
A Better Algorithm for Converting an STNU into
Minimal Dispatchable Form
Luke Hunsberger # Ñ

Vassar College, Poughkeepsie, NY, USA

Roberto Posenato # Ñ

University of Verona, Italy

Abstract
A Simple Temporal Network with Uncertainty (STNU) is a data structure for representing and
reasoning about temporal constraints on activities, including those with uncertain durations. An
STNU is dispatchable if it can be flexibly and efficiently executed in real time while guaranteeing
that all relevant constraints are satisfied. Typically, dispatchability requires inserting conditional
wait constraints, thereby forming an Extended STNU (ESTNU). The number of edges in an ESTNU
affects the computational work that must be done during real-time execution. The MinDispESTNU
problem is that of finding an equivalent dispatchable ESTNU having a minimal number of edges.
Recent work presented an O(kn3)-time algorithm for solving the MinDispESTNU problem, where n

is the number of timepoints and k is the number of actions with uncertain durations. A subsequent
paper presented a faster O(n3)-time algorithm, but it has been shown to be incomplete. This paper
presents a new O(mn + n2k + n2 log n)-time algorithm for solving the MinDispESTNU problem,
where m is the number of constraints in the network. The correctness of the algorithm is based
on a novel theory of the canonical form of nested diamond structures. An empirical evaluation
demonstrates the order-of-magnitude improvement in performance.

2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Theory of
computation → Dynamic graph algorithms

Keywords and phrases Temporal constraint networks, dispatchable networks

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.11

1 Background

Temporal constraint networks facilitate representing and reasoning about temporal constraints
on activities. Simple Temporal Networks with Uncertainty (STNUs) allow the explicit
representation of actions with uncertain durations [13]. An STNU is dispatchable if it can be
executed by a flexible and efficient real-time execution algorithm while guaranteeing that all
of its constraints will be satisfied. This paper modifies an existing algorithm for converting a
dispatchable network into an equivalent dispatchable network having a minimal number of
edges, making it an order of magnitude faster, as demonstrated by an empirical evaluation.

Simple Temporal Networks. A Simple Temporal Network (STN) is a pair (T , C) where T is
a set of real-valued variables called timepoints; and C is a set of ordinary constraints, each of
the form (Y − X ≤ δ) for X, Y ∈ T and δ ∈ R [3]. An STN is consistent if it has a solution
as a constraint satisfaction problem (CSP). Each STN has a corresponding graph where
the timepoints serve as nodes and the constraints correspond to labeled, directed edges. In
particular, each constraint (Y − X ≤ δ) corresponds to an edge X δ Y in the graph. Such
edges may be notated as (X, δ, Y ) or, if context permits, simply XY . A path from X to Y

may be notated by listing its timepoints (e.g., XUVWY ) or, if the context permits, just XY .

© Luke Hunsberger and Roberto Posenato;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hunsberger@vassar.edu
https://www.cs.vassar.edu/~hunsberg
https://orcid.org/0009-0005-8603-4803
mailto:roberto.posenato@univr.it
https://www.di.univr.it/?ent=persona&id=102
https://orcid.org/0000-0003-0944-0419
https://doi.org/10.4230/LIPIcs.TIME.2025.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


11:2 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

A flexible and efficient real-time execution (RTE) algorithm has been defined for STNs
that maintains a time window for each timepoint X and, as each X is executed, propagates
constraints only locally, to X’s neighbors in the graph [19, 15]. An STN is dispatchable if
that RTE algorithm is guaranteed to satisfy all of the STN’s constraints no matter how
the flexibility afforded by the algorithm is exploited during execution. A consistent STN
is dispatchable if and only if each pair of timepoints connected by a path in the graph are
connected by a shortest vee-path (i.e., a shortest path comprising zero or more negative
edges followed by zero or more non-negative edges) [12]. Efficient algorithms for generating
equivalent dispatchable STNs having a minimal number of edges have been presented [19, 15].
Having fewer edges is important since it lessens real-time computations done during execution.

Simple Temporal Networks with Uncertainty. A Simple Temporal Network with Uncertainty
(STNU) augments an STN to include contingent links that represent actions with uncertain,
but bounded durations [13]. An STNU is a triple (T , C, L) where (T , C) is an STN, and L is
a set of contingent links, each of the form (A, x, y, C), where A, C ∈ T and 0 < x < y < ∞.
The semantics of STNU execution ensures that regardless of when the activation timepoint A

is executed, the contingent timepoint C will occur such that C − A ∈ [x, y]. Each STNU
S = (T , C, L) has a corresponding graph G = (T , Eo, Elc, Euc), where (T , Eo) is the graph for
the STN (T , C), and Elc and Euc are sets of labeled edges corresponding to the contingent
durations in L. In particular, each contingent link (A, x, y, C) in L has a lower-case (LC)
edge A c:x C in Elc that represents the uncontrollable possibility that the duration might take
on its minimum value x; and an upper-case (UC) edge C C:−y A in Euc that represents the
possibility that it might take on its maximum value y. For convenience, edges such as A c:x C

and C C:−y A may be notated as (A, c:x, C) and (C, C:−y, A), respectively.
An STNU is dynamically controllable (DC) if there exists a dynamic, real-time execution

strategy that guarantees that all constraints in C will be satisfied no matter how the contingent
durations turn out [13, 4]. A dynamic strategy is one whose execution decisions can react to
observations of contingent executions, but without advance knowledge of future events. Many
polynomial-time DC-checking algorithms have been presented [11, 1, 5], the fastest having a
worst-case time-complexity of O(mn + k2n + kn log n), where n, m and k are the numbers
of timepoints, ordinary constraints, and contingent links. Many DC-checking algorithms
generate a kind of conditional constraint called a wait [14, 10, 5]. Although not necessary
for DC-checking [1], wait constraints are needed for STNU dispatchability, as follows.

An STNU augmented with a set of waits, Ew, is called an Extended STNU (ESTNU) [11].
A real-time execution algorithm for ESTNUs, called RTE∗, has been defined that provides
maximum flexibility while requiring minimal real-time computation [11, 7]. An ESTNU is
dispatchable if every run of the RTE∗ algorithm is guaranteed to satisfy all of its constraints
no matter how the contingent durations turn out. Equivalently, an ESTNU is dispatchable if
and only if all of its STN projections are dispatchable (as STNs) [11]. (A projection of an
ESTNU is the STN that results from fixing the durations of its contingent links.) The fastest
algorithm for generating equivalent dispatchable ESTNUs is the O(mn + kn2 + n2 log n)-time
FDSTNU algorithm [6], but it provides no guarantee about the number of edges in its output.

The MinDispESTNU problem. For any given dispatchable ESTNU G, find an equivalent
dispatchable ESTNU G′ having a minimal number of edges. The minDispESTNU algorithm [7]
solves the MinDispESTNU problem in O(kn3) time. A faster O(n3)-time algorithm, called
fastMinDispESTNU [8], was later found to be incomplete.



L. Hunsberger and R. Posenato 11:3

A CV C:−6
c:1

C:−10

−1 10

−1

A CV C:−v

c:x
C:−y

−x y

−x

Figure 1 Stand-in edges entailed by labeled edges associated with contingent links.

This paper. Section 2 summarizes the minDispESTNU and fastMinDispESTNU algorithms. Sec-
tion 3 then presents a new algorithm, betterMinDispESTNU, that solves the MinDispESTNU
problem in O(mn + n2k + n2 log n) time. It employs a novel approach to generating so-called
stand-in edges. The correctness of the algorithm is based on a new theory of the canoni-
cal form of nested diamond structures, which is detailed in Hunsberger and Posenato [9].
Section 4 presents an empirical evaluation that demonstrates that betterMinDispESTNU
achieves an order-of-magnitude speedup over minDispESTNU in practice.

2 Overview of Existing Algorithms

The minDispESTNU algorithm [7] takes a dispatchable ESTNU E = (T , Eo, Elc, Euc, Ew) as its
only input and generates as its output an equivalent dispatchable ESTNU having a minimal
number of edges. It has four steps: (1) compute the set of so-called stand-in edges (i.e.,
ordinary edges that are entailed by various combinations of ESTNU edges) and insert them
into the graph; (2) apply an STN-dispatchability algorithm to the resulting set of ordinary
edges, thereby generating a dispatchable STN subgraph; (3) remove any remaining stand-in
edges; and (4) remove any wait edges that are not needed for dispatchability. The O(kn3)
worst-case time complexity of the minDispESTNU algorithm is dominated by Step 1. Therefore,
our new, faster algorithm modifies only that step, achieving an order-of-magnitude reduction
in the overall worst-case time complexity. The following paragraphs summarize Step 1 of the
minDispESTNU algorithm, as implemented by its genStandIns helper algorithm.

Generating Stand-in Edges

Following Morris [11], an ESTNU is dispatchable if all of its STN projections are dispatchable
(as STNs). Equivalently, in each STN projection, each pair of timepoints V and W that are
connected by a path must be connected by a shortest vee-path (SVP) (i.e., a shortest path
comprising zero or more negative edges followed by zero or more non-negative edges) [12]. A
key insight behind the minDispESTNU algorithm is that in different projections, the shortest
vee-paths from V to W may take different routes, employ different labeled edges, and have
different lengths. The longest SVP from V to W across all projections determines an ordinary
constraint, represented by a stand-in edge, that must be satisfied by every valid execution
strategy. The minDispESTNU algorithm generates stand-in edges in two phases: (1) those
entailed by individual labeled edges; and (2) those entailed by VACW diamond structures.

Stand-in edges entailed by individual labeled edges. Each LC, UC or wait edge entails
a (weaker) ordinary edge. For example, consider the labeled edges associated with the
contingent link (A, 1, 10, C) in Figure 1. The LC edge (A, c:1, 10) represents the possibility
that the duration C − A might take on its minimum value 1. Its stand-in edge (A, 10, C)
represents the (modeled) certainty that C − A will be at most 10. Similarly, the UC edge
(C, C:−10, A) represents the possibility that C − A might take on its maximum value 10,
while its stand-in edge (C, −1, A) represents the certainty that C − A will be at least 1.

TIME 2025



11:4 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

V

C A

W

C
:−

6

c:1

C:−10
8

13

(a) ESTNU edges.
V

C A

W

−
1

1

−1

8

13

0

(b) If C − A = 1.
V

C A

W

−
6

10

−10

8
13

4

(c) If C − A = 10.
V

C A

W

C
:−

6

c:1

C:−10

8

13

8

4

(d) Stand-in edges.
V

C A

W

C
:−

v

c:x
C:−y

γ δ

θ
=

m
ax

{δ
−

v
,
γ

}

y
−

v

(e) General case.

Figure 2 (Dashed) stand-in edges entailed by a VACW diamond structure.

Finally, the wait edge (V, C:−6, A) represents the conditional constraint that, as long as C

remains unexecuted, V must wait until 6 after A. Its stand-in edge (V, −1, A) represents
that V must unconditionally wait at least 1 after A, since C cannot execute before then.

More generally, for any contingent link (A, x, y, C), the LC edge (A, c:x, C) entails the
stand-in edge (A, y, C); the UC edge (C, C:−y, A) entails the stand-in edge (C, −x, A); and
any wait edge (V, C:−v, A) entails the stand-in edge (V, −x, A), as seen in Figure 1.

Stand-in edges entailed by VACW diamond structures. The minDispESTNU algorithm
uses its genStandIns helper algorithm to compute stand-in edges arising from diamond
structures. Figure 2a shows a typical VACW diamond, which involves the LC and UC edges
associated with a contingent link (A, 1, 10, C), a wait edge (V, C:−6, A), and some ordinary
edges aimed at a timepoint W . Figure 2b shows that in the projection where C − A = 1, the
shortest path from V to W has length 8, and the shortest path from V to C has length 0.
Figure 2c shows that in the projection where C − A = 10, the shortest path from V to W

has length 7, and the shortest path from V to C has length 4. Figure 2d introduces (dashed)
stand-in edges to reflect that, across all projections, where C − A ∈ [1, 10], the shortest
path from V to W has length at most 8, while the shortest path from V to C has length at
most 4. These stand-in edges represent ordinary constraints that must be satisfied by any
valid dynamic execution strategy. Figure 2e shows the general case where the stand-in edge
from V to W has length θ = max{δ − v, γ}, and the stand-in edge from V to C has length
y − v, the latter being termed an application of the VAC rule [9].

Stand-in edges entailed by nested diamonds. The main focus of genStandIns is on
computing stand-in edges entailed by individual VACW diamond structures. But diamond
structures can also be nested. In particular, in any VACW diamond, the subpath from A

to W may contain a stand-in edge derived from a nested diamond. However, because the
activation timepoints appearing in a nested diamond structure are subject to a strict order (as
shown elsewhere [9]), diamonds can only be nested to a maximum depth of k. For this reason,
the genStandIns algorithm does up to k iterations, each addressing one level of potential
nesting. Each iteration of genStandIns involves two steps: (1) exploring O(kn2) individual
VACW diamonds (k choices for the contingent link, and n choices for both V and W ); and
then (2) calling Johnson’s algorithm [2] to update the APSP distance matrix to accommodate
stand-in edges generated by the first step. Figure 3 shows how genStandIns deals with
a sample quadruply nested diamond structure. The innermost diamond, V0 A0 C0 W , is
explored during the first iteration, yielding the blue, dashed stand-in edge (V0, 37, W ), shown



L. Hunsberger and R. Posenato 11:5

W

A0C0

V0

40

35

C
0 :−

3

c0:1
C0:−10

A1C1

V1

−2
33

C
1 :−

3

c1:1
C1:−10

A2C2

V2

−225

C
2 :−

3

c2:1
C2:−10

A3C3

V3

U

24

−2

−2

C
3 :−

3

c3:1
C3:−10

(a) Initial.

W

V0

A1C1

V1

−2
33

C
1 :−

3

c1:1
C1:−10

A2C2

V2

−225

C
2 :−

3

c2:1
C2:−10

A3C3

V3

U

24

−2

−2

C
3 :−

3

c3:1
C3:−10

37

35

(b) Iteration 1.

W

V1

A2C2

V2

−225

C
2 :−

3

c2:1
C2:−10

A3C3

V3

U

24

−2

−2
C

3 :−
3

c3:1
C3:−10

33

31

(c) Iteration 2.

W

V2

A3C3

V3

U

24

−2

−2

C
3 :−

3

c3:1
C3:−10

28

26

(d) Iteration 3.

W

V3

U

24

22

−2

(e) Iteration 4.

Figure 3 How genStandIns processes nested diamonds, where stand-in edges derived from
individual VACW structures are shown in blue, and those computed by Johnson’s algorithm in red.

in Figure 3b, where θ0 = max{40 − 3, 35} = 37.1 Johnson’s algorithm then updates the
APSP distance matrix, setting d(A1, W ) = 35, indicated by the red, dotted line in Figure 3b.
The next iteration considers V1 A1 C1 W , which uses the new subpath from A1 to W of
length 35 to generate the blue, dashed stand-in edge (V1, 33, W ), shown in Figure 3c, where
θ1 = max{35 − 3, 33} = 33. Johnson’s algorithm then updates d(A2, W ) to 31, indicated by
the red, dotted line in Figure 3c. The third iteration generates the blue, dashed stand-in edge
(V2, 28, W ), since θ2 = max{31−3, 25} = 28; and the red, dotted line from A3 to W indicates
the subsequent update d(A3, W ) = 26. Finally, as shown in Figure 3d, the last iteration
generates the blue, dashed stand-in edge (V3, 24, W ), since θ3 = max{26 − 3, 24} = 24; while
the red, dotted line from U to W indicates the update d(U, W ) = 22.

The complexity of minDispESTNU is driven by the O(kn3)-time complexity of genStandIns,
which derives from its up to k calls of Johnson’s algorithm on up to O(n2) edges.

2.1 Canonical Form of Nested Diamond Structures
The authors presented a novel, rigorous theory of the canonical form of nested diamond
structures [9] that provides a foundation for understanding the dispatchability of ESTNUs
and formally proving the correctness of the minDispESTNU algorithm. It also highlights features
of such structures that suggest new approaches to solving the MinDispESTNU problem.

1 As seen in Figure 1, each labeled edge itself entails a corresponding stand-in edge, not shown in Figure 3.
Those stand-in edges ensure that there are ordinary subpaths from each Ai to W , and from each Ci

to W , which implies that all of the VACW diamonds in Figure 3 would be processed during each
iteration of genStandIns. However, the stand-in edges shown in Figure 3 are the strongest ones.

TIME 2025



11:6 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

U Aj Aj−1 Aj−2 Ah+1 AhVj Vj−1 Vj−2 Vh

Cj Cj−1 Cj−2 Ch+1 Ch W

Figure 4 Canonical form of a nested diamond structure Suw (contingent links in brown, waits in
green, negative edges in red, non-negative edges in blue, and an ordinary vee-path in black).

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W1 W2 W3

C
i
:−

8
C

i
:−

5 C
i :−

2

101 6 52 3

2

−1

3

−3

2

−3

|P1|ωci
= |UV1Ai|ωci

= −3 + max{−8, −ωci
}

|P2|ωci
= |UV2Ai|ωci

= −5 + max{−5, −ωci
}

|P3|ωci
= |UV3Ai|ωci

= −6 + max{−2, −ωci
}

min{|P1|ωci
, |P2|ωci

, |P3|ωci
}

0 1 2 3 4 5 6 7 8 9 10 11
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

ωci

Figure 5 Three negOrdWait paths from U to Ai (in purple, green and blue) that determine the
values of d∗(U, W1), d∗(U, W2) and d∗(U, W3), indicated by red dotted arrows. Stand-in edges are
dashed. Other stand-in edges (e.g., from V1 to W2) are not shown.

Central to any such algorithm is computing, for each pair of timepoints U and W , the
strongest ordinary constraint entailed by ESTNU paths from U to W , notated as d∗(U, W ).
For the ESTNU in Figure 3, d∗(U, W ) = 22 (cf. the red dotted line in Figure 3e). The
theory confirms that each value d∗(U, W ) that derives from nested diamonds must have an
associated structure, notated as Suw, whose form is illustrated in Figure 4. In particular,
Suw comprises a sequence of contingent links, shown in brown, connected by different kinds
of paths. From each contingent timepoint Ci, there is a path of non-negative ordinary edges
from Ci to W , shown in blue. Between consecutive pairs of activation timepoints Af and Ag

there is a negOrdWait path (i.e., a path comprising zero or more negative ordinary edges,
shown in red, followed by a single wait edge, shown in green). There is also a negOrdWait
path from U to the leftmost activation timepoint Aj . Finally, the path from the rightmost
activation timepoint Ah to W is an ordinary path, shown in black, that is a shortest vee-path
(SVP). The path from U to W that passes through all of the activation timepoints is called
the spine of the structure. For this paper, the following properties are particularly important:

In the situation/projection where each contingent duration along the spine satisfies
Ci − Ai = δi − γi = d∗(Ai, W ) − d(Ci, W ), the length of the spine is d∗(U, W ).
The negOrdWait paths between consecutive pairs of activation timepoints, across all
canonical structures, puts the entire set of activation timepoints into a strict partial order.

2.2 Error in the fastMinDispESTNU Algorithm
Recent work [8] presented an algorithm, called fastMinDispESTNU, that aimed to take ad-
vantage of certain features of nested diamonds. In particular, it exploited the fact that
activation timepoints participating in nested diamonds fall into a strict partial order. That
enabled processing them in a single iteration, instead of the k iterations in the minDispESTNU

algorithm. Unfortunately, that work made an incorrect assumption. Although it is true that
for any given canonical structure it suffices to include only one wait edge terminating at each
activation timepoint along the spine, it is not the case that all of the canonical structures



L. Hunsberger and R. Posenato 11:7

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W1

101

C
i
:−

8
C

i
:−

5 C
i :−

2

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W1

ωci = 9

101

−
8

−
5 −

2−1

2 5 8

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W2

62

C
i
:−

8
C

i
:−

5 C
i :−

2

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W2

ωci = 4

62

−
4

−
4 −

2

−3

2

2 4

Figure 6 Computing d∗(U, W1) (left) and d∗(U, W2) (right) by back-propagation in the OW-
graph.

that include some activation timepoint Ai necessarily employ the same wait edge terminating
at Ai. Instead, as illustrated in Figure 5, different wait edges terminating at Ai may be
needed in different canonical structures. In the figure, there are three overlapping canonical
structures that each use the contingent link (Ai, 1, 10, Ci): one from U to W1 (in purple),
one from U to W2 (in green), and one from U to W3 (in blue). For d∗(U, W1), the projection
where Ci − Ai = d∗(Ai, Wi) − d(Ci, W1) = 10 − 1 = 9 is determinative; and in that projection
the shortest path from U to W1 is through V1 with length d∗(U, W1) = −1, indicated by the
red dotted arrow. The dashed, purple stand-in edge (V1, 2, W1) has length 2, since the wait
edge (V1, Ci:−8, Ai) has length −8 in that projection. For d∗(U, W2), the projection where
Ci − Ai = 6 − 2 = 4 is determinative; and in that projection, the shortest path from U to W2
is through V2 with length d∗(U, W2) = −3. The green, dashed stand-in edge (V2, 2, W2) has
length 2, since the wait edge (V2, Ci:−5, Ai) has length -4 in that projection. For d∗(U, W3),
the projection where Ci − Ai = 5 − 3 = 2 is determinative; and in that projection, the
shortest path from U to W3 is through V3 with length d∗(U, W3) = −3. The blue, dashed
stand-in edge (V3, 3, W3) has length 3, since the wait edge (V3, Ci:−2, Ai) has length −2 in
that projection. The righthand side of Figure 5 plots the lengths of the three paths from U

to Ai as functions of the contingent duration ωci
= Ci − Ai. It confirms that for different

values of ωci , different paths are shortest between U and Ai. As a result, each d∗(U, Wf )
value is based on a different path from U to Ai.

In general, for each terminus Wf , the value d∗(U, Wf ) is determined by the projection
where Ci − Ai = d∗(Ai, Wf ) − d(Ci, Wf ). Since these durations/projections may be different
for different Wf , the wait edges terminating at Ai may provide different shortest vee-paths
in different projections. Although this example shows that the fastMinDispESTNU algorithm
does not necessarily solve the MinDispESTNU problem, it also suggests an alternative way
to approach the computation of d∗(U, Wf ) values that results in a more efficient (and correct)
algorithm for solving the MinDispESTNU problem, which is the subject of the next section.

3 A New Approach to Generating Stand-in Edges

Figure 6 illustrates our new approach to efficiently generating stand-in edges derived from
nested diamond structures. It uses the following feature of the canonical form of nested dia-
monds: in the situation where the duration of each participating contingent link (Ai, xi, yi, Ci)
is given by Ci − Ai = δi − γi = d∗(Ai, W ) − d(Ci, W ), the length of the path from U to W

along the spine of the canonical structure equals d∗(U, W ). Crucially, these durations are
fixed for a given W . Therefore, the problem of activation timepoints, Aj and Ai, that are
consecutive in multiple overlapping canonical structures employing different wait edges in

TIME 2025



11:8 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

different structures, can effectively be sidestepped by computing all of the d∗(U, W ) values
for a fixed W . To do so, our new algorithm backtracks from W along shortest paths in the
OW-graph (i.e., the graph comprising the ordinary and wait edges from the ESTNU) where
wait edges, as they are encountered, are projected using the above-mentioned durations.

On the left of the figure, backtracking from W1 encounters the activation timepoint
Ai, where d∗(Ai, W1) = 10 and d(Ci, W1) = 1, where the determinative duration is ωci =
10 − 1 = 9. In this situation, the wait edges terminating at Ai project onto the red edges
shown in the middle-left of the figure. In this projection, the path UV1AiW1 is shortest, with
a length of −3−8+10 = −1, indicated by the red, dotted arrow. The corresponding stand-in
edge from V1 to W1 is shown as dashed and purple. The dashed stand-in edges emanating
from V2 (green) and V3 (blue) are also generated, but do not contribute to d∗(U, W1).

On the righthand side of the figure, backtracking from W2 encounters Ai and yields the
duration ωci

= 6 − 2 = 4. In this situation, the wait edges project to the red edges shown on
the far right. Although each wait edge generates a stand-in edge, the one from V2 to W2
provides the shortest path (dotted, red) from U to W2, which determines d∗(U, W2) = −3.

Pseudocode for our new algorithm for generating stand-in edges entailed by nested
diamond structures is given as Algorithm 1. (Appendix A provides pseudocode for all
minDispESTNU procedures updated to use Algorithm 1.) Algorithm 1 works as follows.

Initialization (Lines 1–3). The getInitStandins algorithm (a helper for minDispESTNU)
is called to generate stand-in edges entailed by individual labeled edges (cf. Figure 1) or
from applications of the VAC rule (cf. Figure 2e). Next, the Bellman-Ford algorithm [2]
is called to compute a solution to the STN, Gow, that comprises the ordinary and wait
edges from G, ignoring any alphabetic labels. That solution, f , is then used as a potential
function to re-weight the edges in Gow to have non-negative values, thereby enabling the
use of Dijkstra’s algorithm [2] to guide the subsequent back-tracking from each W . Finally,
Johnson’s algorithm [2] is used to compute the initial distance matrix for ordinary paths.

Main foreach Loop (Lines 4–30). Each iteration of the main foreach loop processes a
single timepoint W . It uses a modified version of Dijkstra’s algorithm to back-propagate
from W through the edges in the Gow graph, aiming to update the distance function d so
that by the end of the iteration, for each timepoint T , d(T, W ) = d∗(T, W ), and all needed
stand-in edges terminating at W have been generated.
Iteration initialization (Lines 5–8). First, a minimum priority queue, Q, is initialized. For

each timepoint T in the queue, its priority is the current estimate of d∗(T, W ), re-weighted
by the potential function f . In particular, the priority of T is given by: f(T )+δtw −f(W ).
Initially, the queue contains only W , with a priority of 0. The n-vector, priority enables
anytime access to the priorities of timepoints in the queue.
Next, a set needStandIn2W is initialized. It is used to keep track of timepoints T for
which a stand-in edge from T to W will need to be generated. If the current estimate of
d∗(T, W ) derives from a path (1) that forms the spine of a canonical diamond structure;
and (2) whose first edge is a wait edge, then T is added to needStandIn2W , at Line 26.
However, should subsequent propagation discover a shortest path from T to W for which
no stand-in edge is needed, then T is removed from needStandIn2W , at Line 16. Since
the status of a given timepoint T may change during the algorithm, stand-in edges are
not actually accumulated until the end of the iteration, at Lines 28–30.

Iteration Body (Lines 9–30). The body of each iteration is a while loop that carries out
the back-propagation from W . At Line 10, a timepoint T is extracted from the queue,
along with its priority δ∗

tw. At Line 11, the value of d∗(T, W ) is extracted from δ∗
tw by



L. Hunsberger and R. Posenato 11:9

Algorithm 1 betterGenStandIns: Better Algorithm for Generating Stand-in Edges Entailed
by Nested Diamonds.

Input: G = (T , Eo ∪ Elc ∪ Euc ∪ Ew), a dispatchable ESTNU graph
Output: (Esi , d), where Esi is a set of stand-in edges; and d is the updated distance matrix

1 Esi ··= getInitStandins(G) //Stand-in edges entailed by individual labeled edges and VAC rule
2 f ··= bellmanFord(Gow) //Potential function for OW-graph, Gow = (T , Eo ∪ Esi ∪ Ew)
3 d ··= johnson((T , Eo ∪ Esi)) //Compute the APSP distance matrix for (T , Eo ∪ Esi)
4 foreach W ∈ T do

//Init min priority queue, where priority(T ) = current estimate of d∗(T, W ) re-weighted by f

5 Q ··= new min priority queue
6 priority ··= (∞, . . . , ∞) //For tracking priority of timepoints in the queue
7 Q.insert(W, 0); priority[W ] ··= 0
8 needStandIn2W ··= ∅ // T ∈ needStandIn2W means “need stand-in edge from T to W ”
9 while ¬Q.empty() do

10 (T, δ∗
tw) ··= Q.extractMin() //δ∗

tw = d∗(T, W ) reweighted by potential function f

11 δtw ··= −f(T ) + δ∗
tw + f(W ) //δtw = d∗(T, W ) (un-reweighted)

12 d(T, W ) ··= δtw //Update distance matrix
13 foreach (R, δrt , T ) ∈ (Eo ∪ Esi) do //Back-propagate along ordinary edges
14 δ∗

rw ··= (f(R) + δrt − f(T )) + δ∗
tw //Possible new estimate of d∗(R, W ) (re-weighted)

15 if δ∗
rw < priority[R] then //New estimate of d∗(R, W ) shorter

16 needStandIn2W ··= needStandIn2W \ {R} //No stand-in edge RW needed
17 Q.insertOrDecreaseKey(R, δ∗

rw); priority[R] ··= δ∗
rw

18 if T = A is an activation timepoint for a contingent link (A, x, y, C) then
19 ωc ··= d(A, W ) − d(C, W ) //ωc = contingent duration that determines d∗ values
20 if ωc ∈ (x, y] then //Condition for generating a non-redundant stand-in edge
21 foreach (V, C:−v, A) ∈ Ew do //Back-propagate along incoming wait edges
22 vωc

··= max{−ωc, −v} //Length of wait edge in projection ωc

23 v∗
ωc

··= f(V ) + vωc − f(A) //Re-weighted length in projection ωc

24 δ∗
vw ··= v∗

ωc
+ priority[A] //δ∗

vw = possible new estimate of d∗(V, W )
25 if δ∗

vw ≤ priority[V ] then
26 needStandIn2W ··= needStandIn2W ∪ {V } //Need stand-in edge V W

27 Q.insertOrDecreaseKey(V, δ∗
vw); priority[V ] ··= δ∗

vw

28 foreach T ∈ needStandIn2W do
29 δtw ··= −f(T ) + priority[T ] + f(W ) //Actual value of d∗(T, W )
30 Esi ··= Esi ∪ {(T, δtw, W )} //Accumulate stand-in edge

31 return (Esi , d)

undoing the re-weighting using the potential function f . (The next section proves the
invariant that when a timepoint T is popped from the queue, its priority equals d∗(T, W ),
re-weighted by the potential function f .) That value is then used to update the distance
function d, at Line 12.
Next, Lines 13–17 back-propagate along each incoming ordinary edge (R, δrt , T ). First, at
Line 14, a possible new estimate of d∗(R, W ) using a path from R to T to W , re-weighted
using the potential function f , is computed and stored in δ∗

rw. (Note that f(R)+δrt −f(T )
is the re-weighted length of the incoming edge from R to T .) If that estimate is less than
the current priority of R (cf. Line15), then R is removed from needStandIn2W to reflect
that this newly found shortest path from R to W does not begin with a wait edge and,
hence, does not require a stand-in edge (cf. Line 16). At Line 17, R is inserted into the
queue and its priority is updated.

TIME 2025



11:10 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

Lines 18–27 carry out the back-propagation along any incoming wait edges, which can only
happen if W = A is an activation timepoint for a contingent link (A, x, y, C). Line 19
computes the value of the contingent duration ωc = C − A = δ − γ = d∗(A, W ) − d(C, W )
that determines whether any stand-in edges terminating at W can use this contingent link
(cf. Figures 2e and 6). Note that the algorithm relies on the fact that d(A, W ) = d∗(A, W )
at this point. Line 20 checks whether ωc ∈ (x, y], since otherwise, as shown in Claim 10 of
Hunsberger and Posenato [9], it is not necessary to back-propagate along any wait edge
coming in to A (i.e., ordinary edges suffice). Line 22 computes the projection of the wait
edge in the situation where C − A = ωc. Line 23 re-weights the projected length using
the potential function. Line 24 computes the length of the path from V to T to W in the
re-weighted graph. If that length less than or equal to the current key of V in the queue
(Line 25), then V is added to needStandIn2W (at Line 26) to reflect that a stand-in edge
should be generated; and the key for V is updated in the priority queue (at Line 27).

Finally, at the end of the iteration, stand-in edges for all of the flagged timepoints are
generated at Lines 28–30.

Correctness of the betterMinDispESTNU Algorithm

The correctness of betterMinDispESTNU relies on the following properties of the canonical
form of nested diamond structures that we have rigorously presented elsewhere [9]. (The
claims mentioned below are from that work.) First, for each pair of timepoints U and W , there
is a canonical form Suw that determines the value d∗(U, W ). Furthermore, d∗(U, W ) equals the
length of the spine of that structure in the situation where each Ci−Ai = d∗(Ai, W )−d(Ci, W ).
(See the proof of Claim 8.) Second, using the same techniques as in the proof of Claim 7,
we get that for a fixed W , there is a single situation ω that is simultaneously maximal
for all d∗(U, W ) values (i.e., in the projection determined by ω, the length of the spine of
each structure Suw equals d∗(U, W )). For each contingent link (A, x, y, C) appearing in any
canonical structure Suw from any U to the fixed timepoint W , ω specifies the duration,
ωc = C − A = d∗(A, W ) − d(C, W ). Therefore, the betterGenStandIns algorithm, as it
backtracks from W , can be understood as incrementally computing the durations, ωc = C −A,
for each activation timepoint A that it encounters, based on the accumulated values, d∗(A, W )
and d(C, W ). It then computes the length of each incoming wait edge (V, C:−v, A) in that
projection (i.e., max{−v, −ωc}), which is its length in the spine of any structure that uses it.

Worst-Case Time Complexity of the betterMinDispESTNU Algorithm

First, let m = |Eo|, k = |Elc| = |Euc| and r = |Ew| ≤ nk be the numbers of ordinary, lower-case,
upper-case, and wait edges, respectively, in the input ESTNU. Generating stand-in edges for
individual labeled edges along with those derived from the VAC rule add 2k+2r more ordinary
edges. Afterward, betterMinDispESTNU is applied to the OW-graph which has m + 2k + 3r

edges. For each timepoint W , betterMinDispESTNU uses a Dijkstra-like back-propagation
that runs in O((m + 2k + 3r + nk) + n log n) time. (At most nk additional stand-in edges
can be added during the course of the algorithm.) Therefore, its n iterations can be done
in O((m + 2k + 3r + nk)n + n2 log n) time, which reduces to O(mn + n2k + n2 log n). For
dense graphs, where m = O(n2), this reduces to O(n3), but for sparse graphs, for example,
where m = O(n log n) and k = O(log n), it reduces to O(n2 log n).



L. Hunsberger and R. Posenato 11:11

4 Empirical Evaluations

We implemented the betterMinDispESTNU algorithm containing the procedure Algorithm 1
in Java – publicly available as part of the CSTNU Tool framework [18] – and evaluated
its performance using the STNU benchmark published by Posenato [17]. This benchmark
was created using the STNU random generator of the CSTNU Tool framework. The public
benchmark comprises 1000 instances, all having the same topology, the worker-lanes topology,
which simulates the worker lanes of business process modeling [16]. In this topology, the set
of contingent links is divided into five lanes, with each lane representing a sequence of tasks
that must be executed by an agent. The contingent links within each lane are interspersed
with ordinary constraints that specify delays between the end of one task and the start of the
next. Additionally, there are extra constraints between nodes in different lanes to represent
temporal-coordination constraints among tasks executed by different agents.

For each possible number of nodes n ∈ {500, 1000, 1500, 2000, 2500}, the benchmark
contains 200 DC instances and 200 non-DC instances, each having k = n/10 contingent links
and, on average, 6.56n − 2.56k − 10 edges (i.e., O(n) edges). We considered the first 30
instances for each value of n in the benchmark.

All of the experiments were executed on an OpenJDK JVM 21 configured with 16 GB of
heap memory (parameters -Xmx16G and -Xms16G), on a Linux computer equipped with two
AMD Opteron™ 4334 processors running at 3.1 GHz (6200 BogoMIPS) and 64 GB RAM.

Each DC STNU G was first pre-processed by the FDSTNU dispatchability algorithm to
generate an equivalent dispatchable ESTNU, Gfd. Then, the dispatchable ESTNU, Gfd, was
fed as input to minDispESTNU and betterMinDispESTNU to generate equivalent dispatchable
ESTNUs having minimal numbers of edges (called µESTNUs) to: (1) confirm that the output
µESTNUs were identical; and (2) compare the average execution times.

Surprisingly, during the execution of minDispESTNU, we observed that no instances from
the considered benchmarks contain any nested diamond structures. Consequently, there were
no opportunities for the betterMinDispESTNU algorithm to outperform minDispESTNU.

Figure 7a shows the average numbers of edges in the input STNUs (black), the dispatchable
ESTNUs generated FDSTNU (teal), and the minimal dispatchable ESTNUs produced by
minDispESTNU (dotted red) and betterMinDispESTNU (dashed blue). (The dotted red and
dashed blue lines in the figure are completely overlapping and, hence, difficult to distinguish.)
The error bars denote 95% confidence intervals, which are scarcely visible due to the
minimal standard deviations. The findings reveal that the average numbers of edges in the
minimized networks are approximately one order of magnitude smaller than in the ESTNUs
generated by FDSTNU. Since the numbers of edges in dispatchable networks directly impact the
performance of real-time execution algorithms, these results demonstrate that minDispESTNU

and betterMinDispESTNU generate dispatchable networks that can be more efficiently executed.
We also confirmed that they output the same minimal networks.

Figure 7b plots the computational cost associated with generating µESTNUs. The lower
teal line shows the average execution times for FDSTNU to generate equivalent dispatchable
networks that are typically not µESTNUs. The upper two (red and blue) lines show the
average execution times for generating equivalent dispatchable networks having minimal
numbers of edges, obtained by applying minDispESTNU or betterMinDispESTNU to Gfd. As
expected, if there are no nested diamond structures, then both algorithms will have essentially
equivalent performance since they both end up doing two calls to Johnson’s algorithm (or a
Johnson-like algorithm).

TIME 2025



11:12 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

500 1,000 1,500 2,000103

104

105

Number of nodes, n

N
um

be
r

of
ed

ge
s,

m

FDSTNU
minDispESTNU

betterMinDispESTNU

Input STNU

(a) Number of edges in the ESTNUs generated by
FDSTNU, minDispESTNU and betterMinDispESTNU .

500 1,000 1,500 2,000
0.6s

8s
15s

50s
90s
3m

10m

30m

Number of nodes, n

Av
er

ag
e

ex
ec

ut
io

n
tim

e

minDispESTNU(FDSTNU)
betterMinDispESTNU(FDSTNU)
FDSTNU (not minimal disp.)

(b) minDispESTNU and betterMinDispESTNU perfor-
mance versus network size.

500 1,000 1,500 2,000

0.6s

10s

30s

90s

5m

10m
15m

30m

Number of nodes, n

Av
er

ag
e

ex
ec

ut
io

n
tim

e

minDispESTNU(FDSTNU)
betterMinDispESTNU(FDSTNU)
FDSTNU (not minimal disp.)

(c) minDispESTNU and betterMinDispESTNU perfor-
mance versus network size for instances containing
a depth-4 nested diamond structure (cf. Figure 3a).

500 1,000 1,500 2,000
0.6s

10s

30s

90s

5m
10m
15m
30m

Number of nodes, n

Av
er

ag
e

ex
ec

ut
io

n
tim

e

minDispESTNU(FDSTNU)
betterMinDispESTNU(FDSTNU)
FDSTNU (not minimal disp.)

(d) minDispESTNU and betterMinDispESTNU perfor-
mance versus network size for instances containing
a depth-6 nested diamond structure.

Figure 7 Results of the empirical evaluation of the betterMinDispESTNU algorithm.

To assess the impact of nested diamond structures on the performance of the two
algorithms, we created two new benchmarks, one comprising random STNU instances that
each contain one copy of the depth-4 nested diamond structure depicted in Figure 3a, the
other similar to the first, but where the diamond structure has depth 6.

The presence of the depth-4 nested diamond structure in each instance requires the
genStandIns helper algorithm used by minDispESTNU to perform up to five iterations, each
taking O(mn + n2 log n) time, to generate the appropriate stand-in edges. In contrast,
betterMinDispESTNU replaces genStandIns with Algorithm 1 (betterGenStandIns) whose
worst-case time complexity is only O(mn+n2k+n2 log n), regardless of how deeply nested the
diamond structure may be. We therefore expected to see an especially pronounced difference
in average execution times for instances having the depth-6 nested diamond structure.

The results are presented in Figures 7c and 7d. The execution time of betterMinDispESTNU

(FDSTNU) (in blue) is significantly less than that of minDispESTNU (FDSTNU) (in red) across all
instances. In addition, for instances having 2000 nodes, the execution time of minDispESTNU

(FDSTNU) exceeded the 30-minute timeout. Such results confirm that the betterMinDispESTNU

algorithm is significantly more efficient than the minDispESTNU algorithm when the input
instances contain nested diamond structures, even when the number of nested diamonds is
small. Regarding the depth-6 nested diamond structure, we discovered that, on average, the



L. Hunsberger and R. Posenato 11:13

presence of random constraints among nodes in different lanes and those in the diamond
structure sometimes entailed stronger constraints than the stand-in edges associated with
the diamond structure and, therefore, the genStandIns helper for minDispESTNU performs
on average five internal iterations, the same as for instances having the quadruply-nested
diamond structure.

5 Conclusions

Generating an equivalent dispatchable ESTNU having a minimal number of edges is an
important problem for applications involving actions with uncertain, but bounded durations.
The number of edges in the dispatchable network is important because it directly impacts the
real-time computations required during execution. Therefore, for time-sensitive applications
it is important to generate an equivalent dispatchable ESTNU having a minimal number
of edges, which we call a µESTNU. This paper modified the only existing algorithm for
generating µESTNUs, making it an order-of-magnitude faster. It also showed that a second
previously presented algorithm does not in fact solve the MinDispESTNU problem. The new
algorithm, betterMinDispESTNU, reduced the worst-case time-complexity from O(kn3) to
O(mn + n2k + n2 log n) which, for sparse networks, reduces to O(n2 log n).

References

1 Massimo Cairo, Luke Hunsberger, and Romeo Rizzi. Faster Dynamic Controllablity Checking
for Simple Temporal Networks with Uncertainty. In 25th International Symposium on Temporal
Representation and Reasoning (TIME-2018), volume 120 of LIPIcs, pages 8:1–8:16, 2018.
doi:10.4230/LIPIcs.TIME.2018.8.

2 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, 4th Edition. MIT Press, 2022. URL: https://mitpress.mit.edu/9780262046305/
introduction-to-algorithms.

3 Rina Dechter, Itay Meiri, and J. Pearl. Temporal Constraint Networks. Artificial Intelligence,
49(1-3):61–95, 1991. doi:10.1016/0004-3702(91)90006-6.

4 Luke Hunsberger. Fixing the semantics for dynamic controllability and providing a more
practical characterization of dynamic execution strategies. In 16th International Symposium
on Temporal Representation and Reasoning (TIME-2009), pages 155–162, 2009. doi:10.1109/
TIME.2009.25.

5 Luke Hunsberger and Roberto Posenato. Speeding up the RUL− Dynamic-Controllability-
Checking Algorithm for Simple Temporal Networks with Uncertainty. In 36th AAAI Conference
on Artificial Intelligence (AAAI-22), volume 36-9, pages 9776–9785. AAAI Pres, 2022. doi:
10.1609/aaai.v36i9.21213.

6 Luke Hunsberger and Roberto Posenato. A Faster Algorithm for Converting Simple Tem-
poral Networks with Uncertainty into Dispatchable Form. Information and Computation,
293(105063):1–21, 2023. doi:10.1016/j.ic.2023.105063.

7 Luke Hunsberger and Roberto Posenato. Converting Simple Temporal Networks with Un-
certainty into Minimal Equivalent Dispatchable Form. In Proceedings of the Thirty-Fourth
International Conference on Automated Planning and Scheduling (ICAPS 2024), volume 34,
pages 290–300, 2024. doi:10.1609/icaps.v34i1.31487.

8 Luke Hunsberger and Roberto Posenato. Faster Algorithm for Converting an STNU into
Minimal Dispatchable Form. In 31st International Symposium on Temporal Representation
and Reasoning (TIME 2024), volume 318 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 11:1–11:14, 2024. doi:10.4230/LIPIcs.TIME.2024.11.

TIME 2025

https://doi.org/10.4230/LIPIcs.TIME.2018.8
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms
https://doi.org/10.1016/0004-3702(91)90006-6
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1016/j.ic.2023.105063
https://doi.org/10.1609/icaps.v34i1.31487
https://doi.org/10.4230/LIPIcs.TIME.2024.11


11:14 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

9 Luke Hunsberger and Roberto Posenato. Canonical Form of Nested Diamond Structures.
Technical Report 111/2025, Dipartimento di Informatica - Università degli Studi di Verona,
May 2025. URL: https://iris.univr.it/handle/11562/1163111.

10 Paul Morris. A Structural Characterization of Temporal Dynamic Controllability. In Principles
and Practice of Constraint Programming (CP-2006), volume 4204, pages 375–389, 2006.
doi:10.1007/11889205_28.

11 Paul Morris. Dynamic controllability and dispatchability relationships. In Int. Conf.
on the Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search (CPAIOR-2014), volume 8451 of LNCS, pages 464–479. Springer, 2014. doi:
10.1007/978-3-319-07046-9_33.

12 Paul Morris. The Mathematics of Dispatchability Revisited. In 26th International Conference
on Automated Planning and Scheduling (ICAPS-2016), pages 244–252, 2016. doi:10.1609/
icaps.v26i1.13739.

13 Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with temporal
uncertainty. In 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-2001), volume 1, pages
494–499, 2001. URL: https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf.

14 Paul H. Morris and Nicola Muscettola. Temporal dynamic controllability revisited. In 20th
National Conference on Artificial Intelligence (AAAI-2005), pages 1193–1198, 2005. URL:
https://www.aaai.org/Papers/AAAI/2005/AAAI05-189.pdf.

15 Nicola Muscettola, Paul H. Morris, and Ioannis Tsamardinos. Reformulating temporal plans
for efficient execution. In Proceedings of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning, KR’98, pages 444–452, 1998.

16 Object Management Group (OMG). Business process definition metamodel (bpdm), Beta 1.
http://www.omg.org, 2007.

17 Roberto Posenato. STNU Benchmark version 2020, 2020. URL: https://profs.scienze.
univr.it/~posenato/software/cstnu/benchmarkWrapper.

18 Roberto Posenato. CSTNU Tool: A Java library for checking temporal networks. SoftwareX,
17:100905, 2022. doi:10.1016/j.softx.2021.100905.

19 Ioannis Tsamardinos, Nicola Muscettola, and Paul Morris. Fast Transformation of Temporal
Plans for Efficient Execution. In 15th National Conf. on Artificial Intelligence (AAAI-1998),
pages 254–261, 1998. URL: https://cdn.aaai.org/AAAI/1998/AAAI98-035.pdf.

A Pseudocode

Algorithm 2 betterMinDispESTNU: Solving the MinDispESTNU problem.

Input: G = (T , Eo ∪ Elc ∪ Euc ∪ Eucg), dispatchable ESTNU
Output: A µESTNU for G
//Compute the set of (ordinary) stand-in edges

1 (Esi
o , d) ··= betterGenStandIns(T , Eo ∪ Elc ∪ Euc ∪ Eucg)

//STN dispatchability on ordinary edges, reorienting labeled edges
2 (T , E∗

o , Êl, Êu, Êucg) ··= dispSTN(T , Eo ∪ Esi
o , Elc, Euc, Eucg)

3 Ê∗
o ··= E∗

o \Esi
o //Remove any remaining stand-in edges from E∗

o

4 Êucg ··= Êucg\ markWaits(Tc, Êucg, d) //Remove dominated waits
5 return G = (T , Ê∗

o ∪ Êl ∪ Êu ∪ Êucg)

https://iris.univr.it/handle/11562/1163111
https://doi.org/10.1007/11889205_28
https://doi.org/10.1007/978-3-319-07046-9_33
https://doi.org/10.1007/978-3-319-07046-9_33
https://doi.org/10.1609/icaps.v26i1.13739
https://doi.org/10.1609/icaps.v26i1.13739
https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf
https://www.aaai.org/Papers/AAAI/2005/AAAI05-189.pdf
https://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper
https://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper
https://doi.org/10.1016/j.softx.2021.100905
https://cdn.aaai.org/AAAI/1998/AAAI98-035.pdf


L. Hunsberger and R. Posenato 11:15

Algorithm 3 getInitStandins: Generate stand-in edges entailed by individual labeled edges.

Input: G = (Tx ∪ Tc, Eo ∪ Elc ∪ Euc ∪ Eucg), a dispatchable ESTNU
Output: The set Esi

o of ordinary stand-in edges for the individual labeled edges in G
Side Effect : Modifies G by fixing any weak or misleading wait edges

1 Esi
o ··= ∅

2 foreach (A, x, y, C) ∈ L do //Collect stand-in edges for LC, UC and wait edges
3 Esi

o ··= Esi
o ∪ {(A, y, C), (C, −x, A)} //Collect stand-in edges for LC and UC edges

4 foreach (V, C:−v, A) ∈ Eucg do
5 if −v ≥ −x then //Replace weak wait edge by an ordinary edge
6 Eucg ··= Eucg\{(V, C:−v, A)}; Eo ··= Eo ∪ {(V, −v, A)}
7 else
8 if −v < −y then //Fix misleading wait by adjusting its wait time
9 Eucg ··= Eucg \ {(V, C:−v, A)} ∪ {V, C:−y, A)}

//Add stand-in edges for wait edge and from the VAC rule
10 Esi

o ··= Esi
o ∪ {(V, −x, A), (V, max{y − v, 0}, C)}

11 return Esi
o

Algorithm 4 markWaits: Mark wait edges for removal.

Input: Tc, contingent TPs; Êucg, wait edges; d, distance fn.
Output: A set Em

w ⊆ Êucg of wait edges marked for removal
1 Em

w ··= ∅
2 foreach (V, C:−v, A) ∈ Êucg do //Collect waits dominated by ordinary paths, UC edges, or

other waits
3 if d(V, A) ≤ −v or d(V, C) < 0 then
4 Em

w ··= Em
w ∪ {(V, C:−v, A)} //Dominated by an ordinary path or the UC edge

5 else
6 foreach U ∈ T | ∃(U, C:−u, A) ∈ Êucg do
7 if d(V, U) < 0 and d(V, U) − u ≤ −v then
8 Em

w ··= Em
w ∪ {(V, C:−v, A)} //Dominated by another wait

9 return Em
w

TIME 2025


	1 Background
	2 Overview of Existing Algorithms
	2.1 Canonical Form of Nested Diamond Structures
	2.2 Error in the fastMinDispESTNU Algorithm

	3 A New Approach to Generating Stand-in Edges
	4 Empirical Evaluations
	5 Conclusions
	A Pseudocode

