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—— Abstract

The logical reasoning skills of Large Language Models (LLMs) is poorly understood and often over-
stated. Current evaluation suites rely on algebraic or commonsense puzzles that mix reasoning with
symbolic manipulation and/or provide static datasets that quickly saturate or leak into pretraining
corpora. In purely logical terms, the most relevant reasoning skill is the meta-mathematical task
of valid formula recognition, which is at the foundation of higher-level reasoning tasks (including
deduction and minimization of assertions, to name just a few). In the current landscape of LLMs
benchmarking, puzzles are most often stated in propositional or first-order logic, with a few ex-
ceptions for point-based temporal logic, such as LTL; yet, in the real world, event-based temporal
statements are prevalent, and they are more naturally expressed in interval-based temporal logic.
Interval temporal logic offers a much richer (w.r.t. point-based temporal logic, for example) variety
of problems, and not only do different languages present different expressive powers, but also the
computational complexity of the validity problem can vary widely. In this paper, we tackle the
problem of assessing the ability of LLMs to reason about interval-based statements in the form
of validity recognition. We explore whether their accuracy is sensible to the underlying language,
the computational complexity of the associated validity problem, and the intrinsic hardness of the
problem in terms of formula length and modal depth of the problem. We benchmark several frontier
LLMs (Gemma 3 27b It, Llama 4 Maverick, DeepSeek Chat V3 release 0324, Qwen 3 32b, and Qwen
3 235b) and show that, despite apparently impressive performance on algebraic or commonsense
benchmarks, they falter on logically rigorous tasks.
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1 Introduction

Large Language Models (LLMs) have achieved remarkable success across a wide range of
natural language tasks in recent years. Models like GPT-3 [7] and its successors demonstrated
emergent capabilities in reasoning and problem-solving when prompted appropriately [33].
Notably, benchmarks such as GSM8K [10] and MATH [16] spurred progress in arithmetic
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and mathematical reasoning by encouraging multi-step chain-of-thought solutions. However,
the question of whether LLMs can reliably perform logical reasoning, in the rigorous sense
of formal logic, remains underexplored and challenging [27, 25]. Logical consistency and
deductive inference are critical for advanced Al reasoning, yet even state-of-the-art models
often stumble on tasks requiring strict logical entailment, especially in the presence of
negation or complex rules [25, 21].

There is growing evidence that current LLMs struggle with basic logical deductive
questions that humans find trivial. For example, a recent evaluation called SimpleBench
showed that non-expert humans significantly outperform frontier LLMs on a set of 200
straightforward reasoning questions involving spatial-temporal reasoning and logical trick
questions [2]. Similarly, general intelligence tests like the Abstraction and Reasoning Corpus
(ARC) [8], which requires solving abstract visual puzzles independent of prior knowledge,
remain far from solved by machines, underscoring the gaps in core reasoning abilities. These
observations highlight the need for systematic evaluation of LLMs’ logical reasoning skills,
beyond the realms of arithmetic or commonsense reasoning.

In this work we consider the problem of benchmarking the ability of LLMs to reason about
temporal events and their relationships. Our approach automatically generates instances
from first principles, using logic tautologies and formal inference rules, so that each example’s
label (valid or invalid formula) is guaranteed correct by construction. By leveraging the
well-defined semantics of formal logics, we avoid the ambiguities and potential errors of
human-crafted logical puzzles, providing a reliable ground truth for model evaluation. In
our specific testbed we focus on Halpern-Shoham interval temporal logic (HS) [14], which
can be considered a standard logical setting for event-based reasoning at the qualitative
level. Reasoning in HS can be considered a hard problem; depending on the specific subset
of operators that occur in a formula, establishing its validity status is a problem whose
complexity ranges from NP-complete, to PSPACE-complete, to EXPSPACE-complete, to
non primitive recursive (NPR)-complete, to undecidable. In the particular case of linear
models based on the set of natural numbers, the status of every possible syntactic fragment
is reported in [5].

Our approach fundamentally differs from existing work in three ways. First, we target
logical validity in a formal sense, rather than numerical or symbolic manipulation. Many
prior reasoning benchmarks for LLMs (e.g., math word problems in GSM8K/MATH, or code
execution tasks) involve algebraic reasoning or pattern matching that, while complex, do
not probe a model’s ability to apply abstract logical rules or handle operators like negation
and implication in a principled way. In contrast, our evaluation specifically stresses logical
consistency and the handling of negation, which has been identified as a stumbling block for
LLMs’ reasoning [25]. Second, we focus on event-based temporal reasoning, so far neglected
in the context of LLMs benchmarking. Third, we explore LLMs reasoning ability in relation
to problem length (i.e., number of involved symbols), problem abstraction level (i.e., modal
depth), and intrinsic problem complexity (i.e., computational class to which it belongs).
Fourth, we employ an algorithmic test generator that produces valid formulas, rather than a
fixed set of predetermined ones, avoiding the risk of future leaking into training datasets.
We validate our approach by conducting an extensive evaluation of several leading LLMs on
the generated logical reasoning tasks. In particular, we benchmark a suite of state-of-the-art
models, namely Gemma 3 27b It, Llama 4 Maverick, DeepSeek Chat V3 release 0324, Qwen 3
32b, and Qwen 3 235b. Through systematic experiments on these diverse systems, we analyze
their performance on problems that require genuine logical reasoning. As we show later, even
the best models struggle on logically challenging instances, confirming findings from recent
studies that current LLMs have not attained robust logical competence [21, 25, 30].
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In a sense, a test of reasoning capabilities as we designed it is a test of general intelligence
level. We can safely assume that an LLM does not know what interval-based temporal logic is
in the strict sense (the amount of existing and available material on this topic is exponentially
lower than, for example, linear time point-based temporal logic); for the test purposes such a
notion is therefore explained to the LLM (via prompting); finally the ability of the LLM to
reason about what was explained are tested. A positive result from a test so designed would
not be a proof that a model possesses general intelligence; a negative one would be a proof
that the model does not.

2 Related Work

The quest to measure and improve reasoning in LLMs has led to a variety of benchmarks
targeting different reasoning facets.

On the numerical side, the Grade School Math 8K dataset (GSM8K) [10] and the MATH
competition dataset [16] have become standard tests for arithmetic and mathematical
problem solving. These datasets require multi-step reasoning and have spurred innovations
like chain-of-thought prompting [17, 33] to elicit latent reasoning steps from models. More
generally, BIG-bench and related efforts compiled diverse reasoning tasks, like commonsense
and symbolic, to probe emerging capabilities of large models [28]. However, formal logical
reasoning was not a primary focus in these early benchmarks. Notably, ARC challenge [8]
targeted abstract pattern reasoning via visual puzzles to evaluate general intelligence; LLMs
have struggled with ARC-style tasks unless augmented with specialized tools, reflecting a gap
in out-of-distribution reasoning. Recently, the SimpleBench evaluation explicitly highlighted
fundamental reasoning gaps in frontier models: on a suite of basic logic, spatial, and trick
questions, human participants achieved over 80% accuracy while even top-tier LLMs (e.g.,
03, Claude Sonnet, Gemini, Grok 3, and DeepSeek R1) remained far lower (30-50% range),
often failing on problems requiring careful logical consistency. These findings motivate the
development of dedicated logical reasoning benchmarks.

A different line of work has emerged to directly evaluate (and train) models on logical
deduction tasks using controlled datasets. A pioneering example is RuleTaker [9], which gener-
ated synthetic natural language facts and rules and quizzed models on deductive conclusions.
Remarkably, transformers fine-tuned on RuleTaker showed the ability to correctly answer
many queries, even generalizing to some deeper inference chains, hinting at the possibility of
learned logical reasoning. Subsequent efforts extended this approach: LogicNLI [31] expanded
the scope to first-order logic, and ProofWriter [29] augmented the RuleTaker paradigm by
asking models not only for yes/no answers but also to generate explicit natural language
proofs for their conclusions. ProofWriter demonstrated that models could produce plausible
step-by-step derivations for synthetic logic puzzles, though evaluation of proof correctness
remained difficult. Saparov and He proposed PrOntoQA [27], another synthetic QA dataset
that encodes formal deductive reasoning problems, used it to formally analyze how models
reason, and founding that LLMs tend to be superficial reasoners often jumping to conclusions
that are logically invalid if they appear superficially plausible. In addition to fully synthetic
data, there have been expert-crafted datasets to test logical reasoning. A notable benchmark
is FOLIO [15], introduced by Han et al., which consists of logically complex natural language
puzzles written by experts and annotated with first-order logic forms. FOLIO problems are
open-domain and diverse, covering, among others, quantifiers and implications, intended to
require genuine logical deduction from the given premises. Models like GPT-3 and PaLM were
reported to perform poorly on FOLIO, indicating that pretraining alone does not equip LLMs
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with robust logic skills [15]. Another example is the AR-LSAT corpus [35], which contains
analytical reasoning questions from law school admission tests; these are high-level logical
puzzles in natural language, and zero-shot GPT-4 still finds many of them challenging [34].
One last contribution is [18], that proposes an automatic test generator (ATG), similar to
our proposal, but limited to propositional logic. Overall, these works illustrate a spectrum
from purely synthetic logic exercises to realistic logical reasoning problems. Across the board,
negation and multi-step inference emerge as common pain points for current models [15, 25].

More recently, researchers have started assembling more systematic benchmarks to
thoroughly probe LLMs’ logical reasoning across multiple phenomena. Parmar et al. introduce
LogicBench [25], a collection of 25 distinct logical reasoning patterns expressed in natural
language. Each LogicBench question focuses on a single inference rule (e.g. modus ponens,
modus tollens, syllogism, transitivity, etc.) either in propositional, first-order, or non-
monotonic logic, presented as a small textual scenario with a yes/no question. This controlled
setup allows one to pinpoint which specific forms of inference a model handles or fails.
Testing GPT-4, ChatGPT, Gemini, Llama-2 and others, they found that existing LLMs do
not fare well on LogicBench — especially on instances involving more complex reasoning or
embedded negations, performance was near chance. Our work is closely aligned with this
goal of systematic evaluation, though we approach it by generating formula-based entailment
instances from formal semantics (as opposed to natural language templated questions).
Another recent benchmark, LTLBench [30], specifically targets temporal logic reasoning.
Tang and Belle developed a pipeline using random graph generation and an LTL model
checker to create 2,000 temporal reasoning challenges, and evaluated six LLMs on them.
Their results showed that while some LLMs exhibit basic competence on simple temporal
queries, they struggle as the complexity increases (e.g. more events or nested temporal
operators) and substantially underperform compared to what would be required for sound
temporal reasoning. LTLBench demonstrates the feasibility of combining formal verification
tools with LLM evaluation — an approach our work generalizes and extends to other logics.
In a similar vein, Morishita et al. present the Formal Logic Deduction benchmark (FLD) [21],
generated from a complete set of first-order logic deduction rules. They report that even
GPT-4 solves only about half of the problems in FLD, underlining that pure logical deduction
(even when posed in natural language) remains a serious challenge for LLMs.

Beyond temporal logic, reasoning about space and structured knowledge are important
dimensions of logical evaluation. Spatial relation formalisms such as RCC5 and RCC8 [26]
provide a calculus for qualitative spatial reasoning (e.g. relations like disjoint, overlap, and
containment between regions). These have not yet been widely used to evaluate LLMs, but
they present an attractive next step: one could generate spatial scenarios and queries in
natural language underpinned by RCC constraints, and test if LLMs can infer implied spatial
relations. We posit that our methodology can be applied here by generating spatial logic
formulas with known entailments. Similarly, Description Logics (DL) underpin knowledge
graphs and ontologies in the Semantic Web, enabling rigorous inference of subclass relations,
instance membership, etc. [4]. Traditional AT systems employ DL reasoners (like FaCT++ or
HermiT) to perform these inferences reliably. In contrast, an LLM might be used to answer
ontology queries or complete a knowledge graph, but concerns arise about whether it can
honor the formal logical constraints (e.g. avoid asserting mutually inconsistent facts). There
is ongoing research in combining LLMs with symbolic reasoners to ensure logical consistency
in knowledge-intensive applications. These neuro-symbolic approaches typically involve
translating natural language to a logical form, using a logic reasoner to derive conclusions or
check consistency, and then translating back to text [24, 23].
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A consistent observation across these benchmarks is that negation and non-monotonic
reasoning are weak spots for LLMs. For instance, LogicBench finds that models often
misunderstand statements with negated conditions or conclusions [25]; similarly, PrOntoQA
analysis noted that models are apt to assume a fact is true unless explicitly contradicted, even
if logically it should be undetermined [27]. This tendency relates to the shallow heuristics
LLMs might pick up from text, which break down for logical constructs like negation that
require careful semantic interpretation. The broader implication is that purely neural models
alone may lack the guarantees of logical soundness that symbolic reasoning provides. By
developing benchmarks grounded in formal logic (as we do in this paper), we contribute
toward bridging this gap. A robust evaluation methodology for LLMs logical reasoning
is not only academically interesting but also practically vital as these models begin to be
deployed in areas like legal reasoning, safety-critical decision making, and knowledge graph
completion, where logical correctness is paramount. Our work specifically addresses this
by including a variety of entailment cases with negated formulas and ensuring that only
logically valid inferences count as correct. We thereby force models to confront the full
truth-functional meaning of negation and other operators. Another aspect is combinatorial
complexity: multi-step logical reasoning (combining several premises) taxes the models’
limited reasoning depth and working memory. Datasets like ProofWriter and FLD explicitly
vary the number of inference steps, and performance drops as steps increase [29, 21]. In
our evaluation, we similarly consider entailments that may require reasoning across multiple
temporal steps or combining multiple logical conditions. This allows us to examine whether
models can perform reasoning beyond one-hop inference in a formal setting.

3 Interval Temporal Logic

While several different interval temporal logics have been proposed in the recent literature [13],
Halpern and Shoham’s Modal Logic for Time Intervals (HS) [14] is certainly the formalism
that has received the most attention. Let D = (D, <) be a linear order with domain D; in the
following, we shall use D and D interchangeably. A strict interval over D is an ordered pair
[z,y], where z,y € D and x < y. If we exclude the identity relation, there are 12 different
binary ordering relations between two strict intervals on a linear order, often called Allen’s
interval relations [3]: the six relations R4 (adjacent to, also known as after), Ry (later
than), Rp (begins, also known as starts), Rg (ends, also known as finishes), Rp (during)
and Ro (overlaps), depicted in Tab. 1, and their inverses, that is, Ry = (Rx) ™!, for each
X e {A,L,B,E,D,0O}. We interpret interval structures as Kripke structures, with Allen’s
relations playing the role of accessibility relations. Thus, we associate an existential modality
(X) with each Allen’s relation Ryx. Moreover, for each X € {A, L, B, E, D, O}, the transpose
of modality (X) is the modality (X) corresponding to the inverse relation R of Rx. Now,
let X ={A,A,L,L,B,B,E,E,D,D,O,O}; well-formed HS formulas are built from a set of
propositional letters P, the classical connectives V and —, and a modality for each Allen’s
interval relation, as follows:

pu=plop|leVel|(X)e,

where p € P and X € X. The other propositional connectives and constants (i.e., 11 A g =
(=1 V b)), 1 — g = Py Vg and T = p Vv —p), as well as, for each X € X, the
universal modality [X] (e.g., [A]e = —(A)—p), can be derived in the standard way. The set
of all subformulas of a given HS formula ¢ is denoted by sub(y).
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Table 1 Allen’s interval relations and HS modalities.

HS modality | Definition w.r.t. the interval structure Example
X y
—
(A) (adjacent) | [z,y]Ralw,z] < y=w 1
(L) (later) [z,y]RLw, 2] & y<w —
(B) (begins) [z,y]RBlw,z] & z=wAz<y -
(E) (ends) [z,y]|Relw,z] < y=zAz<w i
(D) (during) [z,y]Rp[w,z] < z<wAz<y Y
(O) (overlaps) | [z,y]Rolw,z] & z<w<y<z —

The strict semantics of HS is given in terms of interval models of the type M = (I(D), V),
where D is a linear order, I(DD) is the set of all strict intervals over I, and V' is a valuation
function V : P — 21®) which assigns to every atomic proposition p € P the set of intervals
V(p) on which p holds. The truth of a formula ¢ on a given interval [z,y] in an interval
model M, denoted by M, [z,y] IF ¢, is defined by structural induction on the complexity of

formulas, as follows:

M, [z,y]IFp if and only if [z,y] € V(p), for each p € P,

M, [z, y] IF if and ounly if M, [z,y] I ¥,

M, [z,y] k1 Ve if and only if M, [z,y] Ik 11 or M, [z, y] IF a,

M, [z, y] IF (X)) if and only if there exists [w, 2] s.t. [z,y]Rx[w, z] and M, [w, z] IF 4,

where X € X. Given a model M = (I(D), V) and a formula ¢, we say that M satisfies ¢ if
there exists an interval [x,y] € I(D) such that M, [z, y] IF ¢. A formula ¢ is satisfiable if there
exists an interval model that satisfies it. Moreover, a formula ¢ is valid if it is satisfiable at
every interval of every (interval) model or, equivalently, if its negation — is unsatisfiable.

By setting D = N, we limit our attention to interval models based on the set of natural
numbers. This is not the only scenario that has been studied in the context of HS, but it is
a very common one; it is the interval counterpart to the typical interpretation of LTL on the
same domain. The satisfiability problem for HS is undecidable, and a great amount of effort
has been devoted to the search of well-behaved syntactic fragments of it. The result of such
an effort, in the case of natural numbers, is summarized in [5], and pictured in Fig. 1.

Interval temporal logic is an important tool in formal reasoning about temporal events.
It is applied in several areas of artificial intelligence and machine learning (see, e.g., [19, 20],
and being able to correctly reason in such a language can be of relevance. In the past, sound
and complete tableau systems have been introduced in prototypical form in [6, 11, 12, 22] for
variants, fragments, and generalizations of HS; however, the problem of reasoning in HS is
still open in practical terms. While reasoning tasks can vary, it is known that most of them
can be reduced to validity recognition, which is therefore representative of the reasoning
challenges that a specific logical system poses. The question we pose is whether LLMs are
able to establish if a given HS-formula is valid, and if their accuracy is sensible to the intrinsic
difficulty of the problem. Such difficulty can be measured in several ways, including the
length of the formula, its modal depth, and the computational complexity class to which the
smallest fragment that contains the formula belongs to.
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Complexity Class

1: Undecidable

2: Non-primitive recursive

3: EXPSPACE-complete
4: NEXPTIME-complete

5: NP-complete

Figure 1 Relative expressive power and computational complexity of fragments of HS interpreted
on models based on N; unreported fragments are undecidable.

4 Benchmark Generation

The key point of our problem generation approach is the observation that reasoning cor-
responds to wvalidity recognition. By their own nature, LLMs convey the idea of natural
language reasoning, that is, the idea of reaching some logical conclusion from some set of
premises. In turn, this reflects the concept of logical reasoning. However, while in most cases
existing approaches to LLMs benchmarking relay on common sense logic, an automatic and
systematic approach suggests the uses of formal logic. As a consequence, one should be
easily convinced that testing reasoning capabilities corresponds to testing the ability of a
system to identify a valid assertion, which is, by definition, a valid formula. The nature of
LLMs to seemingly comprehend natural language should therefore not be seen as a limit,
i.e., by focusing on testing common sense, natural language reasoning instances, but as an
opportunity to explore their ability of following instructions, such as, given a sound and
complete explanation of a chosen formal logic system, identify whether a certain reasoning is
valid in it, that is, identify whether a given formula is valid. Moreover, the practice of testing
and using LLMs to deal with code, such as LaTex code, programming code, Markdown, and
tasking models with writing, correcting, completing, and modifying it, is now folklore. In the
same spirit, the idea of testing LLMs with formal logic should be considered natural, and it
should not be criticized as unnatural. The question we pose is: can formal reasoning tasks
be carried out with distributional semantics?

Automatic theorem generation is a simply defined problem: given a set of theorems,
produce a new theorem. However, it is also an ill-defined one, as it is unclear what constitutes
an interesting theorem, especially from the point of view of its proof. While there exist
attempts at solving this problem in propositional logic [18], automatic theorem generation
is at its initial research stage (unlike, for example, automatic theorem proving) and, as it
seems, there are no available systems for the case of modal, and in particular temporal case.

The starting point for theorem generation is existing theorems or axioms. In classic
axiomatic theory, new theorems are generated by applying sound deduction rules to existing
ones; classical deduction rules include modus ponens, universal generalization, and uniform
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substitution. For most modal, temporal, and spatial logics that do have a sound and complete
finite axiomatization, the latter is based on the above rules only; in some cases, such as that of
HS, other, non-standard, rules must be added. It is well-known that Hilbert-style deduction
system does not excel in producing very intuitive proofs, unlike other systems such as natural
deduction (however, while Hilbert-style axiomatic systems have been studied for several
logics, there exist essentially no natural deduction systems other than for propositional and
first-order logics, plus some few minor exceptions). The purpose of an axiomatic system is
to be able to produce a proof of a valid formula, and, as a consequence, to prove that in
fact a given formula is valid, while the purpose of an automatic theorem generator is that of
producing new valid formulas from existing ones, and an immediate algorithm reduces the
latter to the former. In the case of HS, known validities in the language of HS come from
three sources, that is, the original axiomatic system for HS [32], the axiomatic system for
the fragment AA [12], and the collection of inter-definability of operators presented in [1]
(examples of axioms can be seen in Tab. 2), and the process can be described as follows. Let
L be a collection of valid HS-formulas, and S a collection of random well-formed HS-formulas,
and apply one of the following rules:

i) uniform substitution: choose a random validity ¢ € £, a random formula 1) € S, and a

propositional letter p that occurs in ¢, and produce the formula ¢[p/];
ii) universal generalization: choose a random validity ¢ € £ and a universal modality [X],
and produce the formula [X]e;
iii) modus ponens: choose two random validities ¢, — ¥ € L, and produce the formula .

» Proposition 1. Given a set of valid HS-formulas £ = {¢1,...,on} and a set of well-formed
HS-formulas S, one application of the above algorithm produces a valid formula @p1.

The above algorithm produces valid formulas of the type ¢ — 1, with arbitrary syntactical
complexity. Well-knowingly, (modal, temporal) logical formulas with Boolean semantics can
be valid, if they are satisfied in every model (and world), contradictory, if they are never
satisfied, or contingencies, if they are not valid nor contradictory. In this work, we focused
on the ability of a LLM to distinguish between valid and contradictory formulas. In order to
generate a random contradictory formula, it suffices to negate a valid one generated by the
above algorithm; however, this creates a clear syntactic difference between the two classes,
which may create bias towards one of the two classes. To circumvent this problem, we applied
the following strategy:

i) we produced a set S of valid formulas of the type ¢ — %, randomly partitioned into two
sets S, and S.;

ii) we replaced every formula ¢ — % in S, by its equivalent one ——(p — ¥);

iii) we replaced every formula ¢ — ¢ in S, by its opposite one —(p — );

iv) finally, for every resulting formula in both S, and S., we applied standard transformation
rules to progressively push the negation symbols within the formula, up to a randomly
chosen level.

As a result, formulas in both S, and S, have a non-predefined syntactical aspect, eliminating
the risk of syntactic bias.

5 Results and Discussion

We approached this problem using the standard prompting techniques context (ctz), few
shots (fs) [7], and chain of thought (cot) [33], combining them in a systematic way. As a form
of baseline, we also prompted each model with no instructions, except the question itself; we
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Table 2 Examples of axioms used to generate HS-theorems.

Axiom Comment

all propositional validities

(A)(A)p — (L)p definition of later
(B)(E)p <> (D)p definition of during
(B)(E)p <> (D)p definition of during
(B)(B)p < (B)p transitivity of starts
(A)(AY(A)p + (AY(A)p pseudo-transitivity of meets
(BY(E)p +> (E){B)p commutativity of starts/finishes

refer to this technique as barebone; on the other hand, chain of thought, few shots, and context
are combined in the 8 possible ways, whereas the minimal configuration corresponding to a
context without instructions is referred to as base, obtaining, in the end, 9 different prompts
per single problem.

Taken individually, the prompts we used are as follows. The barebone baseline:

Given an interval temporal logic formula in the language of Halpern and Shoham’s Modal
Logic of Allen’s Relations, reply with uppercase “[VALID]” if the formula is valid or uppercase
“[INVALID]” if it is not.

Then, we designed the following context, structured, in turn, into the sections purpose,
syntax, semantics, task, and objective:

## *FPurpose**

HS is a formal system for reasoning about interval-based events on a linear model based on
the natural numbers. This context will define HS’s syntax and semantics. The ultimate goal
is to check if a HS formula is logically valid.

## **Syntax of HS**

##H# **Propositional Letters**

Let AP be a countable set of atomic propositions (p, q, r, ...), representing basic facts.
#H## *F*¥Well-Formed Formulas (wffs)**

HS formulas are built inductively:

- **Base case**: Every p in AP is a wff.

- **Inductive cases**: If © and v are wffs, then so are:

## **Semantics over Infinite Traces** Formulas of HS are interpreted over interval models
based on the natural numbers N. Define I(N) as the set of all intervals [z,y] where x and y
are natural numbers and x<y, and V as a function that assigns to each interval [r,y], the
subset of AP of all and only propositional letters that are true on [r,y]. A model M is a pair
(I(N),V). The satisfaction relation ** M, [r,y]|= © ** for a model M and an interval [x,y] is
defined by induction on the formula:

- **Atomic Propositions: **
- M,[z,y] |= p if and only if p belongs to V([x,y]), for all atomic propositions p in AP.
- **Boolean Operators: **

## ¥*Task: Fvaluate HS Formula Validity**
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Table 3 Overall accuracy in positive (TP) and negative (TN) cases, and overall average accuracy
(AC) per model and prompt configuration.

Gemma 3 27b It Llama 4 Maverick DeepSeek Chat V3 Qwen 3 32b Qwen 3 235b

TP | TN | AC| TP | TN | AC | TP | TN | AC | TP | TN | AC | TP | TN | AC
barebone 0.17 | 0.92 | 0.55 | 0.69 | 0.72 | 0.71 | 0.39 | 0.92 | 0.65 | 0.41 | 0.93 | 0.67 | 0.50 | 0.72 | 0.61
base 0.07 | 0.97 | 0.52 | 0.35 | 0.91 | 0.62 | 0.04 | 1.00 | 0.52 | 0.12 | 0.96 | 0.54 | 0.51 | 0.73 | 0.62
ctx 0.09 | 0.96 | 0.52 | 0.47 | 0.78 | 0.62 | 0.05 | 1.00 | 0.53 | 0.09 | 0.98 | 0.54 | 0.34 | 0.88 | 0.61
cot 0.20 | 0.97 | 0.58 | 0.47 | 0.86 | 0.67 | 0.55 | 0.91 | 0.73 | 0.41 | 0.96 | 0.69 | 0.45 | 0.94 | 0.69
fs 0.48 | 0.80 | 0.64 | 0.83 | 0.73 | 0.77 | 0.53 | 0.86 | 0.69 | 0.71 | 0.55 | 0.63 | 0.80 | 0.60 | 0.70
ctz+cot 0.19 | 0.95 | 0.57 | 0.54 | 0.83 | 0.69 | 0.54 | 0.92 | 0.73 | 0.43 | 0.97 | 0.70 | 0.48 | 0.94 | 0.71
cta+fs 0.48 | 0.68 | 0.58 | 0.50 | 0.79 | 0.65 | 0.58 | 0.86 | 0.72 | 0.45 | 0.75 | 0.60 | 0.75 | 0.66 | 0.70
cot+fs 0.26 | 0.94 | 0.60 | 0.87 | 0.78 | 0.82 | 0.58 | 0.84 | 0.71 | 0.48 | 0.93 | 0.71 | 0.49 | 0.88 | 0.68
ctz+cot+fs | 0.30 | 0.92 | 0.61 | 0.83 | 0.78 | 0.81 | 0.64 | 0.85 | 0.75 | 0.47 | 0.93 | 0.71 | 0.61 | 0.84 | 0.72
average 0.25 | 0.90 | 0.57 | 0.62 | 0.80 | 0.71 | 0.43 | 0.91 | 0.67 | 0.40 | 0.88 | 0.64 | 0.55 | 0.80 | 0.67

### *FObjective**

Determine whether the formula is valid using HS semantics and reasoning. The formula can
be written using symbols for atomic propositions (e.g., p, q, T, ...), negation operator (i.e., !),
conjunction operator (i.e., &), ...

The objective section when we prompted the models without chain of thought has the
following structure:

### **Instructions**
Reply **only** with uppercase “[VALID]” if the formula is valid or uppercase “[INVALID]”
if it is not. **Do not explain your reasoning**.

When using chain of thought the latter becomes:

#A## *FInstructions**

Follow these steps rigorously:

1. **Parse the Formulas**: Identify operators and subformulas.

2. **Apply Semantics**: Check if the formula necessarily holds in all infinite traces.

3. **Construct Proof/Counterexample™*:

- If valid: Provide a **step-by-step proof** showing an argument for validity.

- If inwalid: Build a **concrete model™* M and identify an interval on it where the formula
does not hold.

4. **Conclude**: Answer with uppercase “[VALID]” if the formula is valid or uppercase
“[INVALID]” if it is not. No other responses are allowed.

When few shots are used, three positive examples and three negative examples are extracted
from a pool of pre-determined positive and negative examples containing 600 formulas, 300
of which are valid while the remaining ones are not, and randomly rotated for each individual
problem.

We generated 1000 valid instances and 1000 non-valid ones, with length up to 139 symbols
and modal depths up to 11, and submitted them in each of the 9 prompt configurations to
each of the models. We used the following providers: Deeplnfra, for Gemma 3 27b It, Qwen 3
32b, and Qwen 3 235b, NovitaAl for Gemma 3 27b It, and CentML for Llama 4.

The overview of the overall accuracies per model and per prompt configuration is reported
in Tab. 3. The performances of each model and prompt configuration across progressively
longer and progressively modally more complex is shown in Fig. 2. The first important
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"' Figure 2 Accuracy per model, prompt configuration, and difficulty level, in terms of formula
length (left hand side) and modal depth (right hand side).
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Llama 4 Maverick (cot + fs)
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Figure 3 Accuracy of Llama 4 in the ctz+fs configuration for different complexity classes.

observation that can be drawn is that no model and no configuration reached more than 0.82
in overall accuracy; such value was achieved by Llama 4 in the cot+fs configuration. The
overall accuracy in other models and configuration varies in a quite wide range, with a lower
end of 0.52, which is essentially equivalent to the random answer. The models have behaved
in very different ways to the different configurations. Those that have a lower overall accuracy
across configurations, such as Gemma 3 27b It, seem to react positively to the progressively
more detailed and precise information that is prompted from the base configuration up to
the ctz+cot+fs one, although the improvement does not seem to be always linear. On the
other hand, the ones with higher overall accuracy across configurations, such as Llama 4,
seem not be too influenced by the type of prompt; Qwen 3 32b, in particular, presents an
accuracy between 0.54 and 0.71 in all configurations, including barebone, indicating a close-
to-null response from the instructions. All models have a predetermined strong bias towards
answering that a formula is not valid (which in absolute terms is the most probable status of
a random formula); DeepSeek Chat V3 showed the strongest bias: in two configurations, ctz
and base, returned a true negative rate of 1.00, balanced by a true positive rate of 0.04 and
0.05, respectively. Adding few shots to the prompt, in general, slightly improves the results
in almost every model.

Let us now analyse of the performances from the point of view of the intrinsic difficulty of
the problem. The most evident phenomenon is the variability of the performances compared
to the increasing hardness of the problem. Models, in general, exhibit the expected decrease
of accuracy proportional to the length of the problem or its modal depth, but such decrease
is not always clear. Thus, in some cases the worst performances do not correspond to the
most difficult problems, such as in the case of Llama 4 Maverick and Qwen 3 235b, for several
configurations.

Finally, in Fig. 3 we can see the result of a further experiment to assess the relationship
between the ability of LLMs for interval temporal logic reasoning and the hardness of the
problem in terms of computational complexity of the fragment that contains a formula. We
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considered the top performing model(Llama 4) in the top performing configuration (ctz+-cot),
and devised a small dataset of 500 (small) formulas, 100 for each different computational class.
As it can be seen, essentially no difference arises, despite the fact that the computational
problem underlying such questions varies very much. The generally high performance is most
probably due to formulas being short and with a low modal depth.

6 Conclusions

In this paper we considered the problem of benchmarking Large Language Models on their
ability for formal logical reasoning, specifically interval temporal logical reasoning. Our
results seem to indicate, quite reasonably, that statistical tools may not be the right solution
for logical tasks; the fact that such tools are sometimes presented as representative of general
intelligence, as well as the resonance that they have received in the recent past contributes
to this confusion.

The high variability, the generally low accuracy, but most importantly the lack of
consistency of the results is a clear indication of the unreliability of LLMs to perform logical
reasoning on unseen problems. It is however of notice that some of models tested on our
benchmark were capable, at least in some configurations, to correctly identify several valid
and invalid formulas despite their high syntactical complexity, even if the tokenizer often
produces syntactic mistakes such as merging double symbols (e.g., negation), useful for
natural language but detrimental in this scenario.
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