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Abstract
This paper mathematically models a constant-function automated market maker (CFAMM) position
as a portfolio of exotic options, known as perpetual American continuous-installment (CI) options.
This model replicates an AMM position’s delta at each point in time over an infinite time horizon,
thus taking into account the perpetual nature and optionality to withdraw of liquidity provision.
This framework yields two key theoretical results: (a) It proves that the AMM’s adverse-selection
cost, loss-versus-rebalancing (LVR), is analytically identical to the continuous funding fees (the time
value decay or theta) earned by the at-the-money CI option embedded in the replicating portfolio.
(b) A special case of this model derives an AMM liquidity position’s delta profile and boundaries that
suffer approximately constant LVR, up to a bounded residual error, over an arbitrarily long forward
window. Finally, the paper describes how the constant volatility parameter required by the perpetual
option can be calibrated from the term structure of implied volatilities and estimates the errors for
both implied volatility calibration and LVR residual error. Thus, this work provides a practical
framework enabling liquidity providers to choose an AMM liquidity profile and price boundaries
for an arbitrarily long, forward-looking time window where they can expect an approximately
constant, price-independent LVR. The results establish a rigorous option-theoretic interpretation of
AMMs and their LVR, and provide actionable guidance for liquidity providers in estimating future
adverse-selection costs and optimizing position parameters.
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1 Introduction

The success of blockchains supporting smart contract such as Ethereum [4], Solana [18], etc.,
has led to the rise of Decentralized Finance (DeFi) which offers alternatives to traditional
financial services by removing central trusted intermediaries and replacing them with public,
verifiable, and immutable computer programs. One of the pivotal components of the DeFi
infrastructure stack is automated market makers, or AMMs, allowing the exchange of one
token for another at prices decided by an underlying algorithm. In recent years, AMMs
have seen a rapid adoption reflected in financial metrics such as total value locked (above
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$21B) and yearly transaction volumes (above $2T ), as well as by their composability [8, 13].
Today, tens of thousands of tokens are listed and hundreds of applications are built on top of
them [10].

The key participants in an AMM are traders and agents known as liquidity providers, or
LPs. Traders exchange one token for another, where the token pair generally consists of a
risky asset with volatile value, and a stable asset or numéraire.1 On the other hand, LPs
serve as counterparties to traders (sellers to buyers and buyers to sellers) by depositing both
tokens upfront to the exchange. As a result of each trade, LPs receive the less favourable of
the two tokens. To hedge against the adverse selection faced by AMMs, LPs can continuously
rebalance an off-chain replicating portfolio by accumulating the risky token as its price rises
and selling it when the price falls. However, this hedge is not perfect when the AMM is not
the primary venue for price discovery because the pool’s quoted price tends to lag behind
the prevailing price on a primary venue such as a centralized exchange.

Under such a setting, even proactive LPs who rebalance in response to price changes are
exposed to a systematic cost. Since AMM quotes lag those on primary markets, arbitrageurs
can act faster than LPs and restore the pool price to the external market level. This generates
a small but persistent transfer of value from LPs to arbitrageurs, and when aggregated over
multiple price updates, this cost becomes significant. This cost is referred to as loss-versus-
rebalancing (LVR) [16]. The rate at which LVR accumulates depends on the steepness of the
AMM curve and the volatility of the underlying token; both amplify the arbitrage gap and
thus accelerate LVR.

Despite such costs, LPs are incentivized to participate through the earning of trading
fees that are proportional to the value of each trade and paid by the trader. Therefore, LPs
considering whether to provide liquidity on an AMM pool must calculate their expected
payoff by estimating and comparing their position’s LVR with the anticipated trading fees
in some predetermined forward time window. Recent work [16] have analyzed and quantified
expressions for instantaneous LVR and retrospectively tested with historic market data.
However, there is limited work that provides estimation methods for future LVR.

This work estimates the LVR for an LP that decides to provide liquidity for an arbitrarily
long period and can exit at any point. It does so by mathematically modeling liquidity
provision on a general class of AMMs, known as constant function AMMs (CFAMMs), as
selling a continuum of perpetual American put options across continuous strikes. Perpetual
American options are financial derivatives that give their holder the right to buy (known as
a call) or sell (known as a put) an underlying asset at an agreed-upon price (strike) with
no expiration. Unlike traditional vanilla options, this work uses exotic options in its model,
known as continuous installment (CI) options, in which the holder must pay a stream of
constant installment rate, referred to as funding fees, to keep their position alive. This
funding fee is analogous to the time value decay of traditional fixed-term options. The paper
uses perpetual American CI options because, unlike fixed-term vanilla options, the pricing
function of these options does not change over time (assuming other market parameters are
constant). Moreover, despite their exotic nature, CI options have been well-studied in the
past, and this work builds on results from the existing literature [5]. This approach yields
two key theoretical results.

1 Although some token pairs consist of two stable assets, this work focuses primarily on pairs of one risky
and one stable asset.
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Funding Fees = LVR. In the limit where the installment rate tends to infinity (analogous to
extremely short-dated fixed-term options), a CI put option has the classic hockey-stick payoff
function: it pays the difference between the strike and the spot price when the underlying’s
spot price is below the strike price, and zero otherwise. Therefore, in this limit, a continuous
distribution of CI puts exists that delta-replicates an arbitrary LP position’s payoff at each
point in time. Moreover, the installment rate earned on this distribution of puts (which, at a
given point in time, is earned by the option whose strike equals the spot price at that time)
reproduces the expression for the instantaneous LVR. Therefore, theoretically, an LP can
hold such an options portfolio to stay delta-neutral – the cost due to time value decay of
holding this portfolio, i.e., funding fees, is the LVR.

Since the above model is theoretical, as a continuum of options cannot be reproduced in
practice, the paper subsequently quantifies the approximation error when a discrete portfolio
of options with discrete strike prices is used to replicate the payoff of a liquidity position.

Constant Future LVR. The second result analyzes the converse scenario where a liquidity
position’s payoff replicates the valuation of a single perpetual American CI option. This
produces a unique liquidity profile with almost constant instantaneous LVR rate over a
forward time window. Moreover, this rate is approximately equal to the funding fee of the
replicated CI option. As a result, this yields guidance to LPs, under the model assumptions,
on:

Choosing the price boundaries and shape of liquidity provision that incurs predictable,
flat, price-path independent future LVR.
Estimating the forward adverse-selection cost for a planned holding period.
Understanding the relationship between the optimal holding period and the width of the
liquidity position.
Selecting an appropriate pool based on its expected future trading fee income.

The paper is organised as follows. Section 2 explains notations and the necessary
background, Section 3 discusses prior literature and related works, Section 4 motivates the
option-based interpretation, Section 5 provides the options decomposition, Section 6 proves
the funding-fee–LVR identities, Section 7 measures the approximation error on delta when
the continuous strip is replaced by finitely many strikes, and Section 8 presents the volatility
calibration and design rules for LPs. Finally, Section 9 concludes with directions for future
research.

2 Background

In this section, we provide the necessary notation, terminology and background concepts
used in the remainder of the paper.

2.1 Notation
We consider two tokens: token 0 representing a risky asset (e.g. BTC, ETH) and token 1
representing a stable/safe asset (e.g. USDC). Let St denote the spot price of token 0 in
units of token 1 at time t that follows a geometric Brownian motion (GBM) on a filtered
probability space

(
Ω, F , {Ft}t≥0 ,Q

)
satisfying the standard assumptions for GBMs (where

Q is a risk-neutral probability measure), so that

dSt

St
= r dt + σ dBQ

t , (1)

AFT 2025
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with constant annual risk-free rate r and volatility σ > 0. {BQ
t }t≥0 is a Wiener process. As

usual, we assume that AMMs constitute secondary markets and the price St is governed
by primary markets such as centralized exchanges. In the subsequent sections, we omit the
subscript t and use S and St interchangeably for convenience.

2.2 Constant-Function Automated Market Makers (CFAMMs)
A constant-function automated market maker (CFAMM) maintains token reserves (x, y),
deposited by LPs, such that each trade transforms the reserves to (x′, y′) and the reserves
before and after the trade satisfy an invariant function F (x, y) = F (x′, y′) = k. In a
constant-product AMM (CPAMM), such as Uniswap v2 [1], the invariant takes the form of
F (x, y) = √

xy. As a result, the marginal exchange price, assuming no arbitrage, takes the
form: S = − ∂y

∂x = y
x . This is shown in Figure 1a. Therefore, the expression for token reserves

are x = k√
S

, and y = k
√

S.
A CPAMM with concentrated liquidity (as in Uniswap v3 [2]) uses an invariant parameter k

within a price band [a, b]. The token reserves of LPs in this band consist of only token 0
when the price S ≥ b, only token 1 when S ≤ a, and for prices S ∈ (a, b), the reserves are:

x = k

√
b −

√
S√

Sb
, y = k

(√
S −

√
a
)

. (2)

Therefore, the reserve value (denominated in token 1) is

V (S) = k
(√

S −
√

a
)

+ kS

√
b −

√
S√

Sb
, S ∈ [a, b]. (3)

The liquidity position’s sensitivity to price, known as it’s delta, is denoted by X(S), and the
sensitivity of delta to price, known as gamma, is denoted by Γ(S). In practice, delta is a
measure of exposure to small changes in the price of the risky asset, whereas gamma is a
measure of exposure to large movements of the risky asset’s price. These are given by the
first and second derivatives of the value function V (S) with respect to the underlying’s price,
respectively, and are expressed as follows:

X(S) := V ′(S), Γ(S) := V ′′(S) = X ′(S) ≤ 0 (S ∈ (a, b)). (4)

Figure 1b illustrates the behavior of delta and gamma across the liquidity band. As shown,
the magnitudes of both delta and gamma decrease monotonically with price, as higher prices
correspond to a greater allocation to the numeraire asset.

2.2.1 Loss-Versus-Rebalancing (LVR)
A continuously rebalanced, self-financing delta-hedge portfolio that holds X(St) units of
token 0 has value Wt with dWt = X(St) dSt. The difference

LVRt := V (St) − Wt (5)

quantifies the AMM’s adverse-selection loss relative to a hedged trader and is referred to as
loss-versus-rebalancing or LVR. The instantaneous LVR, dLVRt, grows quadratically with
the spot price and volatility, and linearly with the gamma of the liquidity position [16].

dLVRt = 1
2 σ2S2

t Γ(St) dt = 1
2 σ2S2

t

[
X ′(St)

]
dt. (6)

We will later demonstrate the equivalence between the right-hand side of Eq. (6) and the
funding fee of a perpetual American CI option.
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Figure 1 Profiling CPAMM invariant and concentrated liquidity position, its delta and gamma.

2.3 Perpetual American Continuous-Installment Options

A perpetual American continuous-installment put option has no expiration date and requires
the holder to pay a continuous stream of constant funding fee q > rK per year to keep the
contract alive. At any point, the holder may choose to stop paying the fee, at which point
they can either exercise the option or drop the position. The option can be exercised at any
time for a payoff of max(K − S, 0) [5]. In the analysis below, we assume the underlying asset
(token 0) pays zero dividends.

2.3.1 Notation and Ordinary Differential Equation Formulation

Let Pq(S; K) denote the discounted put option value at spot price S, strike K, and funding
fee q. Let Sℓ denote the lower boundary, below which the option value equals its payoff, and
let Su denote the upper boundary, above which the option value is zero, as illustrated in
Figure 2a. Under the risk–neutral dynamics, Pq(S; K) satisfies the inhomogeneous Black-
Scholes ordinary differential equation in the continuation region Sℓ < S < Su:

1
2 σ2S2 ∂2Pq

∂S2 + rS
∂Pq

∂S
− r Pq = q, S ∈ (Sℓ, Su). (7)

The left and right boundaries are determined endogenously from the value–matching and
delta-matching conditions

Pq(Sℓ; K) = K − Sℓ,
∂Pq

∂S
(Sℓ; K) = −1,

Pq(Su; K) = 0,
∂Pq

∂S
(Su; K) = 0.

(8)

Solving (7) with the four boundary conditions in (8) yields the closed-form expressions below.

AFT 2025
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Figure 2 Profiling of perpetual CI put option with K = 100.0, σ = 0.25, q = 2 (in the first figure)
and r = 0.01 (all parameters are annualized).

2.3.2 Closed-form solution

The expression for the option price Pq(S; K) takes the following closed form as derived in [5].

Pq(S; K) = αpS + βpSγp + q

r
(9)

The delta of the put option, Xq(S; K) = ∂
∂S Pq(S; K), thus takes the form:

Xq(S; K) = αp + βpγpSγp−1. (10)

Moreover, the upper and lower boundaries, Su and Sℓ respectively, have the following closed
form:

Sℓ = q

r + σ2/2
[
g − g1/γp

]
, (11)

Su = q

r + σ2/2
[
g1−1/γp − 1

]
. (12)

Here, αp, βp, γp, and g are expressions that depend on parameters r, σ, K, and q and their
expressions are provided in Appendix (A).

The Black–Scholes partial differential equation in (7) contains no derivative with respect
to time. Consequently, the value of a perpetual CI option is time-invariant. This makes
it unique from vanilla finite expiry American or European options, whose pricing has a
time-varying component. The analog of expiration in CI options is the funding rate, where
high funding rates make it “behave similar” to short expiration option and vice versa for
small fee rates. This is depicted in Figure 2b, where increasing the fee rate reduces the
price of the CI option closer to its payoff. The lower and upper boundaries, Sℓ and Su,
characterize the holder’s optimal policy. When the spot price first falls below Sℓ, it is optimal
to exercise the option; when it first exceeds Su, it is optimal to drop the option – i.e., to
exit the position with zero payoff. This is because, in both cases, the expected benefit of
continued funding is outweighed by its cost. In either scenario, the holder stops paying the
funding fee immediately upon exit. For this reason, Sℓ and Su are also called optimal exercise
and dropping boundaries, respectively. Conversely, the option seller receives the continuous
funding fee only while the spot price remains in the continuation region Sℓ < S < Su. We
will exploit this fact in the sections that follow.
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3 Related Work

Early work on studying LP positions in CFAMMs focus on mitigating risks associated with
impermanent loss – the loss experienced by a liquidity provider compared to simply holding
the asset, so that an LP can earn trading fees without exposure to this loss. Deng et al. [9]
and Fukasawa et al. [12] study static replication strategies for impermanent loss in finite-time
CFAMM positions using European options and variance swaps, respectively. Lipton et
al. [14] further studies model-based dynamic replication. However, it can be argued that a
comparison against a buy-and-hold strategy is insufficient as it does not account for adverse
selection, where informed traders extract value from passive LPs over time.

Another approach to quantifying LP loss is the concept of LVR, which captures the
loss incurred by a liquidity provider compared to continuously rebalancing their portfolio
at market prices, due to adverse selection. LVR was formalized by Millionis et al. [16].
Their work offers closed-form expressions for instantaneous LVR in a CFAMM and provides
empirical validation using historical market data. However, they focus on instantaneous and
historical LVR and do not address forward-looking or long-term LVR estimation. Meanwhile,
our approach provides a framework that captures forward-looking LVR by delta-replication
with options portfolios.

Maire and Wunsch [15] make a case for the hedging of the LP position value instead
of the impermanent loss. They study the problem of market-neutral liquidity provision by
constructing a static replication portfolio that matches the AMM position’s dollar value over
time, effectively achieving a constant value position for the finite lifetime of the position.
The replicating portfolio’s margin requirement is then itself hedged by shorting a perpetual
or dated futures contract to offset changes in the margin value, enabling a market-neutral LP
strategy that generates interest from LP trading fees and futures funding fees. Meanwhile,
Clark [6, 7] investigates the replicating portfolio of the payoff of a constant product AMM
position and shows how an LP position’s terminal value can be fully statically replicated
using a portfolio of European options. The approach focuses on fixed, finite time horizons
and seeks to hedge only the terminal value of the liquidity position. On the other hand,
our approach neither relies on dynamic hedging, nor assumes finite time horizons. Instead,
we model the LP’s position over an indefinite time horizon using a portfolio of perpetual
American CI put options, providing a theoretical framework that statically captures the
path-dependency of forward-looking LVR.

4 Work Motivation

The value profile of a concentrated liquidity position in a finite price band, as shown in
Figure 1b, closely resembles that of a portfolio consisting of cash (a constant payoff) and
short put options (the negative of the payoff shown in Figure 2a): flat on one wing, linear on
the other, and smoothly curved in between. Figure 3a makes this visual similarity precise
by comparing the value of a CPAMM position with k = 1 and band (80, 125) to a portfolio
comprising cash and a one-month European put, with strike at the geometric mean of the
price boundaries. The put is valued using the standard Black–Scholes model [3].

Despite the superficial similarity, key differences emerge. As shown in Figure 3b, the
two profiles diverge meaningfully. More critically, the European option’s value is inherently
time-variant: even a single day’s passage erodes its time value (theta), while the CPAMM’s
value remains time-stationary. This contrast is illustrated in Figure 3c, where the solid line
represents the option value as a function of the time-to-maturity. In addition, the CPAMM
offers a flexible, perpetual holding period, whereas fixed-term options require periodic rolling
– selling expiring contracts and buying new ones – to replicate a liquidity position.

AFT 2025
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These challenges raise a natural question: Can one construct a static portfolio that tracks
a perpetual AMM band without daily rebalancing? The answer is affirmative, provided we
replace European options with a class of American continuous-installment options. This is
because the ongoing constant funding fee, q dt, charged by an active CI option offsets the
time decay found in European options. In the limit of infinite maturity (the perpetual CI
variant), the mark-to-market value of a CI put or call becomes time-invariant, producing a
flat line as shown by the dashed line in Figure 3c.

This observation enables a decomposition of a CFAMM band into a perpetual strip of
CI puts that both matches the pool’s delta and offers stationarity. Beyond its conceptual
appeal, this decomposition yields two practical insights:
1. The instantaneous funding fee of the active CI option equals the LP’s loss-versus-

rebalancing cost. Since a CI option is perfectly hedgeable with a Black-Scholes type
rebalancing porfolio [5] and both the CPAMM and the CI option strip have the same
delta, they share the same rebalancing portfolio, and hence the LVR is precisely the
difference between the two instruments, i.e. instantaneous funding fee.

2. If the CFAMM’s delta and price boundaries are calibrated to match those of a single
CI put, then the LVR over a future time window becomes nearly constant and equal
to the funding fee q. Notably, this construction relies on implied volatility, rather than
instantaneous volatility, meaning it can be formulated using observed market data.

The following section formalizes the CI decomposition, proving the equivalence between
funding fees and LVR.

5 Modeling a CFAMM Position with CI Options

5.1 Overview
In this section, we construct a portfolio whose delta (change in option price w.r.t. change
in spot price) is the same as the delta of a CFAMM X(S). This portfolio consists of a
distribution of perpetual American CI put options in the limit q → ∞ across a continuum of
strike prices. As the funding rate tends to infinity, the exercise and dropping boundaries of
each option collapse to the strike price, and the option’s valuation converges to max(K −S, 0).
Consequently, the option’s delta converges to a step function. This property enables the
construction of a portfolio that replicates the delta of an arbitrary (but smooth) CFAMM
payoff function.

5.2 Portfolio Construction
We begin with the following lemma:

▶ Lemma 1. In the limit q → ∞, both the lower and upper boundary of a CI put converge
to the strike K, and option’s delta Xq(S; K) becomes a step function −1{S<K}.

This lemma encapsulates the relationship between the funding rate and the option’s “effective”
time to expiration. As the funding rate increases, the option behaves increasingly like a
zero-time-to-expiry option, with its delta approaching a discontinuous step as q → ∞.

Next, we specify the weight distribution of the options portfolio that delta-replicates a
CFAMM value function V (S).
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Figure 3 Comparison between CPAMM liquidity value and a portfolio of short put (K=100,
r=5%, σ=50%) plus cash.

▶ Theorem 2. Let V : R>0 → R be a twice continuously differentiable function. Assume
that V ′ ∈ L1(R>0), V ′ has bounded variation on R>0 and that lim

S→∞
V ′(S) = 0. Define the

weight w(K) := V ′′(K) and, for each q < ∞,

Πq(S) :=
∫ ∞

0
w(K) Pq(S; K) dK,

and

Π(S) := lim
q→∞

Πq(S).

Then the portfolio Π(S) − V (S) is delta-neutral.

Thus, a perpetual CFAMM position that can be closed by its owner at any time can be
perfectly modeled using a distribution of CI puts with very large funding rates2. In practice, a
continuous distribution is infeasible, and funding rates are finite. Therefore, one may replicate
the delta profile using a discrete set of puts with different strikes. However, discretization and

2 Πq(St) has the same payoff as described above at all times. Therefore, the holder must continuously
reissue options that are exercised or dropped.
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finite funding rates introduce non-negligible delta-replication error, dependent on inter-strike
spacing and funding rate. We quantify this approximation error numerically for a constant
product AMM position in Section 7.

An additional corollary of the above result is the relationship between the instantaneous
LVR of a liquidity position and the funding fees of options with strikes around the spot
price (also referred to as activated strikes) in the replicating portfolio. This relationship is
analyzed in the following section.

6 Establishing LVR as Funding Fees

The portfolio Π delta-replicates a given CFAMM liquidity position. However, unlike the
AMM position, the short options portfolio pays a continuous funding fee to the seller – arising
from the active CI puts with strike around the spot price. We show that these funding fees,
absent in the AMM, are precisely equal to the LP’s LVR.

To compute this running funding fee, we first establish the following lemma:

▶ Lemma 3. As q → ∞, the product q (Su(q; K) − Sℓ(q; K)) converges to a finite limit:

lim
q→∞

q ·
(
Su(q; K) − Sℓ(q; K)

)
= σ2K2

2 .

Next, we express Π as the limit of a discrete sum of options. In the following lemma, we
construct such a discretization and show that, as q → ∞, this portfolio converges pointwise
to that of Π. We also compute the limiting funding fee contribution from the option whose
holding region contains the spot price.

▶ Lemma 4. Fix q > 0 and an interval [a, b] ⊂ R>0. Define a sequence of strikes K1 <

K2 < · · · < KN(q) recursively by:
Sℓ(q; K1) = a,

Sℓ(q; Ki+1) = Su(q; Ki), i = 1, . . . , N(q) − 1,

Su(q; KN(q)) = b.

For each i, define the weight

wi :=
∫ Su(q;Ki)

Sℓ(q;Ki)
w(K) dK = X

(
Su(q; Ki)

)
− X

(
Sℓ(q; Ki)

)
,

so that
N(q)∑
i=1

wi =
∫ b

a

w(K) dK = −1.

Let Kj be the activated strike such that Sℓ(q; Kj) ≤ St ≤ Su(q; Kj). Then, as q → ∞,
the discrete portfolio

Π̃q :=
N(q)∑
i=1

wi Pq(·; Ki)

converges pointwise to the continuous payoff Π(S). Moreover, the weighted funding fees at
strike Kj satisfies

lim
q→∞

wjq = σ2S2

2 X ′(S).
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Lemma 4 constructs a portfolio of CI puts with discrete strikes and finite funding rates,
with weights chosen such that, in the limit q → ∞, the portfolio converges to the CFAMM-
replicating portfolio defined in Theorem (2). The index j denotes the unique option that
remains active (i.e., in the holding region), while all other options are either exercised or
dropped. Therefore, the funding fee received by the portfolio owner is wjq.

As q becomes large, Lemmas 3 and 4 together imply that this funding fee converges to
the instantaneous LVR of the corresponding CFAMM position. This leads to the following
result:

▶ Theorem 5 (Funding fee = LVR). Let dLVRt denote the instantaneous change in the
LVR of a CFAMM position, and let dFeet denote the instantaneous funding income of its
delta-replicating CI option portfolio Π. Then,

dFeet = dLVRt and Fee|T0 = LVR|T0 (∀ T > 0).

Therefore, the LVR of a liquidity position is precisely the CI funding premium of its
delta-replicating options portfolio. Another way to look at this is that a CI option can be
perfectly delta-hedged using a continuously rebalanced Black–Scholes-type portfolio of risky
and stable assets [5]. As the funding rate q increases, the delta of this rebalancing portfolio
converges to that of a CFAMM position. However, unlike the CI option, a CFAMM position
does not compensate the liquidity provider via a funding stream. The discrepancy between
the CFAMM position and its hedge is therefore exactly the foregone CI funding. This equality
relies solely on closed-form expressions and the principle of self-financing, without invoking
any additional modeling assumptions.

One advantage of this option-theoretic interpretation is that CI fee rates, as implied by
the options market, provide both real-time and forward-looking estimates of LVR, enabling
informed range management. Moreover, this framework permits the construction of liquidity
profiles with nearly price-path-independent LVR. These features are demonstrated in the
sections that follow. A further implication is that a market for CI options allows for static-
weight delta-hedging of CFAMM positions – under the assumption of constant implied
volatility – eliminating the need for frequent rebalancing, unlike with conventional American
or European options.

6.1 CFAMM Position Replicating a Unit CI Option
Consider a concentrated–liquidity CFAMM band whose delta, at every price level, matches
the delta of a single perpetual American CI put option. Specifically, choose the liquidity
bounds a < b such that

X(S) = V ′(S) ≡ Xq

(
S; K∗

)
(S ∈ [a, b]), (13)

a = Sl(q, K∗), (14)
b = Su(q, K∗). (15)

for some strike K∗ and finite fee rate q.

▶ Theorem 6. The instantaneous rate of change of the LVR of the above CFAMM position is
approximately equal to the funding fees of the unit put option, up to a bounded approximation
error. That is, there exists a residual function ϵ(t) with |ϵ(t)| ≤ rK∗, such that

dLVRt = q dt + ϵ(t)dt,
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Thus, the AMM liquidity position with the above delta profile suffers an almost flat, price-
path-independent, volatility-independent LVR. Note that because Xq(S; K∗) depends on the
volatility parameter σ, as shown in Eq (10), the calibrated boundaries a, b – and thus the
entire delta curve X(S) – remain implicitly volatility-dependent. The residual error term,
ϵ(·), is bounded in magnitude by a constant and its relative magnitude is reported and
discussed in Section 8. The above liquidity profile is useful for LPs who want to estimate
forward LVR and compare it with the expected future trading fees. Lastly, constructing such
an AMM profile requires estimates of future volatility. This can be approximated using a
term structure of implied volatility gathered from the fixed-term options market. Section 8
discusses this in detail and estimates the approximation error arising from the calibration
between fixed-term and perpetual options’ volatilities.

7 Error Analysis of Discrete CI-Option Replication

In this section we quantify the approximation error that arises when the continuous–strike
decomposition of a concentrated CFAMM is replaced by a discrete strip of perpetual American
CI put options with finite q.

7.1 Sources of error

We isolate two drivers of error: (i) The installment rate q (large but finite), and (ii) the
inter-strike spacing ∆K of the discrete strip. For a given pair (q, ∆K), we construct a strip
of discrete options and measure the absolute difference between the target delta (of the
CFAMM) and the strip’s delta. This is done over the active price band S ∈ [a, b] and its
maximum and root-mean-square values are plotted.

7.2 Experimental methodology

We chose a concentrated liquidity AMM as our target CFAMM. Thus, the analytical delta
X(S) = L(1/

√
S − 1/

√
b) for uniform liquidity on a price band [a, b]. We choose a = 80, and

b = 125, and L chosen so that X(a) = 1, X(b) = 0. We discretize the replication weight such
that on each strike interval [Ki, Ki+1] we set

wi =
∫ Ki+1

Ki

X ′(K) dK = X(Ki+1) − X(Ki), (16)

ensuring that the discrete weights sum to the continuous integral. For each strike, we
compute the short CI put delta, clipped to {−1, 0} outside its continuation band. Let
Xstrip(S; q, ∆K) =

∑
i wi Xq(S; Ki) be the delta of the strip at S. Define the error

ε(Sj ; q, ∆K) =
∣∣X(Sj) − Xstrip(Sj ; q, ∆K)

∣∣
evaluated on grid {Sj}N

j=1 where N =2000. We consider two error metrics:
Maximum absolute error: maxj ε(Sj ; q, ∆K).

Root-mean-square error (RMSE):
√

N−1 ∑
j ε(Sj ; q, ∆K)2.

We evaluate a parameter sweep (q, ∆K) ∈ {8, 16, 32, 64, 125, 250, 500, 1000, 2000, 4000} ×
{0.25, 0.5, 1.0, 2.0, 4.0}.
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Figure 4 Log-Max absolute and RMSE delta-replication error versus installment rate q under
different parameter settings.

7.3 Results
Figure 4a shows the logarithm of maximum absolute error versus q for five strike spacings.
Similarly, Figure 4b displays the RMSE versus q for the same strike spacings. Both errors
increase strictly with strike spacing for a given q across all installment rates. On the other
hand, for a given strike spacing, both errors generally decrease with q with some exceptions.
For large strike spacing, ∆K = {1, 2, 4}, the RMSE error increases with q for large values,
q ≥ 128. Lastly, Figure 4c plots a representative delta curve (q=250, ∆K=2) against the
CPAMM target delta.

7.4 Discussion
Both errors are below 10−3 and shrink as expected: a larger q steepens each put’s delta,
while a finer ∆K better resolves the continuous weight. The trade-off between the capital
cost of a large q and the operational cost of a finer strike mesh can be balanced according to
the LP’s precision requirements.

8 Volatility Calibration for Perpetual CI Put Options

Perpetual CI put pricing requires a constant volatility parameter σ. Market quotes instead
supply a term structure σ̂(τ) of implied volatility with time to expiration τ . In the following,
we derive the effective implied volatility σeff(q) for a perpetual American CI option with
funding fee q using the market-implied term structure of at-the-money options.
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Figure 5 Distribution of first-exit time τ for r = 2%, σ = 67%, K = 100, q = 5.

8.1 Effective time horizon
For a CI put with rate q, the continuation band is (Sℓ(q), Su(q)). It stays alive as long as the
underlying spot price St remains within the continuation band. Otherwise, when St = Sl,
the option is dropped, or when St = Su, it is exercised by the holder.

Define the first-exit time

τ(q) := inf
{

t > 0 : St /∈ (Sℓ(q), Su(q))
}

,

i.e., the random horizon at which the CI position terminates. In probabilistic terms, E[τ(q)] =
τ̄(q) is the mean first-exit time of a GBM between two absorbing boundaries.

▶ Theorem 7. The closed-form solution of τ̄(q) is

τ̄(q) =


1

σ2 ln
(

S0
Sl(q)

)
ln

(
Su(q)

S0

)
if a = 0

1
a

[
ln

(
Sl(q)

S0

)
+ ln

(
Sl(q)
Su(q)

)
Sκ

0 −Sl(q)κ

Sl(q)κ−Su(q)κ

]
if a ̸= 0

(17)

where a = r − σ2

2 and κ = − 2a
σ2 .

Figure 5 plots the distribution of the first-exit time, τ for a CI put with r = 2%, σ = 67%,
S0 = K = 100, and q = 5. Here, τ̄ = 1.6 months,

√
Var(τ) = 0.11, and E[|τ − τ̄ |] = 0.08.

8.2 Practical estimation from ATM IVs
Given At-The-Money (ATM) implied volatilities σ̂(T ) for fixed terms T1 < . . . < Tn and
a desired effective time horizon τ ∈ [Ti, Ti+1), the squared constant volatility implied by
the perpetual contract can be approximated by linearly interpolating the total variances
(T σ̂2(T )) derived by the market implied volatilities:

σ2
effτ ≈ σ̃2

effτ = σ̂2(Ti)Ti + σ̂2(Ti+1)Ti+1 − σ̂2(Ti)Ti

Ti+1 − Ti
(τ − Ti) ≡ w(τ) (18)

The effective squared volatility can be estimated ex ante for a desired first-exit time distribu-
tion:

E[σ̃2
eff ] = E

[
w(τ)

τ

]
≈ w(τ̄)

τ̄
(19)
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When τ̄ is a function of σ2
eff , the problem becomes a fixed-point equation. Specifically,

Eq. (19) must be solved for σ2
eff as a function of itself: σ2

eff = w(τ̄(σ2
eff))

τ̄(σ2
eff) .

▶ Theorem 8. The estimate σ̃2
eff ≈ w(τ̄)

τ̄ yields root mean squared error and mean absolute
deviation

RMSE ≤ M
√

Var(τ) (20)
MAD ≤ ME[|τ − τ̄ |] (21)

where M = maxi supτ∈[Ti,Ti+1)

∣∣∣ d
dτ

(
w(τ)

τ

)∣∣∣.
Hence, when the total variance derived from market-implied volatilities (which are

approximately linear in log-Moneyness log(K/S)) has a small slope, the approximation error
is small. Figure 6 plots the distribution of σ̃2

eff , its mean, and the approximation w(τ̄)
τ̄ (for the

same CI put as in Figure 5) using ETH ATM 7-day, 30-day, 90-day, and 180-day IVs. Figure 7
plots the RMSE and MAD (as a percentage of w(τ̄)

τ̄ ) for the approximation σ̃2
eff ≈ w(τ̄)

τ̄ for
the period of Jan 2024-Feb 2024.
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Figure 6 Distribution of σ2 for r = 2%, σ = 61%, K = 100, q = 5 using ETH ATM IVs.

8.3 Interpretation for Liquidity Providers
The volatility calibration framework enables liquidity providers (LPs) to estimate future
loss-versus-rebalancing (LVR) of a concentrated AMM position using observable option
market information. By associating the funding fee q of a perpetual CI put with its expected
lifetime τ̄(q), and mapping this to market-implied volatilities, LPs can extract an estimate
for the effective squared volatility σ̃2

eff that governs the dynamics of the position and its
underlying asset.

As the funding rate q increases, the continuation band [Sℓ(q), Su(q)] narrows, leading to
shorter expected lifetimes τ(q) for the CI put. Conversely, smaller q implies wider bands and
longer-lived options. Since market-implied volatilities are typically flatter at long durations,
we can observe that:
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Figure 7 MAD and RMSE for r = 5%, K = 100, q = 40, where σ2
eff is derived by fixed point

methods. IV data is from ETH ATM IVs for Jan-Feb 2024.
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Figure 8 Residual upper bound rK as a percentage of q for various time horizons and σeff

exposures.

Short durations (high q) correspond to low maturity implied volatilities, where the IV
curve is more curved and error-prone. More fine-grained market data is required here for
better estimates.
Long durations (low q) correspond to long-dated IVs, where the volatility curve is
typically flatter. The estimate σ̃2

eff = w(τ)
τ is then less sensitive to the exact value of τ , so

M is small and the approximation of the mean is more robust to variation in τ . Long
durations also tend to have a tighter concentration of realised σ̃2

eff around its mean for
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Table 1 Funding fee q, resulting CFAMM band (Sl, Su), and residual bound rK, for r = 0.05,
for desired τ̄ under varying σeff exposures.

% of K % of q
τ̄ σeff q (token1/yr) Sl(q) Su(q) Width rK

1 d 60% 284% 97% 103% 6% 2%
1 d 80% 380% 96% 104% 8% 1%
1 d 100% 475% 95% 105% 10% 1%

1 wk 60% 106% 92% 109% 17% 5%
1 wk 80% 142% 90% 112% 22% 4%
1 wk 100% 178% 87% 115% 28% 3%

2 wk 60% 74% 89% 113% 24% 7%
2 wk 80% 99% 86% 118% 32% 5%
2 wk 100% 125% 83% 123% 40% 4%

1 mo 60% 49% 85% 120% 35% 10%
1 mo 80% 66% 80% 128% 47% 8%
1 mo 100% 84% 76% 136% 60% 6%

2 mo 60% 34% 79% 130% 51% 15%
2 mo 80% 46% 74% 142% 69% 11%
2 mo 100% 58% 68% 157% 88% 9%

the same reason, meaning the mean is a good ex ante estimate.
If a liquidity band is chosen to replicate the delta of a single perpetual CI put – using
the squared volatility estimate – then the LP incurs a predictable LVR almost equal to
the funding rate q. This transforms an otherwise stochastic adverse-selection cost into a
predictable fixed cost per unit time, simplifying the LP’s decision-making. For instance,
given a desired expected time-horizon, an LP can estimate the effective term volatility,
which in turn informs the liquidity band selection. Table 1 shows the different band widths
corresponding to expected time horizons and effective term volatilities and Figure 8 shows
the LVR − q residual term upper bound. Conversely, given a liquidity band, an LP can
estimate the position’s expected effective time horizon using numerical fixed point methods.
Combined with the results of Section 6, the effective term volatility estimation provides a
practical framework for LPs to choose bands that realize a desired holding period τ(q) and
predictable LVR, or to estimate expected forward-looking LVR for a desired liquidity band.

9 Conclusion

This work introduces a novel decomposition of a concentrated CFAMM position into a
continuum of perpetual American continuous-installment (CI) put options, offering the first
closed-form equivalence between the funding mechanics of perpetual American CI options and
the loss-versus-rebalancing cost faced by concentrated AMM liquidity providers, providing
as option-theoretic interpretation of LVR.

By exploiting the limiting behavior of CI option valuations as the installment rate grows
large, the paper constructs delta-replicating portfolios that match the AMM exposure exactly.
The analysis shows that the funding income from this replicating portfolio, absent in the
AMM, is analytically equal to the LVR cost borne by the LP in the AMM. This time-invariant
correspondence permits a forward-looking estimation of LVR and provides actionable design
rules for selecting position width and shape.
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Beyond theoretical insight, the framework yields practical tools for LPs. The discrete
error analysis confirms that a small collection of finite-q CI puts suffices to replicate AMM
delta within tight error bounds, making implementation of the replicating portfolio feasible
for LPs wishing to immunize against LVR. Crucially, the analysis also shows that if a liquidity
band is chosen to replicate the delta of a single perpetual CI put, the LP incurs a predictable
LVR equal approximately to the funding rate q. This converts a stochastic adverse-selection
cost into a predictable fixed cost per unit time, simplifying LP decision-making when it
comes to position shape and width: using market-implied volatility curves, LPs can calibrate
the position shape, width, and implied volatility to a desired expected holding period and
LVR, or conversely, estimate a position’s effective time horizon and LVR given a liquidity
band.

This framework opens several avenues for further research. While the present analysis
focuses only on liquidity bands centered around the current price (ATM), LPs may, in practice,
deploy liquidity asymmetrically about the spot price to expose their positions to greater or
lesser volatility. A resulting mismatch of spot and the replicated strike requires extended
analysis to capture the entire volatility surface, as opposed to only considering the ATM
volatility curve. Alternatively, if on-chain markets for CI options were developed, they could
serve as direct hedging instruments and sources of IV data. Furthermore, the Black-Scholes
model assumes the underlying asset experiences a constant volatility, which is not supported
by market data. In reality, volatilities may be time-dependent or even stochastic. Models like
the Heston model or Hull-White model, which extend upon Black-Scholes, may be applied
here for analysis under dynamic volatility surfaces and to assess the model’s sensitivity to
deviations from constant volatility assumptions. Finally, the model assumes continuous-time
trading and perfect liquidity. Future work will relax these assumptions to quantify the impact
of transaction costs, slippage, and gas fees on the CI funding fee-LVR equivalence.
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A Closed-Form of Perpetual American CI Put Option

Below, we provide closed-form expressions for the perpetual American CI put option.
Define

γp := − 2r

σ2 , (22)

g := 1 + rK

q
. (23)

Then, the option price is

Pq(S; K) = αpS + βpSγp + q

r

where the constants αp and βp are given by

αp =
(
g1−1/γp − 1

)−1
, (24)

βp = − 1
γp

(
q

r+σ2/2

)1−γp

αγp
p . (25)

Let Xq(S; K) = ∂
∂S Pq(S; K) be the delta of put value, its expression is given by

Xq(S; K) = αp + βpγpSγp−1.

Lastly, the lower and upper boundaries, Sℓ and Su respectively, have the following closed-form:

Sℓ = q

r + σ2/2
[
g − g1/γp

]
,

Su = q

r + σ2/2
[
g1−1/γp − 1

]
.

B Proofs of Main Theorems

Proof of Lemma 1. Boundary collapse. Let Sℓ(q) and Su(q) be the exercise and aban-
donment boundaries in (11) and (12). We will prove that

lim
q→∞

Sℓ(q) = lim
q→∞

Su(q) = K.
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Define ε := rK/q, so g = 1 + ε and ε ↓ 0 as q ↑ ∞. Consider the second-order expansion
(1 + ε)a = 1 + aε + 1

2 a(a − 1)ε2 + O(ε3). Applying it to the two exponents in (11) and (12)
yields

Sℓ(q) = qε

r + σ2/2

(
1 − 1

γp

)
+ O

(
q−1)

,

Su(q) = qε

r + σ2/2

(
1 − 1

γp

)
+ O

(
q−1)

.

Because qε = rK and 1 − 1
γp

= 1 + σ2/(2r), both leading terms equal K. Therefore,

lim
q→∞

Sℓ(q) = lim
q→∞

K + O
(
q−1)

= K,

lim
q→∞

Su(q) = lim
q→∞

K + O
(
q−1)

= K.

Step-delta limit. The smooth–fit conditions (continuous first order derivative) on the
boundaries of the holding region of the option valuation curve from Section 2.3.1 give
Xq(Sℓ; K) = −1 and Xq(Su; K) = 0. Because Xq is monotone increasing in S between the
two boundaries and the interval Su(q) − Sℓ(q) collapses, we have the pointwise limit

X∞(S; K) := lim
q→∞

Xq(S; K) = −1{S<K}. (26)

Thus, as the funding fees of a continuous-installment put becomes large, it transforms into a
unit-step-delta contract. ◀

Proof of Theorem 2. For each K, the map S 7→ Pq(S; K) is continuously differentiable.
Moreover, for fixed q, there exists a constant cq > 0 such that

∣∣∂SPq(S; K)
∣∣ ≤ cq(1 +

K)−2|w(K)|. Hence, the integrand is point-wise dominated by an L1–function of K. Leibniz’s
rule [11] yields

∂SΠq(S) =
∫ ∞

0
w(K) Xq(S; K) dK,

where Xq := ∂SPq is the CI–put delta. For every K, we have

lim
q→∞

Xq(S; K) = X∞(S; K)

= −1{S<K}

from Lemma 1. Let {qn} be a sequence such that qn → ∞. |Xqn(S; K)| ≤ 1 for all n, S

and K, and Xqn
(S; K) → X∞(S; K) pointwise in K, so dominated convergence theorem [11]

applies:

∂SΠ(S) = lim
n→∞

∫ ∞

0
w(K)Xqn

(S; K)dK

=
∫ ∞

0
w(K) X∞(S; K) dK

= −
∫ ∞

S

w(K) dK

= V ′(S) − V ′(∞)
= V ′(S).

Therefore, Π(S) − V (S) is delta-neutral. ◀
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Proof of Lemma 3. Using closed forms for a CI put boundaries from Appendix A, g := 1+ε,
ε = rK/q and γp = −2r/σ2:

Sℓ(q) = q

r + σ2/2
[
g − g1/γp

]
,

Su(q) = q

r + σ2/2
[
g1−1/γp − 1

]
.

Setting α := 1/γp = −σ2/(2r) and expanding to second order:

gα = 1 + αε + 1
2 α(α − 1)ε2 + O(ε3),

g1−α = 1 + (1 − α)ε − 1
2 (1 − α)αε2 + O(ε3).

Substituting the above into the closed forms of Sℓ and Su cancels the first-order terms and
the second-order coefficient becomes α(α − 1). Therefore, one obtains

Su(q) − Sℓ(q) = α(α − 1)r2K2

(r + σ2/2) q
+ O

(
q−2)

. (27)

Hence,

lim
q→∞

q
(
Su(q) − Sℓ(q)

)
= lim

q→∞

[α(α − 1)r2K2

(r + σ2/2) + O
(
q−1)]

= σ2K2

2 ◀

Proof of Lemma 4.

Point-wise convergence. Both Π̃q and Π vanish for all S ≥ b. Moreover, the CI–put delta
satisfies 0 ≤ |Xq(S; K)| ≤ 1. Consequently |∂SΠ̃q(S)| =

∣∣∑
i wi Xq(S; Ki)

∣∣ ≤
∑

i |wi| = 1
for every q and S. Let i⋆ = i⋆(S, q) be the (unique) index with S ∈ [Sℓ(q; Ki⋆), Su(q; Ki⋆)].
By Lemma (1), Xq(S; Ki⋆) → −1{S<Ki⋆ }, while Xq(S; Ki) → 0 for i ≠ i⋆. Dominated
convergence therefore gives

lim
q→∞

∂SΠ̃q(S) = −
∫ b

a

w(K) 1{S<K} dK = X(S).

For any S ≤ b

Π̃q(S) = Π̃q(b) −
∫ b

S

∂SΠ̃q(u) du.

Because Π̃q(b) = 0 for all q and the integrands converge point-wise while being uniformly
bounded by 1, dominated convergence implies Π̃q(S) → Π(S).

Limit of wjq. From the statement of the Lemma,

wj = X
(
Su(q; Kj)

)
− X

(
Sℓ(q; Kj)

)
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Therefore,

lim
q→∞

wjq = lim
q→∞

q
[
X

(
Su(q; Kj)

)
− X

(
Sℓ(q; Kj)

)]
= lim

q→∞
q(Su(q; Kj) − Sℓ(q; Kj))

X
(
Su(q; Kj)

)
− X

(
Sℓ(q; Kj)

)
(Su(q; Kj) − Sℓ(q; Kj))

= lim
q→∞

q(Su(q; Kj) − Sℓ(q; Kj)) lim
q→∞

X
(
Su(q; Kj)

)
− X

(
Sℓ(q; Kj)

)
(Su(q; Kj) − Sℓ(q; Kj))

= lim
q→∞

q(Su(q; Kj) − Sℓ(q; Kj))X ′(Kj)

= σ2S2
t

2 X ′(St) ◀

Proof of Theorem 5. From Lemma 4, we can approximate the continuous portfolio by a
discrete portfolio of CI puts. For a specific funding fee q, at each time t, there is only one
active option j with weight wj , price Pq(St, Kj). The total funding fee accured over [t, t + dt]
is:

dFeeq
t = wjqdt

Again from Lemma 4, we have lim
q→∞

wjq = σ2S2
t

2 X ′(St). This implies that

lim
q→∞

dFeeq
t = lim

q→∞
wjqdt = σ2S2

t

2 X ′(St)dt

This exactly matches Eq. (6). Hence,

dFeet = dLVRt

Integrating over t ∈ [0, T ], we get:

Feet|T0 =
∫ T

0
dFeet =

∫ T

0
dLVRt = LVR|T0 ◀

Proof of Theorem 6. Equation (7) gives

1
2 σ2S2 ∂2Pq

∂S2 + rS
∂Pq

∂S
− r Pq = q, S ∈ (Sℓ, Su).

and

dLVRt = 1
2 σ2S2 ∂2Pq

∂S2 dt

= qdt − r(S ∂Pq

∂S
− Pq)dt

Therefore, the residual term ϵ(t) = −r(S ∂Pq

∂S − Pq). Note that we use S instead of St for
brevity. ϵ(·) is a function of t.

Bounding |ϵ(t)|. In the region S ∈ (Sℓ, Su),

∂ϵ(t)
∂S

= −rS
∂2Pq

∂S2
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Since ∂2Pq

∂S2 is always non-negative,

∂ϵ(t)
∂S

= −rS
∂2Pq

∂S2 ≤ 0

Therefore, ϵ(t) is monotonically decreasing with S. Moreover, when evaluated at S = Sℓ,

ϵ(t) = −r((−1 · Sℓ) − (K∗ − Sℓ))
= rK∗.

and when S = Su,

ϵ(t) = 0.

Hence, |ϵ(t)| ≤ rK∗. ◀

C Effective Time Horizon τ̄ (q)

The proof of Theorem 7 can be found in the extended version [17].

D Volatility Estimation Error Bounds

Proof of Theorem 8. The root mean squared error of the estimate σ̃2
eff ≈ w(τ̄)

τ̄ is

RMSE =

√√√√E

[(
σ̃2

eff − w(τ̄)
τ̄

)2
]

Let f(τ) = σ̃2
eff = w(τ)

τ , which is differentiable almost everywhere, with

f ′(τ) = miτ − w(τ)
τ2 mi ≡ σ̂2(Ti+1)Ti+1 − σ̂2(Ti)Ti

Ti+1 − Ti
f(0) = m0

f is Lipschitz continuous, so let M = maxi supτ∈[Ti,Ti+1) |f ′(τ)|. Then, |f(τ) − f(τ̄)| ≤
M |τ − τ̄ | and

RMSE =
√

E[(f(τ) − f(τ̄))2] ≤
√
E[M2(τ − τ̄)2] =

√
M2 Var(τ) = M

√
Var(τ) (28)

Similarly, the mean absolute deviation is

MAD = E [|f(τ) − f(τ̃)|] ≤ ME[|τ − τ̄ |] (29)

◀
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