
A Translation of Probabilistic Event Calculus into
Markov Decision Processes
Lyris Xu #

Dept. of Information Studies, University College London, UK

Fabio Aurelio D’Asaro #

Dip. di Studi Umanistici, Università del Salento, Lecce, Italy

Luke Dickens #

Dept. of Information Studies, University College London, UK

Abstract
Probabilistic Event Calculus (PEC) is a logical framework for reasoning about actions and their
effects in uncertain environments, which enables the representation of probabilistic narratives
and computation of temporal projections. The PEC formalism offers significant advantages in
interpretability and expressiveness for narrative reasoning. However, it lacks mechanisms for goal-
directed reasoning. Our work bridges this gap by developing a formal translation of PEC domains
into Markov Decision Processes (MDPs), introducing the concept of “action-taking situations” to
preserve PEC’s flexible action semantics. The resulting PEC-MDP formalism enables the extensive
collection of algorithms and theoretical tools developed for MDPs to be applied to PEC’s interpretable
narrative domains. We demonstrate how the translation supports both temporal reasoning tasks
and objective-driven planning, with methods for mapping learned policies back into human-readable
PEC representations, maintaining interpretability while extending PEC’s capabilities.
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1 Introduction

Reasoning about actions and their effects in dynamic, uncertain environments is a fundamental
challenge in Artificial Intelligence (AI). The importance of narrative reasoning – the ability
to represent and reason about sequences of events and their causal relationships over time –
has been recognised since the early days of AI, leading to various temporal reasoning
formalisms [10, 1, 5, 12]. Building on these early foundations, the Probabilistic Event
Calculus (PEC) [3] has emerged as a powerful framework for representing and reasoning
about uncertain scenarios. PEC extends the Event Calculus (EC) [5, 11], to provide an
“action-language” style framework for modelling actions, their effects, and the evolution of
world states over time under uncertainty. PEC-style frameworks offer highly interpretable
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and flexible representations of complex narratives, with demonstrated applications in domains
such as medicine, environmental monitoring, and commonsense reasoning [2, 3]. Markov
Decision Processes (MDPs), meanwhile, have established themselves as a powerful framework
for modelling time-evolving systems controlled by an agent. MDPs and their variants are
widely used across AI for decision-making under uncertainty and serve as the foundation
for many statistical and reinforcement learning algorithms. While MDPs excel at control
optimisation problems, PEC and its variants offer superior narrative interpretability but lack
mechanisms for learning goal-directed behaviour.

A translation between these frameworks presents a compelling opportunity to bridge this
gap, combining PEC’s human-readable representation with MDP’s computational efficiency
and reinforcement learning capabilities. Such a bridge would allow for both efficient PEC
implementation and the application of statistical learning techniques to narrative reasoning
tasks. Towards this goal, we have developed a novel translation of PEC into an MDP
framework, termed the PEC-MDP. This translation preserves the core assumptions and
semantics of PEC while enabling the application of a wide range of MDP-based algorithms
to PEC’s human-readable domains.

The key contributions of our work include:
A formal translation of PEC domains to PEC-MDPs, with a Python implementation
made available through a shared repository.
An approach for performing temporal projection via the PEC-MDP formalism.
A novel approach to planning under uncertainty in PEC domains.

2 Background

Probablistic Event Calculus. A PEC domain D comprises a finite, non-empty set of fluents
F and values V , a finite set of actions U , a set of fluent states S̃, and a non-empty set of time
instants I. Fluents, as in classical narrative reasoning formalisms [12, 9], refer to properties
of the world which may be affected by actions taken. A fluent state S̃ ∈ S̃ is an assignment
of values to all fluents of the domain, while a partial fluent state X̃ ∈ X̃ is a subset of
value-assigned fluents, i.e., X̃ ⊆ S̃ for some S̃ ∈ S̃. PEC uses a set of action-language style
propositions to specify probabilistic narrative information. A domain consists of:
1. A finite set of v-propositions which detail the values that a fluent may take.
2. Exactly one i-proposition which specifies the probabilities of initial fluent states that hold

at the minimum time instant.
3. A finite set of c-propositions which model the causal effects of actions, each specifying a

set of preconditions for effects to take hold (where at least one action is true), a partial
fluent X̃ for each set of effects, and their corresponding probabilities.

4. A set of p-propositions modelling the occurrence of actions, each specifying an action, a
time instant, the probability for the action to be taken, and optional fluent preconditions.

PEC supports a possible-worlds semantics, where a world is an evolution of an environment
over time. Using this semantics, temporal projection computes the probability of fluent states
or partial fluent states at future time points given an initial state distribution and a narrative
of action occurrences. See [3] for more.

Markov Decision Processes. An MDP is defined as the tuple (S, A, p0, T, R), where S
and A are finite sets of states and actions respectively (distinct from PEC states and
actions). The initial state distribution is given by p0, where the probability of starting at
time t = 0 in state s is given by p0(s). Transition dynamics are given by transition function
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T (s, a, s′) = Pr(st+1 = s′|at = a, st = s), while the reward function R(s, a, s′) = r maps each
state transitions to a numerical rewards. Behaviours in an MDP are encoded in a policy µ.
Stationary policies map states to actions independent of time, either deterministically
µ(s) = a or stochastically µ(s, a) = Pr(at = a|st = s). Non-stationary policies [6] allow
time-dependent mappings, µt, where if t ̸= t′, then µt(s, a) can be different from µt′(s, a).

3 PEC-MDP Formalism

A translation of PEC domains into a MDP-derivative requires reconciliation of several key
differences between the two frameworks: i. PEC dynamics operate on fluents (properties of
the environment), while the MDP operates directly on environment states without internal
structure; ii. PEC does not model rewards; iii. PEC assumes a progression of time independent
to actions and environmental changes, while the MDP assumes a direct correspondence
of each discrete time step to each episode of agent-state interaction; iv. PEC allows for
simultaenous action-taking while the MDP does not; v. Action-taking in PEC conditions
obligatorily on time-instants and optionally on specific partial fluent conditions, while the
MDP’s standard stationary policy which conditions only on the state an agent resides in.

Given that PEC’s action-taking is conditioned on time, a non-stationary policy [6] is
adopted to model time-dependent policies while maintaining stationary transition dynamics.
The reward component of the MDP framework is omitted in the initial translation of PEC
domains as PEC domains are without inherent reward signals. The PEC-MDP formalism is
thus a reward-free MDP with a non-stationary policy.

To allow for efficient matrix operations, we translate PEC’s natural language components
into 0-based numerical encodings while maintaining bidirectional mappings to preserve
interpretability. This encoding assigns each element an index based on arbitrary orderings
over PEC fluents F , values V, and actions U . The PEC-MDP state space is constructed
through a two-step process: first, PEC fluent states are mapped to vector representations of
fluent value indices (i.e. (x0, x1, x2, ...) where xj denotes that the index of the value taken
by the fluent of index j); next, these vectors are mapped to integers for a more compact
representation, acting as the base unit of a PEC-MDP state. The vector representation
allows access to specific fluents, enabling two crucial functions: i. the mapping of a partial
fluent state X̃ to a set of PEC-MDP states in which fluents in X̃ are entailed; ii. the update
of a PEC-MDP state with the effect of a partial fluent state X̃ by modifying fluent elements
affected by X̃ but retaining those which are not.

Next, to accommodate PEC’s more flexible action-taking mechanisms into the MDP’s
rigid framework, we introduce action-taking situations composing single, composite, and
null actions to simulate time-points at which agents perform one action, multiple actions
simultaneously, or do not take any actions, respectively. The set of action-taking situations
is determined by referring to p-propositions, to find all possible action combinations that
may be taken at one time, including the null action situation where no action is taken.

Time instants are normalised to begin at 0 while preserving temporal ordering. The
initial distribution is retrieved from PEC’s i-propositions, as a probability distribution over
PEC-MDP states mapped from fluent states. Transition probabilities are derived from c-
propositions, where the effects of an action-taking situation are aggregated from its composite
actions. The fluent state update operation associates a current state to an updated state given
some effect X̃ with its corresponding probability. Finally, a non-stationary policy captures
PEC’s time-conditioned action probabilities from p-propositions, representing distributions
over action-taking situations rather than individual actions.
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The PEC-MDP translation has been fully implemented in Python and may be found here.
For a comprehensive overview of the functionalities, example domains, and usage instructions,
readers are directed to the repository’s README file.

4 Applications

The PEC-MDP enables applying MDP techniques to PEC domains, most notably reinforce-
ment learning for optimal decision-making, while preserving PEC’s original capability for
temporal projection in narrative reasoning.

Previous implementations of temporal reasoning for PEC predominately calculate probab-
ilities through summing over all possible worlds [3], or through approximate sampling [2]. Our
proposed approach provides an exact solution through efficient matrix operations. We define
policy-weighted transition matrices to propagate the initial distribution over PEC-MDP
states forward to the queried time, to retrieve the distribution over states at that time. The
probability that X̃ holds then is computed by summing probabilities over all fluent states
that entail X̃. While a formal efficiency experiment has yet to be conducted, this method
avoids the combinatorial explosion that comes with the computation of all possible worlds.

Next, to apply objective-directed strategies for the PEC-MDP, a desirability criterion must
first be established in the form of an MDP reward function to guide agent behaviour. Once
an appropriate quantitative reward signal is defined over outcomes, actions, or transitions,
suitable reinforcement learning methods can be applied to discover optimal policies for the
narrative domain. To preserve the interpretability advantages of PEC’s original formalism,
learned policies may be translated back into human-readable p-propositions. This requires
deterministic policies since action-taking situations must be separated into individual actions
for p-propositions, meaning that probabilistic dependencies between actions cannot be
preserved.

The mapping of a policy over action-taking situations is trivial where each action in a
situation is performed at the corresponding instant where the fluent state holds. However, as
this generates a large number of p-propositions, refinements can be applied to reduce this
set for interpretability while maintaining semantic equivalence. These include eliminating p-
propositions for unreachable state-time combinations and generalising fluent state conditions
to their minimal distinguishing features.

The complete formal translation of the PEC-MDP may be found at [15], alongside a
more detailed outline of temporal reasoning and objective-directed strategies.

5 Conclusion

Finally, let us note that other probabilistic extensions of the Event Calculus have been
proposed, focusing on event recognition using probabilistic logic programming and learning
from noisy data in both offline and online settings, i.e., [14, 13, 8, 4, 7]. In contrast, our
PEC-MDP framework inherits the main features of PEC, which is more expressive (see [2] for
a comparison), compiling it into an MDP. This shift lays the groundwork for reinforcement
learning, positioning our work toward goal-driven reasoning and policy optimisation.

While our current work focuses on the PEC-MDP’s application to temporal projection
and objective-directed learning, the PEC-MDP framework lays the groundwork for further
applications that leverage MDP-based techniques within narrative domains. Beyond these
broader applications, future work will include formal efficiency analyses and extending the
framework to the Epistemic Probabilistic Event Calculus (EPEC) [2].

https://github.com/LyrisX02/PEC-MDP/
https://github.com/LyrisX02/PEC-MDP/blob/main/README.md
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