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—— Abstract

Composite activity recognition systems analyse streams of low-level, symbolic events to identify
instances of complex activities based on their formal definitions. Crafting these definitions is a
challenging task, as it often requires specifying intricate spatio-temporal constraints, and acquiring
labeled data for automated learning is difficult. To address this challenge, we introduce a method
that leverages pre-trained Large Language Models (LLMs) to generate composite activity definitions,
in the language of the Run-Time Event Calculus, from natural language descriptions.
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1 Introduction

Composite event recognition (CER) systems process streams of symbolic, time-stamped events,
in order to detect instances of composite activities of interest via temporal pattern matching
over these input event streams [17, 7, 8, 1]. In Maritime Situational Awareness (MSA)
e.g. the task is to monitor vessel position streams for detecting composite activities such as
loitering and violations of the regulations concerning sailing in protected areas [3]. Composite
activities are defined in a rigorous manner, by means of a formal pattern specification
language. Consider, e.g., CER for city transport management (CTM), where we need
to detect composite activities relating to the quality of public transportation based on
symbolic event streams that stem from sensor data and contextual information, like an
abrupt acceleration or a significant increase in passenger density within a bus. Towards
safe public transportation, we would like to detect unsafe driving behaviours. To do this,
we may employ a pattern stating that a bus is driven unsafely if it is making sharp turns,
or it is accelerating or decelerating abruptly. A sharp turn may be defined as another
composite activity, composed of consecutive “change in direction” events, while deriving
abrupt acceleration and deceleration events may require background knowledge concerning
the type of bus being used, complicating the formal definition of unsafe driving. As a result,
constructing a pattern for a composite activity may become quite involved.
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Hand-crafting composite activity definitions requires knowledge of formal languages —
domain experts, such as transport engineers, cannot be expected to have such knowledge.
Moreover, automatically constructing composite activity patterns via specialised machine
learning techniques often requires large training datasets with labels for composite activity
instances [6, 9, 15]. Unfortunately, the use of such techniques is commonly prohibited due to
the scarcity of labels for the inherently infrequent composite activities.

To address these issues, we propose a method that constructs composite activity patterns
from natural language descriptions using pre-trained Large Language Models (LLMs). We
prompt LLMs to transform composite activity definitions expressed in natural language into
logic programming definitions in the language of the “Run-Time Event Calculus” (RTEC)
[14, 11, 12]. RTEC is an implementation of the Event Calculus, i.e., a formalism for
representing events and reasoning about their effects over time [10, 5, 4]. RTEC is optimised
by means of windowing and caching algorithms, demonstrating scalability in challenging
domains, such as MSA and CTM, outperforming state-of-the-art CER systems [14, 13]. A
key feature of our prompting method is that it is not custom to a single domain, but may be
re-used, in a zero-shot manner, for the generation of composite activity definitions in any
CER domain.

2 Background: RTEC

RTEC is a formal, logic programming framework that extends the Event Calculus [10] with
optimisation techniques for CER [2, 14, 12]. The language of RTEC includes sorts for
representing time, events and fluents, i.e., properties whose values may change over time.
RTEC employs a linear time-line with non-negative integer time-points. A fluent-value pair
(FVP) F=V denotes that fluent F has value V. happensAt(E, T') signifies that event E occurs
at time-point T. initiatedAt(F =V, T) (resp. terminatedAt(F' =V, T')) expresses that a time
period during which a fluent F has the value V continuously is initiated (terminated) at T.
holdsAt(F' = V, T') states that F has value V at T, while holdsFor(F = V, I) expresses that
F=V holds continuously in the maximal intervals of list I.

A formalisation of composite activity definitions in RTEC is called event description. An
event description may contain rules defining two types of FVPs: “simple” and “statically
determined”. A simple FVP is defined using a set of initiatedAt and terminatedAt rules, and is
subject to the commonsense law of inertia, i.e., an FVP F=V holds at a time-point T, if
F=V has been “initiated” by an event at a time-point earlier than T, and not “terminated”
by another event in the meantime.

» Example 1 (Within area). In the maritime domain, vessel activity may be disallowed in
certain areas, e.g., fisheries restricted areas. Thus, it is desirable to compute the maximal
intervals during which a vessel is in such an area. See the definition of a simple FVP below:

initiated At (withinArea( Vessel, AreaType) =true, T') <— (1)
happensAt(entersArea( Vessel, ArealD), T), areaType(ArealD, AreaType).
terminatedAt(withinArea( Vessel, Area Type) = true, T') + @)
happensAt(leavesArea( Vessel, AreaID), T), areaType(ArealD, AreaType).

3)

(

(

terminatedAt(withinArea( Vessel, Area Type) = true, T') <
happensAt(gapStart( Vessel), T').

withinArea( Vessel, AreaType) is a Boolean fluent denoting that a Vessel is in an
area of type AreaType, while entersArea( Vessel, ArealD), leavesArea( Vessel, ArealD) and
gapStart( Vessel) are input events, derived by the online processing of vessel position signals,
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and their spatial relations with areas of interest [16]. areaType(ArealD, AreaType) is an
atemporal predicate storing background knowledge regarding the types of areas in a dataset.
Rules (1) and (2) state that withinArea( Vessel, AreaType) is initiated (resp. terminated) as
soon as a Vessel enters (leaves) an area ArealD, whose type is AreaType. Rule (3) expresses
that withinArea( Vesel, AreaType) is terminated when there is a communication gap, i.e., when
the Vessel stops transmitting its position, and we become uncertain of its whereabouts. _

A statically determined FVP F =V is defined via a rule with head holdsFor(F' = V', I).
This rule computes the maximal intervals during which F'= V holds continuously by applying
a set interval manipulation operations, i.e., union_all, intersect_all and relative_complement_all, on
the maximal intervals of other FVPs.

» Example 2 (Anchored and moored vessels). Consider the following definition of a statically
determined FVP:

holdsFor( anchoredOrMoored( Vessel) = true, I') <
holdsFor(stopped( Vessel) = farFromPorts, L),
holdsFor(withinArea( Vessel, anchorage) =true, I,,), intersect_all([Lsf, Io], Lssa),
holdsFor(stopped( V1) = nearPorts, Is,), union_all([Isfq, Isn], I).

(4)

anchoredOrMoored( Vessel) is a Boolean statically determined fluent, defined in terms of three
other FVPs: stopped( Vessel) = farFromPorts, stopped( Vessel) = nearPorts — and
withinArea( Vessel, anchorage) = true. The multi-valued fluent stopped(Vessel) expresses the
periods during which a Vessel is idle near some port or far from all ports. Rule (4) derives the
intervals during which a Vessel is both stopped far from all ports and within an anchorage
area, by applying the intersect_all operation on the lists of maximal intervals Iy and I,. The
output of this operation is list Is,. Subsequently, list I is derived by applying union_all on
lists I s, and Ig,. This way, list I contains the maximal intervals during which a Vessel has
stopped near some port or within an anchorage area. 2

A statically determined FVP holds as long as a Boolean combination of other FVPs is
satisfied. Thus, statically determined FVPs are tailored for modeling composite activities
that may be defined by applying conjunction, disjunction and negation operators on other
activities — see “anchored or moored”. “Inertial” composite activities, i.e., activities that
persist through time and may arise (or conclude) based on the satisfaction of a set of
instantaneous conditions, are expressed using initiatedAt and terminatedAt rules. Typically, a
statically determined FVP representation leads to more efficient reasoning, but not all simple
FVPs are translatable to statically determined ones. A formal analysis, including an account
of the syntax, semantics and reasoning algorithms of RTEC may be found in [14, 12].

3 Prompt Pipeline

Hand-crafting composite activity definitions requires knowledge of the language of RTEC —
maritime experts e.g. cannot be expected to have such knowledge. To address this issue, we
present a prompting approach that leverages the power of LLMs for constructing composite
activity definitions. Figure 1 presents the pipeline for translating natural language descriptions
of composite activities into RTEC rules. First, we introduce to the LLM the core predicates
of RTEC (Prompt R), and provide the syntax for the definitions of simple and statically
determined FVPs (Prompt S). Then, we proceed with each application domain — for each
such domain we present the items of the input stream, i.e. the events and input FVPs
(Prompt E and Prompt F), and the background knowledge predicates (Prompt B) —
recall e.g. areaType in rule-set (1)—(3). Subsequently, Prompt G asks the LLM to translate
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Introducing RTEC

Application: MSA

RTEC Predicates
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!

Rule Generation
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Figure 1 LLM prompting for composite activity definition generation.

a natural language description of each composite activity of the application domain under
consideration into a set of RTEC rules. We may customise and repeat Prompts E, F, B
and G for each subsequent application domain. Prompts R and S are not repeated.

Prompt R introduces the predicates of RTEC. Subsequently, we use Prompt S to
demonstrate to the LLM how to express a composite activity as a simple or a statically
determined FVP. We start with a description of the syntax of the rules expressing simple
FVPs. Then, we employ chain-of-thought prompting, according to which we provide natural
language descriptions of two example composite activities, and show how these activities
may be expressed as simple FVPs. The prompt fragment below illustrates this process; a
fragment illustrating statically determined FVPs, is presented in the Appendix. The chosen
examples concern MSA. Lines 14, 17 and 20 of the prompt below should be replaced with
resp. rules (1), (2), and (3).

Listing 1 Fragment of Prompt S.

1 There are two ways in which a composite activity may be defined in the language
of RTEC. In the first case, a composite activity definition may be specified by
means of rules with ‘initiatedAt(F=V, T)’ or ‘terminatedAt(F=V, T)’ in their head.

This is called a simple fluent definition.

3 The first body literal of an ‘initiatedAt(F=V,T)’ rule is a positive ‘happensAt’
predicate; this predicate is followed by a possibly empty set of positive or
negative ‘happensAt’ and ‘holdsAt’ predicates. Negative predicates are prefixed
with ‘not’ which expresses negation-by-failure. In some cases, the body of an
initiatedAt(F=V,T)’ rule may include predicates expressing background knowledge.

4

5 ‘terminatedAt(F=V,T)’ rules are specified in a similar way.

7 Below you may find two examples of composite activity definitions, from the
maritime domain, expressed as simple fluents.

o Example 1: Given a composite maritime activity description, provide the rules in
the language of RTEC.

10 Composite Maritime Activity Description: ‘withinArea’. This activity starts when
a vessel enters an area of interest. The activity ends when the vessel leaves the
area that it had entered, or when the vessel stops transmitting its position,
since we can no longer assume that the vessel remains in the same area in the
case of transmission gaps.

11
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12 Answer:

13 The activity ‘withinArea’ is expressed as a Boolean simple fluent with two
arguments, i.e., ‘Vessel’ and ‘AreaType’. This activity starts when a vessel
enters an area of interest. We use an ‘initiatedAt’ rule to express this
initiation condition. The body literals of this rules are an event labelled ¢
entersArea’ with two arguments, ’Vessel’ and ‘Area’, and a background knowledge
predicate named ‘areaType’ with two arguments, ‘Area’ and ‘AreaType’. This rule
in the language of RTEC is the following:

14 <Rule (1)>

15

16 The activity ‘withinArea’ ends when a vessel leaves the area that it had entered.

We use a ‘terminatedAt’ rule to describe this termination condition. This rule
includes an event named ‘leavesArea’ with two arguments, i.e. ‘Vessel’ and ’Area’,
and the background knowledge predicate ‘areaType’. This rule in the language of

RTEC language is:

17 <Rule (2)>

18

19 In addition to the aforementioned conditions, the activity ‘withinArea’ ends when

the vessel stops transmitting its position, i.e. when a communication gap starts.
We use a ‘terminatedAt’ rule to express this termination condition. In this rule,
the second argument of the ‘withinArea’ fluent is a ‘free’ Prolog variable, i.e.

a variable starting with ‘_’. The body of this rule includes a single event
named ‘gap_start’ with one argument, i.e. ‘Vessel’. This rule in the language of
RTEC is:

20 <Rule (3)>

21

22 Example 2: <Description 2>

According to Prompt S, there are two ways in which a natural language description
of a composite activity should be expressed. First, the textual description may indicate
the conditions in which the composite activity is said to start taking place, as well as the
conditions in which the activity is said to stop taking place. This may be achieved with the

use of key phrases such as “the activity starts” and “the activity ends” (see Prompt S above).

Second, we may identify the conditions that must be satisfied so that the composite activity
in question holds at any given time. To achieve this, we may enter in the textual description
of the activity the key phrase “as long as” (see Prompt S — Statically determined FVPs
in the Appendix). The first type of textual description implies a simple FVP representation,
while the second type of description implies a statically determined FVP formulation. In any
case, the compiler of RTEC will choose the most efficient representation [12].

4 Further Work

We aim to evaluate our approach using leading LLMs in diverse domains, such as CER for
Maritime Situational Awareness (MSA) and City Transport Management (CTM). Moreover,
we aim to fine-tune manageable versions of LLMs for avoiding any errors that may occur in
rule generation.
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holdsFor(F=V, I)’ rule may include predicates expressing background knowledge. A
rule with ‘holdsFor(F=V, I)’ in the head is called a statically determined fluent
definition. Below you may find two examples of composite maritime activities

expressed as statically determined fluents.
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