Metric Linear-Time Temporal Logic with Strict
First-Time Semantics

Eric Alsmann
Theoretical Computer Science / Formal Methods, University of Kassel, Germany

Martin Lange

Theoretical Computer Science / Formal Methods, University of Kassel, Germany

—— Abstract

We introduce strict first-time semantics for the Until operator from linear-time temporal logic
which makes assertions not just about some future moment but about the first time in the future
that its argument should hold. We investigate Metric Linear-Time Temporal Logic under this
interpretation in terms of expressive power, relative succinctness and computational complexity.
While the expressiveness does not exceed that of pure LTL, there are properties definable in this
logic which can only be expressed in LTL with exponentially larger formulas. Yet, we show that
the complexity of the satisfiability problem remains PSPACE-complete which is in contrast to the
EXPSPACE-completeness of Metric LTL. The motivation for this logic originates in a study of the
expressive power of State Space Models, a recently proposed alternative to the popular transformer
architectures in machine learning.

2012 ACM Subject Classification Theory of computation — Modal and temporal logics; Theory of
computation — Automata over infinite objects

Keywords and phrases linear-time temporal logic, metric temporal logic, computational complexity,
Streett automata

Digital Object Identifier 10.4230/LIPIcs. TIME.2025.3

1 Introduction

The linear-time temporal logic LTL is a well-known formalism for specifying properties of
runs of reactive systems [14]. Its model-theoretic and computational properties are well
researched and understood, for instance its satisfiability problem being PSPACE-complete [17]
and its expressiveness coinciding with that of First-Order Logic [6], resp. star-free regular
expressions over w-words or over finite words [7].

The relative weakness in expressive power has led to the study of several extensions of
LTL, some of which genuinely extend its expressiveness, typically to that of full (w-)regularity,
for instance the Linear-Time p-Calculus [3, 19], the industry standard PSL [5], Quantified
LTL [16], etc. Others extend LTL only pragmatically by providing further constructs without
extending the expressive power altogether, but providing means to express certain properties
more easily.

One such variant is the Metric Linear-Time Temporal Logic MTL [1]. The term “metric
temporal logic” does not uniquely identify one particular formalism, not even within the
linear-time framework. It describes temporal logics in which the temporal operators are
extended so that they do not simply make assertions about the future (or past) moments in
a linear sequence of events, but additionally constrain their distance to the current moment.
For example PUp5 4 does not only demand that ¢ holds at some point in the future with p
being continuously true up to that point, but this future point also has to occur within three
to five time units from now on. The exact semantics then depends on the underlying models
etc. Metric temporal logic has been developed for reasoning about real-time systems [9], but

© Eric Alsmann and Martin Lange;

oY licensed under Creative Commons License CC-BY 4.0
32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemystaw Andrzej Watega; Article No. 3; pp. 3:1-3:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2603-7827
https://orcid.org/0000-0002-1621-0972
https://doi.org/10.4230/LIPIcs.TIME.2025.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

3:2

Metric LTL with Strict 1st-Time Semantics

it can also be used for systems evolving in discrete steps. Here we use MTL only as a logic
over discrete time, resp. (untimed) w-words. Consequently, the intervals adorning the metric
operators are always interpreted over the natural numbers.

It is not hard to see that MTL does not exceed LTL in expressiveness: temporal operators
with metric constraints can easily be unravelled. The property above can be expressed as “p
holds now and in the next two steps; afterwards we have q or p followed by q or p followed
by another p, followed by q” using only the next-time operator (in this case). A general
translation from MTL to LTL is an easy exercise, and it incurs a blow-up that is polynomial
in the value of the involved interval bounds. Hence, when such bounds are encoded unarily,
MTL satisfiability is also PSPACE-complete. The more reasonable assumption of binary
encodings then yields an exponential translation into LTL and therefore an EXPSPACE upper
bound on its satisfiability problem. This is tight, satisfiability for MTL with binarily encoded
interval bounds is in fact EXPSPACE-complete [10].

The lower bound uses a standard reduction from the word problem for exponentially
space bounded Turing Machines (TM). The key to the proof is then MTL’s ability to express
“something holds after 2" steps” which, using binary encodings, can be done with a formula
of size polynomial in n. This is used to express, for instance, that a symbol b is seen at that
distance, i.e. at the same cell on the tape in the next configuration, formalising a potential
writing operation of the TM. Clearly, the tape may contain more occurrences of that symbol,
so the one seen at distance 2" is usually not the first one to be seen in the future.

This paper is motivated by the study of the expressive power of a recent machine learning
model, so-called State-Space Models (SSM) [13]. They have been proposed as an alternative
to the well-known transformer architectures underlying prominent Large Language Model
tools, promising more efficient evaluation of long input strings. Here we do not go further
into the details of SSMs; they merely serve as a motivation for studying a particular variant
of MTL which is geared towards the expressive capabilities of SSMs. To motivate this variant,
we recall the well-known unfolding principles for temporal operators.

» Example 1. Suppose that, in the context of some decision procedure, we were to establish
the truth of the LTL formula G(pUq) at position ¢ of some w-sequence of events. By unfolding
the G-operator, this typically amounts to establishing truth of both (1) pUq and (11) XG(pUq)
at moment . To solve (I) we can either prove ¢ or defer it to a later point by unfolding the
Until-formula and proving p as well as (111) X(p U ¢) at moment i. Now, (11) and (111) both
start with a Next-operator, so they imply proving G(p U ¢) and (11I’) p U ¢ at moment ¢ + 1.
The former can be handled as done at moment #; in particular it means proving p U g at
moment i + 1 which is already the task identified as (11T’). In a sense, there are two reasons
for the need to prove pU ¢ at moment i + 1, and they just collapse to a single task.

Now suppose that the original formula was one of MTL, namely G(p Ujs 5 q). Here the
reasoning can be done in the same way, but when unfolding the metric Until we obtain an
index shift: PUs5q is established at moment ¢ when X(p Ul q q) is established there. Hence,
when carrying out this kind of reasoning we obtain two tasks regarding moment i + 1 that
do not collapse into one, namely to prove PUp 4 q s well as PUp5 4 there.

This can also be seen as an indication for MTL’s higher complexity: truth of a formula
at moment ¢ does not just depend on the truth of its subformulas at moments 7 and i + 1,
but also on variants of the subformulas obtained through index shifts.

The mechanisms in SSMs naturally suggest a comparison of their expressiveness with
formulas of metric linear-time temporal logic (on finite words), since SSMs can easily track
the distance between occurrences of events in a word, they seem to be unable to cope with
the blow-up in formulas that need to be tracked through unfolding.

E. Alsmann and M. Lange

In this paper we initiate the study of a variant of MTL— called Metric Temporal Logic
with Strict First-Time Semantics here, MTL!'~ which is defined because of a certain similarity
to the mechanics in SSMs. It features the Metric Until operator ¢ U[lxyy] 1 which does
not just demand that some future moment at distance between x and y satisfies 1, but
this also has to be the first time (from the current moment on) that ¢ is satisfied. Note
that this remedies the problem with a potential blow-up indicated by the example above:
while (p Upa.41 Q) A (p Ups5) q) cannot be simplified into a formula using only a single metric
Until operator, (p U[1274] Q) A (p U[1375] q) is indeed equivalent to p U[1374] g, suggesting that
the strict first-time semantics makes formulas easier to handle computationally. It is also
not hard to see that the proof of EXPSPACE-hardness for MTL breaks down under the
strict first-time semantics, as suggested above. So apart from the obvious question about
MTL’s expressiveness in relationship to the other variants of LTL, its complexity somewhere
between PSPACE and EXPSPACE is to be pinpointed as well. An EXPSPACE upper bound
is obtained easily because of a simple linear translation into MTL, based on principles like
@U[lzyy] Y= (pA) Uiz .

This paper is organised as follows. In Section 2 we formally recall known concepts needed
for this study, in particular LTL and its extension MTL. We also recall the definition of
Streett automata [18] which will serve as a main tool in a decision procedure for MTL!
which is formally introduced in Section 3. There, we also investigate its expressiveness and
succinctness relative to LTL. In Section 4 we construct a singly exponential translation from
MTL! into Streett automata thus pinpointing the former’s complexity as being PSPACE-
complete only. In Section 5 we conclude with remarks on further work in this area.

2 Preliminaries

We recall the necessary definitions from temporal logics and automata theory.

Linear-time temporal logic. Let P = {p,q,...} be a non-empty, countable set of atomic
propositions. Formulas of the linear-time temporal logic LTL are given by the following
grammar.

o u= qleohe|op|XeleUep

where ¢ € P. Further Boolean operators like tt, ff, V, —, <> are introduced as abbreviations
in the usual way, and so are the temporal operators F ¢ ;=% U ¢, Gy := ~F—p, pR Y :=

(- U —y).
The set Sub(p) of subformulas of ¢ is defined in the usual way. The size of a formula ¢
is measured in terms of the number of its subformulas: || := |Sub(y¢)|. For our purposes

here, it makes no difference whether formulas with abbreviated operators are written out in
the original syntax or the abbreviated operators are seen as first-class citizens. The size in
the former case is only larger by a constant factor compared to the latter case.

Formulas of LTL are interpreted over traces of labelled transition systems which are
just w-words over the alphabet 27. Note that any formula can contain only finitely many
propositional symbols. Hence, the alphabet underlying any given formula can always be
assumed to be finite. Let w = agay ... € (27)% and i € N. Satisfaction of an LTL formula ¢
in w at position ¢ is explained inductively as follows.

w,i = q iff ¢q€aq
w,iiEpAY iff w,ikEpandw,iE=1y

3:3

TIME 2025

3:4

Metric LTL with Strict 1st-Time Semantics

w,i - iff w,ifEp
w,i =X iff witlpEe
w,iEeU iff thereis j >is.t. w,j v and w,h =@ for all h with i < h < j

A word w satisfies a formula ¢, written w = ¢, if ¢ is satisfied in its initial position, i.e.
w,0 = ¢. The language of a formula ¢ is the set of all words satisfying it: L(p) := {w |
w = ¢}. Two formulas are equivalent, written ¢ = 1, when their languages coincide, i.e.
L(p) = L(¢). Note that this is the case if and only if they are satisfied by exactly the
same positions in the same words, i.e. w,i = ¢ iff w,i = 1. The “if”-direction is trivial
because two formulas that are satisfied by the same words at arbitrary positions are clearly
satisfied by the same words at initial positions. The “only if”-direction holds because LTL
has future-only operators, so we have agay ...,i = ¢ iff a;a;41...,0 |E x for any . Thus,
any position in a word is the initial position of another word, namely the suffix starting at
this position.

A formula is walid, written |= ¢, if L(p) = (2F)%, i.e. it is satisfied by any word. The
satisfiability problem — given a formula ¢, decide whether L(p) # @ — is well-known to be
decidable. We write SAT(L) for the satisfiability problem for logic £. We assume familiarity
with standard complexity classes, in particular the space complexity classes NLOGSPACE,
PSPACE and EXPSPACE. For further details we refer to standard textbooks in complexity
theory, e.g. [2].

» Proposition 2 ([17]). SAT(LTL) is PSPACE-complete.

Metric linear-time temporal logic. The term “metric” temporal logic usually refers to
extensions of ordinary temporal logics (like LTL) with modifications of the temporal operators
that impose restrictions on the moments that witness their satisfaction in case of an Until or
a Finally, resp. relax the future moments under consideration of a Generally, resp. Release
formula. The logic MTL is obtained by extending the syntax of LTL with a metric version
of Until, written ¢ U; 9 for a non-empty interval I over the natural numbers.

We use standard notation for closed, half-open and open intervals like [z, y], (z, 9], [z, y)
and (z,y) for z,y € NU{oo} with z < y. Because of the discrete nature of N and the lack of
a direct predecessor of co in this structure, we can restrict our attention to intervals of the
form [z,y] for z,y € N, and of the form [z, 00) for z € N. Note that (z,y] = [z + 1,y] etc.

Intervals of the form [0,y] or [z, c0) for some z,y € N are called simple and written more
compactly as <y, resp. >z.

The semantics of formulas of MTL is extended accordingly for words w = agay ... € (27)¥
and ¢ € N by

w,i = @U;¢ iff thereis j >ist. j—iel and w,j =9 and
w,h = forall h withi < h < j

Hence, ¢ U; 9 note only requires a position ¢ in w to satisfy ¢ U1 in the usual sense that
some future moment satisfies ¥ and all future moments before that satisfy . It additionally
requires that future moment to be found at a distance which falls into the interval I.

This clearly extends the non-metric version of LTL because ¢ U = ¢ Uy, 1. The metric
extension is then applied to the other derived temporal operators F, G and R accordingly.

Because of the use of natural numbers as interval bounds in temporal operators, number
of subformulas is not a realistic measure of the representation size of a formula anymore.
Note that Flou D> stating that p occurs in a word at some distance between x and y would

E. Alsmann and M. Lange

have constant size regardless of the values of z and y. We assume that such interval bounds
are given in binary encoding and therefore measure the size of a formula more appropriately
as follows. Let m(p) :=

max{k € N | F)1,19s € Sub(p),Th € N s.t. Y1 U; e € Sub(yp) for I = [h, k] or I = [k, o0
{ P I

denote the largest integer constant that is used as an interval bound in a subformula of .
Then || := |Sub(¢p)| - [log m(e)].

» Proposition 3 ([10]). SAT(MTL) is EXPSPACE-complete.

Finite automata on w-words. Let P be a finite set of atomic propositions. A nondetermin-
istic Streett automaton (NSA) is an A = (Q, P, qr,0,F) where @ is a finite set of states,
gr € Q is the designated initial state, 6 C Q x B(P) x @ is a finite set of transition triples
(p, B, q) with B(P) denoting the set of Boolean formulas over P (with the usual Boolean
operators A, V, -, ...). Finally, F = {(F1,G1),...,(Fm,Gn)} with F;,G; C Q for all
i=1,...,m is the acceptance condition.

Note that here such finite automata have a symbolically represented transition table
instead of the general § C Q x X x @ for a finite alphabet X. The reason for this choice
is their use in a decision procedure for a temporal logic whose formulas are naturally
interpreted over w-words whose letters are finite sets of propositions, i.e. ¥ = 2%. Instead of
enumerating all such possible sets and explaining the automaton’s one-step behaviour for
each step, the symbolic representation here is more convenient for such special cases. There
are straightforward translations for the transition relations between symbolic and explicit
representations, and for a fixed set of propositions, they are polynomial. Hence, we can safely
use Streett automata in this form and still appeal to known results about them, even though
they were perhaps formulated for the form with an explicit alphabet.

A run of the NSA A = (Q,P,qs,0,F) with F = {(F1,G1),...,(Fm,Gn)} on a word
w=apai... € (2P)¥ isa p = qo,q1,... € Q¥ such that ¢y = ¢; and for all i € N there is
some (p, 3,q) € ¢ such that ¢; = p, a; = B and ¢ = ¢;11. Here, satisfaction of a Boolean
formula 8 over P by a set a C P, a |= 3, is explained in the usual way: (3 evaluates to true
when all g € a are set to true and all ¢ € a are set to false.

We write Inf(p) to denote the set of all states that occur infinitely often in p. By finiteness
of Q, we always have Inf(p) # 0.

The run p is accepting if it satisfies the Streett condition F in the sense that for all
i=1,...,m: if Inf(p) N F; # 0 then Inf(p) N G; # 0. As usual, L(A) is the language of the
NSA A, and it consists of all words on which A has an accepting run.

So both NSA and formulas of linear-time temporal logics defines languages of w-words
which is why these different formalisms can be compared to one another in terms of express-
iveness, and satisfiability of a formula corresponds to non-emptiness of the language of an
automaton. Algorithms for non-emptiness problems for w-automata are routinely used to
obtain decision procedures for linear-time temporal logics [21, 20, 4]. It has been shown
that non-emptiness for Streett automata can be decided in polynomial time [8, 12] and this
requires an explicit construction. A polynomial (equivalence-preserving) translation into
Biichi automata is not possible, let alone one computable in logarithmic space. This would
immediately transfer the upper bound of NLOGSPACE to Streett automata. Nevertheless, it
does hold, too; it simply needs to be shown directly.

» Theorem 4. The non-emptiness problem for NSA is decidable in NLOGSPACE.

3:5

TIME 2025

3:6

Metric LTL with Strict 1st-Time Semantics

Proof. The key observation is the following. The language of an NSA A = (Q, P, qr1, 9, F)
with n := |Q| and F = {(F1,G1),...,(Fk, Gk)} is non-empty iff there is an ultimately
periodic word w = uv¥ € L(A). This follows from finiteness of n and k by the pigeon hole
principle. An accepting run on an arbitrary word must eventually traverse a state g for the
second time such that in between, for every i = 1,... k, either no state from F; or some
state from G; has been seen.

This gives rise to a nondeterministic algorithm for deciding non-emptiness. It guesses,
step-by-step, the states of a run and also nondeterministically remembers some state ¢
occurring in this simulation. It then maintains 2k bits to remember, for each ¢ = 1,... k,
whether some state in F; and some state in GG; has been seen. It accepts, when ¢ occurs
again, and the bits indicate that the Streett condition has been met in between.

In order to terminate and reject on computation paths with unsuccessful guesses, it counts
the number of steps done in this simulation. It is not hard to see that the first occurrence of
q can be required to occur after at most n steps. The second occurrence can be expected to
occur after no more than a further 2nk steps, for otherwise the run contains parts that could
be skipped. Hence, the space needed for the counter is at most logarithmic in |.A]. <

3 Metric LTL with First-Time Semantics

Syntax and Semantics. We introduce Metric Linear-Time Temporal Logic with Strict
First-Time Semantics (MTL!) which, instead of metric Until formulas of the form ¢ U; v,
features a special modification ¢ Ul ¢ that is interpreted under strict first-time semantics.
Intuitively, it does not just demand that some occurrence of v in the future happens at a
distance that falls into the interval I. Instead, it requires this to be the first time in the
future that this happens.

» Definition 5. Let P = {p,q,...} be a non-empty, countable set of atomic propositions as
usual. Formulas of the linear-time temporal logic MTL! are built according to the following
grammar.

e u= qlone| @ |Xe|pUiep

where ¢ € P and [is an interval over N as discussed above.

We also introduce its fragment sMTL!- Simple MTL!'~ which only features simple
intervals <k or >k in its formulas. Other Boolean and temporal operators, in particular the
strict first-time variants F}, G} and R} are introduced as abbreviations in the usual way. The
set Sub(i) of subformulas of an MTL! formula ¢ is defined as usual by induction over the
syntax tree of the formula.

The intuition behind the restriction to first-time occurrences is made formal as follows.

» Definition 6. Let P be given as above and w = aga; ... € (27)¥. Satisfaction of an MTL!
formula ¢ at a position i of the word w is explained inductively over the structure of ¢ as
for LTL, apart from the following case.

w,i = @Uky iff thereis j >ist. j—ic I, and w,j = and
w,hlE @A forall hst. i <h<j

E. Alsmann and M. Lange

Expressiveness. LTL trivially embeds into sMTL' which trivially embeds into MTL!. The
reason for this is the fact whenever an Until-formula gets satisfied somewhere then there is
also a first time that this happens. A more interesting question concerns the other direction,
and therefore also the connection to MTL. Since LTL can trivially be embedded into MTL,
we immediately obtain a translation from MTL' into MTL, from one from MTL' into LTL.

We remark that the translations introduced in the following are not polynomial for
formula length, measure in terms of length of string representations, but only for formula
size, measured in terms of number of subformulas, as they often require the duplication of
subformulas.

The first observation about expressiveness is the expressive equivalence between MTL!
and sMTL!. This is perhaps a little bit surprising as this principle does not apply to MTL.

» Theorem 7. For every p € MTL" there is a $ € sMTL" of size O(||) such that § = ¢.

Proof. We can define ¢ inductively. The only non-trivial case is that of an Until formula.
Then we have

. U[ll’»y] v o= (@Ulzz ¥) A (@Ulﬁy ¥)

for x,y € N. Clearly, this increases the number of subformulas at most by factor 3. Correctness
of this translation is straightforward by inspection of the semantics. <

Because of Thm. 7 we can restrict our attention to sMTL! formulas down below as this
simplifies the technical details of various constructions slightly.

One reason for considering numerical values in formulas to be represented in binary (as
opposed to unary), apart from this being natural, is the fact that the expressive power of
SMTL!- and that of MTL in fact — does not exceed that of LTL. However, translations back
into LTL are polynomial in the value of interval bounds only, i.e. they are in fact exponential
in the size of a formula.

» Theorem 8. For every sMTL' formula ¢ there is an LTL formula & such that 3 = ¢ and
|| = 200D,

Proof. We define a translation ~: sMTL! — LTL as follows.

E]\:q T ~= ~— — ~o ~
AT = GAD UL Y =PV (BAXW V... VXDV (BAXYD)...))
v — a 90/\ k occurrences of X
—\90:—%0 — N - R R N R
5= X5 PULL Y =FADAXBADAX..XEA D AX(UY))...))

k occurrences of X

The translation of an operator UlNk, clearly produces a formula whose size is linear in the
value k, i.e. exponential in the representation size of k. Replacing the abbreviated biased
disjunctions by plain Boolean formulas only incurs a further polynomial blow-up because
formula size is measured in terms of number of subformulas.

Correctness of the translation is proved by a straightforward induction on the structure
of ¢, showing that for all w € (27)% and all i € N, we have w,i = ¢ iff w,i = ¢. <

Succinctness. The exponential blow-up predicted by Thm. 8 may seem like a downside
at first sight. However, it should be read as the possibility that certain properties, which
are definable in LTL, can be defined in sMTL! with much shorter formulas. The same

3:7

TIME 2025

3:8

Metric LTL with Strict 1st-Time Semantics

phenomenon is of course known from LTL. It is easy to show that every family of LTL
formulas equivalent to the MTL formulas ¢,, := Fs,. ¢ require size O(2"). The proof can be
re-used entirely to show that sMTL! is also exp(;nentially more succinct than LTL. Note
that |FL,. q| = O(n).

» Theorem 9. There is a family of LTL-definable languages (Ly)n>1 over a singleton P such
that each L,, is expressible in sMTL' by a formula of size O(n) but every family (pn)n>1 of
LTL formulas with L(py,) = Ly, is such that |p,| = Q(2™).

Proof. Consider the sMTL! formulas ¢, := FL,. ¢ for n > 1. Clearly, |¢,| = O(n). By
a standard induction on the structure of LTL formulas we can show that formulas of size
< 2" cannot distinguish between the two words w,, = 02" ~*{¢}0% and w!, = 0> {g}0*. Since
wy, | ©n but w), £ @, for all n > 1, we get that any presumed LTL-formula equivalent to
©n needs to have size 2™ at least. |

4 An Automata-Theoretic Decision Procedure

We give an automata-theoretic decision procedure for MTL!. Decidability of its satisfiability
problem is not a surprise in the light of Thm. 8, stating that sMTL'~ and therefore also
MTL! according to Thm. 7 — can be translated into LTL at an exponential blow-up. This is
unavoidable according to Thm. 9. Then it is perhaps rather surprising that the complexity
of MTL! is asymptotically no worse than that of LTL. We give an upper bound of PSPACE,
based on a translation into Streett automata. According to Thm. 8, it suffices to do so for
sMTL!.

Temporal formulas and their unfoldings. For convenience, we work with sMTL! formulas
in negation normal form (NNF), i.e. those that are built from literals ¢, g using the Boolean
operators A,V and the temporal operators X, U! and R! where pR!, ¢ := =(—¢UL, —1)). The
following is a standard observation about the ability to push negations inwards in formulas
to obtain NNF.

» Lemma 10. For every sMTL' formula ¢ there is an sMTL' formula @ in NNF of size
O(|¢|) such that g = .

The construction of a Streett automaton recognising L(¢) for some sMTL! formula ¢ in
NNF then follows the same principles as the standard construction of a Biichi automaton
for an LTL formula. Temporal operators are typically handled by unfolding, not just in
automata-theoretic decision procedures. The term denotes the two equivalences

U=V (pAX(pUy)) and @RY =1y A(pVX(eRY)).

These can be extended to the temporal operators in sMTL! as follows. The proof is just
by close inspection of the semantics of MTL!.

» Lemma 11. Let ¢,¢p € sSMTL', k > 0. We have

CPUlgow =9 @ngol/} =9
@Ulzo Y = YVI(pAX(p Ulgo V) ® Rlzo Y = YA(pVIX(p Rlzo V)
UL Y = YV (P AX(pUL, ¥) PRU Y = YA (pVX(pRY, 1))

eULL Y = P APAX(PUL,) @RLe1 ¥ = Vo VX(eRL,)

E. Alsmann and M. Lange

A formula y of the form on one of the left-hand sides in these equations is called a
temporal formula and we use unf(x) to denote the corresponding right-hand side. Temporal
formulas of the form ¢ UL, ¢, i.e. Until-formulas whose metric parameter is a half-open
interval to the right, are called critical.

Later on we will need a second observation about temporal formulas. The proof is
straightforward from an inspection of the semantics of MTL'. The lemma already holds for

MTL in fact.

» Lemma 12. Let ¢, be sMTL' formulas and k,¢ € N such that k < £. Then we have

= (e Ulgk P) = (¢ Ulge V) F (¢ nge Y) = (¢ ngk V)
= (PR3 ¥) = (pRY,) E (0 U 9) = (pUs, 9)

The Fischer-Ladner closure of a formula y is a collection of all subformulas and perhaps
others derived from them that may play a role in determining the truth of y at some point
in a word.

» Definition 13. Let y € sMTL" be in NNF. Its Fischer-Ladner closure is the least set FL(x)
that contains x and is closed under the following operations.

If o AN € FL(x) or o V¢ € FL(x) then {p, ¢} C FL(p).

If X € FL(x) then ¢ € FL(x).

If ¢ € FL(x) for a temporal @, then unf(p) € FL(x).

The key concept in an automata construction for sMTL! formulas is that of a Hintikka
set — a set of formulas that is closed under propositional logic consequence. We need to refine
the standard definition slightly in order to obtain the intended complexity bound in the end.

» Definition 14. Let xy € sMTL' be in NNF. A ® C FL(x) is called a Hintikka set for y if
it satisfies the following conditions.

If p Ap € @ then {p, 9} C P.

If o V1 € @ then {p, b} NP £ .

If ¢ € ® for a temporal ¢ then unf(p) € P.
® is called (propositionally) consistent if there is no ¢ € P such that {q, 7q} C ®. It is called
lean if for all ¢, there is at most one temporal formula ¢ Ulgk ¥ € ® for any k > 0, and

likewise for temporal formulas of the three other forms with operators UlZ o ng e and RlZ I

We write H(x), resp. Hin(x) for the set of all lean, propositionally consistent Hintikka sets
for x, resp. those that are additionally lean.

While the Fischer-Ladner closure of an sMTL! formula y is generally exponential in
|x| and there are, thus, doubly exponentially many Hintikka sets, there are only singly
exponentially many lean Hintikka sets.

» Lemma 15. Let x € sMTL' be in NNF. Then [Hin(x)| = 20011

Proof. Note that there are at most O(|x|) many formula schemes, i.e. members of FL(y)
modulo concrete metric parameters. A lean set can then be seen as a mapping for each
such formula scheme to a value in {1,0,...,m(x)}, indicating (non-)inclusion in the set
and giving a concrete parameter value for a temporal formula. Since m(x) € 2°UXD) due to
binary encoding, there are at most (20(XDYOUxD = 20(0x*) many lean (Hintikka) sets. <

3:9

TIME 2025

3:10

Metric LTL with Strict 1st-Time Semantics

Streett automata for sMTL! formulas. We are now in a position to define a Streett
automaton of singly exponential size that recognises exactly the models of an sMTL' formula
in NNF.

Fix an sMTL! formula y in NNF over some finite 7. We will need three constructions
on (lean) Hintikka sets for x. The first one collects all literals in a lean Hintikka set.

Now(®) := /\q/\ /\ —q

qed —qed

It can be seen as the extraction of a propositional formula determining the letter at a position
in a word where all formulas in ® are supposed to be true. On the other hand,

Nzts(®) = {In(V)| ¥ e H(x) and VX¢p € @ : ¢ € U}

collects all “leanifications” of Hintikka sets that are potential successors to ® in the sense that
they contain all formula 1) which ® needs to be true at the next position. The leanification
In(¥) of U is obtained by successively replacing temporal formulas as follows until no further
steps are applicable.
If {pUL, ¥, UL, 9} C W or {oRL, ¥, R, ¥} C U for some ¢, and k < ¢ then replace
all occurrences of the latter that do not occur under the scope of a X-operator by the
former.
If {p UL, ¥, UL 9} € Wor {pRL, 9, pRL, 9} C W for some ,1) and k < £ then replace
all occurrences of the former that do not occur under the scope of a X-operator by the
latter.
It should be clear that Naxts(®) is indeed a set of lean Hintikka sets for .
The important observation about the leanification process is the preservation of the
semantics in a strong sense.

» Lemma 16. Let y € sMTL' be in NNF and ® € H(x). For every ¢ € ® there is ¢’ € In(®)
such that ¢ differs from @ only in the values of metric parameters and = ¢’ — .

Proof. This is proved in a straight-forward induction on the structure of ¢. The only
non-trivial cases are those of temporal formulas. These are covered by Lemma 12. Since
leanification also replaces subformulas, we also need the fact that x (and all its subformulas)
are given in NNF. Hence, if = ¢’ — ¢ then also ¢ — ¢[p/¢'] for any v, i.e. all formulas
are monotonic. <

The acceptance condition of the NSA A, is determined by the set of all critical temporal
formulas that can occur in lean Hintikka sets for y. However, unfolding decreases interval
bounds by one, so the number of critical temporal formulas in FL(x) is exponential: if x
contains the subformula ¢ UL, 1 for some k € N, then FL(x) contains ¢ UL, ¢ for all h < k,
i.e. exponentially many in |x| because of binary encodings of interval bounds.

The exact interval bounds are irrelevant for the acceptance condition. It is only used to
ensure that no critical temporal formula ¢ UL, 1 gets unfolded forever without ever satisfying
its right argument 1. We introduce the notion of a critical formula scheme UL _ v and write
(UL, ¥) € ® if there is some k € N such that (o UL, ¢) € . N

Note that there is no need to treat the other three kinds of temporal formulas in the same
way. A temporal Release-formula is a greatest fixpoint, and unfolding it infinitely often is a
legitimate way of determining its truth. A non-critical, temporal Until-formula of the form
UL, 1 cannot get unfolded infinitely often because each unfolding step decreases the metric

parameter in it until it eventually becomes 0, and the formula is replaced by 1 anyway. Note

E. Alsmann and M. Lange

that this is not the case for critical Until-formulas. Unfolding them still decreases the metric
parameter. However, the leanification process can increase it again, whereas leanification for
non-critical Until-formulas can only decrease it further.
Let {v1,...,7n} be the set of all schemes of critical temporal Until-formulas in FL(x),
ie. v = a; UL, B; for some o, B;. We define the NSA A, as (Hin(x), P, 1,4, F) where
I'={®cHn(x)|xe P},
§:={(®, Now(®), V) | ¥ € Nats(P)},
F :={(F1,G1),...,(Fp,Gp)} with F; := {® | 7; € ®} and G; := {® | 8; € ®}. Note
that 8; may contain other temporal formulas, so §; is to be understood as a scheme
potentially, and 3; € ® means that some formula deviating from S; in metric parameters
only is contained in ®.

The next two lemmas are devoted to the soundness and completeness of the construction.
» Lemma 17. Let x € sMTL' over P be in NNF and A, as above. Then L(A,) C L(x).

Proof. Let w = agay ... (27)¥ be such that there is an accepting run p = ®q, @1, ... of A, on
w. By the construction of A, we have (1) x € ®g and, for all i > 0, (11) a; = Now(®;) and (111)
there is W;,1 € H(x) such that ¢ € ¥, for all X¢ € ®; and ®; 1 = In(V;41) € Nats(D;).

We show by induction on the structure of formulas ¢ that for all ¢ € N and all ¢ € ®;
we have w,i = ¢. For literals g or —¢ this follows immediately from (i1). For conjunctions
and disjunctions this follows by the hypothesis for both conjuncts, resp. one disjunct and
the fact that each ®; is a lean Hintikka set that behaves like a Hintikka set in this case,
i.e. it contains both conjuncts of a conjunction etc. This is the case because leanification
replaces either none or all occurrences that are not under the scope of a X-operator. Hence,
a replacement takes place in a conjunction iff it takes place in both conjuncts etc.

Suppose ¢ is of the form Xv. Because of (111), there is a ¥;11 € H(x) with ¢ € U,
with ®;,1 = In(¥;41). According to Lemma 16, there is ¢’ € ®;;1 that is structurally not

greater than 1. Hence, we can apply the induction hypothesis to it and obtain w,i + 1 | 9.

According to Lemma 16, we then also have w,i + 1 = v and therefore w,i = ¢.

Suppose ¢ is of the form 1, UL, 2. By inspection of the unfolding rule (Lemma 11)
and successive applications of the principles (1) and (111) with the same kind of reasoning
using Lemma 16, we get some k¥’ < k and a sequence ¥;,1,..., ¥, of Hintikka sets such
that ®;4; = In(V;4;), ¥ € U,y for some ¢ with = ¥ — 1y and ¢} € @, for some

G- Up_y such that =) — 1. Applying the induction hypothesis to 145 at position
i+ k" and for 4, ..., ¥}, _, at positions ¢, ...,7+ k' — 1 shows that these are satisfied at the
respective positions in w. Lemma 16 then yields w,i + k' |= 99 and w,i + h = ¢ for all
h=0,...,k" = 1. Thus, w,i = ¢.

Suppose ¢ is of the form 1, UL, 5. Note that it is a critical temporal formula in this

case. We can apply the same reasoning as in the previous case using Lemmas 11 and 16.

However, here the leanification process may replace metric parameters by larger ones. Hence,
this alone does not guarantee the existence of a k' > k such that o € ®; /. This is where
A,’s acceptance condition comes into place. Since p is accepting, it must either contain
finitely many lean Hintikka sets containing ¢ or infinitely many containing 1o. The latter
case immediately implies the existence of such a k' > k. The former case does so, too, by
inspection of Lemma 11 and the construction of Hintikka sets. It is only possible to have

the scheme) ¢ finitely often only when some ®; ;s contains 11 UL, 15 and therefore also 5.
+ >k

The rest of this case is handled as the previous one.
The remaining two cases of temporal Release-formulas are also handled in a way that is
analogous to those of the Until-formulas.

3:11

TIME 2025

3:12

Metric LTL with Strict 1st-Time Semantics

At last, (1) says that x € ®y. By the reasoning above we then have w,0 = x, i.e. w € L(x)
which completes the claim. |

» Lemma 18. Let x € sMTL' over P be in NNF and A, as above. Then L(x) C L(A,).

Proof. Suppose w = agay ... € L(x). We need to construct an accepting run &g, @4, ... of
A, on w. To this end, we construct a sequence ®p, ®1,... via &, := {p € FL(x) | w,1 |= ¢}
It is not hard to see that each @/ is indeed a propositionally consistent Hintikka set. Moreover,
if Xp € ®; then ¢ € ®,,1. This therefore determines a sequence of lean Hintikka sets by
leanification: ®; := In(®}) for all 4 > 0, forming a run p = ®g, 1,

It remains to be seen that it is indeed an accepting run. Take some critical Until-formula
scheme v = a UL, B and suppose that p contains an infinite subsequence ®;,, ®;,,... with
v; = (« Ulzkj ﬂ)_e ®;, for all j > 1. By construction, we have w, i; |=7;. By the semantics of
MTL! there are ki, k5, ... with K} > kj such that w,i; + k} = § and, again, by construction
B e <I>gj+k}. Since iy < iy < ..., the set {i; + &} | j > 1} is infinite. Hence, the sequence

0, @1, ... has an infinite subsequence in which every Hintikka set contains 3. Then the run
p has an infinite subsequence in which every lean Hintikka set either contains [itself or an
instantiation of the scheme . In any case, the run p satisfies the Streett pair associated
with . Since this is the case for any critical ~y, p is indeed accepting and so we have
w € L(A,y). <

Putting all of the above together we obtain that MTL! is not just decidable but that its
satisfiability problem is no worse than that of ordinary LTL (and therefore exponentially

easier than that of MTL), even though there is an exponential succinctness gap between
MTL! and LTL.

» Theorem 19. SAT(MTL') is PSPACE-complete.

Proof. The lower bound is straightforwardly inherited from LTL. For the upper bound, note
that every MTL! formula y can be translated into an equivalent sMTL' formula in NNF at a
linear blow-up only (Thm. 7 and Lemma 10). This can in turn be translated into an equivalent
NSA (Lemmas 17 and 18) of exponential size in |x| (Lemma 15). Language equivalence
entails particularly that its language is non-empty iff x is satisfiable. Non-emptiness for
NSA can be decided in NLOGSPACE (Thm. 4) which is NPSPACE measured in the size of x.
Savitch’s Theorem [15] then gives a PSPACE upper bound. <

5 Conclusion

We have investigated the expressiveness and computational complexity of MTL', a variant of
Metric Linear-Time Temporal logic MTL in wich the metric parameters do not constrain the
occurrence of some event but their first occurrence (in an Until formula). The resulting logic
is still exponentially more succinct than LTL. Unlike full MTL whose satisfiability problem
is EXPSPACE-complete, we obtained a PSPACE upper bound for MTL! by the construction
of equivalent Streett automata of exponential size.

The main motivation for the study of this logic is given by links to State-Space Models in
machine learning. Further work will elaborate on the connections between these formalisms.
On the side of temporal logics, there is obvious further work in terms generalisations of the
strict first-time semantics to a strict n-th time semantics, constraining further moments in
which an Until-formula gets satisfied. We suspect that for every fixed n, the resulting logic
MTL"™ remains PSPACE-complete.

E. Alsmann and M. Lange

There are also obvious connections to Counting LTL [11], a variant of LTL with a counting

operator. The first-time semantics is clearly expressible using counting operators by stating
that the number of positions beforehand is zero. The relative succinctness between the two

formalisms remains to be investigated, as is the case for MTL and MTL!.

—— References

1

10

11

12

13

14

15

16

17

18

R. Alur and T. Henzinger. Real-time logics: Complexity and expressiveness. Information and
Computation, 104(1):35-77, 1993. doi:10.1006/INCO.1993.1025.

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Univ.
Press, 2006.

B. Baniegbal and H. Barringer. Temporal logic with fixed points. In Proc. Coll. on Temporal
Logic in Specification, volume 398 of LNCS, pages 62-73. Springer, 1989. doi:10.1007/
3-540-51803-7_22.

S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2016.

C. Eisner and D. Fisman. A Practical Introduction to PSL. Series on Integrated Circuits and
Systems. Springer, 2006. doi:10.1007/978-0-387-36123-9.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Proc.
7th Symp. on Principles of Programming Languages, POPL’80, pages 163-173. ACM, 1980.
doi:10.1145/567446.567462.

G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic on finite
traces. In Proc. 28rd Int. Joint Conf. on A.I, IJCAI’13, pages 854-860. IJCAI/AAAI, 2013.
URL: http://wuw.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997.

M. Rauch Henzinger and J. A. Telle. Faster algorithms for the nonemptiness of streett automata
and for communication protocol pruning. In Proc. 5th Scand. Workshop on Algorithm Theory,
SWAT’96, volume 1097 of LNCS, pages 16—27. Springer, 1996. doi:10.1007/3-540-61422-2_
117.

Ron Koymans. Specifying real-time properties with metric temporal logic. Real Time Syst.,
2(4):255-299, 1990. doi:10.1007/BF01995674.

F. Laroussinie, N. Markey, and Ph. Schnoebelen. Efficient timed model checking for discrete-
time systems. Theoretical Computer Science, 353(1):249-271, 2006. doi:10.1016/j.tcs.2005.
11.020.

F. Laroussinie, A. Meyer, and E. Petonnet. Counting LTL. In Proc. 17th Int. Symp. on
Temporal Representation and Reasoning, TIME’10, pages 51-58. IEEE, 2010. doi:10.1109/
TIME.2010.20.

T. Latvala and K. Heljanko. Coping with strong fairness. Fundam. Informaticae, 43(1-4):175—
193, 2000. doi:10.3233/FI-2000-43123409.

W. Merrill, J. Petty, and A. Sabharwal. The illusion of state in state-space models. In Proc.
41st Int. Conf. on Machine Learning, ICML’24, volume 235, pages 35492-35506. JMLR.org,
2024.

A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations of Computer
Science, FOCS’77, pages 46-57. IEEE, 1977. doi:10.1109/SFCS.1977.32.

W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4:177-192, 1970. doi:10.1016/50022-0000(70)
80006-X.

A. P. Sistla. Theoretical Issues in the Design of Distributed and Concurrent Systems. PhD
thesis, Harvard Univ., Cambridge, MA, 1983.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. Journal
of the ACM, 32(3):733-749, 1985. doi:10.1145/3828.3837.

R. S. Streett. Propositional dynamic logic of looping and converse is elementarily decidable.
Information and Control, 54(1/2):121-141, 1982. doi:10.1016/S0019-9958(82)91258-X.

3:13

TIME 2025

https://doi.org/10.1006/INCO.1993.1025
https://doi.org/10.1007/3-540-51803-7_22
https://doi.org/10.1007/3-540-51803-7_22
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1145/567446.567462
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1007/3-540-61422-2_117
https://doi.org/10.1007/3-540-61422-2_117
https://doi.org/10.1007/BF01995674
https://doi.org/10.1016/j.tcs.2005.11.020
https://doi.org/10.1016/j.tcs.2005.11.020
https://doi.org/10.1109/TIME.2010.20
https://doi.org/10.1109/TIME.2010.20
https://doi.org/10.3233/FI-2000-43123409
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1145/3828.3837
https://doi.org/10.1016/S0019-9958(82)91258-X

3:14

Metric LTL with Strict 1st-Time Semantics

19 M. Y. Vardi. A temporal fixpoint calculus. In Proc. Conf. on Principles of Programming
Languages, POPL’88, pages 250-259. ACM, 1988. doi:10.1145/73560.73582.

20 M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic, volume 1043 of
LNCS, pages 238-266. Springer, New York, NY, USA, 1996. doi:10.1007/3-540-60915-6_6.

21 M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1-37, 1994. doi:10.1006/INCO.1994.1092.

https://doi.org/10.1145/73560.73582
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1006/INCO.1994.1092

	1 Introduction
	2 Preliminaries
	3 Metric LTL with First-Time Semantics
	4 An Automata-Theoretic Decision Procedure
	5 Conclusion

