
Temporal GraphQL: A Tree Grammar Approach
Curtis E. Dyreson # Ñ

Department of Computer Science, Utah State University, Logan, UT, USA

Bishal Sarkar # Ñ

Department of Computer Science, Utah State University, Logan, UT, USA

Abstract
This paper presents a novel system, called Temporal GraphQL, for supporting temporal data in
web services. A temporal web service is a service that provides a temporal view of data, that is,
a view of the current data as well as past or future states of the data. Capturing the history of
the data is important in data forensics, data auditing, and subscriptions, where an application
continuously reads data. GraphQL is a technology for improving the development and management
of web services. Originally developed by Facebook and widely used in industry, GraphQL is a query
language for web services. This paper introduces Temporal GraphQL. We show how to use tree
grammars to model GraphQL schemas, data, and queries, and propose temporal tree grammars to
model Temporal GraphQL. We extend GraphQL with temporal snapshot, slice, and delta operators.
To the best of our knowledge, this is the first work on Temporal GraphQL and temporal tree
grammars.

2012 ACM Subject Classification Information systems → Temporal data; Information systems →
Service discovery and interfaces; Information systems → Query languages

Keywords and phrases Temporal databases, temporal queries, GraphQL, web services

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.9

1 Introduction

Web applications rely on web services for data management. A web service is a an application
programming interface (API) endpoint that allows a client to interact with a back-end
database over the web. Web services are ubiquitous; when on-line users shop, make dinner
reservations, buy airline tickets, vote, or post social media updates each interaction typically
invokes several web services. Web services read and write data formatted in Javascript
Objection Notation (JSON). JSON is a lightweight, text notation for representing objects.
Though JSON DBMSs are rising in popularity, e.g., MongoDB ranks fifth in a recent ranking
of DBMS popularity [15], JSON is the most widely used data exchange language. JSON is
tightly integrated into many modern programming languages, e.g., Python, Java, Typescript,
all have libraries to quickly convert objects formatted in JSON to objects in the host language
and vice-versa.

GraphQL is a technology for improving the development and management of web ser-
vices [22]. Originally developed by Facebook and widely used in industry, GraphQL is a
query language for a web service, or more generally, an API. GraphQL supports queries that
read data as well as mutations that update data on the types provided by the schema. A
GraphQL query is evaluated to produce JSON data requested by a user.

GraphQL, however, lacks support for temporal data. Temporal data is data annotated
with time metadata. This paper presents a novel system, called Temporal GraphQL, for
supporting temporal data in web services. A temporal web service is a service that provides
a temporal view of data, that is, a view of the current data as well as past or future states of
the data. Capturing the history of the data is important in data forensics, data auditing,
and subscriptions, where an application continuously reads data. For a subscription, instead
of returning all of the data in each snapshot, only the differences between snapshots can be
provided. This “delta” is usually much smaller than the entire dataset.

© Curtis E. Dyreson and Bishal Sarkar;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Curtis.Dyreson@usu.edu
http://cs.usu.edu/people/CurtisDyreson
https://orcid.org/0000-0003-0236-1515
mailto:Bishal.Sarkar@usu.edu
http://cs.usu.edu/people/CurtisDyreson
https://orcid.org/0009-0004-1633-5590
https://doi.org/10.4230/LIPIcs.TIME.2025.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

9:2 Temporal GraphQL

This paper makes the following contributions.
We show how to use tree grammars to model GraphQL schemas, data, and queries,
and propose temporal tree grammars to model temporal GraphQL. To the best of our
knowledge, this is the first work on temporal tree grammars.
We extend GraphQL with temporal snapshot, slice, and delta operators.

This paper is organized as follows. The next section reviews GraphQL. Section 3 introduces
Temporal GraphQL. We then describe tree grammars and how they are used in supporting
Temporal GraphQL in Section 4. The final two sections cover related work and conclusions.

2 Review of GraphQL

In this section we review GraphQL. The starting point for GraphQL is a schema, which
describes the types provided by an API as described in Section 2.1. GraphQL supports
queries and mutations (updates) using the API. For our purposes mutations are a variation
on queries, so this paper focuses exclusively on queries, which are presented in Section 2.2.

2.1 GraphQL Schemas
A GraphQL schema describes the types provided by an API. As an example, consider the
GraphQL schema specification shown in Figure 1. The schema is taken from GraphQL’s
tutorial for learning GraphQL [23] and has three object types: Character, Planet, and
Species. The miniworld for the types is a science fiction world where a character originates
on some planet, is of some species, and has friends who are characters. Each type has one or
more properties. A property represents a key-value pair in JSON. The name of the property
is the key and the schema records type constraints on the value. The Character type has
name, friends, homeworld, and species properties. The Character name is a String type
and must be non-null (indicated by the “!”). The friends property is a list (indicated by
the enclosing brackets “[]”) of references to Characters.

The data is checked during query evaluation to ensure that it conforms to the schema,
if not, an error is generated. As an example Figure 3 shows a fragment of a data instance
that conforms to the schema given in Figure 1. Each JSON object implicitly contains
an id property that uniquely identifies the object within the data collection, not just the
type (collection-wide unique identifiers are used to implement client-side caching of objects).
Sub-objects are represented as references, e.g., the homeworld property in the Character
type is a reference to a Planet object.

2.2 Queries
Queries are at the core of GraphQL. Every GraphQL schema must also support an entry
point for queries, this type is known as the Query type. The Query type specifies the root
entry point(s) for the database. An example is given in Figure 2. The Query type has three
entry points:
1. hero reads a Character,
2. characters yields a list Characters, and
3. planets, which returns a list of Planets.
The entry point is the starting point for the query, more fields can be added to flesh out
objects and sub-objects in a query result. An example is given in Figure 4. In the example,
the hero entry point is expanded to include the name and friends properties. The friends

C. E. Dyreson and B. Sarkar 9:3

type Character {
name: String!
friends: [Character]
homeworld: Planet
species: Species

}

type Planet {
name: String
climate: String

}

type Species {
name: String
lifespan: Int
origin: Planet

}

Figure 1 A GraphQL schema for a
science fiction database.

type Query {
hero: Character
characters: [Character]
planets: [Planet]

}

Figure 2 The Query type in GraphQL
defines query “entry points”.

Character = [
{ "id": "id_r2_d2",

"name": "R2-D2",
"friends": [

"characterId": "id_luke_skywalker",
"characterId": "id_han_solo"

],
"homeworldId": "id_naboo",
"species": "id_droid" },

{ "id": "id_luke_skywalker",
"name": "Luke Skywalker",
... },

...
]
Planet = [

{ "id": "id_naboo",
"name": "Naboo",
"climate": "Temperate" },

...
]
Species = [

{ "id": "id_droid",
"name": "Droid",

... }
...

]

Figure 3 JSON that conforms to the GraphQL
schema in Figure 1 for a science fiction database.

property is a list of Characters, and for each sub-object in the list the name and homeworld
(which is a Planet type object) properties are selected. An example of the result of evaluating
the query is given in Figure 5.

Queries can also include filters, which are predicates to test the data for membership in
the result. For example, suppose that we want to select the character named Luke Skywalker.
Then we could filter the hero entry point in a query as follows:

hero(filter: { name: { eq: "Luke Skywalker" } }) {
name
...

}

Entry points can also be specified to take arguments. For instance, we could modify the
hero entry point to match a specific name as follows.

type Query {
hero(name: String) : Character
...

}

TIME 2025

9:4 Temporal GraphQL

query {
hero {

name
friends {

name
homeworld {

name
climate

}
}

}
}

Figure 4 A query using the hero
entry point.

{ "data": {
"hero": {

"name": "R2-D2",
"friends": [

{ "name": "Luke Skywalker",
"homeworld": {

"name": "Tatooine",
"climate": "Desert"

}
},
....

]
}

}

Figure 5 A fragment of the result of the GraphQL
query in Figure 4.

The query to fetch Luke Skywalker would then be as follows.

hero(name: "Luke Skywalker") {
name
...

}

3 Temporal GraphQL

Science fiction data changes over time as edits to the data are made and new data is inserted.
This section describes how to capture the the changing history. In Temporal GraphQL
the data is assumed to be annotated with time metadata that records the lifetime of the
data in some temporal dimension. Common dimensions are transaction time and valid
time. We first show how to add support for time to a schema type, we then describe several
temporal query operators that let users travel in time and select past versions of data. In
the next section we discuss how to support Temporal GraphQL in a layered approach where
a temporal schema/operator is translated into the corresponding GraphQL schema/operator.
This implementation strategy leverages non-temporal GraphQL to support GraphQL.

3.1 Temporal Types
In a temporal GraphQL schema a type can be made temporal by adding a GraphQL directive
as shown in Figure 6. A GraphQL directive is prefixed with the “@” character. Directives are
essentially decorators in many popular programming languages. Directives can be added to
both schemas and queries. The @temporal directive indicates that the type is now a temporal
type, that is the schema type will represent data annotated with temporal metadata. For
the purposes of this paper we assume a single, transaction-time temporal dimension as it is
common for systems to record the time data is created and deleted. Extensions to valid time,
belief time, or bitemporal times are future work. We will further assume that the transaction
time is recorded as a period or interval timestamp, rather than a temporal element, that

C. E. Dyreson and B. Sarkar 9:5

@temporal directive declaration
directive @temporal() on OBJECT | SCHEMA

Character is a temporal type
type Character @temporal {

name: String
friends: [Character]
homeworld: Planet
species: Species

}
...

Figure 6 A GraphQL schema for a
temporal science fiction database.

query @slice({start: 3, stop: 4}) ({
hero {

name
}

}

Figure 7 An example @slice query.

is as a set of periods, or as an indeterminate time [2, 19]. Extending to handle temporal
elements or temporal indeterminacy are left to future work. The schema can be a mix of
temporal and nontemporal types, though for this running example we will assume that all of
the object types have been similarly annotated.

3.2 Temporal Queries
We assume that an API or web service supplies the temporal data in a temporal GraphQL
instance. Temporal GraphQL supports several kinds of temporal queries. Each kind of query
is specified by a GraphQL query directive that modifies the behavior of the query as described
below.

directive @snapshot(time: Int!) on QUERY - A snapshot query takes as input a time,
t, and returns the non-temporal data as of t.
directive @slice(time: Timestamp!) on QUERY - A slice query takes a Timestamp
object and returns the temporal history as of the given timestamp. The Timestamp type
is defined in Figure 9.
directive @current() on QUERY - The current query returns the snapshot as of the
current time.
directive @delta(time: Timestamp!) on QUERY - The delta query takes a Timestamp
and returns all of the data that changed during the Timestamp.

Figure 7 shows how a slice query would be specified.

4 A Layered Approach to Supporting Temporal GraphQL

In this section we describe a layered approach to mapping a temporal schema (query) into
a representational schema (query). The key to the approach is to model the schema as
a temporal tree grammar. Section 4.1 provides background on tree grammars, which are
extended in Section 4.2 to include support for time. The temporal tree grammar models the
representational schema and data as described in Section 4.2.1.

4.1 A Tree Grammar Approach to Modeling GraphQL Schemas
Introduced in 1969, a tree grammar is a (context-free) grammar for generating (or parsing)
trees [33].

TIME 2025

9:6 Temporal GraphQL

▶ Definition 1 (Simple Unordered Tree Grammar). A simple unordered tree grammar is a
four-tuple (Σ, R, N , ∆) where:

Σ is the alphabet, a finite set of terminals;
N is a finite set of nonterminals;
R ∈ N is a set of root (start) nonterminals, and
∆ is a finite set of productions, with the following properties. Each production is of the
form n → x1[α1]β1 . . . xk[αk]βk where n ∈ N , the body of the production is unordered
(the production represents all possible permutations of the body of the production), and
for all i,

xi ∈ Σ;
αi is a well-formed formula of terminals or nonterminals, square brackets to indicate
tree nesting, and metalanguage symbols from the EBNF (e.g., ∗ represents Kleene
closure);
and βi is the empty string, ? to indicate 0 or 1 occurrences, or ∗ for Kleene closure.

The grammar is for unranked trees [4]. In a ranked tree grammar each terminal or nonterminal
would have a fixed arity or “rank”, but GraphQL trees (and JSON) are best modeled by
unranked tree grammars, so for instance a homeworld node may have between one and two
descendants since name and climate are optional. The grammar is also context-free and
simple because every clause in the body starts with a terminal (the root of a subtree) so a
parser or generator for the grammar can deterministically choose the clause in the body of
the production based on a single lookahead token (the evaluation only has to keep track of
which clause was chosen).

One use of the tree grammar is to ensure that a GraphQL query is valid. Validation
is the first step in query evaluation. Validation consists of checking the query against the
schema to determine if all of the fields correspond to a type property and that the types
are nested correctly. It is straightforward to convert a GraphQL schema to a tree grammar.
The conversion introduces one production for every type (including the Query type). For
example the converted tree grammar for the GraphQL schema of Figure 1 is given below.
Note that a query is agnostic about JSON lists in the result so this distinction is not made
in the grammar to validate a query.

Σ = {id, name, friends, homeworld, species, climate, lifespan, origin, characters,

hero, planets}
R = Q

N = {Q, C, P, S}
∆ contains the following productions (for each x[α]β in the body β is a “?” because the
clause is optional, so for clarity we will omit the “?”).

Q → hero[C] characters[S] planets[P]
C → id[] name[] friends[C] homeworld[P] species[S]
P → id[] name[] climate[]
S → id[] name[] lifespan[] origin[P]

The grammar can be used to determine whether a query, such as that given in Figure 4
is valid. Figure 8 shows the tree representation of the query in Figure 4. The grammar is
used to validate from the root down by first choosing to expand Q (the start nonterminal)
by hero[C] based on the root of the query matching hero. C is then expanded by name[]
and friends[C], and so on.

A GraphQL schema can also be converted to a result grammar that describes the result of
a query. Below is the converted result grammar. Note that lists in the result are represented
in a tree as repeated children (using Kleene closure in the grammar) and that null values
could be present.

C. E. Dyreson and B. Sarkar 9:7

hero

name friends

name homeworld

name climate

Figure 8 The tree corresponding to the query in Figure 4.

Σ = {id, name, friends, homeworld, species, climate, lifespan, origin, String, data,

ID, null}
R = D

N = {D, Q, C, P, S}
∆ contains the following productions (for each xi[αi]βi in the body there is a “?” because
the clause is optional, so for clarity we will omit the “?”).

D → data[Q]
Q → [C | S∗ | P∗]
C → id[ID] name[String | null] friends[C]∗ homeworld[P] species[S]
P → id[ID] name[String | null] climate[String | null]
S → id[ID] name[String | null] lifespan[String | null] origin[P]

The result grammar is used to generate the result shown in Figure 5.

4.2 Temporal Tree Grammar
To support temporal data, we introduce a temporal tree grammar. There are (at least) two
ways in which a grammar can be temporal.
1. The grammar itself evolves - The grammar changes over time as rules are updated, inserted,

and deleted. For Temporal GraphQL this is akin to schema evolution or versioning [32].
2. The data changes over time - The grammar describes a snapshot of the data, but the data

itself is temporal, capturing the entire timeline of its evolution (in some time dimension(s)).
The non-temporal grammar parses each snapshot rather than the entire history of the
data.

We consider evolution of the grammar next, and in Section 4.2.2 representing the data’s
history.

4.2.1 Grammar Evolution
To record the changing history of the schema, each terminal and nonterminal in the body of
a production is annotated with a transaction time lifetime (transaction time since edits to
the schema are transactions). The lifetimes are updated as follows when edits are made to
the productions (to the schema).

Deletion of terminal or nonterminal in the body - When part of a production is deleted
the lifetime of the deleted parts is ended at the time at which it was deleted.
Insertion of a terminal or nonterminal - An insertion creates a new lifetime starting at
the time at which the part of the production was inserted and terminating at time uc
(until changed).

TIME 2025

9:8 Temporal GraphQL

Insertion or deletion of a production - Each terminal or nonterminal in the body is
updated as either inserted (lifetime starts) or deleted (lifetime ends).
Terminal or nonterminal marked as deprecated - GraphQL supports a @deprecated
annotation in the schema. Rather than deleting properties or types, they can be annotated
as deprecated. Since deprecated properties/types are not deleted, their lifetime will
continue (since they contine to be present in the schema). Since deprecated properties
and types are part of the GraphQL standard, Temporal GraphQL will continue to support
such types, so a slice at the current time will include deprecated fields present as of
the time of the slice. However, in Temporal GraphQL fields and properties (including
deprecated fields) can be (logically) deleted since rollback to previous versions of the
schema is supported. So in some sense, Temporal GraphQL “fixes” the need for having a
@deprecated annotation, but for compatibility, it continues to support the annotation.
Change to a production - We model the change to a production as the deletion of the
changed part, followed by an insertion of the new part.

For example, suppose that at time 1 the temporal type given in Figure 6 is inserted in
the schema. Then at time 2 the name field is deleted and at time 3 a moniker field is added.
By time 4 the production for the type in the query grammar would be as shown below, the
temporal annotations are shown as subscripts for each terminal and nonterminal in the body
of the production.

C → id1−uc[] name1−2[] moniker3−uc[] friends1−uc[C] homeworld1−uc[P] species1−uc[S]

The temporal annotations specify the time(s) at which the body of the production is valid.
For instance the rule would be used as follows in validating a query, such as that given in
Figure 4. Initially, the lifetime of the query is 1-uc. But the query contains the Character
name property. So as the query name construct is parsed, the lifetime becomes 1-uc

⋂
1-2 =

1-2, which is the time interval in which the name property existed. If the lifetime becomes
empty, then the parsing fails (at no transaction time is the query valid).

The lifetime computed by the query grammar can be propagated to the task of generating
the result using the result grammar, in particular it constrains the result to only data that
was alive during the computed lifetime as described next

4.2.2 A Representational Model for Data Evolution
A result tree grammar can be converted to a temporal result tree grammar that includes
timestamps in the data and supports multiple versions of a property as follows. First, for
each nonterminal, X, in the grammar corresponding to an @temporal object type we add
add two nonterminals: a version nonterminal, represented as XV , which represents a single
version of the data, and a history nonterminal, represented as XT , which is a list of versions.
Next, we add a production, XT → versionsX[XV ∗], to indicate that a history nonterminal
is a list of versions of type X. We also add a production, XV → timestamp[T] data[X], to
state that a version is the paring of a timestamp (represented by Timestamp type, T) and
the data for that version, which is an instance of X. Finally, in the body of each production
we replace X with XT to indicate that X is temporal.

As an example, the productions in the temporal result tree grammar is given below.
Σ = {id, name, friends,. . . lifespan, origin, String, data, ID, null}
R = Q

N = {Q, C, CT , CV , P, PT , PV , S, ST , SV }
∆ contains the following productions.

C. E. Dyreson and B. Sarkar 9:9

D → data[Q]
Q → [CT | ST ∗ | PT ∗]
CT → versionsCharacter[CV ∗]
CV → timestamp[T] data[C]
C → id[ID] name[String | null] friends[C]∗ homeworld[P] species[S]
PT → versionsPlanet[PV ∗]
PV → timestamp[T] data[P]
P → id[ID] name[String | null] climate[String | null]
ST → versionsSpecies[SV ∗]
SV → timestamp[T] data[S]
S → id[ID] name[String | null] lifespan[String | null] origin[P]
T → start[Int | null] stop[Int | null]

A key feature of the result tree grammar is that it can be expressed with a non-temporal
GraphQL schema, enabling GraphQL itself to support Temporal GrapQL. The representa-
tional schema for the temporal result grammar is given n Figure 9. The representational
schema is a GraphQL schema that represents the data and temporal metadata. In the
representational schema the Character type is converted to a CharacterTemporal type.
The CharacterTemporal type replaces Character everywhere else in the schema. A tem-
poral type is a list of versions. Each version is a Timestamp paired with a snapshot of a
non-temporal Character object. The Timestamp object is simply a transaction time interval,
but in practice could be bitemporal, a temporal element, or indeterminate; the object is
defined to represent the kinds and nature of times that annotate the data.

The temporal result grammar describes the types produced by the API. A fragment of
the representational data is shown in Figure 10. The data represents one change to the
“R2-D2” Character, the homeworld was updated from “Tatooine” to “Naboo”. The change
creates a new version of the Character object.

We note that this representational grammar takes a temporal-centric approach to querying
(described in the next section). In a temporal centric approach filtering is done primarily by
temporal constraints rather than value-specific constraints. There are alternative, potential
representations that we leave to future work that could better support a value-centric
approach. For instance, a Timestamp property could be added to each type in the schema to
record its lifetime. We envision a system in which a designer could choose the representational
schema that best suits their needs or alternatively choose support for more than one kind of
representational schema simultaneously. Note that the schema is not used for storage of the
data, rather it provides a view for query access, so supporting alternative representations
should be possible.

4.2.3 Evaluating Temporal Queries
The temporal result grammar is also used to construct the result of temporal queries. Just as
in the non-temporal case, the grammar is used to generate a result by repeated application of
the productions starting from the start nonterminal. But in the temporal case two additional
features are needed, the timestamps have to be processed and the result can be temporal or
non-temporal (depending on the operation). Let’s consider the @slice operator first.

We introduce the notion of sequenced generation (or parsing) to process @slice. It is
sequenced because for each use of a production in the generation (parse) there is an associated
lifetime that represents when the data is alive. The lifetime is important to track since in the
generated tree a child cannot exist without its parent, so each child’s lifetime is constrained

TIME 2025

9:10 Temporal GraphQL

...

type CharacterTemporal {
versionsCharacter: [CharacterVersion]

}

type CharacterVersion {
timestamp: Timestamp
snapshot: Character

}

type Character {
name: String
friends: [CharacterTemporal]
homeworld: PlanetTemporal
species: SpeciesTemporal

}

...

type Timestamp {
start: String
stop: String

}

Figure 9 A representational GraphQL
schema for the temporal schema of Figure 1.

...
CharacterTemporal = [

{ "id": "id_r2_d2",
"versionsCharacter": ["id_r2_d2_v1",

"id_r2_d2_v2"] },
...

]
CharacterVersion = [

{ "id": "id_r2_d2_v1",
"timestamp": "id_t1",
"snapshot": "id_r2_d2_s1 },

{ "id": "id_r2_d2_v2",
"timestamp": "id_t2",
"snapshot": "id_r2_d2_s2 },

]
Character = [

{ "id": "id_r2_d2_s1",
"name": "R2-D2",
"friends": [

"characterId": "id_luke_skywalker_v1",
"characterId": "id_han_solo_v1"],

"homeworldId": "id_tatooine_v1",
"species": "id_droid_v1" },

{ "id": "id_r2_d2_s2",
"name": "R2-D2",
"friends": [

"characterId": "id_luke_skywalker_v1",
"characterId": "id_han_solo_v1"],

"homeworldId": "id_naboo_v1",
"species": "id_droid_v1" },

...
]
...

Figure 10 JSON that conforms to the GraphQL
schema in Figure 1 for a science fiction database.

by the lifetime of its parent. A slice grabs the part of a history within a time interval specified
by the user. So initially, the lifetime of the root is given in the slice. Moreover, when the
@slice is validated using an evolving grammar, the validation produces a timestamp that
represents the times at which the query is valid (matches the temporal schema grammar).
So the lifetime is the intersection of the time specified in the slice and the time produced by
the validation. If this time is empty, then the @slice generates an error (the schema does
not match the query). As the generation proceeds from the root to each leaf in the result,
the lifetime is maintained along each branch in the tree by taking the intersection of the
branch’s lifetime with the data’s lifetime in any version object.

As an example, consider the @slice query given in Figure 7 using the grammar of
Section 4.2 including the change made to the grammar in Section 4.2.1 on the data of
Figure 10. The query specifies a slice from 3-4 but validation produces a time of 1-2
since name only exists at time 1-2. The intersection is empty, hence an error would be
generated. But suppose the slice was from 1-1. The result depicted in Figure 11 would be
generated. Initially 1-1 would be passed from the root (the hero node) along each branch

C. E. Dyreson and B. Sarkar 9:11

hero[1−1]

versionsCharacter[1−1] ∩ [1−2]=[1−1]

timestamp[1−1]

start

1

stop

2 → 1

data[1−2]

name[1−2]

"R2 D2"

versionsCharacter[1−1]∩[3−4]=∅

timestamp

start

3

stop

4

data∅

moniker

"R2 D2"

Figure 11 The tree corresponding to the query in Figure 4.

(each Character version) in the constructed tree. For each version in the data the intersection
of the version’s time and the branch’s time is computed, which becomes the branch’s time for
descendants along the branch, and the timestamp is updated. If the time is empty then the
branch generation is terminated. As an example, for the first (leftmost) versionsCharacter
node in Figure 11 the stop property in the timestamp is changed from 2 to 1 as indicated in
a red font. For the second versionsCharacter branch the intersection of 1-1 and 3-4 (the
time of the version) is empty, so the framed branch in the tree is not generated in the result.

The evaluation of @delta starts the same as the evaluation of @slice with the initial
computation of the lifetime of the root. But the intersection of times along a branch is not
performed, instead branches are pruned if the version lifetime does not start or end during
the branch’s lifetime. So if we replace @slice with @delta in the query in Figure 7 and
use a start time of 1, then the validation would produce a root timestamp of times 1-2.
When applied to Figure 11 the leftmost branch (without changing the timestamp) would be
selected, but the right child has a time of 3-4, so is outside the interval 1-2 and would not be
included in the result.

Finally, the evaluation of @snapshot (and @current) is similar to that of @slice insofar
as branches are pruned that fall outside of the slice time. But all non-data nodes are removed
from the result. As example using Figure 11 the @snapshot at time 1 would prune the
framed subtree rooted at the rightmost versionsCharacter node (since its lifetime is 3-4),
and also prune from the result the non-data nodes by placing the name node as the only
child of the hero node (removing the nodes in blue font in the leftmost versionsCharacter
subtree).

5 Related Work

To the best of our knowledge there have been no previous papers on Temporal GraphQL or
temporal tree grammars. There has, however, been extensive previous research to supporting
temporal data [3, 20,30]. This research has fallen into two broad categories: versioning and
timestamp-based support. Timestamp-based queries are common in temporal relational
databases. A temporal relational database [25] stores data that is annotated with time
metadata. The time metadata records when the data was alive in some time domain, e.g.,
transaction time [27], valid time [28], or both. Such databases can be queried in various
ways. For instance in TSQL2 [34] a query can be evaluated to retrieve the data’s history
e.g., a timeslice query [26], or retrieve the data as of some time instant, e.g., a snapshot

TIME 2025

9:12 Temporal GraphQL

query [35], or perform a query at every time instant in the data’s history, e.g., a sequenced
query [5]. But TSQL2 does not support queries that ask for versions of data, e.g., get the
second version of an employment record or retrieve the changes to the employment record.
Data versioning is more common in temporal object-oriented databases [13] or temporal
documents where each edit or change creates a new version of an object or document [21].
Users can navigate among the versions and restore old versions if necessary.

Semi-structured data representations such as JSON, XML, and YAML are used to
represent both data and documents and thus need to support both timestamp and version
histories [1, 7–11,16,31,37]. Semi-structured data changes over time, sometimes frequently,
as new data is inserted and existing data is edited and deleted [12, 24, 29]. Previous
research in temporal XML and JSON called elements that maintain their identity over time
items [14, 17, 18, 36]. Items are timestamped with a lifetime and as an element can be moved
within a document. Each change to an item creates a version, which is also timestamped.
Previous research showed how to represent, query, describe with a schema and validate
temporal semi-structured data. Differences in XML and JSON spawned further research in
schema validation and versioning for JSON data [6].

6 Conclusions

GraphQL is a widely used technology for making it easier to develop and maintain web
applications. GraphQL queries and mutations are used to read and write data to a back-end
database through a web services API. But data and schemas change over time and capturing
and querying this history is important in many applications. In this paper we presented
Temporal GraphQL, a technology that adds support for time to GraphQL. We observed that
tree grammars can model GraphQL schemas, data, and queries and we proposed temporal
tree grammars to model temporal GraphQL. And we extended GraphQL with temporal
snapshot, slice, and delta operators. The key advantage of our design is that it leverages
non-temporal GraphQL to support GraphQL.

Our short-term future work is targeted to implementing Temporal GraphQL as a layer
for a GraphQL system. But such a system has to be coupled with techniques for converting
web services to temporal web services, to supply the data for the temporal types in the query,
which in term needs temporal support in a back-end database. We are currently working on a
PostGraphile layer; PostGraphile is a GraphQL system for Postgres databases. We also plan
to specialize the @temporal annotation to support different kinds of time, e.g., @validTime.
And we plan to add temporal elements and support for indeterminacy to the Timestamp type.
Indeterminacy will also require some changes to queries to support indeterminate queries.
Finally, we plan to generalize the support for temporal metadata outlined in this paper to
include other kinds of metadata, such as quality metadata.

References

References
1 Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura. A Data Model for Temporal

XML Documents. In Database and Expert Systems Applications, 11th International Conference,
DEXA 2000, London, UK, September 4-8, 2000, Proceedings, pages 334–344, 2000. doi:
10.1007/3-540-44469-6_31.

2 Luca Anselma, Luca Piovesan, and Paolo Terenziani. Dealing with temporal indeterminacy
in relational databases: An AI methodology. AI Commun., 32(3):207–221, 2019. doi:
10.3233/AIC-190619.

https://doi.org/10.1007/3-540-44469-6_31
https://doi.org/10.1007/3-540-44469-6_31
https://doi.org/10.3233/AIC-190619
https://doi.org/10.3233/AIC-190619

C. E. Dyreson and B. Sarkar 9:13

3 Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter,
and Michael Zakharyaschev. Ontology-mediated query answering over temporal data: A
survey (invited talk). In 24th International Symposium on Temporal Representation and
Reasoning, TIME 2017, October 16-18, 2017, Mons, Belgium, pages 1:1–1:37, 2017. doi:
10.4230/LIPIcs.TIME.2017.1.

4 Michael Benedikt, Leonid Libkin, and Frank Neven. Logical definability and query languages
over ranked and unranked trees. ACM Trans. Comput. Logic, 8(2):11–es, April 2007. doi:
10.1145/1227839.1227843.

5 Michael H. Böhlen and Christian S. Jensen. Sequenced semantics. In Encyclopedia of Database
Systems, Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_1053.

6 Safa Brahmia, Zouhaier Brahmia, Fabio Grandi, and Rafik Bouaziz. τ jschema: A framework for
managing temporal json-based nosql databases. In Database and Expert Systems Applications -
27th International Conference, DEXA 2016, Porto, Portugal, September 5-8, 2016, Proceedings,
Part II, pages 167–181, 2016. doi:10.1007/978-3-319-44406-2_13.

7 Zouhaier Brahmia, Fabio Grandi, Safa Brahmia, and Rafik Bouaziz. A graphical conceptual
model for conventional and time-varying json data. Procedia Computer Science, 184:823–828,
2021. The 12th International Conference on Ambient Systems, Networks and Technologies
(ANT) / The 4th International Conference on Emerging Data and Industry 4.0 (EDI40) /
Affiliated Workshops. doi:10.1016/j.procs.2021.03.102.

8 Zouhaier Brahmia, Fabio Grandi, Safa Brahmia, and Rafik Bouaziz. τ jupdate: An update
language for time-varying JSON data. J. Comput. Lang., 79:101258, 2024. doi:10.1016/J.
COLA.2024.101258.

9 Zouhaier Brahmia, Hind Hamrouni, and Rafik Bouaziz. XML data manipulation in conventional
and temporal XML databases: A survey. Comput. Sci. Rev., 36:100231, 2020. doi:10.1016/
J.COSREV.2020.100231.

10 Sudarshan S. Chawathe, Serge Abiteboul, and Jennifer Widom. Representing and Querying
Changes in Semistructured Data. In Proceedings of the Fourteenth International Conference
on Data Engineering, Orlando, Florida, USA, February 23-27, 1998, pages 4–13, 1998. doi:
10.1109/ICDE.1998.655752.

11 Shu-Yao Chien, Vassilis J. Tsotras, and Carlo Zaniolo. Efficient Schemes for Managing Mul-
tiversion XML Documents. VLDB J., 11(4):332–353, 2002. doi:10.1007/s00778-002-0079-4.

12 Junghoo Cho and Hector Garcia-Molina. The Evolution of the Web and Implications for an
Incremental Crawler. In VLDB, pages 200–209, 2000. URL: http://www.vldb.org/conf/
2000/P200.pdf.

13 Carlo Combi. Temporal object-oriented databases. In Encyclopedia of Database Systems,
Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_404.

14 Faiz Currim, Sabah Currim, Curtis E. Dyreson, Richard T. Snodgrass, Stephen W. Thomas,
and Rui Zhang. Adding Temporal Constraints to XML Schema. IEEE Trans. Knowl. Data
Eng., 24(8):1361–1377, 2012. doi:10.1109/TKDE.2011.74.

15 DB-Engines Ranking. https://db-engines.com/en/ranking. Accessed: 2025-05-10.
16 Curtis E. Dyreson and Fabio Grandi. Temporal XML. In Encyclopedia of Database Systems,

Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_411.
17 Curtis E. Dyreson and Kalyan G. Mekala. Prefix-Based Node Numbering for Temporal

XML. In Web Information System Engineering - WISE 2011 - 12th International Conference,
Sydney, Australia, October 13-14, 2011. Proceedings, pages 172–184, 2011. doi:10.1007/
978-3-642-24434-6_13.

18 Curtis E. Dyreson, Amani M. Shatnawi, Sourav S. Bhowmick, and Vishal Sharma. Temporal
JSON keyword search. Proc. ACM Manag. Data, 2(3):177, 2024. doi:10.1145/3654980.

19 Curtis E. Dyreson and Richard Thomas Snodgrass. Supporting valid-time indeterminacy.
ACM Trans. Database Syst., 23(1):1–57, March 1998. doi:10.1145/288086.288087.

TIME 2025

https://doi.org/10.4230/LIPIcs.TIME.2017.1
https://doi.org/10.4230/LIPIcs.TIME.2017.1
https://doi.org/10.1145/1227839.1227843
https://doi.org/10.1145/1227839.1227843
https://doi.org/10.1007/978-1-4614-8265-9_1053
https://doi.org/10.1007/978-3-319-44406-2_13
https://doi.org/10.1016/j.procs.2021.03.102
https://doi.org/10.1016/J.COLA.2024.101258
https://doi.org/10.1016/J.COLA.2024.101258
https://doi.org/10.1016/J.COSREV.2020.100231
https://doi.org/10.1016/J.COSREV.2020.100231
https://doi.org/10.1109/ICDE.1998.655752
https://doi.org/10.1109/ICDE.1998.655752
https://doi.org/10.1007/s00778-002-0079-4
http://www.vldb.org/conf/2000/P200.pdf
http://www.vldb.org/conf/2000/P200.pdf
https://doi.org/10.1007/978-1-4614-8265-9_404
https://doi.org/10.1109/TKDE.2011.74
https://db-engines.com/en/ranking
https://doi.org/10.1007/978-1-4614-8265-9_411
https://doi.org/10.1007/978-3-642-24434-6_13
https://doi.org/10.1007/978-3-642-24434-6_13
https://doi.org/10.1145/3654980
https://doi.org/10.1145/288086.288087

9:14 Temporal GraphQL

20 Opher Etzion, Sushil Jajodia, and Suryanarayana M. Sripada, editors. Temporal Databases:
Research and Practice. (the book grow out of a Dagstuhl Seminar, June 23-27, 1997), volume
1399 of Lecture Notes in Computer Science. Springer, 1998. doi:10.1007/BFb0053695.

21 Aayush Goyal and Curtis E. Dyreson. Temporal JSON. In 5th IEEE International Conference
on Collaboration and Internet Computing, CIC 2019, Los Angeles, CA, USA, December 12-14,
2019, pages 135–144. IEEE, 2019. doi:10.1109/CIC48465.2019.00025.

22 GraphQL: A Query Language for Your API. https://graphql.org. Accessed: 2025-05-10.
23 Introduction to GraphQL. https://graphql.org/learn. Accessed: 2025-05-10.
24 Panagiotis G. Ipeirotis, Alexandros Ntoulas, Junghoo Cho, and Luis Gravano. Modeling

and Managing Content Changes in Text Databases. In ICDE, pages 606–617, 2005. doi:
10.1109/ICDE.2005.91.

25 Christian S. Jensen and Richard T. Snodgrass. Temporal database. In Encyclopedia of
Database Systems, Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_395.

26 Christian S. Jensen and Richard T. Snodgrass. Timeslice operator. In Encyclopedia of Database
Systems, Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_1426.

27 Christian S. Jensen and Richard T. Snodgrass. Transaction time. In Encyclopedia of Database
Systems, Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_1064.

28 Christian S. Jensen and Richard T. Snodgrass. Valid time. In Encyclopedia of Database
Systems, Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_1066.

29 Venkata N. Padmanabhan and Lili Qiu. The Content and Access Dynamics of a Busy Web Site:
Findings and Implications. In SIGCOMM, pages 111–123, 2000. doi:10.1145/347059.347413.

30 Vangipuram Radhakrishna, P. V. Kumar, and V. Janaki. A survey on temporal databases
and data mining. In Proceedings of the The International Conference on Engineering & MIS
2015, ICEMIS ’15, pages 52:1–52:6, New York, NY, USA, 2015. ACM. doi:10.1145/2832987.
2833064.

31 Flavio Rizzolo and Alejandro A. Vaisman. Temporal XML: Modeling, Indexing, and Query
Processing. VLDB J., 17(5):1179–1212, 2008. doi:10.1007/s00778-007-0058-x.

32 John F. Roddick. A survey of schema versioning issues for database systems. Inf. Softw.
Technol., 37(7):383–393, 1995. doi:10.1016/0950-5849(95)91494-K.

33 William C. Rounds. Context-free grammars on trees. In Proceedings of the 1st Annual ACM
Symposium on Theory of Computing, May 5-7, 1969, Marina del Rey, CA, USA, pages 143–148.
ACM, 1969. doi:10.1145/800169.805428.

34 Richard T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer, 1995.
35 Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen, and Andreas Steiner. Trans-

itioning temporal support in TSQL2 to SQL3. In Temporal Databases: Research and Prac-
tice. (the book grow out of a Dagstuhl Seminar, June 23-27, 1997), pages 150–194, 1997.
doi:10.1007/BFb0053702.

36 Richard T. Snodgrass, Curtis E. Dyreson, Faiz Currim, Sabah Currim, and Shailesh Joshi.
Validating Quicksand: Temporal Schema Versioning in tauXSchema. Data Knowl. Eng.,
65(2):223–242, 2008. doi:10.1016/j.datak.2007.09.003.

37 Fusheng Wang and Carlo Zaniolo. An XML-Based Approach to Publishing and Query-
ing the History of Databases. World Wide Web, 8(3):233–259, 2005. doi:10.1007/
s11280-005-1317-7.

https://doi.org/10.1007/BFb0053695
https://doi.org/10.1109/CIC48465.2019.00025
https://graphql.org
https://graphql.org/learn
https://doi.org/10.1109/ICDE.2005.91
https://doi.org/10.1109/ICDE.2005.91
https://doi.org/10.1007/978-1-4614-8265-9_395
https://doi.org/10.1007/978-1-4614-8265-9_1426
https://doi.org/10.1007/978-1-4614-8265-9_1064
https://doi.org/10.1007/978-1-4614-8265-9_1066
https://doi.org/10.1145/347059.347413
https://doi.org/10.1145/2832987.2833064
https://doi.org/10.1145/2832987.2833064
https://doi.org/10.1007/s00778-007-0058-x
https://doi.org/10.1016/0950-5849(95)91494-K
https://doi.org/10.1145/800169.805428
https://doi.org/10.1007/BFb0053702
https://doi.org/10.1016/j.datak.2007.09.003
https://doi.org/10.1007/s11280-005-1317-7
https://doi.org/10.1007/s11280-005-1317-7

	1 Introduction
	2 Review of GraphQL
	2.1 GraphQL Schemas
	2.2 Queries

	3 Temporal GraphQL
	3.1 Temporal Types
	3.2 Temporal Queries

	4 A Layered Approach to Supporting Temporal GraphQL
	4.1 A Tree Grammar Approach to Modeling GraphQL Schemas
	4.2 Temporal Tree Grammar
	4.2.1 Grammar Evolution
	4.2.2 A Representational Model for Data Evolution
	4.2.3 Evaluating Temporal Queries

	5 Related Work
	6 Conclusions

