An Introduction to
First-Order Linear Temporal Logic

Nicola Gigante @&

Free University of Bozen-Bolzano, Italy

—— Abstract

Linear temporal logic (LTL), most commonly defined as a propositional modal logic, is the de-facto

standard language for specifying temporal properties of systems in formal verification, artificial
intelligence, and other fields. First-order linear temporal logic (FOLTL) lifts LTL to the setting of
first-order logic, obtaining a remarkably flexible and expressive formalism. First-order modal and
temporal logics have a long history, but recent years have seen a rise of interest in (well-behaved
fragments of) FOLTL for the specification of complex infinite-state systems. This tutorial is a gentle
introduction to the field of first-order temporal logics, starting from classic results and exploring
recent directions.

2012 ACM Subject Classification Theory of computation — Modal and temporal logics

Keywords and phrases Temporal logic, first-order logic, knowledge-representation, infinite-state
systems

Digital Object Identifier 10.4230/LIPIcs. TIME.2025.2

Category Invited Talk

1 Introduction

Linear Temporal Logic (LTL) [16] is one of the most common formalisms to express temporal
properties of systems in many fields including formal verification and artificial intelligence.
In its classic form, LTL is a propositional modal logic interpreted over infinite linear orders
or words, although recently interest has risen in the artificial intelligence field for LTL¢ [3],
i.e. LTL interpreted over finite words.

The success of LTL stems from its intuitive syntax and semantics and the existence of
many efficient techniques for reasoning about the logic. Indeed, although satisfiability of LTL
formulas is PSPACE-complete [21], many efficient techniques are known [9,12,22], and the
same can be said for model checking [15].

However, in many scenarios, the propositional nature of LTL poses some limits to its
applicability. Consider the following classic example:

G(req — Fgrant)

The above formula states that at any given moment (G), if a request is received, then
eventually (F) an answer is granted. This kind of specification is quite common, but it is
rarely sufficient to express it in the above way. That is because the above formula makes no
connection between the answer that is granted and the request that is being answered. For
example, the formula is also satisfied by a single answer after many requests.

What one would really like to express is that each request gets its own answer. One may
wonder what the identity of requests consist in. Let us suppose requests have unique identifiers
that last for all the execution of the system, and suppose that, instead of propositions, we
can use the reg(r) predicate to tell that the request r has been requested, and grant(r) to
tell that has been answered. Then, we can write the following:

vr . G(req(r) — Fgrant(r))

© Nicola Gigante;
37 licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemystaw Andrzej Watega; Article No. 2; pp.2:1-2:6

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:nicola.gigante@unibz.it
https://www.inf.unibz.it/~gigante/
https://orcid.org/0000-0002-2254-4821
https://doi.org/10.4230/LIPIcs.TIME.2025.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

2:2

An Introduction to First-Order Linear Temporal Logic

The above specification is a sentence in first-order linear temporal logic (FOLTL). FOLTL
combines the usual temporal operators from LTL with classic first-order logic, obtaining a
remarkably expressive and sophisticated language. In what follows we introduce the semantics
of this language (Section 2), its major computational trade-offs (Section 3), and we describe
some current trends (Section 4).

2 Semantics

In first-order logic, once the signature ¥ is fixed (i.e. the set of constant, predicate and
function symbols used), sentences (i.e. formulas with no free variables) are interpreted over
Y-structures that interpret the signature’s symbols. In FOLTL, sentences are interpreted over
sequences of Y-structures, representing the evolution over time of the symbols’ interpretation.
Classically, FOLTL has been studied over many different kind of sequences or linear orders
of ¥-structures: finite or infinite, discrete or dense, etc., with most classic results holding
independently of the nature of the underlying linear order [5]. Here, for simplicity, let us
assume discrete linear orders, either finite or infinite.

When formally defining the semantics of the satisfaction of FOLTL formulas, one im-
mediately encounters a non-trivial question about the meaning of existence of the objects
of first-order quantification. To see what this means, suppose we are modeling the human
resources of a company, and we care about the feelings of our employees. We may write a
sentence like the following.

¥ = Va.Ghappy(z) — GVz.happy(x)

The above sentence is an instance of a scheme called the Barcan formula [14]. In this case,
it is saying that, in the company, if everyone is happy every day, then every day everyone is
happy. One may consider ¥ to be obviously a valid FOLTL sentence or not, depending on
two different views:

1. the sentence is valid because the two mentions of “everyone” in the above phrase refer to
the same set of people, i.e. the domain of the two universal quantifiers is the same; or

2. the sentence is not valid because who is “everyone” today may include or not include
people that will be absent or present tomorrow, i.e. the domain of the two universal
quantifiers may differ.

Depending on our choice of point of view, we can identify a different semantics for FOLTL:

1. eternalist or constant-domain semantics: every and all objects in the quantification
domain always exist at any point in time, as the domain does not change;

2. presentist or varying-domain semantics: objects in the domain pop up into existence at
some time and cease to exist at some later time, as the domain wvaries over time.

In the eternalist semantics, the Barcan sentence is valid and we can swap the universal
quantifier with the always temporal operator (or, equivalently, the existential quantifier with
the eventually operator). In the presentist semantics, we cannot do that. The choice of
semantics affects the semantics of purely first-order sentences as well. Consider for example
the following sentence:

Va.happy(x) — happy(Nik)

This is an instance of the universal instantiation axiom which is valid in classical first-order
logic for any formula in the place of happy(x). However, in the varying-domain semantics
the sentence is not valid anymore, because the constant Nik may refer to somebody that is
not currently in the domain (e.g. because he still has to be hired) and therefore may be not
happy. An axiomatization of FOLTL in both semantics can be found in McArthur’s book [14].

N. Gigante

Note that, in modeling terms, the constant-domains semantics is the most general: one
can simulate the varying-domain semantics in a constant-domain sentence by introducing an
existence predicate exists(x) guarding all occurrences of quantifiers.

3 Computational trade-offs

Depending on the signature ¥ and the X-theory we consider, FOLTL can be extremely
expressive. Of course, this expressiveness is payed in terms of tractability, as both satisfiability
and walidity are undecidable and not even semi-decidable [5]. This can be seen easily, for
example, by reducing the recurrent tiling problem [23] to FOLTL satisfiability.
Unfortunately, research has shown that decidable fragments of FOLTL are rare and far
apart [5]. A classic example of decidable fragment of FOLTL is the monodic fragment. A
sentence is monodic if any temporal subformula has at most one free variable. For example:

Va[p(z) — Gp(z)]
is a monodic sentence, as is the Barcan sentence discussed above. Instead:
Vaylr(z,y) = Gr(z,y)]

is not monodic. The monodic fragment is made of relational monodic sentences with no
equality symbol, and can be proved to be decidable over any kind of linear order through a
reduction to Biichi’s decidability result for monadic second-order logic [5] or, for discrete
linear orders, via first-order automata [7].

It is clear that the major restriction of the monodic fragment is the inability of transferring
relational information across time. As this is a major limitation for the modeling of many
scenarios, one may wonder whether more expressiveness can be recovered by accepting
semi-decidability. After all, many decades of research in the automated reasoning community
have proven that semi-decidable problems can be addressed in practice is suitably effective
semi-decision procedures are found. An example is that of constrained Horn clauses, a
semi-decidable fragment of first-order logic effectively solved in practice by property-directed
reachability techniques [11].

In this vein, one may prove (e.g., again via first-order automata [7]) that if one starts
from a combination of decidable first-order logic fragment and theory (e.g. the two-variable
fragment [10] or many decidable theories employed in satisfiability modulo theories (SMT) [2]),
then FOLTL over finite words is semi-decidable.

4 Recent trends

Recent trends go in the mentioned direction of accepting computational trade-offs in exchange
of more expressive power, unlocking the usage of (well-behaved fragments of) FOLTL in the
specification of infinite-state systems.

An example of work in this direction is LTLs modulo theories (LTLMT) [6,8], a recently-
introduced fragment of FOLTL interpreted over finite words that, although semi-decidable,
has a decision procedure effectively implementable in terms of modern SMT solvers.

LTLP’IT poses semantic and syntactic restrictions to FOLTL. Semantically, it is interpreted,
in the constant-domain semantics, over finite linear orders where the interpretation of
predicates and function symbols is rigid, i.e. arbitrary but fixed in time, and only the

2:3

TIME 2025

2:4

An Introduction to First-Order Linear Temporal Logic

interpretation of constants is allowed to change. Syntactically, it forbids the alternation of
quantifiers and temporal operators but allows the usage of a lookahead operator that, applied
to a constant, designates the value of the constant at the next time step. For example:

(>>a=a+1)U(a=42)

is a LTLf'VIT sentence saying that the constant a increments by one at each time step until it
reaches the value 42. One may rewrite such a sentence in pure FOLTL as follows':

Gz X(xz=a)Az=a+1]) U (a =42)

The LTLP"T logic has been defined over finite words because its semi-decidability (under
the conditions mentioned in the previous section) cannot be proven in general if infinite
words are involved. However, some decidability conditions have been identified [8] which
hold for infinite words as well (i.e. LTLMT). These results complement the classic ones on the
monodic fragment: LTLMT can be translated into monodic FOLTL sentences, but the classic
decidability results mentioned above hold for rigid constants and non-rigid predicates, which
is exactly the opposite semantic setting than LTLMT, in addition to the fact that LTLMT
allows the equality symbol.

The structure of the logic has been designed in order to have its satisfiability problem
being easily reduced into a sequence of SMT calls that can be solved by standard solvers,
obtained by an SMT encoding of a suitable extension of Reynolds’ tree-shaped tableau for
LTL [9,18]. Performance are promising in practice, although more work is still needed to
exploit the full potential of the approach.

Recently, interest has sparked about a task that goes beyond satisfiability and validity, 7.e.
reactive synthesis. This is the task of synthesizing a controller that can ensure the satisfaction
of a temporal formula independently from the actions of an external antagonistic environment.
Reactive synthesis for propositional LTL and LTL¢ is already a hard problem (2EXPTIME-
complete [4,17]), and is of course undecidable for FOLTL and for LTLMT as well.

However, progress has been made on addressing the problem in practice. In particular,
equirealizable Boolean abstractions have been found for LTLMT without lookaheads [20] which
can be given to propositional LTL synthesizers, whose produced strategies can be mapped

back to a strategy for the original LTLMT sentence. Then, the approach has been extended to
LTLMT with lookaheads by a counterexample-guided abstraction refinement procedure [19],

although unlocking full potential of this technique requires manual intervention in the loop.

5 Conclusions

The field of first-order temporal logics intersects with first-order modal logics, knowledge
representation, temporal description logics [1,13], satisfiability modulo theories, and many
other corners of computer science, in a fascinating and intricate web of connections.

Because of its discouraging computational behavior, FOLTL has been studied during
the decades in mostly theoretical terms and with a focus on modeling and knowledge
representation rather than reasoning. Nevertheless, recent work has highlighted the possibility
of dealing in practice with reasoning tasks over expressive fragments of FOLTL, including
reactive synthesis. Progress in this field is encouraging and this short abstract also wants to
be a call to action for the community to invest resources in this promising direction.

! The semantics given in [6] needs to be slightly tweaked for this translation to work in general.

N. Gigante

—— References

1

10

11

12

13

14

15

16

Alessandro Artale and Enrico Franconi. Temporal description logics. In Michael Fisher,
Dov M. Gabbay, and Lluis Vila, editors, Handbook of Temporal Reasoning in Artificial
Intelligence, volume 1 of Foundations of Artificial Intelligence, pages 375-388. Elsevier, 2005.
do0i:10.1016/51574-6526(05)80014-8.

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability
modulo theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 825-885. I0S Press, 2009. doi:10.3233/978-1-58603-929-5-825.

Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In Proceedings of 23rd IJCAI, pages 854-860, 2013. URL: http:
//www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997.

Giuseppe De Giacomo and Moshe Y. Vardi. Synthesis for LTL and LDL on finite traces. In
Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 1558-1564. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/223.
D.M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Fragments of first-order temporal
logics. In Many-Dimensional Modal Logics, volume 148 of Studies in Logic and the Foundations
of Mathematics, pages 465-545. Elsevier, 2003. doi:10.1016/S0049-237X(03)80012-5.

Luca Geatti, Alessandro Gianola, and Nicola Gigante. Linear temporal logic modulo theories
over finite traces. In Proceedings of the 31st IJCAI, pages 2641-2647, 2022. doi:10.24963/
ijcai.2022/366.

Luca Geatti, Alessandro Gianola, and Nicola Gigante. First-order automata. In Toby
Walsh, Julie Shah, and Zico Kolter, editors, AAAI-25, Sponsored by the Association for the
Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA,
pages 14940-14948. AAAT Press, 2025. doi:10.1609/AAAT.V39I14.33638.

Luca Geatti, Alessandro Gianola, Nicola Gigante, and Sarah Winkler. Decidable fragments of
Itlf modulo theories. In Proceedings of the 26th ECAI volume 372 of Frontiers in Artificial
Intelligence and Applications, pages 811-818. IOS Press, 2023. doi:10.3233/FAIA230348.
Luca Geatti, Nicola Gigante, Angelo Montanari, and Gabriele Venturato. SAT meets tableaux
for linear temporal logic satisfiability. J. Autom. Reason., 68(2):6, 2024. doi:10.1007/
S510817-023-09691-1.

Erich Grédel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for two-
variable first-order logic. Bull. Symb. Log., 3(1):53-69, 1997. doi:10.2307/421196.

Arie Gurfinkel and Nikolaj S. Bjgrner. The science, art, and magic of constrained horn clauses.
In Proceedings of the 21st International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, pages 6-10. IEEE, 2019. doi:10.1109/SYNASC49474.2019.00010.
Jianwen Li, Yinbo Yao, Geguang Pu, Lijun Zhang, and Jifeng He. Aalta: an LTL satisfiability
checker over infinite/finite traces. In Shing-Chi Cheung, Alessandro Orso, and Margaret-Anne D.
Storey, editors, Proc. of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 731-734. ACM, 2014. doi:10.1145/2635868.2661669.
Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal description logics: A survey.
In Stéphane Demri and Christian S. Jensen, editors, 15th International Symposium on Temporal
Representation and Reasoning, TIME 2008, Université du Québec & Montréal, Canada, 16-18
June 2008, pages 3—14. IEEE Computer Society, 2008. doi:10.1109/TIME.2008. 14.

Robert P. McArthur. Tense Logic. Springer, 1976. doi:10.1007/978-94-017-3219-2.
Kenneth L. McMillan. Interpolation and model checking. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages
421-446. Springer, 2018. doi:10.1007/978-3-319-10575-8_14.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science, pages 46-57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

2:5

TIME 2025

https://doi.org/10.1016/S1574-6526(05)80014-8
https://doi.org/10.3233/978-1-58603-929-5-825
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://ijcai.org/Abstract/15/223
https://doi.org/10.1016/S0049-237X(03)80012-5
https://doi.org/10.24963/ijcai.2022/366
https://doi.org/10.24963/ijcai.2022/366
https://doi.org/10.1609/AAAI.V39I14.33638
https://doi.org/10.3233/FAIA230348
https://doi.org/10.1007/S10817-023-09691-1
https://doi.org/10.1007/S10817-023-09691-1
https://doi.org/10.2307/421196
https://doi.org/10.1109/SYNASC49474.2019.00010
https://doi.org/10.1145/2635868.2661669
https://doi.org/10.1109/TIME.2008.14
https://doi.org/10.1007/978-94-017-3219-2
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1109/SFCS.1977.32

2:6

An Introduction to First-Order Linear Temporal Logic

17

18

19

20

21

22

23

Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In 16th
International Colloguium on Automata, Languages and Programming, volume 372 of Lecture
Notes in Computer Science, pages 652—671. Springer, 1989. doi:10.1007/BFB0035790.

Mark Reynolds. A New Rule for LTL Tableaux. In Proc. of the 7" International Symposium
on Games, Automata, Logics and Formal Verification, volume 226 of EPTCS, pages 287-301,
2016. doi:10.4204/EPTCS.226.20.

Andoni Rodriguez, Felipe Gorostiaga, and Cesar Sanchez. Counter example guided reactive
synthesis for 1tl modulo theories. In Proceedings of the 37th International Conference on
Computer Aided Verification (CAV 2025), page to appear, 2025.

Andoni Rodriguez and César Sanchez. Boolean abstractions for realizability modulo theories.
In Proceedings of the 35th CAV, volume 13966 of Lecture Notes in Computer Science, pages
305—-328. Springer, 2023. doi:10.1007/978-3-031-37709-9_15.

A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733-749, 1985. doi:10.1145/3828.3837.

M. Suda and C. Weidenbach. A PLTL-Prover Based on Labelled Superposition with Partial
Model Guidance. In Proc. of the 6th International Joint Conference on Automated Reasoning,
volume 7364 of LNCS, pages 537—-543. Springer, 2012. doi:10.1007/978-3-642-31365-3_42.
Peter van Emde Boas et al. The convenience of tilings. Lecture Notes in Pure and Applied
Mathematics, pages 331-363, 1997.

https://doi.org/10.1007/BFB0035790
https://doi.org/10.4204/EPTCS.226.20
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1145/3828.3837
https://doi.org/10.1007/978-3-642-31365-3_42

	1 Introduction
	2 Semantics
	3 Computational trade-offs
	4 Recent trends
	5 Conclusions

