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—— Abstract

We consider a variant of the Vertex Cover problem on temporal graphs, called Minimum Timeline
Cover (k-MINTIMELINECOVER). Temporal graphs are used to model complex systems, describing
how edges (relations) change in a discrete time domain. The k-MINTIMELINECOVER problem has
been introduced in complex data summarization and synthesis jobs. Given a temporal graph G,
k-MINTIMELINECOVER asks to define k activity intervals for each vertex, such that each temporal
edge is covered by at least one active interval. The objective function is the minimization of the sum
of interval lengths. k-MINTIMELINECOVER is NP-hard and even hard to approximate within any
factor for k£ > 1. While the literature has mainly focused on the cases k = 1, in this contribution we
consider the case k > 1. We first present an ILP formulation that is able to solve the problem on
moderate size instances. Then we develop an efficient heuristic, based on local search which is built
on top of the solution of an existing literature method.

Finally, we present an experimental evaluation of our algorithms on synthetic data sets, that
shows in particular that our heuristic has a consistent improvement on the state-of-the art method.
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1 Introduction

Complex systems are usually modeled through graphs or networks in order to understand
their properties and behaviors. The availability of temporal information of relations between
vertices has led to the introduction of temporal graphs [7, 13, 9], where edges, called temporal
edges, represent interactions between two entities at a given time. Note that different
variations of the temporal graph model have been introduced; here we consider a model
where the time domain, over which the temporal edges are defined, is discrete [7, 13, 9].

Temporal graphs have been considered in several domains, e.g., social network analysis [17],
computational biology [8] and epidemiology [1]. We consider an approach defined for the
summarizations of temporal interactions in social networks [12, 16, 15, 14]. In this context,
a user activity in a social network (called activity timeline) is represented with one or more
time intervals; the goal is to represent users interaction, so that if an interaction is observed
at time ¢, then at least one of the user activity timeline include ¢ [14, 15, 6, 3, 2, 4, 5]. The
objective function, following a parsimonious approach, is the minimization of the overall
length (called span) of timeline activities or the minimization of the maximum length of the
timeline activity. Here, we focus on the first objective function.
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Figure 1 An example of k-MINTIMELINECOVER with k = 2. Activity timelines (pink) show two
intervals that are useful in summarizing temporal interactions, identifying the two main hashtags
that explain the event.

We present an example to show how activity timelines can be useful in understanding
evolution of events. Consider the King Charles Coronation in May 2023. Figure 1 shows
temporal co-occurrence of hashtag related to this event. The timelines, associated indicated
in pink, helps to identify the main topics in the online discussions.

Several papers have studied the complexity of k-MINTIMELINECOVER [15, 6, 3, 2], also
in some restricted variant. In particular, the case k = 1, where the activity timeline of each
vertex is defined as a single interval, has been deeply studied, due also to the link with a
foundational problem in theoretical computer science, that is MINIMUM VERTEX COVER.
For £ = 1 k-MINTIMELINECOVER is NP-hard and hard to approximate within constant
factor [15, 6, 3, 2]. For k > 2, the problem is even harder, as even deciding if there exists a
solution (of any span) is an NP-complete problem [15].

Due to the hardness of the problem and of its restrictions, some heuristic methods have
been developed, for the general problem [15, 14] and for the restriction with k& = 1 [15, 14, 11].
Only the paper that has introduced k-MINTIMELINECOVER has designed practical methods
for the problem [15] when k > 2, thus in this contribution we focus on designing methods
for it. First, we design an ILP method that is able to solve the problem for moderate size
instances, then we present a polynomial-time heuristic for k-MINTIMELINECOVER, based
on local search, so that it is applicable even on larger temporal graphs. In order to design
our heuristic, we present a dynamic programming algorithm for a related problem, called
k-MININTERVALCOVER, that runs in polynomial time.

We consider the performance of our methods on synthetic datasets, both in for the
efficiency and the quality of the solutions returned. For this latter aspect we show that our
heuristic, is able to shrink significantly the activity timeline lengths, with respect to the
methods presented in [15].

1.1 Related Works

The complexity of k-MINTIMELINECOVER, including the parameterized and approximation
complexity, has been considerably investigated. k-MINTIMELINECOVER is NP-hard, even for
many restrictions. Rozenstein et al. have shown that it is NP-complete to decide whether
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the exists a solution of any span [15]; this implies that is not possible to approximate the
problem within any factor. Also for k = 2 it is NP-complete to decide whether there exists a
solution of k-MINTIMELINECOVER that has span equal to 0 [6].

The case k = 1 is known NP-hard also when temporal graphs have some restrictions: at
most one temporal edge is defined in each timestamp [2], the time domain consists of three
timestamps and each vertex has degree bounded by two [2], the time domain consists of two
timestamps [6].

k-MINTIMELINECOVER have also been considered through the lens of parameterized
complexity, for parameters the number of vertices, the number of timestamps in the time
domain, and k [6]. For k = 1, k-MINTIMELINECOVER has been show to be fixed-parameter
tractable, for parameter the span of a solution, when the time domain consists of two
timestamps [6] and later for any number of timestamps [3]. It is unlikely that the previous
result can be extended to larger values of k, since for k = 2 it is NP-complete to decide
whether there exists a solution of k-MINTIMELINECOVER that has span equal to 0 [6].

As for the approximation complexity, we have already noted that k-MINTIMELINECOVER
cannot be approximated within any factor. For k£ = 1, while the problem is known to be
hard to approximate within constant factor assuming the Unique Game Conjecture [6, 3], it
admits a O(T log |V|)-approximation algorithm [4, 5] (T is the number of timestamps of the
time domain, V is the set of vertices).

As for heuristics, Rozenshtein et al. [14] have presented k-Inner, which is based on solving
a problem, called K-COALESCE, that requires to cover some predetermined timestamps. These
timestamps represent an estimation of the activity timeline of a vertex. In our contribution,
we present a local search heuristic which is meant to be built on top of this heuristic, in

order possibly improve the computed solutions (that is we are able to reduce the span).

Other heuristics have been proposed recently for the case k =1 [11, 10]. We note that other
complexity results and a heuristic, called k-Budget, have been given for the problem that
has as objective function the minimization of the maximum span [15, 6].

The rest of the paper is organized as follow. In Section 2 we give some definitions and
we formally introduce the k-MINTIMELINECOVER problem. In Section 3 we present the
ILP formulation for k-MINTIMELINECOVER, then in Section 4 we describe our local search
heuristic. In Section 5 we give an experimental evaluation of our methods on synthetic
datasets. We conclude the paper with some future directions described in Section 6.

2 Preliminaries

A temporal graph G = (V, E), with V a set of vertices and E a set of temporal edges, which
are defined on time domain [T] = [1,T] of timestamps (note that in the model we consider
the time domain is discrete and T represents the maximum timestamp value). Each temporal
edge is represented by a timestamped triplet (u, v,t) such that w,v € V and ¢ € [T] represents
the time when the interaction between uw and v occurred. Note that in the temporal graphs
we consider, temporal edges are undirected and unweighted.

Consider a vertex v and two timestamps s, € [T] and e, € [T] with s, < ey, I, =[Sy, €]
is an activity interval of v. An activity timeline T (v) of a vertex v € V' is a set of k (where
k > 1) activity intervals I,,, = [Sy,, €q,],% € [K], where s,, < e,,, with the constraint that
ey, < 8y, for each i € [k — 1]. The last constraint guarantees that the activity intervals
of an activity timeline of a vertex are time disjoint. Given a vertex v € V and an activity
timeline T (v) of v, we say that v is active in a timestamp ¢ that is included in an interval of
Ti(v); if ¢ is not included in an interval of Tx(v), v is said to be inactive in t.
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Moreover, we define the span of interval I, 6(1,,) = e,, — Sy, as the duration of the
interval ¢ for the vertex v. We define the span of an activity timeline T (v) of v, consisting
of interval I,, = [s,,, €y,],1 € [k], as

k

S(Te(v)) = > 8(I,).

i=1

The activity timeline of temporal graph G is defined as:

T = |J Ta(v)

veV

The sum span of the activity timeline 7y of a graph G is defined as the sum spam over
all vertices in the temporal graph:

S(T) =Y _S(Te(w) =D > )

veV veV je[l...k]

An important fact to note is that a vertex can have at most k activity intervals, so the
problem setting admits empty intervals.

Now, we define how an activity timeline covers temporal edges of a temporal graph.

» Definition 1. Given a temporal graph G = (V, E) and an activity timeline Ty, of G, Ty
covers G if V(u,v,t) € E, there is an interval I, € Ty(v) or I, € Ti(u) such that t € I, or
tel,.

Now, we are able to formally define the problem we are interested in.

» Problem 1. k-Minimum Timeline Cover (k-MINTIMELINECOVER)
Input: A temporal graph G = (V, E), k € N.
Output: An activity timeline Ty, that covers G and minimizes the total sum span S(Ty).

Note that in the following, we will focus on the case k > 2.

Figure 2 shows an example of timeline covering over a 2-timestamps graph with 5 vertices.

3 An ILP Formulation for k-MINTIMELINECOVER

In the following, we present an ILP model formulation for k-MINTIMELINECOVER. Let
G = (V, E) be a temporal graph, and k be the number of activity intervals per vertex. The
ILP model is based on the following variables. Binary variables z!, v € V.t € [T}, are used
to define the timestamp that belongs to an activity timeline of v; #f = 1 if and only if vertex
v is active at time ¢. The ILP formulation also defines variables y¢, v € V,t € [T, which are
used to guarantee that the activity timeline of v consists of k intervals. y! = 1 if and only if
vertex v € V is defined active (inactive, respectively) at time ¢, t € [T — 1], and becomes
inactive (active, respectively) at time ¢ + 1.

» Theorem 2. Let G = (V, E) be a temporal graph, and k be the number of mazimum activity
intervals per node. The activity timeline Ty, that covers G and minimizes the total sum span
S(Tx) is the solution to the following integer linear programming formulation:
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Figure 2 An example of k-MINTIMELINECOVER with k = 2. The activity timeline of each vertex
is represented with two pink rectangles. Note that the only vertex that has positive span is u, all the
other vertices have span equal to 0. Every temporal edge is covered by at least an activity timeline.

T
min(Y_ (Y al, — k) (1)
veV t=1
s. t.
zt + 2t > 1,Y(u,v,t) €E (2)
T
Yoy <2xkYoeV (3)
t=1
where y! =0 if 2! and x5 have the same state and y!, = 1 otherwise
T
S oal =kVoeV (4)
t=1

Proof. We now prove the correctness of the ILP model. The first constraint of the ILP
formulation (which is represented by Equation 2) guarantees that for every temporal edge
(u,v,t) € E, at least one of the endpoints is active at timestamp ¢, which shows that
the timeline activity output by the ILP covers each temporal edge (u,v,t). Constraint 3
introduces another binary variable ! which does not allow us to have more than k disjoint
intervals in a timeline activity of each vertex. Constraint 4 is explained more formally by the
following inequalities:

yh > ol —2ltlve e Vit € [T — 1]
yh > a2ttt —alve e Vit € [T — 1]
Yy =0
Yy =0
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Each interval of an activity timeline of a vertex is defined by a start and an end timestamp,
consisting of two switches. A timestamp is defined as a switch - represented by y! =1 - if
the vertex either becomes active or inactive at that respective timestamp. Thus, the total
number of switches for every vertex v can be at most 2k, because each vertex will become
active - and then inactive k times.

The last constraint (Equation 4) ensures that for each vertex, its activity interval contains
at least k different active timestamps. This ensures that in the objective function (Equation 1)
no term is negative. Note that the assumption that each activity interval contains at least k
different active timestamps is not restrictive, as an activity interval containing one timestamp
has span 0, thus we can possibly create one-timestamp intervals without increasing the span.
Also, note that we assume that we have two timestamps, 0 and T+ 1, where no temporal
edge is defined, and we added fixed values y? = yI*!
when it happens, activation of the first timestamp and the deactivation of the last timestamp
are considered in the sum of Constraint 3. The objective function corresponds to minimize
the sum of the lengths of all active intervals across all vertices which is equivalent to the
sum span defined in the preliminaries section:

S(T) =Y _S(Tew) = > > 6(,)

veV jJE[L...k]veV

= 0. This makes sure that, for cases

Basically, for every vertex v we create k timestamp intervals; we sum up the number of
timestamps of these k intervals from which we subtract £ in order ensure that the ILP model
respects the definition of span. For example if we need to have a vertex active at all times,
that will be interpreted by the y activation variable as a single interval I. But by subtracting
k, we are sure that this interval is split into k subintervals; indeed while I has a span of
T — 1, the k subintervals have a total span of T'— k, which has a lower span with respect
to I. To sum up, a solution to the ILP provides a minimum temporal activity timeline for
each vertex, constrained to at most k intervals, which ensures that all temporal edges are
covered. <

4 A Local Search Heuristic

In this section, we present a heuristic based on local search and on a polynomial-time
algorithm for a subproblem of k-MINTIMELINECOVER. The motivation behind the use of
the local search technique is that for large graph instances and a large k, we have observed
that along the intervals produced by the heuristic solutions there were many which could be
left out of the solution without affecting the correctness of k-MINTIMELINECOVER.

Before we introduce the steps of the local search procedure (see below), we introduce
the concept of loss inspired by the paper of Lazzarinetti et al. [10]. For each vertex v € V'
at timestamp ¢ € [T] we define its associated loss loss(v,t) as the number of edges covered
that would become uncovered if v becomes inactive at time t. Given an interval I(v) of an
activity timeline 7 (v) of a vertex v, the interval loss loss(I(v)) is defined as:

loss(I(v)) = Z loss(v,t).

tel(v)

Our improvement algorithm improves the solution provided by the heuristics in [15] and
refines it using local search. The local search algorithm: (1) finds for each vertex v if there
exists an activity interval of loss = 0 in the solution; (2) it removes the activity timeline T (v)
from the solution; (3) it computes the timestamps associated with the temporal edges incident
in v left uncovered by the pruning of step (2); (4) it computes by dynamic programming
algorithm an activity timeline of v of minimum span, containing the timestamps of step (3).
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The motivation for this strategy is that, if there is an interval I(v) of loss = 0, it is
not useful to cover temporal edges, instead of removing only I(v), we decide to remove all
the activity timeline 7 (v). This allows us to define a new activity timeline for v with k
intervals. Basically, by reconfiguring the whole activity interval, we can find a new structure
for ordering the activity timestamps which would allow for a smaller span than the one which
would result by only deleting a single activity interval. Even though the strategy produces
additional cost regarding computation, it can produce a much better solution because it
saves not only the span of the deleted interval, but also the span saved by reshuffling the
activity timestamps into new intervals.

For example, assume that T (v) contains another interval I'(v) of positive loss, such that
I'(v) covers a temporal edge (u,v,t). If (u,v,t) is covered also by an interval of vertex u, we
don’t require to cover (u,v,t) when we recompute the timeline activity of v. Note that the
activity timeline computed at point (4) does not increase the span with respect to Ty (v).

We begin by describing how our heuristic deals with steps (1) - (3), by constructing
a specialized data structure, to which we will refer as loss dictionary, based on the initial
solution. This structure associates each activity interval of every vertex with a corresponding
loss value, which is initialized to zero. For each temporal edge in G, we examine whether it is
covered in the initial solution by both incident vertices or only by one. If the edge is covered
by both vertices, no modification is made in the loss dictionary. However, if it is covered
by only one vertex, this implies that the vertex must be active at that specific timestamp,
otherwise the temporal edge would become uncovered. Consequently, we increment the loss
value loss(I(v)) of the activity interval of the corresponding vertex by one. After iterating
through all temporal edges and updating the loss dictionary accordingly, we identify all
vertices that possess at least one activity interval with a loss value of zero. These intervals
are deemed redundant and subsequently, for that vertex we recalculate its activity timeline
from scratch, by parsing through the timestamps and looking for the uncovered timestamped
edges.

Following this pruning step, we recompute the activity timeline for that vertex using a
dynamic programming algorithm. We must specify the fact that indeed, the pruning step
can be done also for vertices not associated with an activity interval of loss = 0. We tested
this on relatively small synthetically generated datasets and the result was very similar to
the result of our approach, because for most of the vertices which do not contain loss = 0
intervals, the recalculation process is not able to shrink the activity timeline.

Now, we formally present the dynamic programming step (4), which solves the following
problem.

» Problem 2. k-Min-Interval-Cover (k-MININTERVALCOVER)

Input: An ordered set U of timestamps, k € N.

Output: A sequence I of k intervals of minimum span such that each timestamp in U is
covered .

Note that, given i € [z], we denote by U]i] the i-th timestamp in U. Now, we give the
dynamic programming recurrence to solve in polynomial time k-MININTERVALCOVER. Let
z = |U|. Define DP[i][j], where ¢ € [z] and j € [k], as the minimum span of a sequence

of j intervals in [U[é],U[z]] that covers each timestamp in I/ from the i-th to the z-th one.

Furthermore, we assume that z is a timestamp that contains no temporal edge and thus not
need to be covered. This is used to allow some interval to be empty. Also note that empty
intervals do not need to be time disjoint. The recurrence of compute D P[i][j], where i € [2]
and j € [k], is defined in the following.

8:7
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DPIi][j] = minici<.{DP[)lj — 1] + Ul = 1] —U[i])) with j >1 (5)

For the base cases DPJi][0] = +o0, for each ¢ € z; DP[z][0] = 0.
Next, we prove the correctness of Recurrence 5.

» Theorem 3. DPJi][j] = s if and only if there exists sequence of j intervals in [i,T] that
covers each timestamp in U from U[i] to z and has minimum span s.

Proof. We prove the theorem by induction on j. The lemma holds for 7 = 0, as an empty
sequence of intervals does not cover any timestamp.

Assume that the lemma holds for j — 1, we prove it for j. Consider a sequence of j
intervals in [U[i],U][z]] that covers timestamps from U[i] to U[z] and has minimum span s.
There is an interval I = [U[i],U[l —1]], with [ > i, that covers all the timestamps between U[i]
and U[l — 1]; moreover, there is a sequence of j — 1 intervals that covers timestamps between
U[l] and U|[z] and has total span s’, where s = s’ + h — . By induction DP[h+ 1][j — 1] = ¢/,
and thus DPi][j] = s.

Assume that DP[i][j] = s. Then since j > 1, it follows that there exists a value [ > j
such that DP[i|[j] = min;>:{DP[l][j — 1] + U[l — 1] — U[i]). By induction hypothesis, there
is a sequence of j — 1 intervals in [U[i][l],U]z]] that covers each timestamp between U[l] to
U[z] and have span DP[l|[j — 1]. By adding the interval [U[i],U[l — 1]] to the sequence, we
obtain a sequence of intervals that covers each timestamp in U[i] to U[z] and has minimum
span s. <

The pseudocode of the dynamic programming is described in Algorithm 1.
Next, we prove two properties of the local search procedure: (1) that it covers each
temporal edge and (2) that it never increases the span of a timeline activity.

» Lemma 4. Consider a vertex v and a sequence of intervals Iy, I, ... I, m <k of span s.
From those intervals we extract an ordered set U of timestamps, used as input to Algorithm
1. Then Algorithm 1 produces a sequence of intervals 11,15, ... I, of span at most s, such
that all timestamps are covered.

Proof. Let Tj be a solution of k-MINTIMELINECOVER on instance GG and a vertex v having
an interval of loss equal to 0 in 7. The local search heuristic is applied to v. First note that
DP[z][k] outputs the span of a sequence of intervals of minimum span that covers all the
timestamps in U. Since each timestamp of U is covered, then the corresponding intervals
define an activity timeline of v, thus with the activity timelines of other vertices, a feasible
solution of k-MINTIMELINECOVER, as each temporal edge is covered. Furthermore, note that
the span of intervals Iy, Is, ... I,, must be at least s, otherwise they will induce a sequence
of intervals covering the timestamps in & and having span less than DP[z][k], contradicting
Theorem 3. Finally, each temporal edge incident in v and not defined in a timestamp of I/ is
covered by the solution 7 of k-MINTIMELINECOVER, thus concluding the proof. <

Finally, we present the complexity of the Dynamic Programming algorithm which can
solve k-MININTERVALCOVER.

» Lemma 5. Algorithm 1 computes the optimal intervals and minimum total interval length
in O(n? x k) time, where n represents the total number of timestamps in the input list U, and
k is the maximum number of intervals.
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Proof. Let n be the total number of timestamps in &. The DP table dp thus will have
dimensions (n + 1) x (k + 1). The algorithm can be broken into 3 main components: (1)
initialization, (2) base case setup and (3) the DP Computation. (1) involves iterating through
all (n+ 1)(k + 1) elements, taking O(n * k) time. (2) involves asigning base case variables
dp[n][i],i € k and takes O(k) time. (3) consists of three nested loops, which form the core of
the computation. Because each operation within the innermost loop takes O(1), our total
running time will be O(n? x k). Summing the time complexities of these three stages will be
equal to the dominant term in the sum, which is O(n? x k) and represents a polynomial time
algorithm. <

Algorithm 1 Dynamic programming solution for ordering the timestamps for vertices with 0 loss.

Input: A sorted list of timestamps t[1...n], k
Output: Optimal intervals and minimum total interval length
: dp[0..T1]0..k] + o0 > Initialize DP table
: prev[0..T)[0..k] <+ 0 > For solution reconstruction
: dp[T][0] - 0 > Base case: empty sequence
for j < 1to k do
dp[T][j] < O > Empty sequence with any intervals
: end for
for i <~ 7T —1 down to 0 do
for j < 1to k do
for |+ i+ 1toT do
if | =7+1 then
interval Length < 0
else
interval Length < timestamps[l — 1] — timestamps|i] + 1
end if
total Length < interval Length + dp[l][j — 1]
if totalLength < dp[i][j] then
dpli][§] « total Length
prev[il[j] <1
end if
end for
21: end for
22: end for
23: Reconstruct the dp matriz
24: return intervals, dp[0][k]

© PNy
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5 Experiments

We begin this section by describing how we create the synthetically generated dataset on
which we will test both the ILP model and the heuristic. It is based on the generated
dataset of [14] and for each iteration of our algorithms we consider a static underlying graph
structure G = (V, E). For each v € V we simulate a set of temporal interaction intervals
at different timestamps. The parameters controlling the generation process include the
number of interaction intervals per vertex, the distance between events, the inter-interval
spacing, and the degree of temporal overlap between consecutive intervals. For simplicity
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and replicability, parameters were held constant across iterations. The generator ensures
stochastic yet reproducible behavior through a fixed random seed. The resulting dataset
consists of a chronologically ordered list of timestamped interactions (u,v,t), as well as
a mapping of vertices to their corresponding k active time intervals. Experiments were
conducted on a Macbook Pro machine with 11 CPU cores, 18 GB RAM, and M3 ARM
processor to ensure consistency in runtime comparisons.

We evaluate the performance of our Integer Linear Programming (ILP) formulation
on synthetically generated temporal networks. We used a Gurobi solver in its current
configuration, the model scales effectively to instances comprising up to 50,000 temporal
edges, with total runtime remaining under 25 minutes. The formulation demonstrates optimal
performance in scenarios characterized by a relatively small number of activity intervals per
vertex. For our standard benchmarking experiments, we fixed the number of activity intervals
at k = 10 and used an overlap coefficient of 0.5. Additionally, to assess the scalability of the
approach under alternative structural conditions, we conducted a separate test with a reduced
k value and a larger graph containing more vertices and edges. Empirically, we observed that
lower overlap coefficients lead to faster computational times; nonetheless, we maintained a
minimum overlap of 0.5 in most experiments to better reflect real-world temporal dynamics.
Across all tested configurations, the ILP formulation consistently achieved high solution
accuracy, with both precision and recall exceeding 99%, indicating the correctness and
robustness of the approach.

Execution Time vs T

1400

—e— Execution Time

1200

1000 -

800

600 4

Total Time (seconds)

400 +

200+

T T T T T T T T T
10000 15000 20000 25000 30000 35000 40000 45000 50000
Total timestamp values

Figure 3 ILP Execution Time vs the total number of timestamps.

In the following, we compare the results of the k-Baseline and k-Inner heuristics of [14]
with their improved versions using the heuristic algorithm. We will do a separate analysis for
each of the considered algorithms. Starting with k-Baseline, we observe that, precision-wise
the results are similar. This apparent discrepancy occurs because both sets of intervals
are being compared against the ground-truth results, which remain considerably smaller in
magnitude. The standard comparison metrics do not fully capture the practical significance
of our improvements because both the initial approach and our method necessarily produce
solutions that deviate substantially from the optimal (given the NP-hard nature of the
problem and its known approximation hardness of any factor). Nevertheless, when examining
the total interval length across all vertex variations, we observe a clear and consistent
improvement. This improvement stems directly from our algorithm (as detailed in Section
5), which calculates the loss of every interval for each vertex and, for vertices containing
intervals with zero loss, recalculates the activity timestamps and optimally reorders them
using dynamic programming.
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Comparative analysis of our approach against the baseline reveals consistent improvements
in precision and recall metrics, which are represented by an average improvement that exceeds
2.5% and peak differentials of more than 5% in maximum values. We use Figure 4 for reference.
Other relevant average comparisons are for recall, which stays the same for the Baseline and
the Heuristic Improvement algorithm at 0.65. More significantly, our method demonstrates
substantial optimization of the total interval length, reducing it from 3.0 * 1e6 to 2.5 * 1e6,
which constitutes a reduction of 16.7%. This considerable decrease in total length, coupled
with the consistent precision improvements, underscores the robustness and practicality of
our algorithmic refinements.
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Figure 4 Precision Comparison between Baseline and Improved Heuristic.
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Figure 5 Total Length Comparison between Baseline and Improved Heuristic.

In the experimental phase aimed at enhancing the k-Inner algorithm, we adopted a
slightly modified approach. Specifically, we conducted a dry run for all vertices v € V with a
loss value of zero, retaining the newly generated activity intervals only if they resulted in
a lower total cost compared to the baseline established by the original k-Inner algorithm.
This conservative strategy was employed as a safeguard, given that the original heuristic
already achieves a high precision of approximately 75%. In earlier iterations, we observed
instances where modifying certain vertices adversely affected the interval structure, leading
to significant reductions in overall precision. Despite these challenges, our modified heuristic
yields slight but consistent improvements. However, given the already high baseline precision,
these gains typically fall within a margin of approximately 1%. To ensure robustness in
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evaluation, we extended the number of iterations and increased the total number of vertices
analyzed. As shown in Figure 6, our approach surpasses the 75% precision threshold for
a limited number of vertices, after which the performance aligns closely with that of the
original k-Inner algorithm. This convergence is expected, as the algorithm already performs
near-optimally, leaving few opportunities for zero-loss interval modifications. Consequently,
the impact on the total interval length remains minimal.
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Figure 6 Total Length Comparison between Baseline and Improved Heuristic.

6 Conclusion and Future Works

We have considered k-MINTIMELINECOVER, a problem defined for complex data summar-
ization. We have presented an ILP formulation for moderate size instances and we have
designed an efficient heuristic based on local search. We have presented an experimental
evaluation on synthetic data sets for both methods. Future works include an experimental
evaluation on real-word datasets and an investigation of the performance of variants of our
heuristics that extend the local search approach, for example when more than one vertex
containing an interval of loss equal to 0 is considered in this step.
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