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Abstract
A motif is defined as a frequently occurring pattern within a (multivariate) time series. In recent
years, various techniques have been developed to mine time series data. However, only a few studies
have explored the idea of using motif discovery in temporal association rule mining. Interval-based
temporal association rules have been recently defined and studied, along with the temporal version of
the known frequent patterns, and therefore, association rule extraction algorithms (such as APRIORI
and FP-Growth). In this work, we define a vocabulary of propositional letters wrapping motifs,
and show how to extract temporal association rules starting from such a vocabulary. We apply our
methodology to time series datasets in the fields of hand signs execution and gait recognition, and
we discuss how they capture curious insights within data, keeping a high level of interpretability.
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1 Introduction

In machine learning, we distinguish between functional and symbolic learning. The former
encompasses strategies for representing the theory underlying a certain phenomenon as
functions, while the latter derives logical descriptions of that phenomenon. Traditional
symbolic methods rely on propositional logic and assume static data, in which each instance
is described by 𝑛 attributes. Temporal data, however, cannot be successfully dealt within the
same schema in a native way, and it is commonly pre-processed (e.g., via averaging attributes
along all dimensions) to appear static, enabling standard symbolic techniques.
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19:2 Temporal Association Rules from Motifs

Modal, and in particular temporal symbolic learning [8, 12] takes a different point of view:
modal symbolic methods are characterized by being based on modal logic (e.g., temporal
logic) so that non-static data can be dealt with natively, and that the extracted knowledge
takes the form of interpretable modal logic formulas. Association rule extraction techniques
can benefit from a similar approach [9, 14], with the introduction of the modal adaptation of
the known frequent set extraction algorithms, namely APRIORI [1] and FP-Growth [5]. In
particular, the temporal case is considered a representative example to illustrate the qualities
and characteristics of modal association rules. Nevertheless, the original approach presents
some important limitations, originating from the basic definition of temporal alphabet, which
may cause difficult-to-interpret association rules. One way to overcome the limits in alphabet
definition towards temporal association rule extraction is to consider time series motifs, that
is, patterns that are considered interesting because they frequently occur.

In this paper, we consider the problem of temporal rule extraction from time series
using a motif-based alphabet. We adapt the original definition of local support, introduced
in [9, 14], to accommodate motifs suitably, and apply our methodology to two temporal
datasets, showing how the obtained rules have an immediate natural language translation.

2 Background

Motif discovery for time series was introduced in 2003 [4], generating quite a body of research.
Virtually every time series data mining technique has been applied to the motif discovery
problem, including indexing, data discretization, triangular-inequality pruning, hashing, early
abandoning.

▶ Definition 1. A time series is a sequence 𝑇 : 𝑡1, . . . , 𝑡𝑁 of 𝑁 real-valued observations. A
set of T time series 𝑇1, . . . , 𝑇𝑛 is called multivariate time series. A region 𝑇𝑖 𝑗 : 𝑡𝑖 , . . . , 𝑡 𝑗
of 𝑗 − 𝑖 + 1 consecutive observations in a time series is called a subsequence. Given two
subsequences 𝑇𝑖 and 𝑇𝑘, their distance is the Euclidean distance between their 𝑍-normalized
forms.

Given a subsequence, we can compute its distance to all subsequences in the same time series.

▶ Definition 2. Given an 𝑁-observations time series 𝑇 and a subsequence 𝑇𝑖 𝑗 , the distance
profile 𝐷𝑖 is the vector of all distances between 𝑇𝑖 𝑗 and 𝑇𝑘 (𝑘+ 𝑗−𝑖+1) , for every 1 ≤ 𝑘 ≤ 𝑁.

Distance profiles are collected in a distance matrix, from which a matrix profile is built.

▶ Definition 3. Given a time series 𝑇 and a length 𝑙, the full distance matrix 𝑀𝑇,𝑙 is the
squared matrix of dimension 𝑁 − 𝑙 + 1 whose 𝑖-th row is the distance profile 𝐷𝑖. Given
an integer 𝑠, the matrix profile 𝑃 is the vector that at position 𝑖 contains the minimum
value in 𝐷𝑖, ignoring all the values in 𝐷𝑖 (𝑖−𝑠) and 𝐷𝑖 (𝑖+𝑠) , as these distances are considered
trivialities.

For each position 𝑖 in a matrix profile 𝑃, if the value 𝑃𝑖 is lower than a threshold 𝛼, we say
that 𝑇𝑖 (𝑖+𝑙) is an instance of a motif.

Note that both the literature and the maintained packages on motif discovery are relatively
extensive; in this work, we enrich the existing software ecosystem with the framework
Sole.jl 1, an open source solution for symbolic learning with non-tabular data, leveraging the
MatrixProfile.jl 2 library, which implements the STAMP algorithm [15] for computing the
matrix profile of a time series, allowing for motifs discovery.

1 See https://github.com/aclai-lab/Sole.jl and https://github.com/aclai-lab/
ModalAssociationRules.jl.

2 https://github.com/baggepinnen/MatrixProfile.jl

https://github.com/aclai-lab/Sole.jl
https://github.com/aclai-lab/ModalAssociationRules.jl
https://github.com/aclai-lab/ModalAssociationRules.jl
https://github.com/baggepinnen/MatrixProfile.jl
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Table 1 Allen’s relation and their notation within HS; equality and inverse relations are omitted.

HS modality Definition w.r.t. the interval structure Example
𝑖 𝑗

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

⟨𝐴⟩ (after) [𝑖, 𝑗]𝑅𝐴[𝑖′, 𝑗 ′] ⇔ 𝑗 = 𝑖′

⟨𝐿⟩ (later) [𝑖, 𝑗]𝑅𝐿 [𝑖′, 𝑗 ′] ⇔ 𝑗 < 𝑖′

⟨𝐵⟩ (begins) [𝑖, 𝑗]𝑅𝐵 [𝑖′, 𝑗 ′] ⇔ 𝑖 = 𝑖′ ∧ 𝑗 ′ < 𝑗

⟨𝐸⟩ (ends) [𝑖, 𝑗]𝑅𝐸 [𝑖′, 𝑗 ′] ⇔ 𝑗 = 𝑗 ′ ∧ 𝑖 < 𝑖′

⟨𝐷⟩ (during) [𝑖, 𝑗]𝑅𝐷 [𝑖′, 𝑗 ′] ⇔ 𝑖 < 𝑖′ ∧ 𝑗 ′ < 𝑗

⟨𝑂⟩ (overlaps) [𝑖, 𝑗]𝑅𝑂 [𝑖′, 𝑗 ′] ⇔ 𝑖 < 𝑖′ < 𝑗 < 𝑗 ′

In this paper, we are interested in learning association rules from data. Fixed an alphabet
of propositional literals P = {𝑝1, . . . , 𝑝𝑘}, a propositional rule is an object of the type
𝜌 : 𝑋 ⇒ 𝑌 , where 𝑋 ⊂ P is called antecedent, 𝑌 ⊂ P is called consequent, and 𝑋 ∩ 𝑌 = ∅;
following the classical jargon, we refer to each literal as item and we call a set of items as
itemset. In this scenario, 𝑋 ∪ 𝑌 is considered interesting when it is frequent, that is, if it
occurs more often than a predetermined threshold referred to as minimum support, and a
rule 𝑋 ⇒ 𝑌 is extracted if the ratio between the support of 𝑋 and that of 𝑋 ∪ 𝑌 is higher
than another predetermined threshold known as minimum confidence.

While classical association rules are designed for propositional patterns to emerge, tem-
poral association rules are designed to generalize this idea to patterns with a temporal
component. The natural choice to describe temporalized co-occurrence of events or patterns
with a duration is Halpern and Shoham modal logic of time intervals (HS), defined over
Allen’s relations, as show in Tab. 1.

Interval temporal logic gives us a way to naturally describe temporal association rules,
as time series can be naturally seen as interval models. Let 𝔗 = {T1, . . . ,T𝑚} be a set of
(multivariate) time series, or temporal dataset, and fix a propositional alphabet P; let us
also assume that each time series in 𝔗 is based on the same temporal domain 𝐷. Each
single multivariate time series T is a collection of 𝑛 time series 𝑇1, . . . , 𝑇𝑛; elements of P
are naturally associated to a specific time series. In this way, if T is a multivariate time
series (i.e., an interval model), [𝑖, 𝑗] is an interval, and 𝜑 an interval formula, the notion of
T , [𝑖, 𝑗] ⊩ 𝜑 can be interpreted as the notion of T satisfies 𝜑 at [𝑖, 𝑗].

A temporal itemset is a set of temporal items, that is, items enriched with a temporal
relation, and temporal rules are such that antecedents and consequents are temporal itemsets.
The notion of support is generalized to the case of a temporal dataset 𝔗 by distinguishing
a local support, computing the relative frequency of a temporal itemset occurring in some
instance T ∈ 𝔗, and a global support, counting the number of instances such that their
local support is higher than a minimum local support threshold. An itemset 𝑋 is said to be
frequent if its global support is greater than a minimum global support threshold. In this
scenario, ModalAPRIORI [14] and ModalFP-Growth [9] can be used to extract temporal
patterns as a particular case of modal patterns.

3 Extracting Temporal Association Rule from Motifs

Let us consider a set of feature extraction functions F = {𝐹1, . . . , 𝐹𝑘}, where each function
𝐹 is defined as 𝐹 : R𝑑 → R for some natural value 𝑑 ≤ 𝑁. Theoretically speaking, given a
multivariate time series T , it is possible to define an alphabet of items based on F , that is,
P = {𝛼 ≤ 𝐹 (𝑇) ≤ 𝛽 | 𝐹 ∈ F , 𝑇 ∈ T , 𝛼 ∈ R ∪ {−∞}, 𝛽 ∈ R ∪ {+∞}}, which allows for mining
temporal association rules, as items can be immediately interpreted over intervals, obtaining
a scalar value which can be compared with lower and upper bounds 𝛼, 𝛽.

TIME 2025
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Unfortunately, it can be shown that this approach may introduce strong bias during
(local) support computation, leading to promising association rules which, however, encode
trivialities. An intuition about this is that the scalar value obtained by applying a feature
extraction function to an interval [𝑖, 𝑗], could be redundant with many other identical values
obtained by applying the same function on sub-intervals or super intervals of [𝑖, 𝑗] (e.g.,
considering max, min, average functions, but even more refined functions such as catch22 [7]).

To avoid flattening intervals with feature extraction functions, we modify the definition
of the alphabet. We consider a set A𝔗 of the most representative motifs for the temporal
dataset 𝔗, that is, the distinct motifs approximating the largest fraction of data in 𝔗 [6].
Fixed a distance function 𝛿 and a constant 𝛼, we define a motif-based temporal alphabet as:

P = {𝛿(𝑇, 𝜇) ≤ 𝛼 | 𝑇 ∈ 𝔗, 𝜇 ∈ A𝔗 , 𝛼 ∈ R}.

This is a first step towards dealing with intervals natively, as a given non-temporal item
𝑝 ∈ P is true on 𝑇𝑖 𝑗 if and only if the behaviour of 𝑇 within the segment is close enough to
the motif 𝜇 encapsulated by 𝑝. However, the definition above is insufficient to guarantee
that the computation of local support is unbiased. For example, we can consider a temporal
item enriched with Allen’s ⟨𝐵⟩ relation: if it is true on 𝑇𝑖 𝑗 , then it automatically inflates the
support computation, as it is trivially true on all the interval 𝑇𝑖 ( 𝑗+1) . . . 𝑇𝑖𝑁 .

To ensure a fair support computation, we must “anchor” temporal items to a specific
temporal frame, that is, the temporal relations must be applied to the subset of intervals
having at least one non-temporal item true on them, instead of possibly any interval. This
consideration is also crucial when translating an itemset to natural language, as it naturally
filters out two tricky scenarios: firstly, the case in which a conjunction of only temporal items
is considered, as it is no clear the set of intervals they refer to, and, secondly, it ensures that
two non-temporal items wrapping motifs of different lengths are not mixed, as the number of
intervals the two items can be true at the same time is 0.

▶ Definition 4. An itemset 𝑋 is said to be anchored iff contains at least one non-temporal
item, and all non-temporal items Ω ⊆ 𝑋, called anchor of 𝑋, are based on motifs of the same
length. Let 𝑙 (Ω) denote the length of the interval on which an anchor may hold.

In this way, the length of intervals that may potentially satisfy the entire itemset is fixed,
allowing us to define the frequency of that itemset in a truly representative way.

▶ Definition 5. Let 𝔗 be a temporal dataset, ΛP be the set of temporal items built on the
motif-based alphabet P, let 𝑋 ⊆ ΛP be an anchored itemset, and let Ω ⊆ 𝑋 be its anchor. The
motif-based local and global supports of 𝑋 on some instance T ∈ 𝔗 are defined respectively as:

𝑚𝑏𝑙𝑠T (𝑋) =
|{[𝑖, 𝑗] ∈ 𝐼 (𝐷) | 𝑇, [𝑖, 𝑗] ⊩ 𝑋}|

|{[𝑖, 𝑗] ∈ 𝐼 (𝐷) | 𝑗 − 𝑖 + 1 = 𝑙 (Ω)}| , 𝑚𝑏𝑔𝑠
𝑠𝑙
𝔗
(𝑋) = |{T ∈ 𝔗 | 𝑚𝑏𝑙𝑠T (𝑋) ≥ 𝑠𝑙}|

|𝔗 | .

Using the motif-based support, we proceed to comment our experiments.

4 Experiments

We consider two well-known public datasets concerning human gestures and gait recognition,
namely NATOPS [13], from which we consider an arm gesture called “I have command”, and
HuGaDB [3], from which we consider the “Walk” movement, aiming to describe insightful
common patterns and to express them in natural language.
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In both cases, we mine frequent itemsets by leveraging ModalAPRIORI. First of all, we
extract the top 5 motifs with length 10 and the top 3 with length 20, in order to capture
qualitatively appreciable patterns; the two class of motifs encodes a behaviour expressed
respectively in nearly half a second and one second: shorter subsequences would bring
little informativeness, while longer one would be too coarse. We establish two thresholds
for minimum local and global support, respectively 𝑠𝑙 and 𝑠𝑔, to 0.1, which is relatively
low: this is not a problem, as the vast majority of the association rules generated after the
itemset extraction phase (14233 for “I have command”, 253 for “Walking”) are filtered out
by leveraging confidence and lift [2] meaningfulness measures. In particular, the higher the
lift, the more the antecedent and the consequent of a rule are positively correlated.

The motif-based alphabet is generated considering the Z-normalized Euclidean distance 𝛿.
We choose the threshold 𝛼 associated to a specific motif 𝜇 to be the tenth percentile of the
values in the distance profile of 𝜇; in this way, we ensure each single non-temporal item to be
frequent. We enrich the propositional alphabet with the set of temporal items ΛP obtained
by considering every Allen’s relation.

Even if we did not graphically shown an example of “I have command” gesture, we try
to describe a chunk of it with the following rule we extracted, which exhibits a perfect
confidence (of 1.0) and an high lift (of 6.7). The rule is expressed in a compact format, fixing
a coordinate, leveraging superscripts to provide an intuition about the movement captured
by the motif underlying each item, and subscripts to indicate the length of the motif and
which body part it refers to (e.g., re for right elbow, rh for right hand).

𝑦
𝑢𝑝

20, 𝑟𝑒 ∧ 𝑧
𝑓 𝑟𝑜𝑛𝑡

20, 𝑟ℎ ⇒ ⟨𝑂⟩𝑥𝑙𝑒 𝑓 𝑡&𝑖𝑛𝑣𝑒𝑟𝑡

10, 𝑟ℎ ∧ ⟨𝐵⟩𝑦𝑟𝑒𝑠𝑡&𝑢𝑝

10, 𝑟𝑒

The rule above can be read as whenever the right hand of the operator is completely stretching
in front of him/her and their elbow goes all the way up on the y-axis, the same elbow started
the movement range in a rest position and, near the end of the movement range, the operator’s
right hand is moving to the left, but will soon change direction.

The following pair of rules describes a non-trivial behaviour typical of the walking gait;
note that rf (lf) stands for right (left) foot, while rt (lt) stands for right (left) thigh.

𝑥
𝑓 𝑟𝑜𝑛𝑡

10, 𝑟 𝑓 ⇒ ⟨𝐴⟩𝑥𝑢𝑝10, 𝑙𝑡 , 𝑥𝑏𝑎𝑐𝑘10, 𝑙 𝑓 ⇒ ⟨𝐴⟩𝑥𝑢𝑝10, 𝑟𝑡

The rules states that when the right (left) foot accelerates forward (backwards) for approxim-
ately half of a second, then the left (right) thigh accelerates upward immediately after.

5 Conclusions

In this paper we introduced a motif-based approach to temporal alphabet definition and
rule extraction. By leveraging motifs-based frequently recurring patterns in time series,
we obtained a more interpretable and structurally robust framework for mining temporal
association rules, solving the biases introduced by naive alphabet definitions and enhancing
semantic clarity. We formalized the concept of anchored itemsets and introduced a novel
definition of motif-based local and global support, ensuring that patterns are both meaningful
and computationally tractable. Experimental validation on temporal datasets demonstrates
the expressiveness and interpretability of the extracted rules, showing promise for applications
in explainable temporal data analysis.

TIME 2025
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