputs the signature σ := (t, {mi}i∈[n], {ri}i∈[n]).
Ver(vk, msg, σ). Parse σ = (t, {mi}i∈[n], {ri}i∈[n]). Compute hi ← Hash(hki, mi, ri) for
all i ∈ [n]. Let u← H(vk, h1, ..., hn, msg||t). Return t if Fθ(n, t, m1, ..., mn, u) = 1, and
0 otherwise.

Generality of the Construction. Our construction exhibits strong generality. In Section 4,
we have shown a generic compiler from TRS with a flexible threshold to ♯AMS. In fact,
many existing TRS constructions can be categorized within the above framework due to
the equivalence between chameleon hashes and Sigma protocols (identification schemes) [8]
and the result (of (L)CH) in this work. For example, by instantiating with FA (see the full
version [19]) and the DL-based CH [44], we get the TRS scheme in [14], and by instantiating
with Fp and the DL-based CH, we get the TRS scheme in [49]. Thanks to this generic
construction, we immediately get more schemes of ♯AMS (also TRS) from lattices [29, 12],
isogenies [25], etc.

▶ Theorem 10. If LCH is strongly secure (i.e., it has κ-uniformity, γ-random trapdoor
collision, strong collision resistance, indistinguishability, and ϵ-lossiness) and unique, and Fθ

is a constraint function, then ♯AMS constructed above has strong unforgeability and uncondi-
tionally strong anonymity under static corruptions. More precisely, for any PPT adversary A,
there exist PPT algorithms B1 and B2, such that max(Time(B1), T ime(B2)) ≈ Time(A), and

10 By including both msg and the threshold t into the hash input, the non-malleability is achieved in our
signature scheme.
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Advs-unforg-sta-corr
♯AMS,A (λ) ≤ n(Advs-cr

LCH,B1
(λ) + Advind

LCH,B2
(λ)) + n · ϵ + 1

|M|
+ Qsign + QH

2nκ
+ Qsignn · γ,

Advs-anony
♯AMS,A (λ) ≤ Qsignn

2 · γ,

where Qsign and QH are the numbers of signing queries (in the strong unforgeability experi-
ment or the strong anonymity experiment) and hash queries, respectively.

We refer to the full version [19] for the proof.
Similarly, we get the following theorem for (regular) unforgeability.

▶ Theorem 11. If LCH is secure (i.e., it has κ-uniformity, γ-random trapdoor collision,
collision resistance, indistinguishability, and ϵ-lossiness) and Fθ is a constraint function,
then ♯AMS constructed above has unforgeability and unconditional strong anonymity under
static corruptions. More precisely, for any PPT adversary A, there exist PPT algorithm B
such that Time(B) ≈ Time(A), and

Advunforg-sta-corr
♯AMS,A (λ) ≤ nAdvind

LCH,B(λ) + n · ϵ + 1
|M|

+ Qsign + QH

2nκ
+ Qsignn · γ,

where Qsign and QH are the numbers of signing queries and hash queries, respectively.

Security under Adaptive Corruptions and the Tightness of Unforgeability

We prove the security of unforgeability in the static corruption model. The proof can also
be extended to the adaptive model (Def. 5 and 7), but it suffers from a large loss factor 2n.
We present the security bound under adaptive corruptions in the full version [19]. At a high
level, to make use of the lossiness property of LCH, the challenger has to make sure that
all hash keys of non-corrupted users are generated in the lossy mode. However, there is no
corresponding trapdoor for a lossy hash key, which means that to deal with A’s adaptive
corruptions, the challenger has to decide the way of key generation very carefully so that it
can offer the trapdoor of a user when a corruption happens on it. We also give another proof
based on normal chameleon hashes in the full version [19].

5.3 C2: The Fault-Tolerating Variant
In this subsection, we consider faulty signers, i.e., signers who quit in the middle of signing
or return faulty results to the moderator P . We propose a fault-tolerant variant of the
(L)CH-based ♯AMS construction. In this variant, even if there exist faulty signers who behave
maliciously, the moderator P can still output a ♯AMS that is t-valid, where t is the number
of honest signers in the generation of that signature. Besides, the identities of those faulty
signers are exposed, and anonymity holds only for the honest signers.

Faulty Attacks. We first introduce possible faulty attacks and then introduce a variant
of (L)CH-based ♯AMS for tolerating faults while generating signatures. Note that our
constructions need communication with a developer within a fixed period to ensure the
number of total signers. This leads to the following faulty attacks. In the declaration period,
the faulty node Uk faithfully follows the first two steps of the interaction. Then after receiving
mk from P , it crashes or sends a value instead of rk.

Since P cannot compute rk without tdk, it cannot produce a t-valid ♯AMS signature.
Furthermore, since {mj}j∈G are determined by H(vk, h1, ..., hn, msg||t) from {hj}j∈[n] and
t = |G|, P cannot generate a signature of G \ {k} by simply discarding Uk.
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Fault-Tolerant ♯AMS. We follow the same notion as the previous section. The Gen
algorithm and the Sign protocol are also essentially the same as the previous one, but only
the following treatment is included:

In the signing protocol, if a signer Ui does not response for P ’s message mi, or the signer
Ui returns a wrong ri such that Hash(hki, mi, ri) ̸= hi, then P include i into the set F .
Here hi is the first message Ui sens to P (if Ui does not send hi, then P would not include
Ui into the signer group G).
Finally, P outputs the fault-tolerated signature

σ :=
(
t, F, {mi, ri}i∈[n]\F , {mi, hi}i∈F

)
.

t ← Ver(vk, msg, σ). Let σ =
(
t, F, {mi, ri}i∈[n]\F , {hi}i∈F

)
and hi ← Hash(hki, mi, ri)

for i ∈ [n] \F . Let u← H(vk, h1, ..., hn, msg||t). Return (t−|F |) if Fθ(n, t, m1, ..., mn, u)
= 1 and 0 otherwise.

We show that the fault-tolerant ♯AMS scheme has weak unforgeability (against malicious
signers) and unconditional strong anonymity (for honest signers).

▶ Theorem 12. If LCH is secure (i.e., it has κ-uniformity, γ-random trapdoor collision, strong
collision resistance, indistinguishability, and ϵ-lossiness) and Fθ is a constraint function, then
the fault-tolerant ♯AMS scheme above has weak unforgeability and strong anonymity under
static corruptions. More precisely, for any PPT adversary A, there exist PPT algorithms B1
and B2, such that max(Time(B1), T ime(B2)) ≈ Time(A),

Advw-unforg-sta-corr
♯AMS,A (λ) ≤ n(Advs-cr

LCH,B1
(λ) + Advind

LCH,B2
(λ)) + n · ϵ + 1

|M|
+ Qsign + QH

2nκ
+ Qsignn · γ,

Advs-anony
♯AMS,A (λ) ≤ Qsignn

2 · γ

where Qsign and QH are the numbers of signing queries (in the strong unforgeability experi-
ment or the strong anonymity experiment) and hash queries, respectively.

6 Applications: Blockchain Governance and the Beyond

♯AMS can be massively applied in the scenario of blockchain and privacy-preserving, where
authenticity and privacy are required simultaneously. The first and the most significant ap-
plication of ♯AMS is blockchain governance, especially about ranking improvement proposals,
which is one of the most uprising topics in the blockchain era. Our main goal is to implement
a ranking – in other words, a voting – system on formal on-chain blockchain governance.
(E-)voting systems need a signature scheme to prevent double-voting or any other possible
exploitations related to confidentiality.

In this section, we give a generic treatment to achieve blockchain governance by developing
a voting system via ♯AMS. Note that our applications are simplified to give a showcase of
using our ♯AMS. Applying our scheme to more complex voting designs could be an interesting
direction. However, our simple solutions have already achieved many attractive properties,
e.g., lightweight and publicly verifiable – thus, there is no need for tallying authorities.

Note that in our schemes, anonymity does not hold for the moderator, meaning that
the moderator (whether honest or malicious) knows the identities of all signers. However,
unforgeability still holds even against a malicious moderator. Recall that in blockchain
governance, a developer P who intends to propose an improvement proposal will start the
♯AMS protocol as the moderator. P ’s goal is to gather as many supporters as possible, and
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T0

Posting

Pj
IP (j)

−→ On-chain
T1

Declaration

Ui: sample (m̄i, r̄i)
Ui: compute hi

Pj
hi←− Ui

T2

Signing

Pj : compute mi

Pj
mi−→ Ui

Ui: compute ri

Pj
ri←− Ui

T3

Announcement

Pj : compute σ(j)

Pj
σ(j)

−→ On-chain

T4

Figure 2 Timeline of V1. Here Ui votes to IP (j).

then generate a ♯AMS signature to demonstrate the credibility of the proposal and thereby
win the RFP. A malicious moderator P can do nothing except reduce t – which trivially
harms P ’s utility. For this reason, we assume the moderator is honest in the following
analysis.

6.1 V1: Blockchain Governance via ♯AMS
As introduced in Section 3, the verification function of ♯AMS returns the number of the
signers who participated in the signature generation, which can turn into a voting protocol.
In our concrete scheme of ♯AMS, each participant generates their own keys and publishes
them, which is a straightforward pre-processing step in voting via blockchain. The voting
protocol enables multiple improvement proposals to compete for votes, and the one with the
most votes is elected. Our on-chain governance voting protocol processes as follows:
1. A voting session implies the whole process of this protocol. For each RFP, the participants

run a voting session to evaluate proposals. Each session has four time periods: posting
period, declaration period, signing period, and announcement period. We denote [n] as the
index set of voters while Ui implies an i-th voter for i ∈ [n]. Similarly, for p < n, [p] is
the index set of developers who propose an improvement proposal while Pj stands for
j-th developer and IP (j) stands for the proposal made by Pj . Note that Pj = Uj for
j ∈ [p], which means Pj is also eligible to vote and will lead the quorum of IP (j). Pj

serves a dual role as both the initiator of IP (j) and the representative of voters of that
proposal, ensuring the concealment of their identities during signature generation.

2. In the posting period, for all j ∈ [p], Pj submits IP (j). This can be done via the
blockchain network using a smart contract.

3. In the declaration period, for each i ∈ [n], Ui expresses their will to vote on IP (j) by
generating a random string pair (m̄i, r̄i) using their own randomness, which should be
kept in secret, and sending hi = Hash(hki, m̄i, r̄i) to Pj .

4. In the signing period, Pj sends mi to Ui and Ui sends ri to Pj , where mi and ri are
defined in the description of ♯AMS in Section 5.

5. In the announcement period, Pj generates a signature σ(j) from (mi, ri) pairs for each
voter and uploads it to the blockchain system. In the end, the most voted proposal is
elected.

See Fig. 2 for the pictorial explanation of our voting system.

6.2 V2: Round Optimization
Recall that in the voting scheme above, after publishing the improvement proposal, each
participant has to execute three rounds of interaction before uploading the ♯AMS signature
on the blockchain.
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Round 1 (in the declaration period): Pj receives hi as a voting-claim from its supporter Ui.
Round 2 (in the signing period): Pj computes mi according to the signing algorithm of
♯AMS and sends mi to Ui.
Round 3 (in the signing period): Ui returns ri such that Hash(hki, mi, ri) = hi.

After Round 3, Pj can finish signing and upload the signature σ on the blockchain. Now
we come up with the following question:

Can we reduce the round complexity? Namely, can we optimize the protocol such that the
developer Pj can generate the ♯AMS signature immediately after receiving the voting claims
from its supporters?

The natural idea is to let the supporter, say Ui, send its secret key (the trapdoor of
chameleon hash schemes) directly to the developer Pj . With the knowledge of all secret keys,
Pj can now generate a ♯AMS signature without interaction with its supporters. However,
this will totally expose users’ secret keys to the developers in a single vote event, which is
not the case users want.

Our idea is to use ♯AMS in a one-time paradigm, see Fig. 3. That is, for each proposal
IP (j) proposed by the developer Pj , the supporter Ui generates a new hash key and trapdoor
pair (hk

(j)
i , td

(j)
i ), and then sends the key pair to Pj . For a user Uk who does not want to

support IP (j), it also generates a key pair (hk
(j)
k , td

(j)
k ), but then sends only the hash key to

Pj . This hash key is used for Pj to add Uk into the anonymous group to hide the identities
of the real voters. Moreover, we have the following two modifications.
1. To make sure a hash key hk

(j)
i is generated from voter Ui but not developer Pj (otherwise

it can always make an n-valid ♯AMS signature), Ui will sign on hk
(j)
i via a standard

signature scheme to show its authority.
2. The message from Ui to Pj is encrypted using Pj ’s public key, so that no eavesdropper

except Pj will know the corresponding trapdoor td
(j)
i . Meanwhile, the message, either

hk
(j)
i or (hk

(j)
i , td

(j)
i ), is padded to the same length, preventing the side-leakage of

anonymity.

Formally, the round-optimal protocol is described as follows. Let Sig = (Gen, Sign, Ver)
be a (regular) signature scheme with unforgeability, and PKE be a public key encryption
scheme with CPA security. At the beginning, we assume that every user Ui for i ∈ [n] has
its own key pairs (ṽki, s̃ki) of Sig and (pki, ski) of PKE.
1. In the posting period, developers P1, ..., Pp submit improvement proposals IP (1), ..., IP (p)

to the blockchain network using a smart contract.
2. In the declaration & signing period, for all i ∈ [n] and j ∈ [p],

a. Ui invokes (hk
(j)
i , td

(j)
i )← LCH.Gen(1λ) and cert

(j)
i ← Sign(s̃ki, hk

(j)
i );

b. If Ui wants to vote IP (j), Ui computes cti→j ← Enc(pkj , hk
(j)
i ||cert

(j)
i ||td

(j)
i );

c. If Ui does not want to vote IP (j), Ui computes cti→j ← Enc(pkj , hk
(j)
i ||cert

(j)
i ||0),

where 0 is a zero-string of length |td(j)
i |;

d. Ui sends cti→j to Pj .
3. In the announcement period, for each j ∈ [p], after decrypting cti→j for all i ∈ [n], the

developer Pj obtains a series of hash keys {hk
(j)
i }i∈[n] as well as their corresponding

certificates {cert
(j)
i }i∈[n]. Meanwhile, Pj also gets a group of trapdoors {td(j)

i } from
users Ui who are willing to support IP (j). Pj can check the validity of certificates using
long-term verification keys. If the verification fails with respect to user Ui, then Pj

discards Ui from the anonymous group. Finally, Pj generates a ♯AMS signature σ(j)

for its proposal IP (j) and uploads the ♯AMS signature, all hash keys, and certificates
concerning the proposal IP (j) to the blockchain system.
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Note that if a user Ui behaves in a Byzantine manner, for example, by failing to send
cti→j to Pj , this misbehavior will be easily detected after the announcement period ends. In
such cases, all developers can simply re-run the announcement period with the participant
set updated to [n] \ i. This approach naturally generalizes to tolerate any number of faulty
users, with the only cost being an additional announcement period for each round of fault
recovery.

6.3 V3: Single-Vote Setting via the Conditioned Key Generation
Paradigm

A voting system in the single-vote setting is desirable in many applications. For example, if
two proposals conflict, an unruly user voting on both will undoubtedly disrupt the normal
voting process and outcomes. However, in the protocols described above, users can vote
on several proposals. More precisely, suppose there are two distinct proposals, IP (j) by Pj

and IP (k) by Pk with j ̸= k ∈ [p]. User Ui can generate two key pairs (hk
(j)
i , td

(j)
i ) and

(hk
(k)
i , td

(k)
i ), then vote on both proposals by sending the corresponding key pairs to Pj and

Pk, respectively. Due to the anonymity property of ♯AMS, the verifier cannot determine
which users have voted multiple times.

To prevent double voting, we introduce a new paradigm, dubbed the conditioned key
generation paradigm. Recall that to vote on a proposal IP (j) (i.e., to participate in the
signing process for the proposal), user Ui must have the trapdoor td

(j)
i corresponding to

the hash key hk
(j)
i specifically designed for IP (j). User Ui needs to generate p hash keys

(hk
(1)
i , ..., hk

(p)
i ) initially. Our idea is to enforce a restriction such that among all p hash keys,

the user can know at most one trapdoor.
The conditioned key generation paradigm is applying t-out-of-n proof strategy during the

subkey generation. Assume the hash key space HK is a field. Let B = (bi,j) ∈ HK(p−1)×p

be a public matrix of full rank. Let hk⊤
i = (hk

(1)
i , ..., hk

(p)
i )⊤. Now we require

B · hki = ĥki,

where ĥki ∈ HKp−1 is the output of some hash function H(IP (j1), ..., IP (jp), i).
If the hash key generated via Gen(1λ) is computationally indistinguishable from a uniform

hash key in HK, and H(·) is a random oracle, then to satisfy the aforementioned equation,
each user has at most one trapdoor of the p hash keys. Single-voting property is achieved
as a result. See Fig. 3 for the pictorial explanation of our round-optimal voting system in
multiple and single-vote settings.

T0

Posting

Pj
IP (j)

−→ On-chain
T1

Declaration & Signing

Ui: generates (hk
(j)
i , td

(j)
i )

Ui: computes cert
(j)
i ← Sign(s̃ki, hk

(j)
i )

cti→j ← Enc(pkj , hk
(j)
i ||cert

(j)
i ||td

(j)
i )

Pj
cti→j←− Ui

T3

Announcement

Pj : compute σ(j)

Pj
σ(j)

−→ On-chain

T4

Figure 3 Timeline of V2 and V3. Here Ui votes to IP (j). In V2, Ui also needs to compute
and send cti→k = Enc(pkk, hk

(k)
i ||cert

(k)
i ||td(k)

i ) or cti→k = Enc(pkk, hk
(k)
i ||cert

(k)
i ||0) to Pk for all

k ∈ [p]. In V3, there should be a unique j ∈ [p] for each i ∈ [n] such that Ui uniquely upvotes to
IP (j). For all k ∈ [p] such that k ̸= j, Ui should generate hk

(k)
i by following the rule described in

the context.
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