Mechanism Design for Automated Market Makers

T-H. Hubert Chan' &
University of Hong Kong, Hong Kong

Ke Wu &2
University of Michigan, Ann Arbor, MI, USA
Carnegie Mellon University, Pittsburgh, PA, USA

Elaine Shi &
Carnegie Mellon University, Pittsburgh, PA, USA

——— Abstract

Blockchains have popularized automated market makers (AMMs), applications that run on a
blockchain, maintain a pool of crypto-assets, and execute trades with users governed by some pricing
function. AMMs have also introduced a significant challenge known as the Miner Extractable Value
(MEV). Specifically, miners who control the contents and sequencing of transactions in a block can
extract value by front-running and back-running users’ transactions, creating arbitrage opportunities
that guarantee them risk-free returns. MEV not only harms ordinary users, but more critically,
encourages miners to auction off favorable transaction placements to users and arbitragers. This
has fostered a more centralized off-chain eco-system, departing from the decentralized equilibrium
originally envisioned for the blockchain infrastructure layer.

In this paper, we consider how to design AMM mechanisms that eliminate MEV opportunities.
Specifically, we propose a new AMM mechanism that processes all transactions contained within
a block according to some pre-defined rules, ensuring that some constant potential function is
maintained after processing the batch. We show that our new mechanism satisfies two tiers of
guarantees. First, for legacy blockchains where each block is proposed by a single (possibly rotating)
miner, we prove that our mechanism satisfies arbitrage resilience, i.e., a miner cannot gain risk-
free profit. Second, for blockchains where the block proposal process is decentralized and offers
sequencing-fairness, we prove a strictly stronger notion called strategy proofness — roughly speaking,
we guarantee that any individual user’s best response is to follow the honest strategy.

Our results complement prior works on MEV resilience in the following senses. First, prior works
have shown impossibilities to address MEV entirely at the consensus level. Our work demonstrates a
new paradigm of mechanism design at the application (i.e., smart contract) layer to ensure provable
guarantees of strategy proofness. Second, many works have attempted to augment the underlying
consensus protocol with extra properties such as sequencing fairness. While most previous works
heuristically argued why these extra properties help to mitigate MEV, our work demonstrates in a
mathematically formal manner how to leverage such consensus-level properties to aid the design of
strategy-proof mechanisms.

2012 ACM Subject Classification Theory of computation — Algorithmic mechanism design; Theory
of computation — Algorithmic game theory

Keywords and phrases Mechanism design, game theory, strategy proof, blockchain
Digital Object Identifier 10.4230/LIPIcs.AFT.2025.7
Related Version Full Version: https://arxiv.org/abs/2402.09357 [25]

Funding T-H. Hubert Chan: T-H. Hubert Chan was partially supported by the Hong Kong RGC
grants 17203122 and 17202121.

Ke Wu: Ke contributed to this work while she was a Ph.D. student at CMU. See the grant
acknowledgements of Elaine Shi.

1 Author ordering is randomized.

© T-H. Hubert Chan, Ke Wu, and Elaine Shi;

oY licensed under Creative Commons License CC-BY 4.0
7th Conference on Advances in Financial Technologies (AFT 2025).
Editors: Zeta Avarikioti and Nicolas Christin; Article No. 7; pp. 7:1-7:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:hubert@cs.hku.hk
https://orcid.org/0000-0002-8340-235X
mailto:kewucse@umich.edu
https://orcid.org/0000-0002-2756-8750
mailto:elainershi@gmail.com
https://orcid.org/0000-0002-5605-1048
https://doi.org/10.4230/LIPIcs.AFT.2025.7
https://arxiv.org/abs/2402.09357
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

7:2

Mechanism Design for Automated Market Makers

Elaine Shi: This work is in part supported by NSF awards 2212746, 2044679, 1704788, a Packard
Fellowship, a generous gift from the late Nikolai Mushegian, a gift from Google, and an ACE center

grant from Algorand Foundation.

1 Introduction

Blockchains have popularized decentralized finance (DeF'i), with one of its key applications
being Decentralized Exchanges (DEX) based on Automatic Market Makers (AMMs) [14].
As of March 2021, the top six AMMs, including Uniswap, Balancer, and others, collectively
held approximately $15 billion in crypto assets [46]. A typical AMM exchange maintains a
pool of capital called the “liquidity pool” with two crypto-assets X and Y. A smart contract
specifies the rules how users can trade assets with the pool. For example, one commonly
adopted rule is a constant-product potential function defined as follows. Let Pool(z,y) denote
the pool’s state where x > 0 and y > 0 represent the units of X and Y held by the pool,
respectively. A constant product potential requires that x -y = C for some constant C' > 0.
This means that if a user buys dx amount of X from the pool, it needs to pay —dy amount
of Y such that (z — dz)(y — dy) = C.

DeFi applications such as AMMs have introduced opportunities for miners to profit,
often in a risk-free manner, by front-running and/or back-running the users’ transactions, a
phenomenon known as Miner Extractable Value (MEV). Despite the decentralized nature of
blockchains, the block proposal process in mainstream consensus protocols remains centralized.
For each block, a single selected miner? has unilateral control over which transactions are
included and their sequencing. By exploiting this capability, miners can profit, often in a
risk-free manner. For example, in a sandwich attack [37,41,46,51], a miner identifies a victim
user attempting to purchase a crypto asset X at a maximum price of r, and inserts a Buy(X)
transaction just before the victim’s buy order and a Sell(X) transaction immediately after.
Since purchasing X increases its price, the miner effectively buys at a lower price through
front-running, forces the victim to buy at the worst possible price r, and then sells at a
higher price through back-running, locking in a profit. Beyond sandwich attacks, miners can
also take advantage of more sophisticated arbitrage opportunities to profit [37,41,49].

MEV is widely recognized as one of the most important challenges for blockchains today
for several reasons. First, since MEV is extracted at the expense of users, it effectively
increases the barrier of entry for ordinary users to engage with DeFi applications. Second,
MEV undermines the stability and security of the underlying consensus protocol [24,41,50,51].
Specifically, miners may be incentivized to fork the blockchain if doing so offers higher MEV
rewards than standard block rewards. Third, the block producer’s power in deciding the
block contents and sequencing has given rise to an off-chain economy. Block producers enter
private contracts with arbitragers and users alike, offering them favorable positions in the
block. These private off-chain contracts have led to a centralizing effect in the underlying
layer 1 (i.e., the consensus layer), causing the de facto layer 1 [31] to operate in a manner that
significantly departs from the intended design, and its equilibrium behavior is not understood.
A recent empirical measurement showed that today, more than 85% of the Ethereum blocks
are built by two block producers [47].

2 In this paper, no matter whether the underlying consensus is proof-of-stake or proof-of-work, we
generically refer to a consensus node that produces blocks as a “miner” or a “block producer”.

T-H. H. Chan, K. Wu, and E. Shi

1.1 Our Results and Contributions

It would have been compelling if there existed a way to solve the MEV problem entirely at
the consensus layer, without having to modify the existing applications. Unfortunately, the
impossibility results in several previous works [13,30] can be interpreted to mean that solving
the MEV problem (in its most general form) entirely at the consensus layer, subject to today’s
architecture, is impossible. On the other hand, many works aimed to offer strengthened
guarantees at the consensus layer such as sequencing fairness [2,10,34-36] or some form of
privacy [17,29]. While it is widely believed that these properties help to mitigate MEV, there
has been relatively little formal investigation on how we can take advantage of these extra
consensus-level properties in mechanism design.

Therefore, in this paper, we ask the following natural questions:

Instead of working entirely at the consensus level, can we rely on mechanism design at

the application level (i.e., smart contract level) to obtain provable guarantees of MEV

resilience?

How do strengthened guarantees at the consensus layer aid the design of strategy-proof

mechanisms at the application layer?

Specifically, we ask these questions in the context of Automated Market Makers (AMMs)
which represent one of the most important DeFi applications. We now summarize our results
and contributions.

A mechanism design approach towards mitigating MEV. Applying the philosophy of
mechanism design at the application layer, we want to design an AMM mechanism that
removes MEV opportunities and provides strategy proofness by construction.

We devise a new AMM mechanism (to be executed as a smart contract on chain) with

the following abstraction. In our mechanism, the pool holds two crypto-assets X and Y.

A user can trade with the pool by posting a buy/sell order specifying how much of X (or
Y) they want to buy/sell, and their worst acceptable exchange rate. When a new block
arrives, the mechanism takes the block of orders as input, and applies an allocation rule to
all orders contained within the block. The allocation rule decides which orders are partially
or completely satisfied, and at what price. The mechanism maintains the following invariant:
the pool’s beginning state denoted Pool(zg, y0) and end state Pool(x1,y1) is guaranteed to
satisfy some “natural” potential function ® (e.g., the constant-product function mentioned
above).

Our mechanism offers two tiers of guarantees depending on whether the properties of the
underlying consensus. Specifically, we consider two models: 1) the plain model, capturing
today’s mainstream consensus protocols where for any particular block, the inclusion and
sequencing of transactions are determined by a single, possibly strategic block producer;
and 2) the weak fair-sequencing model, intended to capture a new generation of consensus
protocols that offer sequencing fairness guarantees [2,10,34-36], e.g., through a decentralized
sequencer. Our mechanism achieves the following desirable, two-tier properties:

1. Arbitrage free in the plain model. We guarantee that no arbitrager (e.g., user, block

producer, or any intermediary) can gain risk-free profit, even when the arbitrager (e.q.,

block producer) has unilateral control over the block contents and transaction sequencing.

Here, risk-free profit happens when an arbitrager can gain in one asset without losing in
another with probability 1.

2. Strategy proofness in the weak fair-sequencing model. In the weak fair-sequencing
model, our mechanism not only achieves arbitrage resilience, but also guarantees strategy
proofness. Specifically, strategy proofness means that users are incentivized to report

7:3

AFT 2025

7:4

Mechanism Design for Automated Market Makers

their true demand and true belief of the relative value of the two crypto-assets, and no
strategic behavior allows a user to gain. Later, we prove that strategy proofness is a
strictly stronger notion than arbitrage resilience (Fact 1).

Our weak fair-sequencing model is meant to capture a decentralized sequencer that
sequences the orders based on their arrival times (importantly, not based on the orders’
submission time). While this model places additional constraints on the strategy space in
comparison with the plain model, it does not prevent front-running and thus does not
trivialize the mechanism design problem. Notably, in this model, a strategic user or miner
can still wait for a victim to submit its order, and then immediately submit a dependent
order. The strategic order can even front-run the victim’s order if the strategic user’s network
is faster, similar to a rushing attack in the cryptography literature [19,20].

Our work is also among the first to formally articulate, from a mechanism designer’s
perspective, how extra properties at the consensus level lend to the design of strategy-proof
mechanisms at the smart contract layer.

Conceptual contributions. We put forth new modeling and definitions, which capture a
mechanism design problem of a decentralized nature. In comparison with the classical mech-
anism design literature, our model and strategy spaces capture the “permissionless” nature
of blockchains. Specifically, a strategic player may not only report its valuation/demand
untruthfully, but also inject fake orders or post multiple orders. Such strategies are possible
because the mechanism does not have a-priori knowledge of the number or the identities of the
bidders. Compared to closely related works, our model circumvents the strong impossibilities
shown by Ferreira and Parkes [30], because we relax some unrealistic restrictions they impose
— see Section 1.2 for more details. Therefore, we believe that our model is better suited for
capturing real-world mechanism design at the smart contract layer, particularly for AMMs.
Our new model and definitions naturally give rise to many interesting open questions which
we discuss in Section 1.3.

1.2 Comparison with Related Work

Comparison with most closely related work. Ferreira and Parkes [30] showed that in an
overly pessimistic model as explained below, achieving arbitrage resilience is impossible,
let alone strategy proofness. However, their impossibility result holds only in an overly
stringent model that does not reflect the real-life design space. Specifically, when interpreted
in our new framework, their impossibility holds only if the AMM mechanism has to respect
the following specific structure: sort the incoming orders according to some rules (called
“verifiable sequencing rules” in their paper), and run a legacy AMM contract that processes
the sorted orders sequentially, such that the constant potential function must be maintained
after executing each order. In comparison, in our model, the constant potential function only
needs to be maintained at the end of processing the entire batch. Because of their strong
impossibility result, Ferreira and Parkes [30] showed how to achieve a weaker guarantee in
their model, that is, if the miner made risk-free profit, then the user should enjoy a price
that is at least as good as if its order were the only one in the block.

Li et al. [39] inherit the same model as Ferreira and Parkes [30], and they study what is
the profit-maximizing strategy for the miner and the implications for the users when the
miner adopts the optimal strategy. Like Ferreira and Parkes [30], they adopt an overly
restrictive model which requires them to give up on achieving arbitrage resilience, let alone
strategy proofness.

T-H. H. Chan, K. Wu, and E. Shi

One of the contributions we make is exactly to recognize why the existing models are
too stringent and unrealistic, and suggest a better model for the study of MEV-resilient
mechanism design.

Batch clearing at uniform price does not guarantee strategy proofness. A line of works
explored the idea of batch clearing at uniform price. We stress that batch clearing at uniform
price [1,21,22] does not automatically guarantee strategy proofness. For example, suppose
there are many eligible orders and the mechanism can clear only a subset of them. If the
mechanism selects the subset based on the declared valuation, then a strategic user can lie
about its valuation to get selected.

The concurrent and independent work of Canidio and Fritsch [21,22] suggested batch-
clearing at a uniform price and using a different potential function than Uniswap’s constant-
product function. Their approach satisfies arbitrage resilience, but it does not satisfy strategy
proofness even when the miner is trusted to behave honestly, for the reason stated above. In
fact, Canidio and Fritsch [21,22] does not even fully specify which subset of orders to clear
when there are many eligible candidates. The work of Zhang et al. [48] also observed that
batch clearing alone does not imply strategy proofness. In fact, they investigated the optimal
strategy under batch clearing. The prior work of Ramseyer et al. [43] also considered batch
exchanges that clear at a uniform price. Like Canidio and Fritsch [21,22], their work does
not provide strategy proofness, even when the miner is fully trusted. Besides batch trading
at uniform pricing, other forms of batch trading [23] have also been considered, but they
also do not satisfy our notion of strategy proofness.

Related works that do not address MEV. Milionis, Moallemi, and Roughgarden [40]
consider how to design the demand curve for a market maker to maximize profit and
meanwhile incentivize truthful reporting. Their work is of a completely different nature than
ours, since they do not aim to address the problem of MEYV. Specifically, they consider a
simple model where users directly submit orders to the market maker. They do not consider
any arbitrage strategy where users or miners try to front-run or back-run others’ orders to
make profit.

Bartoletti et al. [15] studied the miner’s optimal MEV strategy under transaction reorder-
ing. Their work also does not provide a solution to mitigate or address MEV.

Understanding the impact of MEV. A line of works have empirically or theoretically
investigated the profitability or impact of MEV [11,12,16,37,41,42,49,52].

Empirical approaches towards mitigating MEV. Another line of work suggest that the
users themselves take action to mitigate MEV, either by setting their slippage limits more
cleverly [50], or by exploiting arbitrage opportunities themselves to lower their transactional
costs [32]. There are also various blog posts on online forums that suggest alternative
designs [33,38]. However, these works are empirical and do not lend to the theoretical
understanding of the equilibrium behavior of the eco-system.

Both academic research and real-world blockchain projects have made an effort to build
decentralized sequencers [2,10,34-36], or encrypted mempools [17,29]. The former approach
removes the ability for a single block proposer to decide the block contents and sequencing,
and achieves some form of sequencing fairness [34-36]3. The latter approach allows users to

3 Sequencing fairness is also commonly referred to as “order fairness”. In this paper, we use the term
q g y paper,

7:5

AFT 2025

7:6

Mechanism Design for Automated Market Makers

submit transactions in committed or encrypted format, which makes it harder for miners
to front-run and back-run transactions. However, from a mechanism design perspective, we
still lack mathematical understanding to what extent these new consensus/cryptographic
abstractions can help us mitigate MEV and achieve strategy-proof DeFi mechanisms. In this
sense, our work is among the first to mathematically articulate how to rely on “sequencing
fairness” to achieve strategy-proofness by construction.

Sequencing fairness. A line of works [2,10,34-36] have studied how to achieve order fairness
in consensus. Numerous blockchain projects are also building decentralized sequencers [3-8]
which can be one approach for achieving sequencing fairness. Some works [9, 28] have also
pointed out the price of sequencing fairness such as loss in welfare. Improving the underlying
mechanisms for achieving sequencing fairness is outside the scope of this paper. We also
leave it as future work to study how to optimize social welfare under strategy proofness.

Other related works. There is a recent line of work on transaction fee mechanism (TFM)
design [26,44,45]. This line of work aims to design mechanisms such that users, miners, and
user-miner coalitions are incentivized to behave honestly. However, the current modeling
approach of this line of work captures only the utilities at the consensus layer. They cannot
capture ordering and application-level MEV. The recent work of Bahrani et al. [13] showed
strong impossibility results for fully solving this problem at the TFM-layer alone. In this
sense, our work complements the line of work on TFM design by taking an application-level
(i.e., smart-contract-level) approach towards achieving strategy proofness by construction.

1.3 Scope and Open Questions

Just like the recent literature including Ferreira and Parkes [30] and Li et al. [39], the scope
of the present paper is restricted to how defend against MEV in a standalone two-asset
AMM mechanism. We begin with the standalone setting because it serves as a necessary
basis for understanding the compositional setting with multiple instances. It is also a widely
adopted approach in the mechanism design and cryptography literature to begin with the
standalone setting first. We leave it as an interesting open question how to achieve provable
game-theoretic guarantees in a compositional setting where multiple instances can interact
with each other. We stress that in general, unlike in the cryptography literature where
there are composable notions of security [19,20] which makes composition worry-free, most
notions in game theory do not naturally compose, and composition is typically treated on a
case-by-case basis.

Our new model and definitions give rise to many interesting open problems. One
interesting question is how to extend our results to AMMs with multiple assets. Another
interesting question is whether it is possible to achieve the stronger notion of strategy
proofness without relying on sequencing fairness. Currently, our model assumes that all
the orders are submitted in the clear, and we thus define strategy proofness in the ex post
setting. A future direction is to understand how to define and achieve strategy proofness in
an MPC-assisted model [45] or an “encrypted mempool” [17,29] model where transactions
are submitted in encrypted or committed format. Another interesting question is whether
we can design strategy-proof AMM mechanisms when the execution syntax is atomic rather
than partial fulfillment like what we consider.

“sequencing fairness” to avoid collision with the usage of “order” to mean a trade proposal.

T-H. H. Chan, K. Wu, and E. Shi

We believe that the modeling work in our paper helps to lay the theoretical groundwork
for exploring questions such as above in the future.

2 Definitions

2.1 Swap Mechanism for AMMs

A swap mechanism for a pair of assets (X,Y") has a state (also called the pool state) denoted
Pool(x,y) where = and y are non-negative values that represent the amount of each asset
currently held by the mechanism. A user can submit an order to trade with the mechanism
in two ways: either buy X and pay in Y, or buy Y and pay in X. Suppose the user buys
dx units of X and pays dy units of Y, then the updated state after the trade will become
Pool(z — dz,y + dy).

Order. Each order is of the form (¢, v,r, &) where
t € {Buy(X),Buy(Y),Sell(X),Sell(Y)} is the type of the order indicating that the user
wants to buy or sell and which asset;
v is a non-negative value that denotes the maximum amount of the user wants to buy or
sell;
r denotes the user’s acceptable exchange rate, i.e., the user believes that each unit of
X is worth r units of Y. For example, if the order is of type Buy(X), then the user is
willing to pay at most r units of Y for each unit of X; if the type is Sell(Y), then 1/r is
the minimum asking price in X for each unit of Y.
« is an arbitrary string denoting any additional auxiliary information, e.g., the submitter’s
identity, timestamping information, position in the block, and so on.

Note that given an order of the form (Sell(Y), v, 7, _)*, another way to view it is that the
user wants to buy X; it is willing to pay at most r units of Y for each unit of X; moreover, it
wants to buy as many units of X as possible subject to a capital of v units of Y. Henceforth,
for an order of the type Buy(X) or Sell(X), we say that X is the primary asset of the order.

Swap mechanism. A possibly randomized (partial fulfillment) swap mechanism should
define the following rules®:
Honest strategy. Given a user’s private type T, the initial state Pool(x,y), the honest

strategy, often denoted HS(z,y,T), outputs a vector of orders the user should submit.

A user’s private type T can contain information such as how many units of X and Y it

currently holds, and the user’s private valuation of the exchange rate between X and Y.

Allocation rule. The allocation rule receives as input an initial state Pool(z,y), a list of
orders, and for each order (¢,v,r,), it outputs the following:
the amount v’ € [0, v] of primary asset that has been fulfilled — note that the fulfillment
can be partial;
an average exchange rate ' > 0 at which the order was fulfilled. For a Buy(X) order,
it means that the user pays v’ - 7’ units of Y in exchange for v’ units of X. For a
Sell(Y") order, the user obtains v’/ units of X for the v/ units of Y sold. We require
that for a Buy(X)/Sell(Y') order, ' < r, i.e., the purchase price cannot be higher than
the specified maximum rate r; and for a Buy(Y")/Sell(X) order, 1/r" < 1/r.

4 Here, the ignore symbol _ means that we are ignoring the content of this field in the current context.
5 In Section 5, we pose the open question of how to achieve strategy proofness for all-or-nothing fulfillment
mechanisms.

17

AFT 2025

7:8

Mechanism Design for Automated Market Makers

In a real-world instantiation, the pool state is recorded on the blockchain, and the
allocation rule is executed on the blockchain (e.g., in the form of a smart contract).

Invariant on pool state. We consider swap mechanisms that satisfy the following invariant
on pool state. Given some initial state Pool(z,y), and the outcome output by the allocation
rule, one can uniquely determine the ending state Pool(z’,y"). We require that initial and
ending pool state must satisfy some constant potential function, that is, ®(z',y') = ®(x, y).
We define potential function and requirements on the potential function below.

Potential function. We consider swap mechanisms that respect a constant potential function
(-, -). Specifically, suppose the pool’s initial state is Pool(z,y), and changes to Pool(z’,y’)
after the mechanism processes a batch of orders. Then, it must be that

(I)(Jj, y) = (I)('T/?y/)'

In practice, the most widely adopted approach is a constant-product market maker where
®(z,y) = x-y. In other words, suppose the initial pool state is (z,y) and some user buys dx
amount of X, then it must pay —dy units of Y where dy can be calculated by solving the
following equation:

(x —dx)(y — dy) = xy.

Assumptions on the potential function. We assume the standard assumption that the
potential function ®(-,-) is increasing, differentiable, and concave.

Market exchange rate. In our swap mechanism, we will make use of the notion of a market
exchange rate, as defined below.

» Definition 2.1 (Market exchange rate). Given a pool state Pool(x,y), the current market
exchange rate is defined as

r(z,y) = 22107

Intuitively, it means that to buy an infinitesimally small dx amount of X, we need to pay
r(x,y) - de units of y.

Throughout this paper, whenever we say rate, it always means how much y one has to pay
per unit of z rather than the other way around.

2.2 Arbitrage Resilience

Arbitrage resilience means that an arbitrager has no strategy such that it gets a net gain in
one asset without any loss in the other.

» Definition 2.2 (Arbitrage resilience). We say that a mechanism satisfies arbitrage resilience
iff given any initial pool state, any input vector of orders, with probability 1 over the random
coins of the mechanism, the following must hold: there does not exist a subset of orders whose
joint outcomes result in dx > 0 net gain in X and dy > 0 net gain in Y, such that at least
one of dx and 0y is strictly greater than 0.

The definition above is consistent with Ferreira and Parkes [30]’s notion of no risk-free
return, although their scheme cannot guarantee no risk-free return (i.e., arbitrary resilience),
whereas ours does.

T-H. H. Chan, K. Wu, and E. Shi

» Remark 2.3. If a mechanism satisfies Definition 2.2, it means that it satisfies arbitrage
resilience in a very strong sense: i.e., an arbitrager (e.g., block producer) cannot make
risk-free profit even when it can 1) fully control the block contents; 2) control the sequencing
of orders within the block; 3) inject its own orders; and /) drop others’ orders.

Indeed, the mechanism described later in this paper will satisfy arbitrage resilience even
when the underlying consensus does not provide any sequencing fairness guarantees.

2.3 Plain Model

The plain model is meant to capture mainstream consensus protocol today where the contents
of each individual block is determined by a single block producer responsible for proposing
or mining that block.

Strategy space in the plain model. In the plain model, we assume that a strategy user or
miner with intrinsic type (¢,v,r, «) may engage in the following strategies:
Post zero or multiple arbitrary orders which may or may not reflect its intrinsic type
— this captures strategies that involve misreporting valuation and demand, as well as
posting of fake orders;
Censor honest users’ orders — this captures a strategic miner’s ability to exclude certain
orders from the assembled block;
Arbitrarily misrepresent its own auxiliary information field «, or even modify the « field
of honest users’ orders — meant to capture the ability of a miner to decide the sequencing
of the transactions within a block, where the arrival-time and position information may
be generically captured by the auxiliary information field «.
Decide its strategy after having observed honest users’ orders.

The coalition of a miner with 0 demand and a user with some positive demand as
captured by its type (¢,v > 0,r,«) can simply be viewed as a single strategic player with
type (t,v > 0,7,).

2.4 Weak Fair-Sequencing Model

We define a weak fair-sequencing model, meant to capture a new generation of consensus
protocols that employ a decentralized sequencer and offers some form of sequencing fairness [2,
10,34-36]. Such a decentralized sequencer will sequence the transactions based on their
(approximate) arrival times. We stress that even in the weak fair-sequencing model, it is
possible for a strategic user to observe a victim’s order, post a dependent order, and have
the dependent order race against and front-run the victim’s order. Such a front-running

attack can succeed especially when the strategic user’s network is faster than the victim'’s.

In particular, we stress that the weak fair-sequencing model is sequencing orders based on
their arrival times, not the time of the submission of these orders.

Recall that a user’s intrinsic type is of the form (¢, v, r, a) where (¢,v,r) denotes the user’s
true valuation and budget. In the weak fair-sequencing model, we will use the « field to
encode the order’s arrival time — a smaller o means that the user arrives earlier.

We shall assume that under honest strategy, a user’s order should always be populated
with the correct @ whose value is determined by nature, and equal to the time at which the
order is generated plus the user’s network delay. A strategic user is allowed to delay the
submission of its order.

7:9

AFT 2025

7:10

Mechanism Design for Automated Market Makers

Strategy space in the weak fair-sequencing model. We consider the following strategy
space in the weak fair-sequencing model:

A strategic user or miner with intrinsic type (¢, v,r, «) is allowed to post zero or multiple
bids of the form (_, , ,a’) as long as ¢/ > «. This captures misreporting valuation
and demand, posting fake orders, as well as delaying the posting of ones’ orders.

The strategic user or miner can decide its strategy after observing honest users’ orders.

Compared to the plain model, the weak fair-sequencing model imposes some restrictions
on the strategy space. Specifically, in the plain model, a strategic user or miner can arbitrarily
modify the « field of its own order or even others’ orders, and a strategic miner may censor
honest users’ orders. In the weak fair-sequencing model, a strategic user or miner can
no longer under-report its «, cannot modify honest users’ «, and cannot censor honest
users’ orders, because the sequencing of the transactions is determined by the underlying
decentralized sequencer.

Importantly, despite these constraints on the strategy space, the weak fair-sequencing
model still permits front-running-style attacks as mentioned earlier, and thus mechanism
design remains non-trivial even under the slightly restricted strategy space.

2.5 Strategy Proof

Defining a user’s preference among outcomes through a partial ordering. To define
strategy proofness, we first need to define a ranking system that expresses a user’s preference
among different outcomes.

We can use a pair (dx,dy) to denote the outcome, meaning that the user has a net gain
of §z in X, and it has a net gain of dy in Y (where a net loss is captured as negative gain).
Consider two outcomes (dxg, 0yo) and (dz1,dy1), and suppose that the user’s intrinsic type
is T = (Buy(X),v,r,). Naturally, for such a user, outcome (dx1,dy;) is at least as good as
(6x0, dyo), henceforth denoted (dxo, dyo) =7 (0x1, dy1), if one of the following is true:

dxog < dx1, dyo < 0y1. In other words, relative to (dxg, dyo), the user gains no less in
either asset in the latter outcome (dx1, dy1).

dxg < dx1 < v (or ¢ < dxy < dxg), and r(0xy — dxg) > dyo — dy1- In other words, the
latter outcome (dx1,dy1) is closer to satisfying the demand v, and moreover, the user
paid at most r marginal price for each extra unit of X in the latter outcome.

» Remark 2.4 (Why define a partial ordering rather than a real-valued utility). The reader may
wonder why we do not define a real-valued utility which would have given a total ordering
on all outcomes. The reason why we define only a partial ordering and allow some outcomes
to be incomparable is because a strategic user (e.g., whose intrinsic demand is to buy up
to v units of X) can act arbitrarily, which may cause its net gain dz in X to be either
negative, or greater than the intrinsic demand v. We allow some of these outcomes to be
incomparable. For example, suppose relative to (dz, dyp), the latter outcome (dz1, dy1) buys
some extra units at a margial price better than the specified rate r, but it overshoots the
intrinsic demand, then these two outcomes are incomparable.

Finally, the case for other types including Buy(Y), Sell(X), and Sell(Y") types, a partial
ordering can be symmetrically defined — we give the full definition of the partial ordering in
the online full version. Moreover, the online full version also gives more explanations why we
choose to define a partial ordering to rank the outcomes rather than a real-valued utility.

T-H. H. Chan, K. Wu, and E. Shi

Definition of strategy proofness. Since in our paper, we consider deterministic mechanisms,
we will define strategy proofness only for a deterministic mechanism. Note that the defini-
tion can easily be extended to randomized mechanism using suitable notions of stochastic
dominance.

In the definition below, we use HS(T) to denote the honest strategy of a user with
intrinsic type T — for a direct-revelation mechanism, the honest strategy is simply to reveal
the user’s true type. Further, we use out"(zo, 4o, b) to denote the outcome of user v when
the mechanism is executed over initial pool state Pool(xg,yo), and a vector of orders b.

» Definition 2.5 (Strategy proofness). Given a deterministic swap mechanism, we say that it
satisfies strategy proofness (w.r.t. some partial ordering relation <t), iff for any initial pool
state Pool(zo, yo), for any vector of orders b_,, belonging to all other users except u, for any
intrinsic type T of the strategic user w, for any possible strategic order vector b’ of the user
u, either out"(xg, Yo, b_y, HS(T)) =1 out"(zo, yo, b_y, b’) or out®(zg, yo, b_., HS(T)) and
out®(zg, Yo, b_y, b’) are incomparable w.r.t. <.

More intuitively, the definition says that no strategic play can result in a strictly better
outcome than the honest strategy.

Strategy proofness implies arbitrage resilience. The fact below shows that strategy
proofness implies arbitrage resilience.

» Fact 1. Suppose that the potential function ® is increasing. We have that strategy proofness
implies arbitrage resilience.

Proof. We can prove the contra-positive, that is, a mechanism that is not arbitrage free
cannot be strategy proof. Suppose that the mechanism is not arbitrage free. This means
that there exists a list of orders S = {(t;, v;, i, ;) }; such that under honest execution, a
subset of the orders S’ C S will enjoy dx > 0 and dy > 0, and at least one of the two is
strictly positive. Now imagine that there is a world that consists of the orders S\S’. In
this case, a strategic user or miner with 0 demand can inject a set of fake orders S’, and
clearly this strategic behavior has positive gain, thus violating strategy proofness. Note that
this strategy works even in the weak fair-sequencing model, as long as the strategic user’s
inherent arrival time « is no larger than the orders in S’. |

Since our plain-model mechanism gives an example that satisfies arbitrage resilience but
not strategy proof, we conclude that strategy proofness is strictly stronger than arbitrage
resilience. Specifically, at the beginning of Section 3.3, we explain why we cannot achieve
strategy proof in the plain model. The strategies presented in this section also help to
illustrate why the stronger notion of strategy proofness is more desirable.

3 Our Swap Mechanism

3.1 Construction

Our swap mechanism has two phases. In phase 1 (line 3¢ and 4c), the mechanism matches
Buy(X) orders with Buy(Y") orders, and (partially) executes them at the initial rate rg, such
that at the end, there is no change to the initial pool state Pool(xq,yo). Phase 2 (line 3d
and 4d) is a Buy(X)-only phase, in which a sequence of Buy(X) orders (or Buy(Y) orders)
are (partially) executed one by one. In phase 2, when the mechanism attempts to execute an
order, it will execute as much as possible until either the demand has been fulfilled, or the
new market price has reached the asking price. The details of the mechanism are described
in Figure 1.

7:11

AFT 2025

7:12

Mechanism Design for Automated Market Makers

2. Let 0 = Z(t,v,r)eb' B(t,v,r) where B(t,v,r) =

a.

b.

Our swap mechanism

Input: A current pool state Pool(xg, o), and a vector of orders b. Since the mechanism
does not make use of the auxiliary information field, we simply assume each order is a
tuple of the form (¢, v,r).

Mechanism:

1. Let 7o := r(x0, yo) be the initial exchange rate. Ignore all Buy(X)/Sell(Y) orders
whose specified rate r < rg, and ignore all Buy(Y")/Sell(X) orders whose specified
rate r > rg. Let b’ be the remaining orders.

v if t = Buy(X)
v ift = Sell(X)
—v/rg if t = Buy(Y)
v/ro if t = Sell(Y)

We call ¢ > 0 the Buy(X)/Sell(Y)-dominant case, and o < 0 the Buy(Y")/Sell(X)-
dominant case.

3. The Buy(X)/Sell(Y')-dominant case (if ¢ > 0):
a.

Sort b’ such that all the Buy(Y)/Sell(X) orders appear in front of the
Buy(X)/Sell(Y') orders. Write the resulting list of orders as {(;, v, i) }ie[n’]-

. Henceforth we assume that there exists an index j € [n’] such that

I B(ti,vi,ri) = 0. If not, we can find the smallest index j € [n'] such
that >_7_, B(ti,vs, ;) > 0, and split the j-th order into two orders (¢;,v,,0,7;) and
(tj,vj1,75), resulting in a new list with n’ + 1 orders, such that v; o+ v;1 = v;,

and moreover, index j of the new list satisfies this condition.

. Phase 1: Fully execute the first j orders at the initial rate rg.
. Phase 2: For each ¢ > j + 1 in sequence, fulfill as much of the i-th remaining

order as possible, that is, pick the largest v < v; such that subject to the constant-
function market maker ®, the new market rate r < r; if v units are to be executed;
execute v units of the i-th order.

4. The Buy(Y")/Sell(X)-dominant case is symmetric (if o < 0):

Sort b’ such that all the Buy(X)/Sell(Y') orders appear after the Buy(Y)/Sell(X)

orders. Write the resulting list of orders as {(t;,vi, i) }icm-

Henceforth we assume that there exists an index j € [n/] such that
321 B(ti,vi,r;) = 0. If not, we can find the smallest index j € [n’] such

that — g:l B(ti,v;, ;) > 0, and split the j-th order into two orders (t;,v;.0,7;)

and (t;,vj,1,7;), resulting in a new list with n’ +1 orders, such that v; o +v;1 = vj,

and moreover, index j of the new list satisfies this condition.

Phase 1: Fully execute the first j orders at the initial rate rg.

. Phase 2: For ¢ > j + 1 in sequence, fulfill as much of the i-th remaining order as

possible, that is, pick the largest v < v; such that subject to the constant-function
market maker @, the new market exchange rate r>r; if v units are to be executed;
execute v units of the i-th order.

Figure 1 Our swap mechanism.

T-H. H. Chan, K. Wu, and E. Shi

In the sorting steps (Lines 3a and 4a®), we may need to break ties among identical orders.
We suggest two approaches for tie-breaking:
In the presence of a centralized block proposer (i.e., when the arbitrager can be in
full control of block creation), we suggest random tie-breaking. Note that the random
tie-breaking is enforced by the mechanism (i.e., the smart contract). The random coins
needed should come from a trusted source at the consensus layer, e.g., through the use of
a fair coin toss protocol [18,27]. This ensures that the miner or block producer cannot
auction off favorable positions in the block to arbitragers or users.
Note that in the plain model, we aim to achieve only arbitrage-free and not strategy
proofness. So although it may seem like a user can adopt a Sybil strategy and submit
fake bids to game the random tie-breaking, such strategies do not actually violate the
arbitrage-free property..
If the block proposal process is decentralized and ensures sequencing fairness, we suggest
tie-breaking according to the time of arrival. Section 3.3 and Section 4 show that this
approach allows us to achieve strategy proofness in the weak fair-sequencing model.

3.2 Proof of Arbitrage Resilience

We now prove that our swap mechanism satisfies arbitrage resilience regardless of how ties
are broken in Lines 3a and 4a. As mentioned earlier, the arbitrage resilience property holds
even when the arbitrager is in full control of block creation, can drop or inject orders, and
can control the sequencing of orders within the block.

» Theorem 3.1 (Arbitrage resilience). The swap mechanism in Figure 1 satisfies arbitrage
resilience. In particular, this holds no matter how ties are broken in Lines 3a and 4a.

Proof. We prove it for the Buy(X)/Sell(Y)-dominant case, since the Buy(Y)/Sell(X)-
dominant case is symmetric. The mechanism essentially does the following. In phase
1, it (partially) executes a set of orders all at the initial rate rg, such that there is no change
to the initial pool state Pool(zg, y). In phase 2, it executes only Buy(X')/Sell(Y") orders. Due
to increasing marginal cost (Fact 2), in Phase 2, all the (partially) executed Buy(X)/Sell(Y")
orders enjoy a rate that is at least ro. Therefore, all the (partially) executed Buy(Y")/Sell(X)
orders enjoy a rate of ro, and all the (partially) executed Buy(X)/Sell(Y") orders enjoy a rate
that is ro or greater. Thus, it cannot be the case that there is a net gain in one asset without
any loss in the other. |

3.3 A Refinement of the Mechanism for the Weak Fair-Sequencing
Model

Why the mechanism is NOT strategy-proof in the plain model. As mentioned, our
swap mechanism in Figure 1 does not fully specify how to break ties in the sorting steps
of in Lines 3a and 4a. Moreover, our arbitrage resilience property does not care how the
tie-breaking is done.

However, if we are not careful about the tie-breaking the resulting mechanism may not
satisfy strategy proofness. For example, imagine that the tie-breaking is based on the « field
of the order, which encodes the time at which the order is submitted. In this case, a strategic
miner or user can simply make its own order have a small « to enjoy a better price, rather
than truthfully reporting «.

5 Note that the sorted order produced by (3a) will be consumed in the subsequent steps (3b), (3c), and
(3d); similarly, the sorted order of (4a) are consumed in (4b), (4c), and (4d).

7:13

AFT 2025

7:14

Mechanism Design for Automated Market Makers

Refinement in the fair-sequencing model. In the weak fair-sequencing model, the arrival
order « is decided by an underlying consensus protocol that provides some form of sequencing
fairness. In other words, the consensus protocol itself records the approximate time at
which each order is first seen. In practice, this arrival time is dependent on when the user
submits the its order to the network, and its network delay. A sequencing-fair consensus
protocol cannot prevent a user (or miner) from delaying the submission of its order. It
also cannot prevent a strategic user with an extremely fast network from front-running a
victim’s order. Specifically, the strategic user can still observe what the victim submits, and
then immediately submits a dependent order. If the strategic user’s network is faster than
the victim’s, the strategic order may have an earlier arrival time than the victim’s order!
However, sequencing fairness from the consensus does tie the hands of strategic players in
the following weak manner (hence the name “weak sequencing fair”): if a strategic user’s
order is generated at time «, it cannot pretend that the order was generated at o/ < a even
if it has an extremely fast network with a delay of 0.

We can refine the mechanism in Figure 1 as follows to achieve strategy proofness in the
weak fair-sequencing model (see also Section 4):

For tie-breaking in the sorting steps (Lines 3a and 4a), we now require that the sorting

be stable, that is, in the sorted outcome, the relative ordering among all identical Buy(Y)

orders must respect the arrival order encoded in the « field; the same holds for all Buy(X)

orders.

We will assume that a user’s honest strategy is to honestly report its type including the
« field, that is, HS(t, v, r, @) simply outputs a single order (¢,v,r, a).

» Theorem 3.2 (Strategy proofness in the weak fair-sequencing model). Suppose ® is concave,
increasing, and differentiable. In the weak fair-sequencing model, the above refined swap
mechanism is strateqy proof (see Definition 2.5).

The proof of Theorem 3.2 is provided in Section 4.

4 Proof of Strategy Proofness in the Weak Fair-Sequencing Model

4.1 Useful Facts

We first prove a few useful facts.

» Fact 2 (Increasing marginal cost). Suppose that ® is increasing, differentiable, and concave.
Given two pool states Pool(z,y), Pool(a’,y") such that ®(z,y) = ®(a',y"), and 2’ < x, it must
be that r(z,y) < r(a’,y"). In other words, the price of X goes up if the pool has less supply
of X.

Proof. Suppose ®(x,y) = C. Since ® is increasing, by Lemma B.1 of [30], the potential
function ® defines a bijective decreasing function h(-) such that ®(z, h(z)) = C. Moreover,
since ® is concave, the induced function h(-) is convex (Lemma B.2 of [30]). Observe that ®
is differentiable, so r(x,y) = —h/(x). Therefore, r(z,y) < r(z’,y’) for 2’ < x by the convexity
of h. <

» Fact 3 (No free lunch). Suppose (dz,dy) is the outcome resulting from the execution of a
single order in the swap mechanism in Figure 1. If at least one of éx and Jy is non-zero,
then dz - 0y < 0.

T-H. H. Chan, K. Wu, and E. Shi

4.2 Proof

We now prove Theorem 3.2. Our mechanism is deterministic, so a deterministic strategy

yields a deterministic outcome. Recall that a user has a partial ordering among the outcomes.

Henceforth, if two outcomes satisfy (dz1,0y1) > (0x2, dys2), we say that (dz1,dy1) is at least
as good as (0xa2,dy2).

Suppose that the strategic user u’s type is (t*,v*,r*, a*), its strategic order vector is
b, = {(tj,vj,rj,;)};, the initial state is Pool(xg, yo), and the order vector from all other
users is b_,,.

» Fact 4. Given the initial state Pool(x,yo), the order vector from other users b_,,, and a
strategic order vector by, = {(tj,vj,7;,;)};, there exists an alternative strategic vector bl
which contains only Buy(X) and Sell(X)-type (or Buy(Y) and Sell(Y)-type) order, such that
the outcome of b!, is the same as the outcome of by,.

Proof. Since the mechanism is deterministic, given the initial state Pool(zg, yo), order vector
from all other users b_,,, and the strategic order vector b,,, one can compute the whole
order execution trace of the mechanism. For an order b = (Sell(Y'),v;,7;, ;) in by, if it is
not executed, then it can be replaced with a (Buy(X),0,r;,a;). If it is partially fulfilled,
let (Zstart, Tend) denote the amount of asset X in the pool right before and right after b
is executed, respectively. Let renq denote the market exchange rate at xepnq. Then b can

be replaced with an order (Buy(X), Zstart — Tend, Tend, @j), Without changing the outcome.

Similarly, we can replace a Buy(Y)-type order with a Sell(X)-type order without changing
the outcome. The fact thus follows. <

» Lemma 4.1. Suppose P is concave, increasing, and differentiable. For any strategic order
vector by, there exists a single order b, such that 1) b, results in an outcome at least as good
as by; 2) the arrival time used in bl, is no earlier than the earliest arrival time in b,; and 3)
either b, = (_,0,__,) or b, would be completely fulfilled under Pool(xg,yo) and b_,,.

Proof. To prove this lemma, we first show that we can coalesce all the Buy(X)/Sell(Y)-type
orders into one, and all the Sell(X)/Buy(Y)-type orders into one, as stated in the following
claim.

> Claim 4.2. Suppose @ is concave, increasing, and differentiable. For any strategic order
vector by, if it contains both Buy(X)/Sell(Y)-type and Sell(X)/Buy(Y)-type orders, there
exists another order vector b/, which contains a single Buy(X)/Sell(Y)-type order and a
single Sell(X)/Buy(Y)-type order such that 1) b, results in an outcome at least as good as
by; 2) the arrival times used in b’,, are no earlier than the earliest arrival time in b,; and
3) an order in b/, is either of the form (_,0,_,) or it would be completely fulfilled under
Pool(zo, yo) and b_,.

Proof. According to Fact 4, we can assume that b, contains only Buy(X) and Sell(X)-type
orders. Let bse and bguy denote the vector of Sell(X)-type and Buy(X)-type orders in
b,, respectively. Without loss of generality, assume that given b_,, and b,,, we have the
Buy(X)/Sell(Y)-dominant case, (the Buy(Y')/Sell(X)-dominant case is symmetric).

For the Buy(X)/Sell(Y)-dominant case, all Sell(X)-type orders in bge will be executed
at the initial exchange rate rg. Therefore, consider an order b = (Sell(X), v, r,), where v
denotes the total units of orders in bgey, 7 is the minimum asking rate in bgey, and « is
the earliest arrival time in b,,. Then a strategic order vector (bpyy,b) results in the same
outcome as by,.

7:15

AFT 2025

7:16

Mechanism Design for Automated Market Makers

Now consider an order b’ = (Buy(X),v’,r’,a’), where v’ is the total units of order executed
in bpuyy, r’ is the maximum asking rate in bpyy, and o' is the earliest arrival time of the
order in bpyy that is partially fulfilled. Let b), = (¢/,b). Compared to the units executed in
bpyy, the units executed in b have an earlier or the same arrival time. In addition, the
asking rate r’ in 0’ is larger than or equal to that in bg,y. Therefore, all units in b’ will be
executed. Moreover, by the increasing marginal cost (Fact 2), the exchange rate for b’ is no
more than the average exchange rate for all orders in bpy,. This means that b/, results in
an outcome that is at least as good as (bpuy, b) according to the partial ordering. By the
transitivity, b/, results in an outcome that is at least as good as b,,. <

Next, we show that for any order vector b,, that contains a single Buy(X)/Sell(Y)-type
order and a single Sell(X)/Buy(Y)-type order, we can remove the part that “cancels off”,
and substitute it with a single order. This is formally stated in the following claim.

> Claim 4.3. Suppose @ is concave, increasing, and differentiable. For any order vector b,
that contains a single Buy(X)/Sell(Y)-type order and a single Sell(X)/Buy(Y)-type, there
exists a single order b/, such that 1) b/, results in an outcome at least as good as by; 2) the
arrival time in b/, is no earlier than the earliest arrival time in b,,; and 3) b}, is either of the
form (_,0,__,_) or it would be completely fulfilled under Pool(zg, yo) and b_,,.

Proof. Because of Fact 4, we assume that the strategic order vector b, contains a single
Buy(X)-type order (Buy(X), vy, rp, ap) and a single Sell(X)-type order (Sell(X),vs,7s, as).
By our assumption, both orders are fully executed. If either v, or v, is zero, the result follows
trivially; henceforth, we assume that both are non-zero. Similarly, if either ry, < g or rgy > 7o,
then the result also follows trivially. henceforth, r, > r¢ and r5 < r¢.

We prove it assuming the Buy(X)/Sell(Y)-dominant case case under the strategic order
vector by, since the argument for the Buy(Y)/Sell(X)-dominant case is symmetric. For the
Buy(X)/Sell(Y')-dominant case, if it were possible to execute all orders at g, then there is
more demand in terms of only Buy(X)/Sell(Y) than Sell(X)/Buy(Y). In this case, Phase 1
executes all Sell(X)/Buy(Y") orders at rg, and Phase 2 executes only Buy(X)/Sell(Y") orders.

Case vy > vp. Under the original b,,, the user would sell vs units of X at ry and would
buy v, units of X at a rate of ry or greater. Now, suppose we replace b, with a single
order b, = (Sell(X),vs — vp, 75, a5). Under b.,, it is still the case that all Sell(X) orders are
completely executed at rg.

Hence, we can decompose the original b,, equivalently into the following steps: (i) first
execute bl; (ii) sell v, units at rate ro; (iii) buy back v, units at rate o or greater. Since
steps (ii) and (iii) together will incur a non-negative loss in Y (but create no change in X),
user u’s outcome under b/, is at least as good as b,,.

Case vs < wp. Consider the original b, which consists of (Sell(X),vs,rs,5) and
(Buy(X), vp, 1y,). We will analyze what happens when we replace these two orders with
a single order b/, = (Buy(X), vy — vs, 7, p). Suppose in Phase 1 of the execution with by,
user u sells v, units of X and buys v’ < vy, units of X at rate rg. We separate the rest of the
proof into two cases.

1. Case v’ > vs. For the execution with b,: In Phase 1, the net effect is to buy v’ — v,
units of X at rate rg. In Phase 2, the user u buys the remaining v, — v’ units starting at
rate rg.

The execution with b/, can be viewed as follows: In Phase 1’, v/ — v units of Buy(X) will
be executed at rate rg. Then in Phase 2’, the mechanism executes the rest v, — v’ units
in b), starting at rate ro.

T-H. H. Chan, K. Wu, and E. Shi

Hence, the two scenarios are equivalent, and the two outcomes are the same.
2. Case v/ < vs. We will view the execution of the orders (Sell(X),vs,rs,as) and
(Buy(X), vy, 1,) as follows.
Phase 1: User u sells v, units of X and buy v’ units of X at a rate of rg, and it gains
(vs — ') - 7 units of Y in return.

Phase 2a: Some non-negative amount of Buy(X)/Sell(Y") orders from other users are

executed at a starting market rate of rg, let vother > 0 be the units of X purchased.

Note that if v* > 0, then voinher = 0.
At the end of this phase, the market rate r; > r¢ by increasing marginal cost.
Phase 2b: Starting at rate r; > rg, user u buys v, — v’ units of X, which changes the
market rate to ro > ry.
Phase 2¢: Starting at rate ro, the user buys (v, — vs) units of X, changing the market
rate to rs.
The new execution involving), can be viewed as the following;:
Phase 1 The Buy(X)/Sell(Y) orders of other users executed in the original Phase 1
cannot all be executed in the new Phase 1. In particular, the last vs — v’ units of X
cannot be fulfilled in Phase 1’, and will be pushed to Phase 2a’ — henceforth, we call
this portion the residual.
Phase 2a” The mechanism attempts to execute the residual from Phase 1’ at a starting
rate of rg. The amount fulfilled must be at most vy — v'.
Phase 2b% The mechanism attempts to execute the (partial) orders originally considered
in Phase 2a, at a starting price that is at least rg. At most votper units of X can be
fulfilled. The ending market rate must be at least r;.
Phase 2c¢” The mechanism attempts to execute b),. Observe that the total units of X
fulfilled in the original Phase 2a, 2b, and 2c is vgtper + V5 — v/, and the total units of
X fulfilled in the new Phase 2a’, 2b’, and 2¢’ is at most (vs — v') 4 Vother + Vp — Vs =
Vother + Up — ¥'. Therefore, it must be that all of b/, can be fulfilled and the ending
market rate is at most r3 < ry,.
Henceforth, we use the notation Pay(Phase *) to denote user u’s payment in terms of Y’
in some phase. When the pay is negative, it means a gain in Y. Observe that

Pay(Phase 1) + Pay(Phase 2b) > 0, Pay(Phase 2¢) > Pay(Phase 2¢’).
Therefore,
Pay(Phase 1) + Pay(Phase 2b) 4+ Pay(Phase 2c) > Pay(Phase 2c¢’).

Observe that in the above, the left-hand side represents u’s total payment in Y under
the original b/, and the right-hand side represents u’s total payment in Y under the new
bl,. <

Lemma 4.1 follows by combining Claim 4.2 and Claim 4.3. |

» Lemma 4.4. Suppose ® is concave, increasing, and differentiable. Given any initial state
Pool(x0,40), any order vector b_,,, any true arrival time o* of user u, given an order b,
with an arrival time later than o, there exists another order b, with an arrival time exactly
a*, and moreover, user u’s outcome under b, is at least as good as its outcome under b,
and b, is either completely executed or of the form (_,0,_,).

7:17

AFT 2025

7:18

Mechanism Design for Automated Market Makers

Proof. Due to Fact 4, we may assume that b, is either a Buy(X) or Sell(X) order. We prove
it for a Buy(X) order, since the case for a Sell(X) order is symmetric. Let v be the amount
of X bought by b/,. We shall assume that v > 0 since the case v = 0 is trivial. Consider an
order b, = (Buy(X), v, +00,a*). Clearly, b, will buy v units of X.
We consider the following cases:
by, buys vg > 0 units at 7 in Phase 1, and then buys v; > 0 units in Phase 2 at a starting
rate of ro and an ending rate of r; > rg. In this case, by delaying the arrival time, b/, can
buy at most v, < v units in Phase 1 at ro, and it needs to buy v — v{, > v in Phase 2.
Therefore, for b],, the starting rate in Phase 2 is g, and the ending rate must be at least
r1. Therefore, the average price paid per unit in b, is no worse than the average price
paid per unit in ¥/,.
b, buys all v units in Phase 2. Since b/, delayed the arrival, the order can be considered
no earlier than b,. Thus, before the mechanism tries to execute b/, at least as many units
of X will have been bought (by all users) as when the mechanism tries to execute b,,.
This means], will have an average price no better than b,,. |

Due to Lemmas 4.1 and 4.4, it suffices to consider strategies that submit a single order,
declare the true arrival time o*, and moreover, either the order has a 0 amount or it will
be completely executed under Pool(zg,yo) and b_, — henceforth, we call such strategies as
admissible, single-order strategies. We can complete the proof of Theorem 3.2 by showing
the following lemma.

» Lemma 4.5. Suppose ® is concave, increasing, and differentiable. For any admissible and
single-order strategy S, the honest strategy results in an outcome that is at least as good as
or incomparable to strategy S.

Proof. Below we complete the proof of Lemma 4.5.

We prove it for the case when user u's type is either (Buy(X),v*,r* a*) or
(Sell(X),v*,r*,a*). The case for Buy(Y)/Sell(Y) is symmetric. Given two outcomes
outg = (dxo,0yo) and out; = (dx1,dy1) and a true demand dz* for X, we say that they are
on the same side of the goal dz* iff (dxg — dz*) - (dz1 — 0x*) > 0. We say that outg is at least
as close as outy towards the goal iff [0xg — dz*| < |02 — dz*|, and we say that outq is closer
to the goal than out; iff |dz¢ — dz*| < |dz1 — dz*|.

Our natural partial ordering relation implies the following:

R1. Suppose (0zo,dyo) and (dz1,dy1) are on the same side of the goal, and dz is at least
as close as dzq towards the goal. Moreover, if (dzg — dz1) - (dy1 — dyo) < 0, then
((51}1,52/1) % (5%0, (Syo)

R2. If xg and dx; are on the same side of the goal, dxq is closer than dx; to the goal, and
moreover, 0y; — 0yo > 1% - (dxg — dz1), then (dzg, dyo) 7 (621, 6y1)-

R3. If z¢ and dz; are on different sides of the goal, and moreover, dy; —dyo > 7*- (dzg—dx1),
then (0z0, d0yo) 7 (dx1,dy1).

Due to Fact 4, we may assume that the strategic order must be of the type Buy(X) or
Sell(X). Further, as shown in the following fact, we can in fact assume that the strategic
order adopts the true time of arrival o*, i.e., declaring a later time never helps.

Henceforth, let (dz,dy) and (dz’, dy’) denote the honest and strategic outcomes, respec-
tively.

Case 1. FEither user u has a true demand of 0 units, or the strategic order is opposite the
direction of its true demand, i.e., if its type is Buy(X), it submits a single Sell(X) order; or
vice versa. It must be that dx - dz’ < 0. Further, the honest outcome and strategic outcome

T-H. H. Chan, K. Wu, and E. Shi

must be on the same side of the true demand, and the honest outcome is at least as close to
the goal as the strategic outcome. Our mechanism guarantees that either (i) dz = dz’ = 0,
or (ii) at least one of dz’ and 0z’ is non-zero. In case (i), oy = dy’ = 0, and the the two
outcomes are the same.

In case (ii), because of no free lunch (Fact 3), at least one of the inequalities éx - dy < 0
and 4z’ - 6y’ < 0 must be strict; moreover, when an equality holds, both arguments of the
product must be zero. Because dx -z’ < 0, this implies that (dz — da’)(dy — dy’) < 0; by the
above rule R1, the honest outcome is at least as good as or incomparable the strategic one.

Case 2. The user u has a non-zero amount of true demand, and moreover, the strategic
order is in the same direction of the true demand. We consider the following cases.
Case 2a: éx = dx’. By admissibility, the strategic order declares the same arrival time
as the honest one; hence, if the orders from both strategies get executed for a non-zero
amount, both execution will start at the same market exchange rate. Hence, it must be
the case that (dz, dy) = (da',dy’).
Henceforth, we assume that dz # dz’.
Case 2b: The honest outcome and the strategic outcome are on the same side of the goal,
and the honest outcome closer to the goal than the strategic outcome; this case includes
the scenario that the honest outcome is exactly at the goal. Since we can assume that the
strategic order has the same arrival time as the honest order, the difference of |6z — §z|
units are traded at a marginal price at least as good as r in the honest outcome. Due to
the third rule of the natural partial ordering, the honest outcome is at least as good as
the stategic one.
Case 2c: The honest outcome and the strategic outcome are on the same side of the
goal, and the strategic outcome is closer to the goal than the honest outcome, i.e.,
|0z| < |62'| < [0z = v*.
This means that the honest outcome has not reached the goal of user u. Under the honest
strategy, after user u’s order has been executed (or attempted to be executed), the state
of the market is such that if a further non-zero portion of the order is executed, this
portion will incur an average rate of strictly worse than r*. In the case of Buy(X), this is
strictly larger than r*; in the case of Sell(X), this is strictly less than r*.
Since the strategic order declares the same arrival time as the honest order, the difference
of |62’ — dz| > 0 units must be traded at an average rate strictly worse than than »* in
the strategic outcome. By rule R2, the strategic outcome is not at least as good as
the honest outcome. However, because of no free lunch, the two outcomes are actually
incomparable.
Case 2d: The honest outcome and the strategic outcome are on different sides of the goal,
ie., [0z] < |dz*| = v* < |d2|.
In this case, dx # 0. Similar to case 2c¢, under the honest strategy, after user u’s order
has been executed, the state of the market is such that if a further non-zero portion of
the order is executed, this portion will incur an average rate of strictly worse than r*.
Because the strategic order declares the same arrival time as the honest one, the difference
of [0z’ — dz| units must be traded at an average rate of strictly worse than than 7* in the
strategic outcome. By rule R3, the strategic outcome cannot be at least as good as the
honest outcome. <

5 Conclusion

In this paper, we propose new models for studying mechanism design for DeFi applications.

Unlike the prior work of Ferreira and Parkes [30] and others’ [39] which assume that the
mechanism on the blockchain must be a first-in-first-out mechanism, we allow the the

7:19

AFT 2025

7:20

Mechanism Design for Automated Market Makers

mechanism designer to specify the mechanism running on the blockchain. This allows us
to circumvent the strong impossibility results of Ferreira and Parkes [30]. Depending on
assumption on the underlying blockchain, we consider two possible strategies spaces. If the
underlying blockchain does not enjoy sequencing fairness, we assume that the strategic user
(or miner) can post orders after observing honest users’ orders, insert fake orders, censor
honest users’ orders, and control the sequencing of the orders in the block. If the underlying
blockchain enjoys sequencing fairness, we assume that the strategic user can do all of the
above; however, it cannot censor honest users’ orders, nor can it under-report its arrival time.

We design a novel mechanism that achieves arbitrage resilience (which was deemed
impossible under Ferreira and Parkes [30]’s model), and additionally achieves strategy
proofness if the underlying consensus offers sequencing fairness.

Our paper raises many interesting directions for future work. For example, can we achieve
strategy proofness without relying on the sequencing fairness assumption? Can we extend
the results to multi-asset swaps? Can we optimize social welfare and revenue under strategy
proofness? Another interesting direction is whether we can achieve strategy proofness under
an all-or-nothing fulfillment model, that is, any order is either completely fulfilled or not
executed at all.

—— References
1 https://cow.fi/cow-protocol.
2 The espresso sequencer. https://hackmd.io/@EspressoSystems/EspressoSequencer.
3 https://www.metis.io/decentralized-sequencer.
4 https://www.zeeve.io/blog/why-would-a-layer2-decentralize-its-sequencer/.
5 Thttps://ethglobal.com/showcase/decentralized-sequencers-for-optimism-rollup-
10981i.
6 https://morph.ghost.io/introduction-to-decentralized-sequencer-network/.

7 https://docs.morphl2.io/docs/how-morph-works/decentralized-sequencers/
morph-decentralized-sequencer-network/.

8 https://blog.kroma.network/decentralized-sequencers-d2a4aeaf10847gi=
ee7408176d62.

9 https://ethglobal.com/talks/ordering-so-fair-it-ain-t-fair-ordering-a5b60.

10 Challenging periods reimagined: The key role of sequencer decentralization.
https://ethresear.ch/t/challenging-periods-reimagined-the-key-role-of-sequencer
-decentralization/15110.

11 Guillermo Angeris, Alex Evans, and Tarun Chitra. A note on bundle profit maximization,
2021.

12 Kushal Babel, Philip Daian, Mahimna Kelkar, and Ari Juels. Clockwork finance: Automated
analysis of economic security in smart contracts. In IEEE Symposium on Security and Privacy,
2023.

13 Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden. Transaction fee mechanism design
in a post-mev world. In 6th Conference on Advances in Financial Technologies, AFT 2024,
September 23-25, 2024, Vienna, Austria, volume 316 of LIPIcs, pages 29:1-29:24. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPICS.AFT.2024.29.

14 Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. A theory of automated
market makers in defi. CoRR, 2021. arXiv:2102.11350.

15 Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente. Maximizing ex-
tractable value from automated market makers. In Financial Cryptography and Data Security:
26th International Conference, FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers,
pages 3-19, Berlin, Heidelberg, 2022. doi:10.1007/978-3-031-18283-9_1.

https://cow.fi/cow-protocol
https://hackmd.io/@EspressoSystems/EspressoSequencer
https://www.metis.io/decentralized-sequencer
https://www.zeeve.io/blog/why-would-a-layer2-decentralize-its-sequencer/
https://ethglobal.com/showcase/decentralized-sequencers-for-optimism-rollup-1o98i
https://ethglobal.com/showcase/decentralized-sequencers-for-optimism-rollup-1o98i
https://morph.ghost.io/introduction-to-decentralized-sequencer-network/
https://docs.morphl2.io/docs/how-morph-works/decentralized-sequencers/morph-decentralized-sequencer-network/
https://docs.morphl2.io/docs/how-morph-works/decentralized-sequencers/morph-decentralized-sequencer-network/
https://blog.kroma.network/decentralized-sequencers-d2a4aeaf1084?gi=ee7408176d62
https://blog.kroma.network/decentralized-sequencers-d2a4aeaf1084?gi=ee7408176d62
https://ethglobal.com/talks/ordering-so-fair-it-ain-t-fair-ordering-a5b60
https://ethresear.ch/t/challenging-periods-reimagined-the-key-role-of-sequencer-decentralization/15110
https://ethresear.ch/t/challenging-periods-reimagined-the-key-role-of-sequencer-decentralization/15110
https://ethresear.ch/t/challenging-periods-reimagined-the-key-role-of-sequencer-decentralization/15110
https://doi.org/10.4230/LIPICS.AFT.2024.29
https://arxiv.org/abs/2102.11350
https://doi.org/10.1007/978-3-031-18283-9_1

T-H. H. Chan, K. Wu, and E. Shi

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30

31

32

33

34

35

36

Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente. Maximizing ex-
tractable value from automated market makers. In Financial Cryptography and Data Security:
26th International Conference, FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers,
2022. doi:10.1007/978-3-031-18283-9_1.

Joseph Bebel and Dev Ojha. Ferveo: Threshold decryption for mempool privacy in BFT
networks. Cryptology ePrint Archive, Paper 2022/898, 2022. URL: https://eprint.iacr.
org/2022/898.

Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak. Randpiper
reconfiguration-friendly random beacons with quadratic communication. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security, CCS
21, pages 3502-3524, New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3460120.3484574.

R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, 2001.

Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 2000.

Andrea Canidio and Robin Fritsch. Batching trades on automated market makers. In AFT,
2023.

Andrea Canidio and Robin Fritsch. Arbitrageurs’ profits, lvr, and sandwich attacks: batch
trading as an amm design response. CoRR, 2024. doi:10.48550/arXiv.2307.02074.
Andrea Canidio and Felix Henneke. Fair combinatorial auction for blockchain trade intents:
Being fair without knowing what is fair, 2024. arXiv:2408.12225.

Miles Carlsten, Harry Kalodner, S. Matthew Weinberg, and Arvind Narayanan. On the
instability of bitcoin without the block reward. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

T-H. Hubert Chan, Ke Wu, and Elaine Shi. Mechanism design for automated market makers.
https://arxiv.org/abs/2402.09357.

Hao Chung and Elaine Shi. Foundations of transaction fee mechanism design. In Proceedings
of the 2028 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3856—-3899.
STAM, 2023. doi:10.1137/1.9781611977554.CH150.

Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. SPURT: Scalable distributed
randomness beacon with transparent setup. In IEEE Symposium on Security and Privacy,
2022. URL: https://eprint.iacr.org/2021/100.

Theo Diamandis and Guillermo Angeris. A note on the welfare gap in fair ordering, 2023.
doi:10.48550/arXiv.2303.15239.

Justin Drake. Encrypted mempools. https://www.youtube.com/watch?v=XRMOCpGY3sw.
Matheus Venturyne Xavier Ferreira and David C. Parkes. Credible decentralized exchange
design via verifiable sequencing rules. In STOC, 2023.

Tivas Gupta, Mallesh M Pai, and Max Resnick. The centralizing effects of private order flow
on proposer-builder separation, 2023. arXiv:2305.19150.

Lioba Heimbach and Roger Wattenhofer. Eliminating sandwich attacks with the help of game
theory. In Proceedings of the 2022 ACM on Asia Conference on Computer and Communications
Security, 2022.

Josojo. Mev capturing amm (mcamm). https://ethresear.ch/t/mev-capturing-amm-
mcamm/13336.

Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair consensus in the permission-
less setting. In APKC ’22: Proceedings of the 9th ACM on ASIA Public-Key Cryptography
Workshop, 2022.

Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis: Fast,
strong order-fairness in byzantine consensus, 2021.

Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In CRYPTO, pages 451-480, 2020. doi:10.1007/978-3-030-56877-1_16.

7:21

AFT 2025

https://doi.org/10.1007/978-3-031-18283-9_1
https://eprint.iacr.org/2022/898
https://eprint.iacr.org/2022/898
https://doi.org/10.1145/3460120.3484574
https://doi.org/10.48550/arXiv.2307.02074
https://arxiv.org/abs/2408.12225
https://arxiv.org/abs/2402.09357
https://doi.org/10.1137/1.9781611977554.CH150
https://eprint.iacr.org/2021/100
https://doi.org/10.48550/arXiv.2303.15239
https://www.youtube.com/watch?v=XRM0CpGY3sw
https://arxiv.org/abs/2305.19150
https://ethresear.ch/t/mev-capturing-amm-mcamm/13336
https://ethresear.ch/t/mev-capturing-amm-mcamm/13336
https://doi.org/10.1007/978-3-030-56877-1_16

7:22

Mechanism Design for Automated Market Makers

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Kshitij Kulkarni, Theo Diamandis, and Tarun Chitra. Towards a theory of maximal extractable
value I: constant function market makers. CoRR, abs/2207.11835, 2022. doi:10.48550/arXiv.
2207.11835.

F. Leupold. Cow native amms (aka surplus capturing amms with single price clearing).
https://forum.cow.fi/t/cow-native-amms-aka-surplus-capturing-amms-with-single-
price-clearing/1219/1.

Yuhao Li, Mengqian Zhang, Jichen Li, Elynn Chen, Xi Chen, and Xiaotie Deng. Mev
makes everyone happy under greedy sequencing rule. In Proceedings of the 2028 Workshop
on Decentralized Finance and Security, DeFi '23, pages 9-15. Association for Computing
Machinery, 2023. doi:10.1145/3605768.3623543.

Jason Milionis, Ciamac C. Moallemi, and Tim Roughgarden. A myersonian framework
for optimal liquidity provision in automated market makers. CoRR, abs/2303.00208, 2023.
doi:10.48550/arXiv.2303.00208.

Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How
dark is the forest? In 43rd IEEE Symposium on Security and Privacy, SP, 2022.

Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. Attacking the defi ecosystem
with flash loans for fun and profit. In Financial Cryptography and Data Security: 25th
International Conference, FC 2021, Virtual Event, March 1-5, 2021, Revised Selected Papers,
Part I, 2021. doi:10.1007/978-3-662-64322-8_1.

Geoffrey Ramseyer, Mohak Goyal, Ashish Goel, and David Maziéres. Augmenting batch
exchanges with constant function market makers, 2023. arXiv:2210.04929.

Tim Roughgarden. Transaction fee mechanism design. In EC, 2021.

Elaine Shi, Hao Chung, and Ke Wu. What can cryptography do for decentralized mechanism
design? In ITCS, volume 251 of LIPIcs, pages 97:1-97:22. Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, 2023. doi:10.4230/LIPICS.ITCS.2023.97.

Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. Sok: Decentralized exchanges
(dex) with automated market maker (amm) protocols. ACM Computing Surveys, 55(11), 2023.
doi:10.1145/3570639.

Sen Yang, Kartik Nayak, and Fan Zhang. Decentralization of Ethereum’s Builder Market. In
2025 IEEE Symposium on Security and Privacy (SP), pages 1512-1530, Los Alamitos, CA,
USA, May 2025. IEEE Computer Society. doi:10.1109/SP61157.2025.00157.

Menggian Zhang, Yunhao Li, Xinyuan Sun, Elynn Chen, and Xi Chen. Computation of optimal
mev in decentralized exchanges. https://mengqian-zhang.github.io/papers/batch.pdf.
Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais. On the
just-in-time discovery of profit-generating transactions in defi protocols. In IEEE Symposium
on Security and Privacy, SP, 2021.

Liyi Zhou, Kaihua Qin, and Arthur Gervais. A2MM: mitigating frontrunning, transaction
reordering and consensus instability in decentralized exchanges. CoRR, abs/2106.07371, 2021.
arXiv:2106.07371.

Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc Viet Le, and Arthur Gervais. High-
frequency trading on decentralized on-chain exchanges. In IEEE Symposium on Security and
Privacy, 2021.

Patrick Zust. Analyzing and preventing sandwich attacks in ethereum. Bachelor’s thesis.

https://doi.org/10.48550/arXiv.2207.11835
https://doi.org/10.48550/arXiv.2207.11835
https://forum.cow.fi/t/cow-native-amms-aka-surplus-capturing-amms-with-single-price-clearing/1219/1
https://forum.cow.fi/t/cow-native-amms-aka-surplus-capturing-amms-with-single-price-clearing/1219/1
https://doi.org/10.1145/3605768.3623543
https://doi.org/10.48550/arXiv.2303.00208
https://doi.org/10.1007/978-3-662-64322-8_1
https://arxiv.org/abs/2210.04929
https://doi.org/10.4230/LIPICS.ITCS.2023.97
https://doi.org/10.1145/3570639
https://doi.org/10.1109/SP61157.2025.00157
https://mengqian-zhang.github.io/papers/batch.pdf
https://arxiv.org/abs/2106.07371

	1 Introduction
	1.1 Our Results and Contributions
	1.2 Comparison with Related Work
	1.3 Scope and Open Questions

	2 Definitions
	2.1 Swap Mechanism for AMMs
	2.2 Arbitrage Resilience
	2.3 Plain Model
	2.4 Weak Fair-Sequencing Model
	2.5 Strategy Proof

	3 Our Swap Mechanism
	3.1 Construction
	3.2 Proof of Arbitrage Resilience
	3.3 A Refinement of the Mechanism for the Weak Fair-Sequencing Model

	4 Proof of Strategy Proofness in the Weak Fair-Sequencing Model
	4.1 Useful Facts
	4.2 Proof

	5 Conclusion

