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—— Abstract

The recent resurgence of the Datalog language in the Knowledge Representation and Reasoning

community has paved the way for a very promising proposal for temporal extension. DatalogMTL
(Datalog with Metric Temporal Operators) is a language that offers a good trade-off between
computational complexity and expressive power. However, existing implementations are still
preliminary or prototypical. In this extended abstract, we give a brief overview of Temporal Vadalog,
a system supporting reasoning over DatalogMTL programs built upon an engineered architecture
and adopted in production scenarios in the financial setting.
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1 Introduction

The adoption of Datalog-based systems for Knowledge Representation and Reasoning (KRR)
and their growing application in production settings such as the financial space [1] are going
hand in hand with a wave of research into extensions to Datalog, known as the Datalog®
family [10]. The aim is to strike a good balance between computational complexity and high
expressivity, that is, to incorporate the features needed for real-world applications. In this
context, a key requirement in KRR is native support for time through the reasoning process.

The recent introduction of the extension of Datalog with metric temporal operators, named
DatalogMTL [8], along with the good computational characteristics of its fragments [16, 17, 18],
brought the potential of temporal reasoning to real-world applications, from transport
and robotics, from healthcare to finance. However, the integration of such capabilities
into a production-ready system requires functional and architectural characteristics that
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ensure rigorous and efficient implementation of the language in computation and memory
footprints. To our knowledge, all currently existing DatalogMTL implementations remain at
a prototypical stage or are designed primarily for exploratory research [7, 19].

Contribution. Motivated by the need to adopt temporal reasoning in high-stake financial
settings for the Central Bank of Italy, in this extended abstract [4], we introduce the
Temporal Vadalog System, the temporal extension to the Vadalog System, a state-of-the-art
Datalog-based reasoner [2].

Overview. Due to space constraints, the remainder of the paper provides an example-based
glimpse into the functional and non-functional approaches to implementing DatalogMTL in
Vadalog, specifically in Section 2, focussing on joins, and in Section 3, which describes the
architecture. Some preliminaries about DatalogMTL can be found in Appendix A. For a
complete overview, the reader is referred to the full paper [4].

2 Time-Aware Joins and Time Series Operators by Example

To briefly illustrate the capabilities of the system, we proceed by example with a realistic —
albeit simplified — case from the financial domain.

» Example 1. A Financial Intelligence Unit (FIU) is an agency responsible for collecting
information about suspicious financial activity to support investigations into money laundering
or terrorism financing. They aim to identify companies with abnormal spending behavior and
investigate the corporate networks they belong to. We describe the scenario by a database D
of temporally annotated facts and the following set II of DatalogMTL rules.

Bo,3) suspiciousActivity(C'), =0, 7ymarkedAsSafe(C) — directSuspicious(C)

directSuspicious(C) — suspicious(C)

~—~ ~~
w N =
o ~— ~—

suspicious(C), linked(C, O) — suspicious(O)

We assume that the reader is familiar with the logic-based formulation of Datalog
syntax, with the body of a rule (left-hand side) being the implication premise, a logical
conjunction of predicate over terms (i.e., constants or variables), while the head (right-
hand side) is the implication conclusion. Ignoring the temporal angle, Rule 1 describes the
conditions (company C involved in suspiciousActivity while not being markedAsSafe) under
which a company C' is marked as directSuspicious, while Rules 2-3 recursively mark every
directSuspicious company C as suspicious (Rule 2) and then proceed to mark every other
company o that is linked to suspicious company C' as suspicious as well (Rule 3). Coming
back to Rule 1, we see how the temporal aspect is essential: a company that is markedAsSafe
in a distant past is not thereby exempt from having its current suspiciousActivity scrutinized.
Metric temporal operators are helpful here: assuming day granularity, when prefixed with
Bo,3), the atom suspiciousActivity only holds if the atom itself has continuously held in
the interval [t — 0,t — 3] if evaluated at t — the suspiciousActivity continuously held for
the previous 3 days — while with ©g 7, markedAsSafe only holds if the clearance occurred
sometime between [t — 0,¢t — 7]. Let us consider database D:

D =
{suspiciousActivity(A)@Q[May — 01, May — 04], markedAsSafe(A)Q[Apr — 30, Apr — 30],
suspiciousActivity(B)@Q[May — 02, May — 05|, markedAsSafe(B)@Q[Apr — 21, Apr — 21]}
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on a PlantNameTerm. the full paper [4]

By applying Rule 1, we see that only company B would be marked as directSuspicious
as it was not markedAsSafe in the 7 days prior to the suspiciousActivity. However, to
compute the conjunction between these two temporal atoms — Bjg 3)suspiciousActivity and
©0,7ymarkedAsSafe — one would need a time-aware join, able to join facts and their temporal
intervals at the same time, while also handling stratified negation.

Temporal Join Algorithm

In Temporal Vadalog, the join algorithm is a temporal interval extension of the slot machine
join of the Vadalog system [2], which is based on the index nested loop join [11]. In particular,
during the first full scan of the inner relation, an in-memory index is constructed, unlike in
the usual algorithms, where a precomputed index is typically present in materialized form.

The algorithm, fully reported in Algorithm 1, intuitively works as follows. Assume we
have two predicates to be joined Ay and Aj; first, we use the A; index to retrieve the next
already-scanned fact that matches the join term(s) from Ag (Line 8). If the index does not
contain such a fact, we pursue the full scan until either a matching fact is found or all facts
have been examined (Lines 10-14). If no further fact is found (Lines 15-22), we continue
the scan with the next Ay (if it exists and if A; is not negated). In case a fact is found,
independently of whether it is from the index or the full scan, we produce the valid interval
of the joined fact using the join logic (Line 23): difference for a negated literal, intersection
for a positive interval, or a blend of interval operations and set operations for temporal
operators like S (since) and U (Until). In the end, we check whether the resulting interval
is valid, and if not, if A; is negated, we continue the scan with the next Ag (if it exists)
(Lines 25-29), otherwise we proceed with the loop; if the interval is non-empty and Ay is not
negated, we return true as we have found a valid joined fact (Lines 31-32); otherwise, we
continue retrieving the next “negated” fact. A visual representation of the execution of a
temporal join is shown in Figure 1.

Time Series Operators

In Example 1, we assumed that the suspiciousActivity facts were provided by D. Now we
want to consider the predicate as a result of a different reasoning task.

» Example 2. Understanding whether a spending activity is suspicious implies detecting
anomalous patterns, a task extremely relevant for financial authorities. A form of behavioural
analysis is adopted here: if the number of flagged transactions is greater than the company
average for a given period, then the spending activity is suspicious.

flagTransactions(Cy, AMT), sma(C, AVG), AMT > AVG — suspiciousActivity(C) (4)

15:3
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Algorithm 1 Temporal Join between two predicates.

Input: predicates Ag and A; to be joined, with Ag not negated
1. Iy « Ag.iterator()
2: Iy < Aj.iterator()
3: (ag, 00) < Ip.getNext()
4: function NEXT

5: interval < gg
6: while true do
7 X < ag.joinTerm
8: (a1,01) < Aj.index.get(X)
9: if aq is null then > Continue full scan, if index miss
10: while I;.next() do
11: (a1,01) < I1.getNext()
12: Aj.index.put(ay) > Update the index map for A
13: if ay.j0inTerm == ag.joinTerm then
14: break > Exit the inner loop if matching fact is found
15: end if
16: end while
17: end if
18: if a1 is null then > No further matching fact A; found
19: if Ay is negated then
20: return true
21: end if
22: if Iy.next() is false then
23: return false
24: end if
25: (ao, 00) + Io.getNext() > Repeat loop for next ag
26: interval < 0g
27: continue
28: end if
29: interval « resultingInterval FromJoinLogic(g1,interval)
30: if interval is empty then
31: if Ay is negated then
32: if Iy.next() is false then
33: return false
34: end if
35: (ap, 00) < Io.getNext() > Repeat loop for next ag
36: interval < og
37: end if
38: continue
39: end if
40: if A; is not negated then
41: return true
42: end if

43: end while
44: end function




L. Bellomarini, L. Blasi, M. Nissl, and E. Sallinger

The average value is given by the sma predicate (simple moving average), which encapsulates
a time series operator that performs a moving average calculation to smooth the signal and
filter out noise and transient variations. While time series analysis typically adopts ad-hoc
software libraries, Temporal Vadalog intrinsically offers such statistics:

O0,n) timeSeries(X, Value) — extended(X, Value) (5)
timeSeries(X, Value), extended(X, Roll) — rolling(X, Roll) (6)
rolling(X, Roll), Avg = avg(Roll) — sma(X, Avg) (7)

We use © to extend the validity of the window over n days (Rule 5), and we join it with
the original time series to pin it to the correct starting date (Rule 6). As in SMA all data

points have equal weight, Rule 7 computes the mathematical average over every window.

Performance has been evaluated against a time series database (TSDB) in the full paper [4],
in this case with the exponential moving average (EMA), on the NASDAQ Composite Index
time series [14]. Results are shown in Figure 2.

3 The Temporal Vadalog Architecture

The temporal join is only one component of the system, and several others are required in
order to support query answering over a set of rules like that of Examples 1-2, among which the
transformations from the temporal operators and termination of recursive rules. Looking at
the larger picture, the Temporal Vadalog architecture extends the volcano iterator model [13)
of the Vadalog system [6] with time-awareness. A DatalogMTL program II is transformed into
an execution pipeline that reads data from sources, applies the transformations (both algebraic
and time-related ones) and returns the intended output as a result. The process consists of
two stages: in the first, the pipeline is built through a sequence of compilers and optimizers
that gradually transforms the set of rules into a reasoning query plan. Taking inspiration from
the pipe and filters architecture [9], each required transformation is represented by a filter,
while dependencies between rules are represented by pipes. The second stage is at runtime,
where a pull-based approach is used. Starting from the output filter, next () calls propagate
through filter chains to source filters. Each filter applies the requested transformation based

on the rule it represents. As long as data are available in the filter cascade, next () succeeds.

A number of time-relevant operations are tackled along the way: (a) the transformation
of time intervals through the application of temporal operators; (b) the implementation
of merging operations for intervals through various strategies to ensure correctness and
efficiency [3]; (c) the temporal joins in the presence of stratified negation; (d) detection of
repeating temporal patterns through the so-called termination strategies, i.e. techniques
to guaranteee termination; (e) temporal aggregations [5]; and (f) the possibility to switch
between temporal and to non-temporal reasoning, to activate non-temporal features, essential
in some reasoning settings, such as existential quantification.

Summary. In this work, we showed the Temporal Vadalog system by first describing

temporal joins and operators applied to an example, and concluded by briefly discussing the
“big picture” of its architecture. The interested reader is referred to the full paper.
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The appendix includes excerpts from the full version of the paper [4] to cover the more
technical parts of this extended abstract. In particular, Appendix A provides the background
of DatalogMTL.

A DatalogMTL

DatalogMTL is Datalog extended with operators from the metric temporal logic. We provide
a summary of DatalogMTL with stratified negation under continuous semantics. DatalogMTL
is defined over the rational timeline, i.e., an ordered set of rational numbers Q. An interval
0= {0 ,0") is a non-empty subset of Q such that for each t € Q where o~ <t < o, t € g,
and the endpoints o=, 0" € QU {—o0,00}. The brackets denote whether the interval is
closed (“[]”), half-open (“[)”,“(]”) or open (“()”), whereas angle brackets (“()”) are used when
unspecified. An interval is punctual if it is of the form [¢,t], positive if o~ > 0, and bounded
if 07,07 € Q.

DatalogMTL extends the syntax of Datalog with negation with temporal operators [15].
For the following definitions, we consider a function-free first-order signature. An atom is
of the form P(7), where P is a n-ary predicate and 7 is a n-ary tuple of terms, where a
term is either a constant or a variable. An atom is ground if it contains no variables. A fact
is an expression P(7)Qp, where ¢ is an interval and P(7) a ground atom and a database
is a set of facts. A literal is an expression given by the following grammar, where o is a
positive interval: A =T | L | P(7) | BpA | BoA | C,A | S,A| AS, A| AU, A. A rule is
an expression given by the following grammar, where i,j > 0, each A (k > 0) is a literal
and B is an atom: Ay A---AA; Anot A;11 A---Anot A;y; — B. The conjunction of literals
Ay is the rule body, where A; A--- A A; denote positive literals and A;4q A--- A Aj4; denote
negated (i.e., prefixed with not) literals. The atom B is the rule head. A rule is safe if each
variable occurs in at least one positive body literal, positive if it has no negated body literals
(i.e., j = 0), and ground if it contains no variables. A program II is a set of safe rules and is
stratifiable if there exists a stratification of a program II. A stratification of II is defined as a
function o that maps each predicate P in II to a positive integer (stratum) s.t. for each rule,
where P" denotes a predicate of the head, and P* (resp. P~) a positive (negative) body
predicate, o(P") > o(P%) and o(P") > ¢(P~). The semantics of DatalogMTL is given by
an interpretation 9t that specifies for each time point ¢ € Q and each ground atom P(T),
whether P(7) is satisfied at ¢, in which case we write 91, ¢ = P(7). This satisfiability notion
extends to ground literals as follows:

MitE=T for each ¢
MtE L for no t
M, ¢t =H,A iff M, s = Aforall switht—s€p
M, ¢ =H,A iff M,s = Aforallswiths—teyp

MitE=AS, A f M, s = A for some s witht —s € p A M, 7 = A for all r € (s,t)
MitE= AU, A iff M, s A for some s with s —t € p A M, 7 = A for all r € (¢, 5)
Mt =C,A iff M, s = A for some s witht —s € ¢
M, t = S,A iff M, s = A for some s with s —t € p
An interpretation 9% satisfies not A (9M,t = not A), if Mt = A, a fact P(7)Qp, if
M, t = P(7) for all ¢t € g, and a set of facts D if it is a model of each fact in D. Furthermore,

M satisfies a ground rule 7 if M, t = Ay for 0 < k <iand M, ¢t =not A fori+1 <k <i+j
for every t; for every t, if the literals in the body are satisfied, so is the head 9, ¢ = B; M

TIME 2025
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satisfies a rule when it satisfies every possible grounding of the rule. Moreover, 9 is a model
of a program if it satisfies every rule in the program and the program has a stratification,
i.e., it is stratifiable. Given a stratifiable program II and a set of facts D, we call € p
the canonical model of TI and D [8], and define it as the minimum model of II and D,
ie., €p,p is the minimum model for all the facts of D and the rules of II. In this context,
“minimum” means that the set of positive literals in 9 is minimized or, equivalently, that
the positive literals of this model are contained in every other model. Since II is stratifiable,
this minimum model exists and is unique [12]. According to Tena Cucala’s notation [15],
we say that a stratifiable program IT and a set of facts D entail a fact P(7)@Qp, written as
(II,D) = P(7)Qp, if € p = P(T)Qp. In the remainder of the paper, we will assume the
stratification of programs (or set of rules) as implicit.

In this context, the query answering or reasoning task is defined as follows: given the pair
Q = (II, Ans), where I is a set of rules, Ans is an n-ary predicate, and the query @ is evaluated
over D, then Q(D) is defined as Q(D) = {(t, 0) € dom(D)"™ x time(D) | (II, D) = Ans(t)Qp},
where ¢ is a tuple of terms, the domain of D, denoted dom(D), is the set of all constants that
appear in the facts of D, and the set of all the time intervals in D is denoted as time(D).
As we shall see in practical cases, the Ans predicate of II will be sometimes called “query
predicate” and provided to the reasoning system with specific conventions, which we omit
for space reasons, but will render in textual explanations.
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