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Abstract
The study of safety and liveness is crucial in the context of formal languages on infinite words,
providing a fundamental classification of system properties. They have been studied extensively
as fragments for regular languages and Linear Temporal Logic (LTL), both from the theoretical
and practical point of view, especially in the context of model checking. In contrast, despite the
growing interest in Linear Temporal Logic over finite traces (LTLf) as a specification formalism for
finite-length executions, the notions of safety and liveness for finite words have remained largely
unexplored.

In this work, we address this gap by defining the safety and liveness fragments of languages on
finite words, mirroring the definition used for infinite words. We show that safety languages are
exactly those that are prefix-closed, from which a bounded model property for all safety languages
follows. We also provide criteria for determining whether a given language belongs to the safety or
liveness fragment and analyze the computational complexity of this classification problems. Moreover,
we show that certain LTL formulas classified as safety or liveness over infinite words may not preserve
this classification when interpreted over finite words, and vice versa. We further establish that the
safety-liveness decomposition theorem – asserting that every ω-regular language can be expressed as
the intersection of a safety language and a liveness language – also holds in the finite-word setting.
Finally, we examine the implications of these results for the model checking problem in LTLf.
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1 Introduction

The concepts of safety and liveness form a fundamental classification of system properties
that describe how systems behave over time. The distinction was first introduced by Leslie
Lamport in his 1977 paper on proving the correctness of concurrent programs [20], where he
informally characterized safety properties as those stipulating that “nothing bad happens”,
and liveness properties as those ensuring that “something good eventually happens”. The
formalization of these concepts was provided by Alpern and Schneider in [1], by defining
safety and liveness properties as ω-regular languages (i.e. sets of infinite words) such that:
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10:2 Safety and Liveness on Finite Words

safety: all violations of the property are irremediable, that is, there exists a finite prefix
of each violation (bad prefix) such that all its extensions violate the property;
liveness: there are no irremediable violations, that is, for any finite prefix, there exists a
continuation that satisfies the property.

They also proved the safety-liveness decomposition theorem for ω-regular languages: every
property on infinite words can be expressed as the intersection of a safety property and a
liveness property. This result has been recently extended also to quantitative properties [16].

The classification of properties into safety and liveness has become fundamental in the
formal verification of reactive systems, particularly within the context of model checking
for Linear Temporal Logic (LTL [23]) properties, that is, the problem of checking whether
all executions of a system satisfy an LTL formula. This distinction enables the application
of specialized verification techniques: once a property is identified as safety or liveness,
efficient algorithms tailored to each class – such as the early proof systems by Manna and
Pnueli [21, 19] or IC3 for safety properties [7, 8] and K-Liveness for liveness properties [11]
– can be employed. Furthermore, the identification of the safety fragment of LTL has
led to syntactic characterizations that capture exactly the safety properties expressible in
LTL [9, 24, 10], thereby allowing one to express safety properties directly, without the need
to verify whether a given formula satisfies the safety condition.

In the last decade, Linear Temporal Logic on finite words (LTLf [13]) has emerged as a
useful formalism for reasoning about systems with inherently finite executions (for example, in
the context of planning). LTLf preserves the syntax of standard LTL but interprets formulae
over finite words. Despite the growing interest in LTLf, the adaptation of safety and liveness
to finite words has received little attention. In [10], a logical characterization of the safety
fragment of LTLf has been proved complete. However, most research questions remain still
open.

This work addresses this gap by studying safety and liveness for languages over finite
words, revisiting classical results from the infinite-word setting – such as the decomposition
theorem – and establishing new results specific to the finite-word case. Our main contributions
are as follows.

First, we examine key properties of the safety fragment over finite words. We show that
safety languages in this setting are precisely the prefix-closed languages; that is, if a word
belongs to the language, then all of its prefixes must also belong to it. This characterization
allows us to establish a bounded model property: a safety language is non-empty if and
only if it contains the empty word. Furthermore, we demonstrate that, analogous to the
infinite-word setting, a regular language over finite words is a safety language if and only if
its closure – defined as the automaton obtained by marking all states as final – is equivalent
to the original automaton. We then study the complexity of deciding whether a regular
language is a safety language. We prove that this problem is PSPACE-complete, both when
the language is given by a Nondeterministic Finite Automaton (NFA) and when it is specified
by an LTLf formula – matching the known complexity for the infinite-word setting [24].

Second, we analyze the liveness fragment of languages over finite words. We prove that,
similarly to the case of ω-regular languages, a regular language is liveness if and only if its
closure recognizes the universal language. This characterization allows us to derive complexity
results for the liveness recognition problem: it is PSPACE-complete when the language is
specified by an NFA, and in EXPSPACE when given by an LTLf formula. Moreover, we
highlight a subtle but important distinction that arises when transitioning between infinite-
word and finite-word semantics in temporal logic. Specifically, we show that certain formulae
classified as safety (resp., liveness) under the infinite-word interpretation (LTL) are not safety
(resp., liveness) under the finite-word interpretation (LTLf), and vice versa.
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Third, we prove that every regular language can be expressed as the intersection of a safety
language and a liveness language, extending the classical Alpern-Schneider decomposition to
the finite-word setting.

Last but not least, we investigate the model checking of LTLf properties over safety
systems – namely, systems represented by NFAs recognizing safety properties. We demonstrate
that, within this context, model checking requires careful consideration. In numerous
instances, formulae that are semantically meaningful and nontrivial in the infinite-word
setting lead to degenerate cases in the finite-word framework. In such cases, we show that
the model checking problem becomes trivial – either invariably false or reducible to a simple
condition, such as verifying whether the empty word ϵ is accepted by the property, or to the
model checking of a substantially simpler formula.

Related Work

In [18], Kupferman and Vardi were the first to show that the problem of determining whether
an LTL formula defines a liveness language is EXPSPACE-complete. The complexity of this
problem – open for over three decades – highlights that recognizing liveness is substantially
more difficult when starting from LTL formulae than from NFAs. This challenge is further
exacerbated by the absence of syntactic characterizations for liveness properties, in contrast
to the case of safety.

In [4], Basin et al. address the problem of deciding whether a formula of Timed Linear
Temporal Logic (TLTL) expresses a safety or a liveness property. They prove that the problem
is EXPSPACE-complete for safety and 2EXPSPACE-complete for liveness, thereby effectively
adding one exponential of complexity compared to the untimed LTL case.

In [3], the model checking problem for LTLf formulae is examined. It is shown that, when
restricting the model checking problem to traces that both start from an initial state and
end in a final state, the problem is PSPACE-complete – matching the complexity of standard
LTL model checking. Conversely, when considering all traces originating from an initial state
– regardless of whether they reach a final state – the problem becomes EXPSPACE-complete.

The work presented in [22] refines the safety-liveness classification of LTL properties by
considering their monitorability. It focuses on runtime verification, thus considering finite
words (sequence of observations) as prefixes of infinite executions. For this reason, the
definitions of safety and liveness are the classical ones based on prefixes of infinite words. In
contrast, our work directly defines and explores safety and liveness fragments for languages
on finite words, and specifically for LTLf. This distinction is crucial as it leads to many
different properties compared to the infinite word setting.

Outline of the paper

Section 2 reviews the necessary background on LTL, LTLf, and automata. Sections 3 and 4
investigate the properties and computational complexity of safety and liveness languages over
finite words, respectively. Section 5 establishes the safety-liveness decomposition theorem
in the finite-word setting. Section 6 examines the implications of our results for the model
checking of LTLf specifications. Section 7 summarizes the achieved results and outlines
directions for future work. Proofs omitted from the main text are provided in Appendix A
or in the extended version of this paper [14].
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10:4 Safety and Liveness on Finite Words

2 Background

In this section, we give the necessary background.
From now on, let Σ = {a, b, c, . . .} be an alphabet, i.e. a finite set of symbols. A finite

word (over Σ) is any finite, possibly empty, sequence of symbols in Σ. An infinite word (over
Σ) is any infinite sequence of symbols in Σ. We denote with Σ∗ (resp., Σω) the set of all
finite and possibly empty (resp., infinite) words over Σ. We denote with ε the empty word.
We define the length of σ as |σ| = 0 if σ = ε, as |σ| = n if σ = ⟨σ0, . . . , σn−1⟩ ∈ Σ∗, and as
|σ| = ω if σ ∈ Σω. A language of finite words L is a subset of Σ∗, while a language of infinite
words L is a subset of Σω. We denote with L the complement of L.

2.1 Linear Temporal Logic
We start by giving the syntax of Linear Temporal Logic on finite words (LTLf [13]) and of
Linear Temporal Logic (LTL [23]), both of which are defined by the same grammar. From
now on, let AP = {p, q, r, . . .} be a set of atomic propositions.

▶ Definition 1. A formula ϕ of LTLf and of LTL over AP is inductively defined as follows:

ϕ := ⊤ | p | ¬ϕ | ϕ1 ∨ ϕ2 | Xϕ | ϕ1 U ϕ2

where p ∈ AP.

The temporal operators X and U are called respectively next and until. We define the
following classic shortcut operators: (i) ⊥ := ¬⊤; (ii) ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2); (iii) X̃ϕ :=
¬X¬ϕ1; (iv) Fϕ := ⊤ U ϕ; (v) Gϕ := ¬F¬ϕ; (vi) ϕ1 R ϕ2 := ¬((¬ϕ1) U (¬ϕ2)). The temporal
operators X̃, F, G, and R are called respectively weak next, eventually, globally, and release.
The size of ϕ is the size of its parse tree.

A notable fragment of LTLf and of LTL is SafetyLTL. Formulae in this fragment restrict
the use of temporal operators to X̃, G and R, and allow negation only in front of atomic
propositions. The syntax of SafetyLTL is presented below.

▶ Definition 2. A formula ϕ of SafetyLTL over AP is inductively defined as follows:

ϕ := ⊤ | ⊥ | p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | X̃ϕ | Gϕ | ϕ1 R ϕ2

where p ∈ AP.

We now define the semantics of LTLf and LTL. Formulae of LTLf (resp., of LTL) are
interpreted over finite (resp., infinite) words. More precisely, LTLf is interpreted over finite
(possibly empty) words in (2AP)∗, while LTL is interpreted over infinite words in (2AP)ω.
The satisfaction of a formula ϕ of LTLf (resp., of LTL) by a finite word (resp., by an infinite
word) σ = ⟨σ0, σ1, . . .⟩ at position i, denoted by σ, i |= ϕ, is inductively defined as follows:

σ, i |= ⊤ is always true;
σ, i |= p iff 0 ≤ i < |σ| and p ∈ σi;
σ, i |= ¬ϕ iff σ, i ̸|= ϕ;
σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
σ, i |= Xϕ iff i+ 1 < |σ| and σ, i+ 1 |= ϕ;
σ, i |= ϕ1 U ϕ2 iff ∃j . i ≤ j < |σ|(σ, j |= ϕ2 ∧ ∀k . i ≤ k < j(σ, k |= ϕ1)).
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We write σ |= ϕ to denote σ, 0 |= ϕ. The language of an LTLf formula ϕ over the set of
atomic propositions AP, denoted as L(ϕ), is defined as the set {σ ∈ (2AP)∗ | σ |= ϕ}.
Similarly, the language of an LTL formula ϕ, denoted with L∞(ϕ), is defined as the set
{σ ∈ (2AP)ω | σ |= ϕ}. We say that ϕ is valid on finite words (resp., on infinite words) if and
only if L(ϕ) = (2AP)∗ (resp., L∞(ϕ) = (2AP)ω).

We highlight an important aspect of the difference between LTLf and LTL, which will be
relevant in the next section. Consider the formula X̃⊥. Under finite words semantics, we can
use X̃⊥ to hook the final position of a word: for all finite words σ, it holds that σ, i |= X̃⊥ if
and only if i = |σ| − 1. This allows us to express formulae like G(q) as q U (X̃⊥ ∧ q), without
the need of the globally operator. However, under infinite words semantics, the formula X̃⊥
is always false, and thus formulae like q U (X̃⊥ ∧ q) are always false as well.

2.2 The safety and the liveness fragments of infinite words
Let Σ be an alphabet. Given an infinite word σ ∈ Σω, we define pref(σ) := {σ′ ∈ Σ∗ | ∃σ′′ ∈
Σω such that σ = σ′ · σ′′}.

The definition of safety language of infinite words is given as follows.

▶ Definition 3. A language L ⊆ Σω is safety if and only if, for all σ ̸∈ L, there exists
σ′ ∈ pref(σ) such that σ′ · σ′′ ̸∈ L, for all σ′′ ∈ Σω. Such prefix σ′ is called a bad prefix
for L.

Given a formula ϕ of LTL over the set of atomic propositions AP, we say that ϕ is a
safety formula iff L∞(ϕ) is a safety language over the alphabet 2AP .

In [9], it is proved that SafetyLTL, when interpreted on infinite words, captures exactly
the set of all safety languages that are definable in LTL.

▶ Proposition 4 ([9]). Let L ⊆ Σω be a language definable in LTL. It holds that L is safety
if and only if L = L∞(ϕ), for some formula ϕ ∈ SafetyLTL.

Liveness languages of infinite words are defined as follows.

▶ Definition 5. A language L ⊆ Σω is liveness if and only if, for all σ ∈ Σ∗, there exists
σ′ ∈ Σω such that σ · σ′ ∈ L.

Given a formula ϕ of LTL over the set of atomic propositions AP, we say that ϕ is a
liveness formula iff L∞(ϕ) is a liveness language over the alphabet 2AP .

2.3 Finite Automata
We define the classic notion of Nondeterministic Finite Automaton.

▶ Definition 6. A Nondeterministic Finite Automaton (NFA) is a tuple A = (Q,Σ, I,∆, F )
such that: (i) Q is a finite set of states; (ii) Σ is a finite alphabet; (iii) I ⊆ Q is the set of
initial states; (iv) ∆ ⊆ Q× Σ ×Q is the transition relation; and (v) F ⊆ Q is the set of final
states.

Given an NFA A = (Q,Σ, I,∆, F ), a state q ∈ Q and a finite word σ = ⟨σ0, . . . , σn−1⟩ ∈
Σ∗, we define ∆̂(q, σ) as the set

{q′ ∈ Q | ∃⟨q0, q1, . . . , qn⟩ . q0 = q, qn = q′, (qi, σi, qi+1) ∈ ∆, ∀0 ≤ i < n}.

TIME 2025



10:6 Safety and Liveness on Finite Words

We say that A reaches state q′ reading σ iff q′ ∈
⋃

q0∈I ∆̂(q0, σ), for some q0 ∈ I. A word
σ ∈ Σ∗ is accepted by A if

⋃
q∈I ∆̂(q, σ) ∩ F ̸= ∅. The language of A, denoted with L(A),

is the set of words accepted by A. We say that two NFAs A and A′ are equivalent if
L(A) = L(A′). If a language L is such that L = L(A), for some NFA A, then L is called a
regular language.

Let A = (Q,Σ, I,∆, F ) be an NFA. A is called a partial Deterministic Finite Automaton
(DFA) if |I| ≤ 1 and, for all q ∈ Q and for all a ∈ Σ, there exists at most one q′ ∈ Q′ such
that (q, a, q′) ∈ ∆.

The notion of reduced automata [2] is defined as follows.

▶ Definition 7 (Reduced NFA). Let A = (Q,Σ, I,∆, F ) be an NFA. We say that A is
reduced if, for all q ∈ Q, there exists σ ∈ Σ∗ such that ∆̂(q, σ) ∩ F ̸= ∅. We denote with
R(A) the NFA obtained from A by removing all states q that do not satisfy the condition
∆̂(q, σ) ∩ F ̸= ∅ for any σ ∈ Σ∗.

Clearly, it always holds that L(A) = L(R(A)). Notice that, if L(A) = ∅, then also all
the initial states (along with all the states reachable from them) are removed from R(A),
leading to a degenerate case of an automaton without initial state (I = ∅). Moreover, it is
worth pointing out that every NFA can be transformed into an equivalent reduced DFA, first
by applying determinization and then by removing all states that do not lead to any final
state. Finally, we define the closure of an NFA [2] as follows.

▶ Definition 8 (Closure automaton). Let A = (Q,Σ, I,∆, F ) be an NFA. The closure of
A, denoted with C(A), is the automaton obtained from A by setting all states as final, i.e.
(Q,Σ, I,∆, Q).

The interesting property of closures in NFAs is that they reject words solely by attempting
undefined transitions. This form of rejection is irremediable, as no subsequent extension of
the input word can lead the automaton to accept it.

3 The safety fragment on finite words

In this section, we define the safety fragment of languages of finite words. We then study some
properties of this fragment as well as some complexity-related issues. Finally we compare
safety languages definable in LTLf with those definable in LTL.

3.1 Safety languages of finite words
From now on, let Σ be a finite alphabet. Given a finite word σ ∈ Σ∗, we define pref(σ) :=
{σ′ ∈ Σ∗ | ∃σ′′ ∈ Σ∗ . σ = σ′ · σ′′}. We define safety languages of finite words as follows.

▶ Definition 9 (Safety languages of finite words). A language L ⊆ Σ∗ is safety if and only if,
for all σ ̸∈ L, there exists σ′ ∈ pref(σ) such that σ′ · σ′′ ̸∈ L, for all σ′′ ∈ Σ∗. Such prefix σ′

is called a bad prefix for L.

Given a formula ϕ of LTLf over the set of atomic propositions AP, we say that ϕ is a
safety formula if L(ϕ) is a safety language over the alphabet 2AP .

In contrast with safety languages of infinite words, in this setting we require that all
the finite continuations of a bad prefix do not belong the language. From the definition, it
immediately follows that every safety language L is such that L = K · Σ∗, where K ⊆ Σ∗ is
the set of bad prefixes.
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Examples. Let Σ = {a, b}. The language b∗ is a safety language, because every violation
(i.e. every word not belonging to the language) contains a prefix ending with the symbol a
such that all possible continuations of the prefix are violations. In this case, the set of bad
prefixes is b∗ · a · Σ∗. On the contrary, the language b · b∗ is not of safety, since ε ̸∈ L but it
is not true that ε · σ′ ̸∈ L for all σ′ ∈ Σ∗. The LTLf formula G(p → X̃q) recognizes a safety
language, because any violating trace contains two adjacent positions where p is true in the
first one and q is false in the next one. Any continuation of the trace starting from this point
is a violation of the formula.

3.2 Properties of the safety fragment on finite words
First, we show that the safety condition is not limited to regular languages. In fact, there
exist safety languages over finite words that are not regular.

▶ Proposition 10. Let Σ = {a, b} and let L = {an · bn | n > 0} · Σ∗. It holds that L is safety
and not regular.

Proof. We provide the complete proof in [14]. ◀

Second, we show that safety languages over finite words are precisely those languages
that are prefix-closed, i.e. if a word belongs to the language, then all of its prefixes are also
included. The notion of prefix-closure is formally defined as follows.

▶ Definition 11 (Prefix-closure). Let L ⊆ Σ∗. We say that L is prefix-closed if, for all σ ∈ L,
it holds that pref(σ) ⊆ L.

The following proposition proves that all safety languages of finite words are prefix-
closed and vice versa. Therefore, prefix-closure provides an alternative and equivalent
characterization of safety languages of finite words.

▶ Proposition 12. Let L ⊆ Σ∗. It holds that L is safety if and only if L is prefix-closed.

Proof. We begin proving the left-to-right direction. Let L ⊆ Σ∗ be a safety language.
Suppose by contradiction that L is not prefix-closed, that is, there exists σ ∈ L and a prefix
σ′ ∈ pref(σ) such that σ′ ̸∈ L. Since L is safety, by Definition 9, it holds that there exists
a prefix σ′′ ∈ pref(σ′) of σ′ such that σ′′ · σ′′′ ̸∈ L, for all σ′′′ ∈ Σ∗. In the particular case
in which σ′′′ is the suffix of σ obtained from σ by removing its prefix σ′′, we have that
σ′′ · σ′′′ = σ and σ ̸∈ L, which is a contradiction since we supposed that σ ∈ L. Therefore, it
must be that L is prefix-closed.

We now prove the right-to-left direction. Let L ⊆ Σ∗ be a prefix-closed language. Suppose
by contradiction that L is not safety, that is, there exists σ ̸∈ L such that, for all σ′ ∈ pref(σ),
there exists a σ′′ ∈ Σ∗ such that σ′ · σ′′ ∈ L. In the particular case in which σ′ = σ, we have
that σ · σ′′ ∈ L, for some σ′′ ∈ Σ∗. But, since by hypothesis L is prefix-closed, all prefixes
of σ · σ′′, and in particular σ, must belong to L. However, this is a contradiction since we
supposed that σ ̸∈ L. Therefore, L must be a safety language. ◀

As a corollary of Proposition 12, a bounded model property for safety languages over
finite words follows directly, showing that any nonempty language of this kind necessarily
includes the empty word (its proof is provided in Appendix A).

▶ Corollary 13 (Small and Bounded Model Property for safety languages). Let L ⊆ Σ∗ be a
safety language. It holds that L ≠ ∅ if and only if ε ∈ L.

TIME 2025



10:8 Safety and Liveness on Finite Words

Third, we show an effective way to establish whether the language recognized by a given
NFA is safety. The procedure consists in checking whether the reduced version of the given
NFA and its closure are equivalent.

▶ Proposition 14. Let A be an NFA. L(A) is safety if and only if L(R(A)) = L(C(R(A))).

Proof. We consider first the right-to-left direction. Suppose that L(R(A)) = L(C(R(A)))
and consider the automaton C(R(A)). Since the closure of any automaton, by definition,
is such that all of its states are final, it is straightforward to see that its language is prefix-
closed. Therefore, we have that L(C(R(A))) is prefix-closed, and so is L(R(A)). Then,
by Proposition 12, L(R(A)) is a safety language.

To prove the left-to-right direction, notice that, since C(R(A)) is obtained from A by
setting all its states as final, it holds that L(R(A)) ⊆ L(C(R(A))). Therefore, only the
inclusion L(C(R(A))) ⊆ L(R(A)) has to be proved.

To prove that L(C(R(A))) ⊆ L(R(A)), we divide in cases depending on whether the set I
of initial states of C(R(A)) is empty.

If I = ∅, then L(C(R(A))) = ∅ and clearly L(C(R(A))) ⊆ L(R(A)).
If I ̸= ∅, let q0 be one of the initial states of C(R(A)), let σ ∈ L(C(R(A))), and let q be

one of the final states reached by C(R(A)) after reading σ. Since R(A) shares with its closure
the same set of states and transition relation, q is a state of R(A) and is reached by R(A)
after reading σ. Moreover, since R(A) is reduced, by definition of reduced automaton, there
exists a σ′ ∈ Σ∗ such that ∆̂(q, σ′) ∩ F ≠ ∅, and thus σ · σ′ ∈ L(R(A)). Since by hypothesis
L(R(A)) is safety, it is also prefix-closed (Proposition 12), and thus σ ∈ L(R(A)). ◀

3.3 The complexity of recognizing safety languages of finite words

Now, we investigate the complexity of determining whether a language of finite words is a
safety language, depending on the form in which the language is represented – either by
automata or temporal logic. In both cases, we prove that the problem is PSPACE-complete.
Interestingly, this is the same complexity as for the case of infinite words [25].

▶ Proposition 15. Establishing whether the language accepted by an NFA is safety is PSPACE-
complete.

Proof (sketch). The membership in PSPACE follows from Proposition 14, and from the fact
that the equivalence problem of two NFAs is a PSPACE problem. For the PSPACE-hardness,
we use a reduction from the universality problem for NFAs, which is PSPACE-complete. The
complete proof is provided in Appendix A. ◀

▶ Proposition 16. Establishing whether the language of an LTLf formula is safety is PSPACE-
complete.

Proof (sketch). The PSPACE upper bound follows from the singly exponential construction
of equivalent NFAs starting from LTLf formulas [13] and from the fact that the equivalence
problem of two NFAs is a PSPACE problem. For proving the PSPACE-hardness, we use a
reduction from the LTLf validity problem, which is PSPACE-complete. The complete proof
is provided in Appendix A. ◀
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3.4 Comparison of the safety fragments of LTL and LTLf
In this part, we compare the safety fragments of LTLf and LTL, and observe that certain
formulae in LTLf, when interpreted over infinite words, are no longer safety, and conversely,
some formulae in LTL cease to be safety when interpreted over finite words. This highlights
that, with respect to the safety fragment, transitioning between LTLf and LTL must be done
with care.

▶ Proposition 17. It holds that:
there exists an LTL formula ϕ such that L∞(ϕ) is safety but L(ϕ) is not safety; and
there exists an LTL formula ϕ such that L(ϕ) is safety but L∞(ϕ) is not safety.

Proof. To prove the first point, we take ϕ := G(p → Xq). When interpreted over finite words,
the language of ϕ is not safety. In fact, consider the word σ := ⟨{p}⟩ of length 1. It holds
that σ ̸∈ L(ϕ) because there is an occurrence of p that is not followed by any q. But none of
its prefixes σ′ ∈ pref(σ) is such that σ′ · σ′′ ̸∈ L(ϕ), for all σ′′ ∈ (2AP)∗. In fact, if σ′ = ε

then σ′ · {p} · {q} ∈ L(ϕ), while if σ′ = ⟨{p}⟩ then σ′ · {q} ∈ L(ϕ). It follows that L(ϕ) is
not a safety language. However, it is worth pointing out that, when interpreted over infinite
words, the language of ϕ is safety. In fact, ϕ belongs to the syntactic safety fragment of LTL,
i.e. SafetyLTL, and, by Proposition 4, L∞(ϕ) is a safety language of infinite words.

To prove the second point, consider the following formula: ϕ := G(qU(p∧q)∨qU(X̃⊥∧q)).
Under the interpretation over finite words, ϕ is equivalent to G(q U (p ∧ q) ∨ Gq), which in
turn is equivalent to G(p R q). To prove that L(G(p R q)) is a safety language, observe that,
for all σ ∈ (2AP)∗, σ ̸|= G(p R q) if and only if σ |= F(¬p U ¬q). Now, for each of these
words σ, there exists a prefix σ′ ∈ pref(σ) which does not contain a q in its last position and
thus it is irremediable, that is, σ′ · σ′′ |= F(¬p U ¬q), for all σ′′ ∈ (2AP)∗. Therefore, L(ϕ)
is a safety language. However, under the interpretation over infinite words, ϕ is equivalent
to G(q U (p ∧ q)), whose language is not safety: the infinite word {q}ω does not satisfy
G(q U (p ∧ q)) because p is never true, but each of its prefixes ⟨{q}, . . . , {q}⟩ can be extended
to an infinite word satisfying the formula, for example, by concatenating {p, q}ω. ◀

4 The liveness fragment on finite words

In this section, we define the liveness fragment of languages of finite words. We then show
an effective way to recognize whether a language is liveness and we study the complexity of
the problem. Finally, we compare liveness languages definable in LTLf with those definable
in LTL.

4.1 Liveness languages of finite words
We define the liveness condition for languages of finite words as follows.

▶ Definition 18. A language L ⊆ Σ∗ is liveness if and only if, for all σ ∈ Σ∗, there exists
σ′ ∈ Σ∗ such that σ · σ′ ∈ L.

Given a formula ϕ of LTLf over the set of atomic propositions AP, we say that ϕ is a
liveness formula if L(ϕ) is a liveness language over the alphabet 2AP .

Examples. The LTLf formula F(p) over AP = {p} recognizes a liveness language, because
any finite word σ ∈ (2AP)∗ can be extended to a trace in the language of F(p) by concatenating
⟨{p}⟩. The same holds for the formula GF(p) and for all formulae of type F(ψ), where ψ
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q0 q1

∅, {q}, {p, q}
{p}

∅, {p}

{q}, {p, q}

q0 q1

∅, {q}, {p, q}
{p}

∅, {p}

{q}, {p, q}

Figure 1 On the left, an automaton recognizing the LTLf formula G(p → Fq). On the right, its
closure, which accepts every finite word. By Proposition 19, the language of G(p → Fq) fulfills the
liveness condition.

is an LTLf formula. Conversely, the formula G(¬p) does not recognize a liveness language,
because the word ⟨{p}⟩ cannot be extended to a trace in the language of G(¬p). Consider
now the LTLf formula F(p ∧ X̃⊥) over AP = {p}, stating that p holds in the final position
of a word. Under finite word interpretation, we have L(ϕ) = (2AP)∗ · {p}. Clearly, L(ϕ) is
a liveness language. Under infinite word interpretation, instead, we have that L∞(ϕ) = ∅,
because there exists no word containing a position whose successor satisfies the formula ⊥.
It follows that L∞(ϕ) is not a liveness language of infinite words.

4.2 Recognizing liveness languages of finite words
In this section, we present an effective method for determining whether a language of finite
words satisfies the liveness property. We subsequently analyze the computational complexity
of this decision problem in two scenarios: when the language is represented by an NFA and
when it is specified using an LTLf formula.

▶ Proposition 19. Let A be an NFA over the alphabet Σ. L(A) is liveness if and only if
L(C(R(A))) = Σ∗.

Proof. We start proving the left-to-right direction. Suppose that L(A) is liveness. Clearly,
it always holds that L(C(R(A))) ⊆ Σ∗, thus we need only to prove that Σ∗ ⊆ L(C(R(A))).
Let σ ∈ Σ∗ be a finite word. Since L(A) is a liveness language and since L(A) = L(R(A)),
by Definition 18, there there exists σ′ ∈ Σ∗ such that σ · σ′ ∈ L(R(A)), i.e. σ is the prefix of
a word accepted by L(R(A)). Therefore, there exists a state q of R(A) reached by R(A)
after reading σ. By definition of closure automaton, state q is final in C(R(A)) and is reached
by C(R(A)) after reading σ. It follows that σ ∈ L(C(R(A))).

We now prove the right-to-left direction. Suppose that L(C(R(A))) = Σ∗. We prove that
the condition of liveness is satisfied by L(A). Let σ ∈ Σ∗. Since L(C(R(A))) = Σ∗, it follows
that there exists a state q reached by C(R(A)) after reading σ. Since, C(R(A)) and R(A)
share the same set of states and the same transition relation, q is also a state of R(A) and is
reached by R(A) after reading σ. Since R(A) is reduced, a final state of R(A) is reachable
from state q, impling that there exists a word σ′ ∈ Σ∗ such that σ · σ′ ∈ L(R(A)), proving
that the liveness condition holds for L(R(A)). Since the NFAs R(A) and A are equivalent,
this means that also L(A) is a liveness language. ◀

As an example of application of Proposition 19, we consider the LTLf formula ϕ := G(p →
Fq) over the set of atomic propositions AP := {p, q}. The automaton Aϕ, which is equal to
its reduced version R(Aϕ), recognizing L(ϕ) is depicted in Figure 1 (left). The right side
of Figure 1 displays its closure C(R(Aϕ)). Since L(C(R(Aϕ))) = (2AP)∗, by Proposition 19,
the language of G(p → Fq) is a liveness language.
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We now investigate the computational complexity of deciding whether a language satisfies
the liveness condition, in the cases where the language is given by an NFA and by an LTLf
formula. In the former case, the problem is PSPACE-complete, as stated by the following
proposition.

▶ Proposition 20. Establishing whether the language accepted by an NFA is liveness is
PSPACE-complete.

Proof (sketch). Both the membership in PSPACE (cf. Proposition 19) and the PSPACE-
hardness follows from the universality problem of NFAs, which is PSPACE-complete. The
complete proof is provided in [14]. ◀

Interestingly, the best algorithm we have devised so far for deciding whether an LTLf
formula is liveness requires exponential space. This is due to the fact that, given an
LTLf formula ϕ, the algorithm first constructs the NFA corresponding to ϕ, which requires
exponential space in |ϕ|, and then checks the universality of its closure (cf. Proposition 19),
a step that requires polynomial space in the size of the automaton. Overall, the algorithm
operates in exponential space with respect to |ϕ|. Whether this algorithm is optimal (i.e.
EXPSPACE-hard), or whether a more efficient solution exists, remains an open problem –
even in the case of infinite words.

▶ Proposition 21. Establishing whether the language of an LTLf formula is liveness is in
EXPSPACE.

Proof. Let ϕ be an LTLf formula of size n over AP. The algorithm to check whether ϕ is
liveness proceeds as follows. First, it builds the NFA Aϕ equivalent to ϕ, which is of size
2O(n) [13]. Then, it constructs C(R(Aϕ)) and checks whether L(C(R(Aϕ))) = (2AP)∗, in
space polynomial in the size of Aϕ, that is, 2O(n). If this is the case, then ϕ is liveness,
otherwise ϕ is not liveness. Overall, the algorithm requires space exponential in n, and thus
the problem is in EXPSPACE. ◀

4.3 Comparison of the liveness fragments of LTL and LTLf
In the proposition below, we show that, as in the case of the safety fragment, there exist
liveness formulae of LTLf that, when interpreted over infinite words, no longer accept liveness
languages. Conversely, there also exist liveness formulae of LTL that, when interpreted over
finite words, do not define a liveness language.

▶ Proposition 22. It holds that:
there exists an LTL formula ϕ such that L(ϕ) is liveness but L∞(ϕ) is not liveness; and
there exists an LTL formula ϕ such that L∞(ϕ) is liveness but L(ϕ) is not liveness.

Proof. To prove the first point, it suffices to take the formula F(p∧ X̃⊥). As we shown above,
when interpreted over finite words, the formula recognize a liveness language, while over
infinite words it recognizes a language which is not liveness.

To prove the second point, consider the following formula: ϕ := G((X̃⊥∧q) → F(X̃⊥∧¬q)).
Over finite words, it holds that L(ϕ) = ∅, because the formula forces the final time point of
any word to satisfy both q and ¬q. It follows that L(ϕ) is not a liveness language. However,
over the infinite word interpretation, we have that L∞(ϕ) = (2AP)ω, because the antecedent
of the implication is always false. Therefore, L∞(ϕ) is liveness. ◀
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5 Decomposition of regular languages

In this section, we present a decomposition result for regular languages that leverages the
characterization of the safety and liveness fragments. Specifically, we show that for any
regular language L, one can construct a safety language and a liveness language whose
intersection is precisely L.

From this point onward, we restrict our attention to DFAs. This assumption simplifies
certain proofs, most notably that of Proposition 25. This restriction comes with no loss of
generality, as every regular language L admits an equivalent DFA.

As a first step, we give the following definitions.

▶ Definition 23 (The Safe and the Live versions of a DFA). Let A = (Q,Σ, I,∆, F ) be a DFA.
We define Safe(A) as C(R(A)). We define Live(A) as the automaton R(A) augmented
with a new final state qf ̸∈ Q, and the following transitions: (i) (qf , a, qf ), for all a ∈ Σ;
(ii) (q, a, qf ), for all q ∈ Q and for all a ∈ Σ such that ∆(q, a) = ∅.

The proposition below states that, for any DFA A, the automata Safe(A) and Live(A)
recognize a safety and a liveness language, respectively. We provide the proof in Appendix A.

▶ Proposition 24. Let A be a DFA. It holds that L(Safe(A)) (resp., L(Live(A))) is a safety
language (resp., a liveness language).

The final step before presenting the decomposition algorithm is to show that, for any
DFA A, the automaton Live(A) recognizes exactly the set of words that are either accepted
by A or not accepted by Safe(A). This property is essential to ensure that the intersection
of Safe(A) and Live(A) recognizes precisely the language L(A).

▶ Proposition 25. Let A be a DFA. Live(A) recognizes the language L(A)∪(Σ∗\L(Safe(A))).

Proof. We provide the proof in [14]. ◀

The following theorem states and proves the decomposition theorem for regular languages,
establishing that every regular language over an alphabet Σ is expressible as an intersection
of a safety language over Σ and a liveness language over Σ.

▶ Theorem 26. Let L ⊆ Σ∗ be a regular language. There exist two regular languages
Lsafe ⊆ Σ∗ and Llive ⊆ Σ∗ such that: (i) Lsafe is a safety language; (ii) Llive is a liveness
language; (iii) L = Lsafe ∩ Llive.

Proof. Since L is a regular language, there exists a DFA A such that L(A) = L. Let
Lsafe = L(Safe(A)) and Llive = L(Live(A)).

By Proposition 24, Lsafe and Llive are a safety language and a liveness language, respect-
ively. Moreover, by Proposition 25, it holds that:

Lsafe ∩ Llive = L(Safe(A)) ∩ L(Live(A)) = L(Safe(A)) ∩ (L(A) ∪ (Σ∗ \ L(Safe(A))))
= L(Safe(A)) ∩ L(A) = L(A)

Therefore, L = Lsafe ∩ Llive. ◀
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6 Implications on LTLf Model Checking

In this section, we examine certain implications of the safety and liveness fragments on
the model checking problem [12] over finite words. Specifically, we address the problem of
verifying whether an NFA M satisfies an LTLf formula ϕ, i.e. whether L(M) ⊆ L(ϕ), denoted
as M |= ϕ.

The identification of safety and liveness fragments within both LTLf and the class of
regular languages over finite words opens avenues for designing specialized model checking
procedures and conducting a more granular complexity analysis – paralleling existing results
in the setting of infinite words [19, 11].

However, we show that when L(M) is assumed to be a nonempty safety language – a
common scenario in practice, particularly in invariant checking benchmarks [5] – the model
checking problem for LTLf formulae often becomes uninformative. In many such cases,
formulae that are semantically meaningful and nontrivial in the infinite-word setting give rise
to degenerate instances in the finite-word setting, where the model checking task becomes
trivial: either always false, or reducible to a simple condition such as whether the empty
word ε belongs to L(M) or the model checking of a much simpler formula.

6.1 The cosafety case
We begin by analyzing the case where L(ϕ) is a cosafety language – that is, the complement
of a safety language. Consider, for instance, the formula ϕ := Fp. Since L(M) is assumed
to be a safety language and thus is prefix-closed (cf. Definition 11 and Proposition 12), it
necessarily contains the empty word ε. However, since ϕ is a cosafety formula, L(ϕ) is a
safety language, and it holds that ε ∈ L(ϕ), that is, ε ̸∈ L(ϕ). Consequently, L(M) ̸⊆ L(ϕ),
i.e. M ̸|= ϕ. More generally, there does not exist an NFA M such that L(M) is a safety,
nonempty language and M |= ϕ, with ϕ := Fp. It is worth noting that this conclusion remains
valid even if one were to disregard ε from the language, in which case the model checking
task reduces to a trivial condition: verifying whether the initial state satisfies p.

This reasoning extends to arbitrary cosafety properties. Let ϕ be a cosafety LTLf formula
and let M be an NFA such that L(M) is safety and nonempty. One has that M |= ϕ if and
only if L(M) ∩ L(ϕ) = ∅. Since L(M) is safety and thus prefix-closed, by Corollary 13 we
have that ε ∈ L(M), and thus:
1. if ε ̸|= ϕ (that is, ε ∈ L(ϕ)), then L(M) ∩ L(ϕ) ̸= ∅, and thus M ̸|= ϕ;
2. if ε |= ϕ (that is, ε ∈ L(ϕ)), then ε ̸∈ L(ϕ); but since L(ϕ) is a safety language,

by Corollary 13 it holds that L(ϕ) = ∅, implying that L(M) ∩ L(ϕ) = ∅ and M |= ϕ.
Therefore, checking whether M |= ϕ is equivalent to checking whether ε ̸|= ϕ, for all cosafety
formulas ϕ and for all safety, nonempty NFAs M .

6.2 The general case
We now establish that for any LTLf formula ϕ and any NFA M such that L(M) is a safety
language, the model checking problem M |= ϕ reduces to verifying whether L(M) is contained
within a substantially simpler language than L(ϕ). Specifically, it suffices to check inclusion
in the language recognized by the automaton corresponding to ϕ after removing all non-final
states. As an example, suppose that ϕ := GFp. For any finite word σ, we have that σ |= GFp
if and only if σ satisfies p in the last position. Moreover, since L(M) is prefix-closed, it means
that, for every σ ∈ L(M), proposition p holds in every position of σ. Therefore, M |= GFp is
equivalent to M |= Gp.
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We define the subclosure of an NFA as the automaton resulting from the removal of all
non-final states along with their associated incoming and outgoing transitions.

▶ Definition 27 (Subclosure automaton). Let A = (Q,Σ, I,∆, F ) be an NFA. The subclosure
of A, denoted with S(A), is the automaton obtained from A by removing non-final states, i.e.
(Q ∩ F,Σ, I ∩ F,∆ ∩ (F × Σ × F ), F ).

The following proposition establishes that, for any NFA M such that L(M) is safety
and any LTLf formula ϕ, the model checking problem M |= ϕ is equivalent to checking the
language inclusion L(M) ⊆ L(S(Aϕ)), where Aϕ is the DFA corresponding to ϕ.

▶ Proposition 28. Let ϕ be an LTLf formula over AP and let Aϕ be its equivalent DFA. Let
M be an NFA such that L(M) ⊆ (2AP)∗ is a safety language. It holds that M |= ϕ if and
only if L(M) ⊆ L(S(Aϕ)).

Proof. The right-to-left direction is trivial since L(S(Aϕ)) ⊆ L(Aϕ) and thus, if L(M) ⊆
L(S(Aϕ)), then L(M) ⊆ L(Aϕ), that is M |= ϕ.

To prove the left-to-right direction, assume that M |= ϕ, that is L(M) ⊆ L(Aϕ), and let
σ ∈ L(M). We prove that σ ∈ L(S(Aϕ)) by induction on the length of σ.

Let |σ| = 0. Thus σ = ε. Since σ belongs also to L(Aϕ), there exists an initial state
of Aϕ that is final. By Definition 27, such state is also initial and final in S(Aϕ). Thus,
ε ∈ L(S(Aϕ)).

Let |σ| = n > 0. Since σ ∈ L(Aϕ), there exists a path ⟨q0, q1, . . . , qn⟩ accepting σ. Since
L(M) is safety and thus prefix-closed, also the prefix σ′ of size n− 1 is in L(Aϕ). Moreover,
since Aϕ is a DFA, ⟨q0, q1, . . . , qn−1⟩ must be accepting, having that σ′ belongs to L(Aϕ).
By inductive hypothesis, σ′ ∈ L(S(Aϕ)). Since both qn and qn−1 are final states in Aϕ, by
the definition of S there is a transition from qn−1 to qn, having that ⟨q0, q1, . . . , qn⟩ must be
a sequence of S(Aϕ) accepting σ. Therefore, σ ∈ L(S(Aϕ)). ◀

It is important to note that Proposition 28 remains valid regardless of whether the empty
word ε is included in the semantics. In particular, if the model checking problem M |= φ is
to be interpreted with the exclusion of ε, one can equivalently verify M |= (ϕ ∨ G⊥), since
L(G⊥) = {ε}.

Some important consequences of Proposition 28 are highlighted by the following repres-
entative examples, which hold for any NFA M such that L(M) is safety and nonempty:

if ϕ = Fp, then L(S(Aϕ)) = ∅ and therefore it never holds that M |= ϕ;
if ϕ = Fp∨G⊥, then L(S(Aϕ)) = {ε}∪{p} ·Σ∗ and, since ε ∈ L(M), it holds that M |= ϕ

iff M |= p;
if ϕ = GFp, then L(S(Aϕ)) = L(Gp) and M |= ϕ iff M |= Gp;
if ϕ = FGp, then L(S(Aϕ)) = ∅ and thus it never holds that M |= ϕ;
if ϕ = FGp ∨ G⊥, then L(S(Aϕ)) = L(Gp), and thus M |= ϕ iff M |= Gp;

7 Conclusions

In this work, we investigated the notions of safety and liveness languages over finite words.
We established several fundamental properties of these classes, including the prefix-closed
nature of safety languages. Furthermore, we presented effective procedures to determine
whether the language recognized by an NFA or specified by an LTLf formula is safety or
liveness. We also discussed key distinctions between the finite-word and infinite-word settings.
In addition, we proved that, analogously to the infinite-word case, every regular language can
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be represented as the intersection of a safety language and a liveness language. We further
examined implications for model checking of LTLf formulae, particularly when the program
under verification recognizes a safety regular language.

As a direction for future work, we conjecture that the problem of deciding whether the
language defined by an LTLf formula is a liveness language is EXPSPACE-complete, a result
that remains open in this paper. Furthermore, a natural extension of our results involves
the study of relative safety and relative liveness, as introduced by T. Henzinger in [15] and
studied further in [6], that refine the classical definitions by characterizing safety and liveness
properties with respect to a given environmental assumption. Investigating these refined
notions in the finite-word setting represents an interesting direction for future research.
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A Omitted proofs

▶ Corollary 13 (Small and Bounded Model Property for safety languages). Let L ⊆ Σ∗ be a
safety language. It holds that L ≠ ∅ if and only if ε ∈ L.

Proof. The right-to-left direction is trivial. To prove the left-to-right direction, suppose that
L is not empty and let σ ∈ L. Since by hypothesis L is safety, by Proposition 12 we have
that L is prefix-closed. Since σ ∈ L and since ε is a prefix of σ, by Definition 11 we have
that ε ∈ L. ◀

▶ Proposition 15. Establishing whether the language accepted by an NFA is safety is PSPACE-
complete.

Proof. For the membership in PSPACE, we show the following procedure to check whether
the language of a given reduced NFA is equal to the language of its closure (Proposition 14).
Let A be an NFA of size n. By means of a sequence of reachability checks, in nondeterministic
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logarithmic space, we can turn A into an equivalent reduced NFA R(A) of size O(n). The pro-
cedure checks whether L(R(A)) = L(C(R(A))). Notice that, since L(R(A)) ⊆ L(C(R(A))),
only the opposite inclusion needs to be checked. Checking whether L(C(R(A))) ⊆ L(R(A))
is equivalent to check whether:

L(C(R(A))) ∩ L(R(A)) = ∅

Building an automaton for L(R(A)) requires 2O(n) space [17], computing the intersection
between two automata requires polynomial space with respect to the size of the two automata,
and checking the emptiness can be performed on-the-fly in nondeterminstic logarithmic space.
The total complexity is thus nondeterministic polynomial space, and thus the problem is in
PSPACE.

For proving the PSPACE-hardness, we consider the universality problem for NFAs, i.e. the
problem of checking whether the language of a given NFA over the alphabet Σ is Σ∗, which
is known to be PSPACE-complete.

Let A = (Q,Σ, I,∆, F ) be an NFA. We define the automaton B as the NFA
(Q′,Σ′, I ′,∆′, F ′) such that:

Q′ := Q ∪ {qsink, qloop};
Σ′ := Σ ∪ {f}, where f ̸∈ Σ;
I ′ := I;
∆′ := ∆ ∪ {(q, f, qloop) | q ∈ Q′} ∪
{(q, a, qsink) | q ∈ Q, a ∈ Σ, ∆(q, a) = ∅} ∪
{(q, a, q) | a ∈ Σ, q ∈ {qsink, qloop}};
F ′ := F ∪ {qloop}.

Automaton B has two crucial properties: (i) it has no undefined transitions; (ii) L(B) =
L(A) ∪ (Σ′)∗ · f · (Σ′)∗; note that this implies that L(B) ∩ (Σ)∗ = L(A).

We prove that L(A) = Σ∗ if and only if L(B) is safety.
Suppose that L(A) = Σ∗ and let σ be any word in (Σ′)∗. We divide in cases, depending

on whether σ contains at least one f .
Case 1. If σ does not contain any f , then σ ∈ Σ∗ and thus σ ∈ L(A). Since by construction

L(B) = L(A) ∪ (Σ′)∗ · f · (Σ′)∗, we have that σ ∈ L(B).
Case 2. If σ contains at least one f , then σ ∈ (Σ′)∗ · f · (Σ′)∗, and thus, also in this case,

σ ∈ L(B).
Therefore L(B) = (Σ′)∗ and, clearly, L(B) is a safety language over the alphabet Σ′.

Suppose that L(B) is a safety language. We first prove that L(B) = (Σ′)∗. Suppose by
contradiction that this is not case and let σ ̸∈ L(B). Since L(B) is a safety language, there
exists a σ′ ∈ pref(σ) such that σ′ · σ′′ ̸∈ L(B), for all σ′′ ∈ (Σ′)∗. Now, let q be any state
reached by B after reading σ′ (notice that, since B does not contain undefined transitions,
state q always exists). By construction of B, reading the symbol f , B transitions from state
q to state qloop. Since qloop is a final state, this means that σ′ · f ∈ L(B). But this is a
contradiction with the fact that σ′ · σ′′ ̸∈ L(B), for all σ′′ ∈ (Σ′)∗. Therefore, L(B) = (Σ′)∗.

As observed above, by construction, L(B)∩(Σ)∗ = L(A). Thus, the fact that L(B) = (Σ′)∗

implies that L(A) = Σ∗. ◀

▶ Proposition 16. Establishing whether the language of an LTLf formula is safety is PSPACE-
complete.

Proof. We follow the same approach as Sistla [25] for proving that the problem of establishing
whether the language recognized by an LTL formula is safety is PSPACE-complete.
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As for the membership in PSPACE, we follow this procedure. Given an LTLf formula ϕ of
size n over the atomic propositions AP, the procedure builds two NFAs over the alphabet
2AP , both of size 2O(n) [13]: the automaton Aϕ equivalent to the formula ϕ, and the
automaton A¬ϕ equivalent to the formula ¬ϕ. To check whether L(ϕ) is a safety language, it
suffices to check whether L(R(Aϕ)) = L(C(R(Aϕ))) (Proposition 14), which is equivalent to
check whether L(C(R(Aϕ))) ∩ L(R(A¬ϕ)) = ∅. This check can be done in nondeterministic
logarithmic space, on-the-fly while building the two automata. Therefore, the problem is in
PSPACE.

To prove the PSPACE-hardness, we use the validity problem for LTLf formulae, i.e. checking
whether the language of a given LTLf formula over the set of atomic propositions AP is
(2AP)∗. Let ϕ be an LTLf formula over AP . We prove that ϕ is valid (i.e. L(ϕ) = (2AP)∗) if
and only if L(ϕ ∨ Fp) is safety, where p ̸∈ AP.

Proving that if L(ϕ) = (2AP)∗ then L(ϕ ∨ Fp) is safety is straightforward. Since
L(ϕ) = (2AP)∗ and p does not appear in ϕ, it also holds that L(ϕ ∨ Fp) = (2AP∪{p})∗,
and thus L(ϕ ∨ Fp) is safety.

We now prove the opposite direction. Suppose that L(ϕ ∨ Fp) is safety. Suppose by
contradiction that ϕ∨ Fp is not valid and let σ ∈ (2AP∪{p})∗ be a word such that σ ̸|= ϕ∨ Fp.
Since by hypothesis the language of ϕ ∨ Fp is safety, there exists a σ′ ∈ pref(σ) such that
σ′ · σ′′ ̸|= ϕ ∨ Fp, for all σ′′ ∈ (2AP∪{p})∗. However, this is a contradition because the
σ′ · {p} |= ϕ∨ Fp. Therefore, ϕ∨ Fp is valid, i.e. L(ϕ∨ Fp) = (2AP∪{p})∗. Since p ̸∈ AP , this
means that L(ϕ) = (2AP)∗. ◀

▶ Proposition 24. Let A be a DFA. It holds that L(Safe(A)) (resp., L(Live(A))) is a safety
language (resp., a liveness language).

Proof. We first prove the case for Safe(A). Since, by Definition 23, Safe(A) is defined
as C(R(A)), it holds that C(R(Safe(A))) is exactly Safe(A). In particular L(Safe(A)) =
L(C(R(Safe(A)))). By Proposition 14, we have that L(Safe(A)) is a safety language.

We now prove the case for Live(A). The definition of Live(A) states that all undefined
transitions of R(A) are replaced with a transition into a new, final state (to which the
automaton is forced to remain reading any symbol). This means that the transition relation
of Live(A) is complete: ∆(q, a) ̸= ∅, for all states q of Live(A) and for all symbols a ∈ Σ.
Since all the states in C(R(Live(A))) are set to final, it follows that L(C(R(Live(A)))) = Σ∗.
By Proposition 19, it means that L(Live(A)) is a liveness language. ◀
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