
Strategic Analysis of Just-In-Time Liquidity
Provision in Concentrated Liquidity Market Makers
Bruno Llacer Trotti #

Federal University of Rio de Janeiro (UFRJ), Brazil

Weizhao Tang #

Carnegie Mellon University, Pittsburgh, PA, USA

Rachid El-Azouzi #

Avignon University, France

Giulia Fanti #

Carnegie Mellon University, Pittsburgh, PA, USA

Daniel Sadoc Menasché #

Federal University of Rio de Janeiro (UFRJ), Brazil

Abstract
Liquidity providers (LPs) are essential figures in the operation of automated market makers (AMMs);
in exchange for transaction fees, LPs lend the liquidity that allows AMMs to operate. While many
prior works have studied the incentive structures of LPs in general, we currently lack a principled
understanding of a special class of LPs known as Just-In-Time (JIT) LPs. These are strategic agents
who momentarily supply liquidity for a single swap, in an attempt to extract disproportionately high
fees relative to the remaining passive LPs. This paper provides the first formal, transaction-level
model of JIT liquidity provision for a widespread class of AMMs known as Concentrated Liquidity
Market Makers (CLMMs), as seen in Uniswap V3, for instance. We characterize the landscape of
price impact and fee allocation in these systems, formulate and analyze a non-linear optimization
problem faced by JIT LPs, and prove the existence of an optimal strategy. By fitting our optimal
solution for JIT LPs to real-world CLMMs, we observe that in liquidity pools (particularly those
with risky assets), there is a significant gap between observed and optimal JIT behavior. Existing
JIT LPs often fail to account for price impact; doing so, we estimate they could increase earnings by
up to 69% on average over small time windows. We also show that JIT liquidity, when deployed
strategically, can improve market efficiency reducing slippage for traders, albeit at the cost of eroding
passive LP profits by up to 44% per trade on average.

2012 ACM Subject Classification Information systems → Electronic commerce

Keywords and phrases Concentrated Liquidity Market Makers, Uniswap, Just-in-Time

Digital Object Identifier 10.4230/LIPIcs.AFT.2025.8

Related Version Full Version: https://arxiv.org/abs/2509.16157

Supplementary Material
Software (Source Code): https://github.com/brunoCCOS/JITUniswapOptimization

Funding This work was partially funded by CAPES; by FAPERJ under grant E-26/204.268/2024;
and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, under
grants 403601/2023-1 and 315106/2023-9. It was also supported in part by the National Science
Foundation under grant CNS-2325478, as well as by the Initiative for Cryptocurrencies and Contracts
(IC3) and the CyLab Secure Blockchain Initiative, together with their respective industry sponsors.

© Bruno Llacer Trotti, Weizhao Tang, Rachid El-Azouzi, Giulia Fanti, and Daniel Sadoc Menasché;
licensed under Creative Commons License CC-BY 4.0

7th Conference on Advances in Financial Technologies (AFT 2025).
Editors: Zeta Avarikioti and Nicolas Christin; Article No. 8; pp. 8:1–8:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brunolt@ic.ufrj.br
https://orcid.org/0009-0009-6523-3669
mailto:twz17519@gmail.com
https://orcid.org/0009-0002-3676-4582
mailto:rachid.elazouzi@univ-avignon.fr
https://orcid.org/0000-0002-4756-0887
mailto:gfanti@andrew.cmu.edu
https://orcid.org/0000-0002-7671-2624
mailto:sadoc@dcc.ufrj.br
https://orcid.org/0000-0002-8953-4003
https://doi.org/10.4230/LIPIcs.AFT.2025.8
https://arxiv.org/abs/2509.16157
https://github.com/brunoCCOS/JITUniswapOptimization
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

8:2 Strategic Analysis of JIT Liquidity Provision in CLMMs

1 Introduction

Recent years have seen increased adoption of Decentralized Exchanges (DEXs) [29] and
Automated Market Maker (AMM) protocols [30], which automatically set trade prices and
execute trades; prominent markets running AMMs include Uniswap [1], SushiSwap [24],
and PancakeSwap [22]. At the time of writing, the annual trading volume on AMM-based
exchanges exceeds hundreds of billions of dollars [19].

Liquidity providers (LPs) are users who lend tokens to specific pools, thereby providing
liquidity for trades in exchange for trading fees. LPs are central to the effective operation of
AMMs; consequently, many prior works have sought to analyze their behavior [7,9,12,21,25].
For example, several of these works characterize conditions under which LPs are incentivized
to contribute liquidity, and strategies for doing so to optimize returns [8, 25].

Despite a growing body of work analyzing the incentives of LPs in AMMs, to our
knowledge, few have studied an important class of LPs known as Just-in-Time Liquidity
Providers (JIT LPs) [11,26]. These are informed strategic agents who aim to extract profit
by providing liquidity in a highly targeted manner. Rather than holding a liquidity position
over a period of time, a JIT LP provides liquidity for a single trade. This can be executed
by a sandwich attack [10] on the target transaction by executing a swap that involves
frontrunning the target transaction with an “add liquidity” transaction and backrunning it
with a “withdraw liquidity” transaction. By temporarily capturing a higher share of liquidity,
the JIT trader can earn a larger portion of the trading fee that is paid to all LPs pro rata to
each LP’s liquidity share.1

Although JIT LPs may appear to operate at the margins of an AMM, they play a crucial
role in the ecosystem. They act as a frictional force against price movements, they help pools
stay aligned with external market opportunities, and they reduce slippage for traders [26,28].2
At the same time, they introduce adversarial costs to passive LPs and arbitrageurs. The
prevalence of JIT LPs is expected to grow with the emergence of technologies such as
Flashbots [17] and Uniswap V4 [2], which introduce optimized mechanisms for JIT operations
(e.g., hooks, bundled transactions). However, we currently lack a theoretical understanding
of JIT liquidity provision and its effects on AMMs.

This work fills a current gap in the literature by developing and analyzing a principled
model of JIT LP incentives for an important class of AMMs known as Concentrated Liquidity
Market Makers (CLMMs). Introduced in Uniswap V3 [1], CLMMs allow LPs to invest
liquidity over fine-grained price ranges; the LP’s liquidity is only used to support trades
when the AMM price lies within the specified range. This helps LPs reduce risk due to large
price fluctuations. Today, CLMMs are widely used in Uniswap V3 and the mechanism is
generalized in emerging Uniswap V4 markets [2].

Under a model of the CLMM paradigm, we formulate and analyze the JIT resource
allocation optimization problem, study its solution properties analytically, and provide an
algorithm for computing optimal strategies (§5). Our analysis reveals new insights into how
optimal JIT strategies depend on transactional and pool-specific parameters.

We summarize our contributions as follows.
Price impact landscape: We analyze how swap-induced price changes affect LP revenue
and formally characterize the conditions under which liquidity provision leads to gains or
losses. These effects are often called “impermanent loss”; we instead use the term “price

1 Note that the “trading fee” (pool fee) is a percentage of the swap value paid by the trader to liquidity
providers, whereas the “transaction fee” (gas fee) is paid to Ethereum validators to include the transaction
in a block. In this paper, except otherwise noted, fees refer to trading fees.

2 Slippage is a phenomenon by which traders lose money in an AMM due to price changes over the course
of a single trade.

B. Llacer Trotti, W. Tang, R. El-Azouzi, G. Fanti, and D. S. Menasché 8:3

impact” to reflect that they do not always result in losses (Def. 2). This analysis yields a
precise description of the parametric region in which LPs benefit from price movements
(§2.3). This result holds for both passive (regular) LPs and JIT LPs.
Formulation and analysis of utility optimization for JIT LPs: We model the
decision-making process of JIT LPs as a non-linear optimization problem and define a
transaction-level utility function that captures the trade-off between fee revenue and
price impact. This formulation enables a rigorous exploration of the strategy and utility
space (§2.2.1 and §4) . We classify optimal JIT behavior across three swap scenarios
– overpriced, arbitrage-driven, and overshooting trades – and present an algorithm for
identifying optimal liquidity positions (§5 and §6).
Empirical insights on real-world JIT performance: Using on-chain data, we report
three key empirical findings (§6). First, JIT traders today appear to allocate trades
suboptimally, without accounting for price impact; our experiments suggest that this
unawareness reduces JIT profit by up to 41% on average. Second, although JIT LPs
currently account for a small share of total fee revenue, most of JIT revenue comes from
price impact (93.7%) rather than extracting fees from passive LPs. Third, JIT liquidity
provision can become a serious competitor to passive LPs by reducing their fee income
by up to 40%, while slightly reducing the cost of slippage for traders.

2 Background and Model

2.1 Introduction to AMMs
Automated Market Makers (AMMs) enable decentralized token exchanges through algorithmic
pricing instead of traditional order books. We begin by explaining one of the most common
classes of AMMs known as constant product market makers (CPMMs) [6]. A CPMM
maintains a liquidity pool of tokenized assets X and Y . After initialization, the CPMM
maintains a pool price q, which is the price of token Y in terms of token X. When an LP
enters the CPMM, they contribute an amount of liquidity L, which comprises token amounts
x of X and y of Y , according to the following rule:

x = L
√

q
, y = L

√
q. (1)

Consequently, the token amounts x, y of each liquidity position of amount L always follow
the constant product rule xy = L2. Additionally, when there exist multiple liquidity positions
{(xi, yi, Li)}N

i=1, the corresponding summations also follow the constant product rule

xtotal · ytotal =
(∑N

i=1 xi

)
·
(∑N

i=1 yi

)
=
(∑N

i=1 Li

)2
= L2

total. (2)

A CPMM supports three basic operations – mint (add liquidity), burn (remove liquidity),
and swap (trade).

Mint and burn transactions are executed by an LP who specifies liquidity L to add/remove,
and will deposit/withdraw token amounts (x, y) following (1). q remains constant.
Swaps are executed by a trader who specifies an amount of either token to pay. Without
loss of generality, assume the trader pays ∆x tokens of type X. L remains unchanged for
each liquidity position, so the trader will get ∆y Y tokens following (2):

(xtotal + ∆x)(ytotal −∆y) = L2
total.

As a result, the pool has a new price q′ = (ytotal −∆y)/(xtotal + ∆x) and the equivalent
token amount (x′, y′) of each liquidity position L will update by plugging q′ into (1).

AFT 2025

8:4 Strategic Analysis of JIT Liquidity Provision in CLMMs

Slippage is an important concept in this domain; it refers to the difference between the
execution price of a trade and the price expected at the time of trade initiation. In the
context of AMMs, slippage arises from the fact that large trades move the price along the
bonding curve, resulting in a marginally worse exchange rate for each successive unit traded.
Slippage is an inherent byproduct of price impact in AMMs.

▶ Example 1 (Slippage). Consider an AMM with 100 ETH and 10,000 USDC, so q =
#ETH

#USDC = 100. Suppose a trader wishes to buy 10 ETH. Due to the constant-product
formula x · y = k, the required USDC input is such that 100× 10,000 = (100− 10)× yfinal,
i.e., yfinal ≈ 11,111.11. Thus, the trader must pay approximately 1,111.11 USDC to receive
10 ETH, implying an average price of 111.11 USDC per ETH – higher than the original pool
price. The slippage is: (111.11− 100)/100 = 11.11%. This increase reflects the adverse price
movement caused by the trader’s own order.

2.2 Concentrated Liquidity Market Makers
Since the emergence of CPMMs, more complex AMM designs have been proposed; among
the most widespread of these is Concentrated Liquidity Market Makers (CLMMs) [14]. They
allow LPs to choose not only the amount of liquidity they wish to add to the pool, but also
the price range in which the liquidity is active. When an LP adds liquidity to the CLMM,
the LP creates a liquidity position by specifying a tuple (L, a, b), where L is the amount of
liquidity, and (a, b) represents the price range in which the position is effective. During a
trade, if the AMM price exits the specified range (a, b) of an LP’s position, that liquidity will
not be used to support the trade outside the specified price range. At price q, this liquidity
position reserves token amounts

x = x(a,b)(q) ≜ L ·

(
1√
q̂a,b

− 1√
b

)
, y = y(a,b)(q) ≜ L ·

(√
q̂a,b −

√
a
)

, (3)

where q̂a,b = min{b, max{a, q}} is the projection of the price q onto the interval (a, b). By
setting (a, b) = (0,∞), this relation reduces to (1), which implies that a CPMM is a special
case of a CLMM when every LP chooses the full price range. However, in general cases where
0 < a < b <∞ , the reserves of the CLMM liquidity position remain constant with x = 0
when q ≥ b and with y = 0 when q ≤ a. This implies that 1) the position is unused when q

moves out of range (a, b), and 2) there exists a maximum reserve of token X and token Y

for such positions.
A CLMM also supports mint, burn and swap operations, as long as they are consistent

with the total reserves in the pool (e.g. do not try to swap tokens that do not exist). A swap
outputs ∆y in the following steps:
1. Calculate the new price q′: Since, for each position, x is a continuous and monotonic

function of q, the total liquidity reserve xtotal is also continuous and monotonic in q.
Therefore, we can determine the post-swap price q′ by solving for the value of q′ that
satisfies xtotal(q′) = xtotal(q) + ∆x(q′), which is well-defined due to the invertibility of
xtotal(·). Provided that q′ remains within the union of all active price ranges, the swap
can be successfully executed (refer to [1] for implementation details).

2. Update the token reserve: Each position keeps (L, a, b) constant, so we recalculate x′

and y′ by plugging q′ into (3). The change in the second token, ∆y, can then be obtained
by summing all y′ values.

B. Llacer Trotti, W. Tang, R. El-Azouzi, G. Fanti, and D. S. Menasché 8:5

By concentrating liquidity within a narrower price range, CLMMs enable each active
position to support a higher volume of trades with the same amount of capital. This increased
capital efficiency was designed to reduce price slippage for traders - as larger trades can be
absorbed with smaller price movements [1]- and to allow LPs to extract more from their
money, since they can have a higher liquidity, therefore a higher share of the fees, using the
same budget by picking a narrower range. At the same time, when the market price exits a
position’s specified range, that liquidity becomes inactive or “frozen”, and only the remaining
active positions support the trade. As a result, traders of such trades may experience higher
slippage compared to a scenario where liquidity is distributed across the entire price spectrum.

In practice, CLMMs discretize the price axis using a system of ticks. Let T be the set of
possible ticks, T = {ti | i = 0, . . . , M}, with M ∈ Z>0.3 As a result, the set of valid price
ranges is given by R = {(a, b) ∈ T ×T | a < b}. Liquidity providers are restricted to choosing
ranges (a, b) ∈ R, so liquidity remains constant between consecutive ticks (tm, tm+1). Within
each such interval (or across consecutive intervals with identical liquidity), price changes
follow the structure defined in (3), which reveals a tight coupling between price movement
and the liquidity available in the pool.

2.2.1 Fees
One of the incentives for liquidity providers to participate in the pool is the collection of fees.
Each transaction pays a fee proportional to the input amount, and this fee is distributed
pro-rata among all providers with active liquidity in the corresponding price range. The fee
amount varies across pools, each characterized by a parameter α ∈ (0, 1) that determines the
fraction of the input amount collected as a trading fee.

In a CLMM, every time a provider mints a position (L, a, b), they increase the liquidity
present in every tick tm ∈ (a, b). To assess the liquidity available at a specific tick m, we
sum the liquidity of all positions that include it. Formally, we define the liquidity provided
at tick m by a provider n ∈ [N] as Pn,m and calculate the total liquidity as:

Pm =
∑

n∈[N]

Pn,m (4)

Let δ = (δm)M
m=1 denote the vector of fees (in dollars) collected per tick during a swap. Then,

δm ≜ ∆xm·α·px, where ∆xm is the amount of tokens exchanged in tick m

∆xm = Pn,m

(
1√
q̂′

m

− 1
√

am

)
.

As discussed above, the total fee from a swap is distributed pro-rata among all providers
with active liquidity. The fee earned by provider n is given by:

Fn =
M∑

m=1
δm ·

Pn,m

Pm
,

where δm is the total fee from swap m and Pn,m is the liquidity contributed by passive
provider n over tick m.

3 Ticks are defined by exponential spacing: T = {ti | i = 0, . . . , M}, where ti = 1.0001τ(i−ι) with
τ, M ∈ Z>0 and ι ∈ Z.

AFT 2025

8:6 Strategic Analysis of JIT Liquidity Provision in CLMMs

2.3 Price Impact (a.k.a. Impermanent Loss)
Prior literature commonly assumes that the price ratio between two tokens is stable and
externally set by the market, given by qmarket = px

py
, where px and py denote the market prices

of tokens X and Y , respectively [3, 4, 25]. However, the actual price within a CLMM pool is
determined endogenously – it is only changed by trades in the pool. If it does not coincide
with the market price, arbitrage activities become profitable. At equilibrium – when no
arbitrage opportunities remain – the two values align, such that q = qmarket. This alignment
is often assumed in theoretical analyses, particularly in the absence of active participants
like JIT LPs and arbitrageurs.

The divergence between the pool price q and the market price thus represents both a risk
and an opportunity. On one hand, price mismatches expose LPs to impermanent loss – the
difference in value between a liquidity position and the equivalent token holdings outside the
pool. On the other hand, such mismatches create arbitrage opportunities for sophisticated
agents, including JIT LPs. To encompass both favorable and adverse outcomes of price
divergence, we adopt a more general term and refer to the impermanent loss effect as price
impact throughout the remainder of this paper.

Consider an LP n who mints a position when the pool price is q and later withdraws it at
pool price q′. Let px and py denote the external market prices of tokens X and Y at the time
of minting, and let p′

x and p′
y be their respective market prices at the time of withdrawal.

Following (3), we denote by xn(q) and yn(q) the token amounts associated with the position
of LP n when the pool price is q (at minting), and by xn(q′) and yn(q′) the corresponding
amounts when the price is q′ (at withdrawal). The dollar value of the position at the time of
minting and at the time of withdrawal is:

Vmint(L, px, py, q) = px·xn(q)+py ·yn(q), Vwithdraw(L, p′
x, p′

y, q′) = p′
x·xn(q′)+p′

y ·yn(q′). (5)

▶ Definition 2 (Absolute price impact). The absolute price impact is the net change in value
of the position:

Cn(∆x, L; px, py, p′
x, p′

y, q, q′) ≜ Vmint(L, px, py, q)− Vwithdraw(L, p′
x, p′

y, q′). (6)

In what follows, to simplify notation we omit the explicit dependencies on parameters of
the above quantities, e.g., referring to Cn(∆x, L; px, py, p′

x, p′
y, q, q′) simply as Cn. Note that

a negative price impact (Cn < 0) corresponds to a gain for the liquidity provider relative to
holding the assets outside the pool. Conversely, a positive price impact implies a relative loss.

▶ Definition 3 (Relative price impact). The relative price impact is the ratio of this value
difference to the initial position value:

PI ≜ Cn/Vmint. (7)

Throughout the rest of this paper, we omit the LP subscript n when the context is clear,
and refer to quantities such as xn(q), yn(q) simply as x(q), y(q).

3 When is Price Impact Beneficial to LPs?

As explained previously, an LP n gains when the fees accrued Fn are larger than the price
impact Cn. However, LPs may struggle to predict these tradeoffs for three reasons: (1) Price
fluctuations and transaction patterns are inherently unpredictable. (2) Given information
about price and transaction fluctuations, we currently lack closed-form expressions showing

B. Llacer Trotti, W. Tang, R. El-Azouzi, G. Fanti, and D. S. Menasché 8:7

when LPs will benefit as a function of transaction size and current market conditions. (3)
Even if we had knowledge of items (1) and (2), most LPs invest on a slow timescale (days or
even weeks [16]), over which it is not possible to take advantage of per-transaction profits.

A key observation is that Just-In-Time (JIT) LPs do not suffer from the 1st and 3rd
constraints – they can act quickly enough to move on a per-transaction basis using current
price data. Hence, if we can resolve item (2), JIT LPs can determine with some certainty
when CLMM transactions will be profitable.

In this section, we resolve challenge (2) by formally characterizing the conditions under
which C is non-positive or positive in CLMMs; we show that the answer depends on whether
the pool price moves toward or away from the prevailing market price. Our results in this
section are not specific to JIT LPs, but as mentioned previously, passive LPs may not be able
to take advantage of these results, as they move their liquidity on much slower time scales.

Assumptions. While deriving the following results, we assume that the market prices of
tokens X and Y remain constant throughout the trade, i.e., px = p′

x and py = p′
y. This is

because the trade occurs instantaneously when the block including the transaction is finalized
on the blockchain. In this case, the price impact simplifies to the difference in the dollar
value of the LP’s position before and after the trade, evaluated using fixed market prices.
According to Definition 2:

C(∆x, L; px, py, q, q′)=px (x(q)− x(q′))+py (y(q)− y(q′)) =−px∆x(q, q′)−py∆y(q, q′). (8)

In what follows, to simplify notation we refer to C(∆x, L; px, py, q, q′) simply as C.

3.1 Conditions for Favorable Price Impact
Our first main result consists of necessary and sufficient conditions under which a price
change q → q′ results in non-positive price impact. This threshold condition delineates
precisely when an LP’s position becomes favorable or unfavorable relative to simply holding
the tokens at market prices

▶ Theorem 4 (Threshold condition for price impact). Let q̂ ≜ max{a, min{b, q}}, and similarly
for q̂′. The change in pool price relates to price impact as follows:

Case 1: q′ < q: C ≤ 0 if and only if

1
q̂

(
px

py

)2
≥ q̂′. (9)

Case 2: q < q′: C ≤ 0 if and only if

1
q̂

(
px

py

)2
≤ q̂′. (10)

Proof sketch. (Full proof in [18]) We establish conditions under which an LP experiences
non-positive price impact. Replacing px = p′

x, py = p′
y into Eq.(7):

PI = 1− Vwithdraw(L, px, py, q′)
Vmint(L, px, py, q) ≤ 0 ⇐⇒ 1 ≤ pxxn(q′) + pyyn(q′)

pxxn(q) + pyyn(q) . (11)

Therefore, the inequality holds iff Vwithdraw ≥ Vmint. The result follows from substituting
Eq. (3) into the above expression, followed by algebraic manipulation. ◀

Based on this result, we can establish sufficient conditions for either favorable or adverse
price impact. These are summarized in the following corollary.

▶ Corollary 5 (Gains under diverging prices and losses under converging prices). When initial
and final prices do not cross px/py, gains and losses are determined by the direction of the
price movement:

AFT 2025

8:8 Strategic Analysis of JIT Liquidity Provision in CLMMs

Gain under diverging prices: C ≤ 0 if q′ < q ≤ px/py or q′ > q ≥ px/py, i.e., if a trade
moves the AMM price away from the external market price, the LP experiences gains.
Loss under converging prices: C ≥ 0 if q < q′ < px/py or q > q′ > px/py, i.e., if a trade
moves the AMM price towards the external market price, the LP experiences losses.

▶ Remark 6 (No-loss if pool price initially aligned with market). Note that if the pool price is
initially aligned with the market price, i.e., q = px/py, then the price impact C experienced
by a liquidity provider is always non-positive: C ≤ 0. This immediately follows from the fact
that there is gain under diverging prices (first case considered in the above corollary), and if
the market price is initially aligned with pool price, prices will diverge.

Intuitively, when the pool price moves toward the market price (first case in Corollary 5),
traders obtain better execution, acquiring tokens from the pool at prices closer to fair market
value – resulting in a loss for LPs. Conversely, when the pool price moves away from the
market price (second case in Corollary 5), traders face worse execution, effectively overpaying
and enriching LPs.

3.2 The Effects of Liquidity
We analyze the limiting behavior of price impact as available liquidity changes. Suppose we
have a price range (a, b) which is currently covered by total liquidity L by passive LPs. A
JIT LP is considering adding liquidity to this range; intuitively, when liquidity L tends to
zero, the position is too small to have any meaningful participation, and the price impact
vanishes. Conversely, as L→∞, the position becomes large enough that the price becomes
almost static. Formally, we establish the following result

▶ Lemma 7 (Limiting behavior of price impact). Let ∆x be the quantity of token X exchanged
in a trade. Consider q ∈ (tm, tm+1] the current pool price and consider (L, a, b) to be the
single position of some provider n such that q ∈ (a, b), in words, consider L to be all the
liquidity minted before the transaction by some provider n. Then:

lim
L→∞

C = ∆x · (py · q − px), and lim
L→0
C = 0.

Proof sketch. (Full proof in [18]) The proof follows from Eq. (8) and the following facts
derived in [1] (see also Eq. (3)): ∆x

L ≜ ∆ 1√
q = 1/

√
q′ − 1/

√
q and ∆y

L ≜ ∆√q =
√

q′ −√q.
Then, ∆y = −∆x

√
q′√q. As L → ∞, we have q′ → q. In the limit, ∆y → −q∆x, and

C → −px∆x + pyq∆x (see Eq. (8)). As L → 0, the LP’s position is infinitesimal, yielding
negligible participation in the trade and thus C → 0. ◀

This result reinforces the intuition that liquidity acts as a dampener of price impact: as
liquidity increases, the pool becomes less sensitive to trade-induced price shifts, and the value
transfer is increasingly governed by the degree of misalignment between pool and market
prices. To illustrate the broader implications of price dynamics and their relationship with
price impact, we present the following example.

▶ Example 8. Figure 1 provides a geometric interpretation of price impact in the (q, q′)-
plane, where the market price ratio is fixed at px/py = 1. The space is partitioned into
colored regions: green for C ≤ 0 (favorable to LPs), and red for C ≥ 0 (unfavorable to LPs).
Corollary 5 provides sufficient conditions for LPs to experience non-positive price impact –
Regions VI and II. Conversely, Corollary 5 also identifies conditions under which price impact
is non-negative – Regions VII and III. More intricate behavior arises when the price crosses

B. Llacer Trotti, W. Tang, R. El-Azouzi, G. Fanti, and D. S. Menasché 8:9

q

q′

q = q′q = px/py

q′ = px/py

1

1

I II

VII IV

VIII III

VI V

Figure 1 Partition of the (q, q′)-space with px/py = 1; black curve corresponds to q′ = 1/q. Red
and green regions correspond to PI ≥ 0 and PI ≤ 0, respectively.

the market value (Theorem 4). For example, in Region I (q′ > px/py > q and q′ > 1/q),
price impact is favorable; in Region VIII (q′ < 1/q), it becomes unfavorable. A symmetric
situation arises for Regions IV and V depending on whether q′ < 1/q.

Analogous to our analysis of price impact, we can show that the fee function is continuous
with respect to the liquidity variable and converges to a finite limit as liquidity grows large.
This result is formalized in the following lemma

▶ Lemma 9 (Effect of Liquidity). Let q be the current price in a CLMM, where q ∈ (tm, tm+1].
Suppose we have a target trade that pays ∆x X tokens to the pool and asks for Y tokens,
which can be supported by the CLMM. Immediately before the trade, a JIT LP adds liquidity
L ∈ [0,∞) to price range (a, b) where a ≤ tm < tm+1 ≤ b. Let q′(< q) be the resulting price
after the trade as a function of L. Then, q′ is continuous, strictly decreasing in L, and
limL→∞ q′ = q.

Proof sketch. (Full proof in [18]) We model the final price q′ after the swap as a function of
added liquidity L. The swap demand ∆x must be fulfilled across ticks, so we express q′ as
an implicit function of L. As L increases, the same ∆x has less price impact, so q′ ↑. The
mapping is strictly decreasing in L and continuous due to the functional form of the AMM
and the monotonicity of the inverse square root. As L → ∞, q′ → q, meaning the AMM
price becomes increasingly resistant to change. ◀

▶ Remark 10. Note that, since Pm =
∑

i∈[N] Pn,m, Lemma 9 is also true for any Pn,m; that
is, limPn,m→∞ q′ = q ∀n such that tm < q ≤ tm+1. This means that it is sufficient for any
provider to inject high amount of liquidity in order to force the limit condition.
Lemma 9 highlights one of the central messages of this work: by concentrating liquidity
when and where it is needed, JIT LPs can dampen price volatility, controlling slippage and
choosing how the price will change. This empowers the JIT LP to optimize their revenue by
balancing earned fees and losses due to price changes (See §2.3).

4 Just-In-Time Liquidity Allocation: An Optimization Perspective

We now define the formal structure of the decision process faced by a JIT LP observing
a pending transaction. We begin by explaining the relevant properties of JIT LPs (§4.1),

AFT 2025

8:10 Strategic Analysis of JIT Liquidity Provision in CLMMs

which informs our model, including the strategy space available to the JIT LP (§4.2.1), and
the utility function that governs decision-making. Finally, we establish conditions under
which an optimal strategy exists (§4.2.2).

4.1 Background on Just-In-Time LPs

Unlike ordinary LPs who passively leave their liquidity in the liquidity pool, Just-In-Time
(JIT) LPs react to market conditions in real-time to extract profit [26]. We next present two
important aspects of JIT LP behavior, and explain how we model them.

(1) Per-transaction optimization. JIT LPs operate by monitoring the public mempool4

[27, 29] for trade opportunities. This allows JIT LPs to selectively decide whether to provide
liquidity for each trade before the trade is validated and finalized on the blockchain.

Once a JIT LP identifies a favorable trade, it can submit a bundle, which is a set of one
or more transactions submitted together for inclusion in a block, typically via a relay to a
block builder (e.g., via FlashBots [17]). These bundles are guaranteed atomic execution: the
entire bundle either succeeds or fails as a group, ensuring riskless, single-trade provisioning.
Exploiting this atomicity, the JIT LP can execute various operations-e.g., sandwich attacks,
which mint liquidity just before a swap and burn it immediately after [28].

Modeling Implications: JIT LPs exploit this information asymmetry to compute their
expected utility for a given trade. Based on this foresight, they can make optimal, transaction-
level decisions about whether to mint and burn liquidity, factoring in both trading fees and
the impact of price movements.

This naturally induces a two-stage optimization framework: first, passive LPs select their
liquidity allocation strategy for a longer period [25]; second, for each observed trade, JIT
LPs react by solving an online optimization problem to maximize net expected revenue,
potentially adjusting for inclusion costs such as gas fees or auction bids. Our model focuses
on this second optimization.

(2) Competition among JIT LPs. With multiple JIT LPs potentially competing over
the same trade, each constructs and submits a bundle. The bundle includes a tip to the
block builder, who selects bundles to maximize the total value extractable from the block by
adjusting transaction ordering, inserting additional transactions, or censoring transactions.

This creates a sealed-bid auction: each JIT LP submits a bundle with a bid, without
visibility into others’ bids, and the builder selects the one that maximizes their expected
revenue, i.e., only the highest-bidding bundle is included. The winning JIT LP earns a
portion of the fees and pays a tip bounded below by the second-highest bid. This mechanism
forms the basis of our transaction-level utility model, where we analyze how JIT LPs optimize
their strategy under fixed surplus and uncertain inclusion.

Modeling Implications: Modeling this, recall that for a swap of ∆x tokens of X and fee
rate α, the total fee generated by the swap is δ = α · px ·∆x, where px is the market price
of token X in dollars. Since both ∆x and px are visible in the mempool, δ is known to all
JIT LPs in advance. As a result, they compete over a fixed surplus, strategically offering
portions of δ as tips to the block builder to secure inclusion.

4 The mempool is a public set of pending transactions propagated through the blockchain peer-to-peer
network.

B. Llacer Trotti, W. Tang, R. El-Azouzi, G. Fanti, and D. S. Menasché 8:11

4.2 Model
Formally, we represent the JIT optimization problem as a tuple ([N],U ,S, θ, ρ). Here, [N]
denotes the set of all passive liquidity providers in the pool. The strategy space S encapsulates
all feasible actions available to the JIT LP, while U is the utility function mapping each
strategy to a real-valued profit – computed as the difference between earned fees, incurred
price impact, and bidding costs. The vector θ includes all relevant swap parameters, such
as trade size, fee rate, price information, and the liquidity distribution of passive providers.
Finally, ρ is a constant that denotes the JIT budget.

Note that the JIT optimization problem assumes that the passive LP positions are
established a priori. We denote by s the strategy profile of passive LPs, encoded as a
vector of liquidity allocations across ticks: s = (Li, ai, bi)i∈[N]. The aggregate effect of the
passive LP strategies s induces a liquidity distribution function P = (Pm)m∈M , where each
Pm denotes the total passive liquidity available at tick m. Formally, P is derived via a
deterministic mapping from s. In the remainder of this section, we use s to refer to the
underlying strategies and P to denote the induced state of the pool.

4.2.1 Strategy Space S
A JIT LP’s choice of action consists in selecting one position5 (L, a, b) to be minted imme-
diately before a swap and burned immediately after. Since the entire state of the pool is
observable at decision time, the JIT LP can make an informed choice based on current market
and pool conditions. To formalize this, we define the swap as a 6-tuple θ ≜ (∆x, q, P, px, py, α),
where:

∆x is the amount of token X being exchanged by the trader in the target trade;
q is the current pool price;
P = (Pm)m∈M is the per-tick liquidity distribution from passive LPs;
px and py are the external market prices (in dollars) of tokens X and Y , respectively;
α is the pool’s fee rate.

Let q∗ denote the price after the swap without the presence of JIT LPs. We define

R(q,q∗) ≜ R∩
{

(a, b)
∣∣∣∀m : a ≤ tm < tm+1 ≤ b, [tm, tm+1]∩(min{q, q∗}, max{q, q∗}) ̸= ∅

}
.

Intuitively, R(q,q∗) includes all feasible price ranges that do not contain a subrange
[tm, tm+1] that is never “touched” when price moves from q to q∗. We claim that the JIT
LP only considers price ranges in R(q,q∗) for their choice of liquidity position. Otherwise,
we can break the position (L, a, b) down to two positions (L, a, c) and (L, c, b) where one of
their ranges does not intersect with the price moving range (min{q, q∗}, max{q, q∗}). Let
it be (a, c) without loss of generality [25]. During the trade, (L, a, c) will incur fee income
F = 0 and zero token amount change, which further implies price impact C = 0 since px and
py are both constant. Hence, in comparison with an action that chooses (L, c, b) instead, the
(L, a, b) has equal utility impact while wasting budget on (a, c). Accordingly, we define the
JIT strategy space as:

S =
{

(L, a, b)
∣∣∣ (a, b) ∈ R(q,q∗), L · V(a,b) ≤ ρ, q ∈ [a, b]

}
∪ {⊥},

where ⊥ denotes non-participation, ρ denotes the LP’s budget, and V(a,b) is the dollar cost
per unit of liquidity at price q over the interval (a, b).

5 We do not consider multiple-position actions for two main reasons: 1) it is commonly assumed in
the literature for JIT to mint constant liquidity [28], and 2) the data provided in [25] reveals that
transactions from 2024 to 2025 by JIT LPs include only a single position.

AFT 2025

8:12 Strategic Analysis of JIT Liquidity Provision in CLMMs

4.2.2 Utility Function
The objective of the JIT LP is to maximize a utility function U , defined as the net profit
obtained from participating in a given swap. This profit captures the trade-off between
fees earned and the price impact incurred. Given a strategy s = (L, a, b) ∈ S and swap
parameters θ, the utility is defined as:

U(s; θ) = F(s; θ)− C(s; θ), (13)

where F(s; θ) is the total fee income and C(s; θ) denotes the price impact associated with
the strategy. The JIT LP aims to solve:

s∗ = arg max
s∈S

U(s; θ). (14)

In practice, a JIT LP needs to additionally pay a cost v for placing bids in auctions (such
as Flashbots [17]) to land the sandwich attack on the trade transaction. Ideally, we should
incorporate the auction in our model. Two natural approaches are (1) to model the game
among multiple JIT LPs, or (2) model the probability of winning the bid as a function of v.
Both approaches require empirical study on historical auctions that involves not only auction
winners, but more importantly, losers. Such data is not currently accessible, to the best of
our knowledge, and it is unrealistic to make ad hoc assumptions. Hence, for simplicity, we
assume v to be a constant that does not relate to the choice of liquidity position. As a result,
we can easily extend our model by updating the budget constraint as L · V(a,b) + v ≤ ρ and
the utility function as U(s; θ) = F(s; θ)− C(s; θ)− v.

Given a specific strategy s ∈ S and the current swap context, we can compute the total
utility associated with executing the strategy. From this point forward, we omit explicit
dependence on θ and s whenever the context is clear.

The total fee earned by the JIT LP is decomposed tick-wise. Since the JIT LP deploys a
single position (L, a, b), let L be the liquidity of the JIT on tick m. The JIT’s share of the
fees at tick m ∈M is:

Fm ≜ ∆xmαpx︸ ︷︷ ︸
Fee =δm

· L∑
i∈[N] Pi,m + L

, F ≜
∑

m∈M

Fm. (15)

Let tm denote the price at tick m. Recall that α, px are trade parameters, and that ∆xm

depends on q′ and denotes the amount of token X that is injected at each tick m (see §2.2.1).
As the swap affects only the ticks crossed during execution, the tick-level fee δm is nonzero
only for ticks m such that tm ∈ (q, q′). Under these conditions, the fee allocation simplifies
to:

Fm = δm ·
L∑

i∈[N] Pi,m + L
, F =

∑
m∈M | tm∈(a,b)

Fm. (16)

From it, we can show the following lemma:

▶ Lemma 11. Consider an LP n with a single position (L, a, b), such that q ∈ (a, b). Let
there be a swap that pays ∆x > 0 X tokens. The total fee earned by the provider is given by:

F(L) =
∑

∀m|tm∈(a,b)

δm ·
L

L + P̃n,m

,

where P̃n,m =
∑

i ̸=n Pi,m is the total liquidity in tick m without L = Pn,m. In addition, F(L)
is continuous in L and is bounded above by α ·∆x,

lim
L→∞

F(L) ≤ α ·∆x. (17)

B. Llacer Trotti, W. Tang, R. El-Azouzi, G. Fanti, and D. S. Menasché 8:13

Proof sketch. (Full proof in [18].) We express the total fee earned by the LP as a sum
over ticks, weighted by the LP’s share of liquidity (16). Since each fee component depends
continuously on L through the liquidity share, the full fee function is continuous in L. As
L→∞, the LP’s share of each tick approaches 1, but the total fee is still bounded above by
α ·∆x, since that is the maximum total fee generated by the swap. Hence, the limit exists
and is bounded. ◀

The price impact C is likewise decomposed across ticks as:

Cm ≜ px · (x(q̂m)− x(q̂′
m)) + py · (y(q̂m)− y(q̂′

m)) , C ≜
∑

m∈M | tm∈(a,b)

Cm, (18)

where q̂m = min{tm+1, max{q, tm}} is the entry price, q̂′
m the exit price within tick m and

x(q), y(q) are given by Eq. (3).
This decomposition allows the utility to be expressed in tick-wise form:

Um = Fm − Cm, U =
∑

m∈M | tm∈(a,b)

Um. (19)

Recall that all parameters θ ≜ (∆x, q, P, px, py, α) are fixed by the given trade, and since
q′ depends on (L, a, b), the only free variables are L, (a, b). Using Lemmas 9, 7, and 11, we
establish the following theorem:

▶ Theorem 12. The utility function U , as defined in Eq. (19), attains a global maximum over
the strategy space S. That is, there exists an optimal strategy s∗ ∈ S such that U(s∗) ≥ U(s)
for all s ∈ S.

Proof sketch. (Full proof in [18].) The utility function U depends on liquidity L and the
chosen price range (a, b). Since tick prices are discrete, there are finitely many such intervals.
For a fixed interval, U(L) is continuous due to the continuity of both fee (F) and cost (C)
functions in L. Also, F is bounded above while C grows at most linearly in L, constrained
by a budget ρ. Therefore, the domain of feasible L is compact, and U attains a maximum on
it. Optimizing over all intervals proves existence of an optimal strategy. ◀

This guarantees that for any swap, there exists a profit-maximizing strategy for the JIT LP.
In the following section, we propose an algorithm to compute this strategy and empirically
explore how it behaves across different swap conditions.

5 An Algorithmic Solution to the JIT Optimization Problem

We now present an algorithmic approach for computing the optimal strategy s∗ = (L∗, a∗, b∗)
that maximizes the utility U of a JIT LP in response to a given target swap. This is made
possible by Theorem 12, which guarantees the existence of a global optimum.

The utility function can be challenging to optimize since there are many parameters and
the utility function is nonconcave in general. In addition, we lack a closed-form formula
for q′, which is calculated algorithmically. To address these challenges, we use empirical
observations to reduce the search space. First, we note that θ, the fixed trade parameters, are
known beforehand by the JIT trader; this turns the utility into a function of three variables:
a, b, L.

In theory, the JIT trader could choose any (a, b) interval, of which there are O(M2).
However, due to the monotonicity of q′ in the liquidity, the original price q cannot move
farther than q∗, where q∗ is the anticipated post-swap price in the absence of JIT intervention.

AFT 2025

8:14 Strategic Analysis of JIT Liquidity Provision in CLMMs

Hence, we limit ourselves to tick ranges (a, b) ∈ R(q,q∗). While this does not reduce the
asymptotic worst-case complexity of our search, in our data we observe that for 95% of
transactions, there are at most 2 ticks between q and q∗ (see §6). Hence, enumerating the
intervals in R(q,q∗) is practically feasible.

Algorithm 1 provides a computational method to search for the optimal JIT liquidity
provisioning strategy in response to an observed swap. The algorithm iterates over all
candidate price intervals (a, b) ∈ R(q,q∗) (line 3). For each interval (a, b), it solves a one-
dimensional, non-linear, non-concave optimization problem to identify the liquidity level L∗

that maximizes the JIT LP’s utility:

L∗(a, b; θ) = arg max
L

(
F (a,b)(L; θ)− C(a,b)(L; θ)

)
(20)

subject to the budget constraint pxx(a,b)(q′) + pyy(a,b)(q′) ≤ ρ

F (a,b)(L; θ) =
∑

m∈M |tm∈(a,b)

∆xm · α ·
L

L + Pm
· px (21)

C(a,b)(L; θ) =
∑

m∈M |tm∈(a,b)

(
−px∆xm + py∆xmq̂m ·

L + Pm

∆xm

√
q̂m + L + Pm

)
· L

L + Pm
.

(22)

If the resulting utility exceeds the current maximum, the optimal strategy is updated
accordingly (lines 6–8). After examining all admissible ranges, the algorithm returns the
best strategy s∗ = (L∗, a∗, b∗) (line 11) that maximizes the JIT LP’s profit in the given swap
scenario. The optimal liquidity pair (a∗, b∗) and the corresponding optimal liquidity L∗ are
given by L∗ = arg maxL F (a∗,b∗)(L; θ)− C(a∗,b∗)(L; θ) such that U (a∗,b∗)(L∗; θ) = U(s∗; θ) ≥
U(s; θ) ∀ s ∈ S, where s∗ is given by the triplet s∗ = (L∗, a∗, b∗) (see §4.2.1).

As long as we can find the global optimum of a bounded continuous univariate function,
Algorithm 1 returns an optimal strategy to maximize JIT utility. In our experiments, we
tried both Particle Swarm Optimization (PSO) and binary search to solve for L∗. Since in
most cases the optimal solution was to use the entire budget, both algorithms found the best
strategy, but in non-trivial cases, PSO performed better at the cost of more computational
power. Our implementation of Algorithm 1 can be found on GitHub.6

▶ Remark 13 (Token Directionality). All derivations in this section assume ∆x > 0, i.e., token
X is being sold. To handle the symmetric case ∆y > 0, where token Y is sold instead,
we define a transformation Y (θ) = (∆y, 1/q, P, py, px, α). This mapping ensures that all
formulas and results continue to hold under the appropriate relabeling of tokens.

5.1 Strategic Archetypes in CLMM Swaps
We classify trades into three canonical scenarios – referred to as strategic archetypes – that
capture the dominant patterns and analytical results of Theorems 4 and 12.

Overpriced trade: The trade moves the pool price away from the market price, resulting
in the purchase of the more expensive token. Formally, this occurs when q′ < q ≤ px/py

or q′ > q ≥ px/py. According to Corollary 5, such movements are associated with
non-positive price impact, meaning the LP benefits (Figure 2(a1)).

6 https://github.com/brunoCCOS/JITUniswapOptimization

https://github.com/brunoCCOS/JITUniswapOptimization
https://github.com/brunoCCOS/JITUniswapOptimization

B. Llacer Trotti, W. Tang, R. El-Azouzi, G. Fanti, and D. S. Menasché 8:15

Algorithm 1 JIT Optimal Strategy Search.

Require: Swap parameters θ = (∆x, q, P, px, py, α) Budget ρ

Ensure: Optimal strategy s∗ = (L∗, a∗, b∗)
1: Initialize Umax ← −∞
2: Set s∗ ←⊥
3: for each (a, b) ∈ R(q,q∗) do
4: Solve for optimal liquidity: L∗(a, b; θ) [Optimization (20)]
5: Evaluate resulting utility: U ← F (a,b)(L∗; θ)− C(a,b)(L∗; θ)
6: if U > Umax then
7: Update best utility: Umax ← U
8: Update best strategy: s∗ ← (L∗, a, b)
9: end if

10: end for
11: return s∗

Arbitrageur trade: The trade brings the pool price closer to the market price by
acquiring the cheaper token. This corresponds to q < q′ ≤ px/py or q > q′ ≥ px/py. As
shown in Corollary 5, this condition implies positive price impact, i.e., a loss for LPs.
Although this trade is optimal for arbitrageurs, it is typically unprofitable for JIT LPs
unless the fees compensate for the loss (Figure 2(a2)).
Overshoot trade: A corrective trade crosses the market price, starting by buying the
cheaper token but pushing the pool price past the market value, ultimately overpaying.
This configuration – q < px/py < q′ or q > px/py > q′ – lies on the boundary conditions
specified in Theorem 4. In this case, whether the price impact is favorable or not
depends on whether the post-trade price q′ crosses the threshold condition in (9) or (10)
(Figure 2(a3)).

Recall that q is the pool price of token Y in terms of token X, so 1/q is the pool price of
X in Y . When q > px/py, token Y is overpriced in the pool relative to the market, implying
that X is relatively cheaper on-chain.

5.2 Optimized Investment Strategies by Archetype

Among all archetypes, participating in overpriced trades yields the highest utility. These
trades allow JIT LPs to sell tokens above market value across the entire chosen range (a, b).

In overshoot trades, JIT LPs can profit by targeting only the favorable segment – i.e., by
minting liquidity only in the price range where ∆x < 0 and q < px/py < q′. By concentrating
liquidity narrowly in this segment, JIT LPs increase their share of fees while avoiding loss-
inducing zones. Figure 2(b) gives an illustrative example; the initial and final price sandwich
the market price q < px/py < q′, so the trade is “overshooting” the price. Therefore, in all
ticks between (q, px/py) the price impact will be negative; hence the best strategy is to mint
liquidity only on feasible ranges inside (px/py, q′) where the price impact is positive.

In contrast, engaging in arbitrageur trades is generally unfavorable unless the fee revenue
is high enough to offset the incurred price impact. The following result formally establishes
a sufficient condition under which fees are insufficient to cover price impact:

AFT 2025

8:16 Strategic Analysis of JIT Liquidity Provision in CLMMs

q

p

tm

tm+1

tm+2

tm+3

q′

(1)

q′

(2)

q′

(3)

tm tm+1 tm+2 tm+3 tm+4 tm+5q p q′

L = 0

L = L∗

Actual Allocation
Ideal Allocation

Figure 2 (a) Illustration of the three kind of trades. Each vertical line represents a price axis
with different positions for q, p, q′ which fully characterizes each type of trade. (1) Overpriced
trade: q′ is further away from p than q. (2) Arbitrageur trade: New price q is closer to the market
price. (3) Overshoot trade. (b) Liquidity distribution across ticks as a function of price. In this
overshoot trade example, the optimal strategy is to allocate the entire budget immediately after
the pool price crosses the market price. Formally, all liquidity should be placed within the interval
(p, q′), where p = px/py, as price impact is non-positive in this region. Since liquidity can only be
minted at discrete tick levels, the optimal placement corresponds to the nearest available ticks – in
this case, (tm+2, tm+4). This behavior extends to both overpriced and arbitrage trades, depending
on tick granularity and pool conditions.

▶ Proposition 14 (Fees Insufficient to Offset Price Impact). For a transaction with swap
parameters θ (definition in §4), suppose without loss of generality that ∆x > 0. For a price
range (a, b), if

1 + α <
∆ym · py

∆xm · px
∀m ∈ (p(a), p(b)),

i.e., if the gained value of Y tokens over the paid value of X tokens is more than the nominal
fee rate, then utility is always negative: U (a,b) < 0.

The proof of the above proposition can be found in [18].

6 Empirical Results Using On-Chain Data

In this section, we empirically evaluate the theoretical insights using data from Uniswap V3.

Data Collection. We collected data from a USDC/WETH7 pool over 6 months: January-
June 2024, which comprises 1,013,147 total transactions. The data was collected from the
Allium platform [5]. From this data, we extracted all JIT transactions, which were identified
by using the same criterion as [11], i.e. matching transactions which were sandwiched by
a mint and burn transaction by the same provider. The resulting number of JIT swaps
was 6,829. In this section, our results are generated by taking real JIT transactions and
simulating our optimized version of JIT investment strategies. We assume throughout that a
JIT transaction is realized if and only if it was realized in the source data (i.e., we do not
simulate different results of bidding auctions among JIT LPs). To simulate a JIT budget, we

7 0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640 pool hash

B. Llacer Trotti, W. Tang, R. El-Azouzi, G. Fanti, and D. S. Menasché 8:17

102 101 100 0 100 101 102 103

Profit in $

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Pr

ob
ab

ili
ty

Real Profits
Optimized Profits

(a) CDF of profit for a real JIT LP vs.
optimized strategy. Optimized JIT avoids
costly trades with high price impact.

0 2 4 6 8 10 12 14

0

2,000

4,000

Transaction
G

ai
n

$

Real Gains
Optimized Gains

(b) Sample of 15 transactions comparing absolute profits.
While real JITs occasionally perform optimally, losses arise
from engaging in losing trades and sometimes suboptimal
allocation.

Figure 3 Comparison between actual and optimized JIT LP behavior. (a) focuses on aggregate
performance, while (b) zooms in on individual transactions.

always assume that the JIT original transaction uses the trader’s entire budget. Doing this,
we ensure that our simulations do not use more money than the real execution, so our best
results come exclusively from better resource utilization.

6.1 Results

We observe three main findings from our empirical evaluation:
1. JIT LPs in the pool we studied currently invest suboptimally and could significantly

increase their profits. (§6.1.1)
2. JIT LP utility is primarily driven by price impact rather than fees. (§6.1.2)
3. If JIT LPs were to optimize their investment strategies, it would help JIT LPs and traders,

at the expense of passive LPs. (§6.1.3)

6.1.1 Suboptimal Investment Strategies

Empirical data reveals that real-world JIT LPs underperform significantly relative to their
potential gains, as illustrated in Figure 3. Many JIT agents engage in transactions where the
adverse effects of price movements outweigh the fees earned, resulting in negative net utility
(Figure 3(a)). In our sample of 6,884 JIT transactions, real JIT LPs could have earned up
to 69% more than their current profit if they had adopted Algorithm 1. Our optimized
allocation strategy not only helps JIT LPs identify when not to invest, but it can also increase
returns on already-profitable transactions; for example, Figure 3(b) shows a random sample
of 15 JIT transactions, comparing their realized gain in $ and the estimated gain under
Algorithm 1. Our optimized strategy never loses money, and it sometimes increases gains
relative to the current strategy of JIT traders. These observations highlight the importance
of modeling price dynamics and underscore the need for strategy optimization beyond mere
fee maximization.

AFT 2025

8:18 Strategic Analysis of JIT Liquidity Provision in CLMMs

0.0 0.2 0.4 0.6 0.8 1.0
| |/(| | + | |)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Median: 0.826
Mean: 0.752

Figure 4 CDF of the proportion of JIT returns resulting from price impact as opposed to fees,
i.e., |C|

|C|+|F| . In most JIT transactions, price impact has a much greater impact on returns than fees,
accounting for 75% of the total returns on average.

6.1.2 JIT Utility Is Driven Primarily by Price Impact

Our analysis shows that the primary driver of JIT profitability is not fee income but price
impact (Figures 4). Optimized JIT strategies leverage price dislocations to extract value,
often outperforming naive approaches that focus solely on fees. This illustrates the value of
our study relative to prior works that focus on optimizing fee share [25].

6.1.3 Market-Level Implications of Optimized JIT Behavior

Currently, the participation of JIT LPs in CLMMs is limited, and their share of fee revenue
remains negligible when compared to passive LPs; in our dataset, JIT LPs claimed less than
2% of total fees paid in the system. However, simulations suggest that increased adoption of
optimized JIT strategies could substantially reshape the CLMM ecosystem. In particular,
JIT LPs affect both the distribution of fees among liquidity providers and the execution
quality experienced by traders. Figures 5(a) and 5(b) illustrate two key market-level effects.
As JIT LPs increase their capital allocation, they capture a growing share of the fee revenue,
which reduces the earnings of passive LPs by up to 44% per trade, when the JIT budget
is large (Figure 5(a)). At the same time, traders benefit from improved execution due to
reduced price impact, as the injected liquidity narrows the effective spread and enables more
efficient absorption of large orders (Figure 5(b)).

Averaging these values across transactions reveals two trends: the marginal benefit to
passive LPs decreases with JIT participation, while traders benefit from reduced slippage.
Together, these results indicate that although optimized JIT activity may diminish returns
for passive LPs, it can improve capital efficiency and trading experience in CLMMs. This
reinforces the view that well-designed JIT strategies can contribute positively to market
structure.

7 Discussion and Implications

Our results highlight the strategic advantage of JIT in CLMMs. Specifically, a JIT LP that
enters just before a trade – when the pool price is aligned with the market price – can benefit
from the resulting swap-induced price movement. In contrast, passive LPs are exposed to
losses when price deviations from the market are corrected via arbitrage.

B. Llacer Trotti, W. Tang, R. El-Azouzi, G. Fanti, and D. S. Menasché 8:19

0 0.5 1 1.5 2 2.5 3

50

60

70

80

90

100

JIT budget multiplier

Fe
es

re
ce

iv
ed

by
pa

ss
iv

e
LP

s
(%

)

0 0.5 1 1.5 2 2.5 3

1.2

1.5

1.8

2.1

·10−2

JIT budget multiplier

Sl
ip

pa
ge

(%
)

(a) Fees received by passive LPs. (b) Trader surplus attributable to JIT liquidity.

Figure 5 Both plots compare the effects of higher JIT budget with a baseline where no JIT
engage (x=0). (a) Effect of JIT budget on passive LP fees. Passive LP fee gains diminish as JIT
liquidity increases. (b) Trader benefits via reduced slippage with higher JIT budgets. The Y-axis
shows the slippage suffered by the trader under different budgets (Recall slippage from §1).

Importantly, JIT profitability arises only under specific conditions (Proposition 14), often
requiring precise timing and positioning (§5.1). Given the competitive nature of bidding
for inclusion (e.g., via Flashbot bundles), it is not surprising that real-world JIT activity
remains limited.

JIT LPs complement the actions of arbitrageurs. While arbitrageurs restore price
alignment after deviations, JIT providers preemptively mitigate such deviations by injecting
liquidity in trades with negative price impact C. In this sense, JIT acts as a frictional force –
reducing the magnitude of price dislocations (Figure 5) that would otherwise create larger
arbitrage opportunities. This increased liquidity is beneficial to traders, as it reduces slippage
and improves execution quality. However, it also comes at the expense of passive LPs, who
face reduced fee income.

7.1 Real dynamics of providers, arbitrageurs and traders
A common perception is that arbitrageurs profit primarily at the expense of passive LPs
through the price impact. However, this is not always the case. Consider a model where
the market price Pt evolves stochastically, and the pool price Qt follows it with some lag
due to noise. Suppose a trade moves the pool price from Qt = Pt to Qt+1 ̸= Pt+1, and
an arbitrageur subsequently restores alignment at Qt+2 = Pt+2. If Pt = Pt+1 = Pt+2, the
passive LP’s price impact Cn is zero, but fees Fn > 0 are still earned from both trades.

In this case, the arbitrageur’s profit comes not from the LP, but from the noisy trader
who executed the initial swap at a worse price – e.g., buying at

√
QtQt+1 > Qt = Pt. The

arbitrageur captures this overpayment at
√

Qt+1Qt+2. JIT LPs benefit even more from
such trades. By sandwiching the swap, they can collect both price impact gains and fees.
Moreover, their presence dampens the price displacement, thereby reducing the arbitrageur’s
profit and the passive LP’s fee share from the second trade.

To illustrate this, suppose a noisy trade pushes the price to Qt+1 > Qt. A JIT LP that
enters before the trade adjusts the effective spot price to Q∗

t+1, such that Qt+1 > Q∗
t+1 > Qt.

The arbitrageur, now facing a smaller price deviation, captures less profit:
√

Q∗
t+1Qt+2 <√

Qt+1Qt+2.

AFT 2025

8:20 Strategic Analysis of JIT Liquidity Provision in CLMMs

Assuming all arbitrage opportunities are rapidly corrected, the pool price trajectory is
driven by market price movements plus correctable noise. This noise does not generate
price impact directly; rather, it creates temporary dislocations that can be monetized by
arbitrageurs and JIT LPs. In fact, this type of exploitable noise is the basis of Loss-versus-
Rebalancing (LVR) [20], a cost borne by passive LPs even when price impact vanishes.

JIT LPs exploit this noise by positioning liquidity around anticipated dislocations. Their
interventions reduce price volatility, preempt arbitrage, and extract part of the fees that
would otherwise accrue to passive LPs or arbitrageurs. If arbitrage profits stem from noisy
trades rather than passive LPs, JIT LPs can be seen as first movers that mitigate price
deviations while capturing a portion of this surplus.

8 Related Work

Despite a growing body of work analyzing LP incentives in AMMs, including recent theor-
etical models of JIT LPs [11,26], prior efforts either address market-level dynamics under
informational asymmetry [11] or empirically characterize JIT activity [26]. To our knowledge,
no existing work models the transaction-level, optimization-based behavior of JIT LPs in
CLMMs such as Uniswap V3. We fill this gap by formally modeling the per-transaction
utility of JIT LPs based on price impact (§2.3) and fee accrual (§2.2.1), analyzing how
optimal strategies vary with trade direction and liquidity depth, and comparing predictions
with observed on-chain behavior.

Complementing our work, Cartea et al. [12] develop a continuous-time model for strategic
liquidity provision in CLMMs. They derive optimal dynamic strategies for LPs adjusting
liquidity ranges over time, accounting for fee income, predictable loss, and concentration risk.
Their results show how exchange rate drift and rebalancing costs shape behavior. Unlike our
discrete, transaction-level model where JIT LPs react to individual swaps, their focus is on
long-term LPs managing ongoing exposure. Still, their analysis highlights the need to model
fee income and adverse selection in CLMMs.

Tang et al. [25] present a game-theoretic model of liquidity provision in CLMMs, focusing
on interactions between passive LPs. Their static model captures how budget constraints
and price tick granularity affect equilibrium behavior, identifying a unique Nash equilibrium
with a water-filling strategy. By comparing theory to on-chain behavior, they show LPs in
risky pools deviate more from optimality than those in stable pools. However, they do not
model or consider the effects of JIT LPs.

In this work, we analyze price impact as a key metric. Price impact and LVR coincide
for individual trades [3, 4]. While LVR matters for passive LPs over time, JIT LPs primarily
care about price impact.

Recent studies explore how informational asymmetries and adversarial timing affect
CLMM dynamics [11, 13, 15, 23]. Capponi et al. [11] model adverse selection and value
extraction by informed traders. Qin et al. [23] and Daian et al. [13] examine MEV, showing
how latency arbitrage and frontrunning harm LPs. While these works address systemic
risks, we focus on microstructure-level decisions by JIT LPs under fee competition and price
impact. Our formal framework captures their transaction-specific optimization, and shows
how misjudging price impact can erode profits – even for strategically-timed liquidity.

B. Llacer Trotti, W. Tang, R. El-Azouzi, G. Fanti, and D. S. Menasché 8:21

9 Conclusion

Emerging tools such as CLMMs, Flashbots, and Uniswap V4 Hooks are reshaping DeFi by
enabling JIT liquidity providers to improve capital efficiency, manage risk, and align strategies
with real-time on-chain dynamics. Yet, empirical evidence shows that most JIT agents fail
to exploit profitable opportunities and often incur losses due to simplistic strategies.

This work demonstrates that significant gains are achievable via optimization-based
approaches that explicitly weigh fee accrual against price impact. Our transaction-level
framework guides JIT agents toward utility-maximizing strategies that allocate capital more
effectively and reduce adverse outcomes such as slippage or loss.

More broadly, the results support a shift toward reactive, transaction-driven market
models. By analyzing individual trades, rather than long-term aggregates, we obtain sharper
insights into the microstructure of AMMs and the role of JIT behavior.

Future research should explore extensions of AMM models that account for JIT strategies
and protocols that safeguard fairness for passive LPs. Closing the loop between protocol
design and agent strategy is key to building more adaptive and sustainable DeFi ecosystems.

References
1 Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson. Uniswap

v3 core. https://uniswap.org/whitepaper-v3.pdf, 2021. Accessed: 2025-08-07.
2 Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson. Uniswap

v4 core. https://uniswap.org/whitepaper-v4.pdf, 2024. Accessed: 2025-08-07.
3 Abe Alexander and Lars Fritz. Impermanent loss and loss-vs-rebalancing I: some statistical

properties, 2024. arXiv:2410.00854.
4 Abe Alexander, Guillaume Lambert, and Lars Fritz. Impermanent loss and Loss-vs-Rebalancing

II, 2025. arXiv:2502.04097.
5 Allium. Allium – Enterprise blockchain data platform. https://www.allium.so/. (Accessed

on 10/04/2024).
6 Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function market

makers. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
AFT ’20, pages 80–91, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3419614.3423251.

7 Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra. An analysis
of Uniswap markets, 2021. arXiv:1911.03380.

8 Alif Aqsha, Philippe Bergault, and Leandro Sánchez-Betancourt. Equilibrium reward for
liquidity providers in automated market makers, 2025. arXiv:2503.22502.

9 Jan Arvid Berg, Robin Fritsch, Lioba Heimbach, and Roger Wattenhofer. An Empirical
Study of Market Inefficiencies in Uniswap and Sushiswap. In International Conference on
Financial Cryptography and Data Security, pages 238–249. Springer, 2022. doi:10.1007/
978-3-031-32415-4_16.

10 Andrea Canidio and Robin Fritsch. Arbitrageurs’ profits, lvr, and sandwich attacks: batch
trading as an amm design response, 2025. arXiv:2307.02074.

11 Agostino Capponi, Ruizhe Jia, and Brian Zhu. The Paradox Of Just-in-Time Liquidity in
Decentralized Exchanges: More Providers Can Sometimes Mean Less Liquidity. arXiv preprint
arXiv:2311.18164, 2023. doi:10.48550/arXiv.2311.18164.

12 Álvaro Cartea, Fayçal Drissi, and Marcello Monga. Decentralized finance and automated
market making: Predictable loss and optimal liquidity provision. SIAM Journal on Financial
Mathematics, 15(3):931–959, 2024. doi:10.1137/23M1602103.

13 Philip Daian, Steven Goldfeder, et al. Flash Boys 2.0: Frontrunning, Transaction Reordering,
and Consensus Instability in Decentralized Exchanges. In IEEE S&P, 2020.

AFT 2025

https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v4.pdf
https://arxiv.org/abs/2410.00854
https://arxiv.org/abs/2502.04097
https://www.allium.so/
https://doi.org/10.1145/3419614.3423251
https://arxiv.org/abs/1911.03380
https://arxiv.org/abs/2503.22502
https://doi.org/10.1007/978-3-031-32415-4_16
https://doi.org/10.1007/978-3-031-32415-4_16
https://arxiv.org/abs/2307.02074
https://doi.org/10.48550/arXiv.2311.18164
https://doi.org/10.1137/23M1602103

8:22 Strategic Analysis of JIT Liquidity Provision in CLMMs

14 Robin Fritsch. Concentrated liquidity in automated market makers. In Proceedings of the 2021
ACM CCS Workshop on Decentralized Finance and Security, DeFi ’21, pages 15–20, New York,
NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3464967.3488590.

15 Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer. Risks and returns of Uniswap
V3 liquidity providers. In Proceedings of the 4th ACM Conference on Advances in Financial
Technologies (AFT), pages 89–101, 2022. doi:10.1145/3558535.3559772.

16 Alfred Lehar, Christine Parlour, and Marius Zoican. Fragmentation and optimal liquidity
supply on decentralized exchanges, 2024. arXiv:2307.13772.

17 Zihao Li, Jianfeng Li, Zheyuan He, Xiapu Luo, Ting Wang, Xiaoze Ni, Wenwu Yang, Xi Chen,
and Ting Chen. Demystifying defi mev activities in flashbots bundle. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security, CCS ’23,
pages 165–179, New York, NY, USA, 2023. Association for Computing Machinery. doi:
10.1145/3576915.3616590.

18 Bruno Llacer Trotti, Weizhao Tang, Rachid El-Azouzi, Giulia Fanti, and Daniel Menasché.
Strategic analysis of just-in-time liquidity provision in concentrated liquidity market makers
(extended version). arXiv e-prints, 2025. URL: https://arxiv.org/abs/2509.16157.

19 Annika Masrani. Pancakeswap hits record $310b trading volume in 2024. Nasdaq, 2024. URL:
https://www.nasdaq.com/articles/pancakeswap-hits-record-310b-trading-volume-
2024.

20 Jason Milionis, Ciamac C. Moallemi, Tim Roughgarden, and Anthony Lee Zhang. Automated
market making and loss-versus-rebalancing, 2024. arXiv:2208.06046.

21 Deborah Miori and Mihai Cucuringu. DeFi: Modeling and Forecasting Trading Volume
on Uniswap v3 Liquidity Pools. SSRN Electronic Journal, May 2023. Available at SSRN:
https://ssrn.com/abstract=4445351 or http://dx.doi.org/10.2139/ssrn.4445351. doi:
10.2139/ssrn.4445351.

22 PancakeSwap. PancakeSwap: AMM on Binance Smart Chain. https://docs.pancakeswap.
finance/, 2021. Accessed: 2025-05-25.

23 Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How
dark is the forest? In 2022 IEEE Symposium on Security and Privacy (SP), pages 198–214.
IEEE, 2022. doi:10.1109/SP46214.2022.9833734.

24 SushiSwap. SushiSwap System. https://docs.sushi.com/, 2020. Accessed: 2025-05-25.
25 Weizhao Tang, Rachid El-Azouzi, Cheng Han Lee, Ethan Chan, and Giulia Fanti. Game

Theoretic Liquidity Provisioning in Concentrated Liquidity Market Makers. Proceedings
of the ACM on Measurement and Analysis of Computing Systems, 9(1):1–45, 2025. doi:
10.1145/3711700.

26 Xin Wan and Austin Adams. Just-in-Time Liquidity on the Uniswap Protocol. SSRN 4382303
Electron. J., 2023.

27 Shuzheng Wang, Yue Huang, Wenqin Zhang, Yuming Huang, Xuechao Wang, and Jing Tang.
Private order flows and builder bidding dynamics: The road to monopoly in ethereum’s block
building market, 2024. doi:10.48550/arXiv.2410.12352.

28 Xihan Xiong, Zhipeng Wang, William Knottenbelt, and Michael Huth. Demystifying just-in-
time (JIT) liquidity attacks on uniswap v3. Cryptology ePrint Archive, Paper 2023/973, 2023.
URL: https://eprint.iacr.org/2023/973.

29 Deniz Yüksel. A Retrospective Analysis of Public and Private Order Flow on the Ethereum
Blockchain. Master’s thesis in informatics, Technische Universität München, 2024.

30 M. Yuksel et al. Automated market makers and decentralized exchanges: a defi primer. Finan-
cial Innovation, 7(1):1–27, 2021. URL: https://jfin-swufe.springeropen.com/articles/
10.1186/s40854-021-00314-5.

https://doi.org/10.1145/3464967.3488590
https://doi.org/10.1145/3558535.3559772
https://arxiv.org/abs/2307.13772
https://doi.org/10.1145/3576915.3616590
https://doi.org/10.1145/3576915.3616590
https://arxiv.org/abs/2509.16157
https://www.nasdaq.com/articles/pancakeswap-hits-record-310b-trading-volume-2024
https://www.nasdaq.com/articles/pancakeswap-hits-record-310b-trading-volume-2024
https://arxiv.org/abs/2208.06046
https://ssrn.com/abstract=4445351
http://dx.doi.org/10.2139/ssrn.4445351
https://doi.org/10.2139/ssrn.4445351
https://doi.org/10.2139/ssrn.4445351
https://docs.pancakeswap.finance/
https://docs.pancakeswap.finance/
https://doi.org/10.1109/SP46214.2022.9833734
https://docs.sushi.com/
https://doi.org/10.1145/3711700
https://doi.org/10.1145/3711700
https://doi.org/10.48550/arXiv.2410.12352
https://eprint.iacr.org/2023/973
https://jfin-swufe.springeropen.com/articles/10.1186/s40854-021-00314-5
https://jfin-swufe.springeropen.com/articles/10.1186/s40854-021-00314-5

	1 Introduction
	2 Background and Model
	2.1 Introduction to AMMs
	2.2 Concentrated Liquidity Market Makers
	2.2.1 Fees

	2.3 Price Impact (a.k.a. Impermanent Loss)

	3 When is Price Impact Beneficial to LPs?
	3.1 Conditions for Favorable Price Impact
	3.2 The Effects of Liquidity

	4 Just-In-Time Liquidity Allocation: An Optimization Perspective
	4.1 Background on Just-In-Time LPs
	4.2 Model
	4.2.1 Strategy Space S
	4.2.2 Utility Function

	5 An Algorithmic Solution to the JIT Optimization Problem
	5.1 Strategic Archetypes in CLMM Swaps
	5.2 Optimized Investment Strategies by Archetype

	6 Empirical Results Using On-Chain Data
	6.1 Results
	6.1.1 Suboptimal Investment Strategies
	6.1.2 JIT Utility Is Driven Primarily by Price Impact
	6.1.3 Market-Level Implications of Optimized JIT Behavior

	7 Discussion and Implications
	7.1 Real dynamics of providers, arbitrageurs and traders

	8 Related Work
	9 Conclusion

