
32nd International Symposium on
Temporal Representation and
Reasoning

TIME 2025, August 27–29, 2025, Queen Mary University of
London, UK

Edited by

Thierry Vidal
Przemysław Andrzej Wałęga

LIPIcs – Vo l . 355 – TIME 2025 www.dagstuh l .de/ l ip i c s

Editors

Thierry Vidal
Technological University of Tarbes, France
thierry.vidal@uttop.fr

Przemysław Andrzej Wałęga
Queen Mary University of London, UK
p.walega@qmul.ac.uk

ACM Classification 2012
Computing methodologies → Temporal reasoning; Information systems → Spatial-temporal systems;
Theory of computation → Modal and temporal logics; Information systems → Temporal data; Mathematics
of computing → Time series analysis; Theory of computation → Timed and hybrid models; Computing
methodologies → Discrete-event simulation

ISBN 978-3-95977-401-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-401-7.

Publication date
October, 2025

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists all publications of this volume in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.TIME.2025.0

ISBN 978-3-95977-401-7 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-4369-5749
mailto:thierry.vidal@uttop.fr
https://orcid.org/0000-0003-2922-0472
mailto:p.walega@qmul.ac.uk
https://www.dagstuhl.de/dagpub/978-3-95977-401-7
https://www.dagstuhl.de/dagpub/978-3-95977-401-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.TIME.2025.0
https://www.dagstuhl.de/dagpub/978-3-95977-401-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Holger Hermanns (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Wadern, DE)
Daniel Král’ (Leipzig University, DE and Max Planck Institute for Mathematics in the Sciences,
Leipzig, DE)
Sławomir Lasota (University of Warsaw, PL)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN – Chair)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Pierre Senellart (ENS, Université PSL, Paris, France)
Alexandra Silva (Cornell University, Ithaca, US)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

TIME 2025

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Thierry Vidal and Przemysław Andrzej Wałęga . 0:vii

TIME Steering Committee
. 0:ix

Program Committee Members
. 0:xi

Local Organizing Committee
. 0:xiii

List of Authors
. 0:vii

Invited Talks

Interpolation and Separation Problems for Linear Temporal Logics
Michael Zakharyaschev . 1:1–1:2

An Introduction to First-Order Linear Temporal Logic
Nicola Gigante . 2:1–2:6

Regular Papers

Metric Linear-Time Temporal Logic with Strict First-Time Semantics
Eric Alsmann and Martin Lange . 3:1–3:14

Assessing the (In)Ability of LLMs to Reason in Interval Temporal Logic
Pietro Bellodi, Pietro Casavecchia, Alberto Paparella, Guido Sciavicco,
and Ionel Eduard Stan . 4:1–4:15

Higher-Order Timed Automata and Tail Recursion
Florian Bruse . 5:1–5:16

GradSTL: Comprehensive Signal Temporal Logic for Neurosymbolic Reasoning
and Learning

Mark Chevallier, Filip Smola, Richard Schmoetten, and Jacques D. Fleuriot 6:1–6:14

PDDL to DFA: A Symbolic Transformation for Effective Reasoning
Giuseppe De Giacomo, Antonio Di Stasio, and Gianmarco Parretti 7:1–7:14

Heuristics for Covering the Timeline in Temporal Graphs
Riccardo Dondi, Rares-Ioan Mateiu, and Alexandru Popa . 8:1–8:13

Temporal GraphQL: A Tree Grammar Approach
Curtis E. Dyreson and Bishal Sarkar . 9:1–9:14

Safety and Liveness on Finite Words
Luca Geatti, Stefano Pessotto, and Stefano Tonetta . 10:1–10:18

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

A Better Algorithm for Converting an STNU into Minimal Dispatchable Form
Luke Hunsberger and Roberto Posenato . 11:1–11:15

On the Complexity of the Realisability Problem for Visit Events in Trajectory
Sample Databases

Arthur Jansen and Bart Kuijpers . 12:1–12:14

Temporal Ensemble Logic for Integrative Representation of the Entirety of
Clinical Trials

Xiaojin Li, Yan Huang, Rashmie Abeysinghe, Zenan Sun, Hongyu Chen,
Pengze Li, Xing He, Shiqiang Tao, Cui Tao, Jiang Bian, Licong Cui,
and Guo-Qiang Zhang . 13:1–13:16

Short Papers

QualiNet: Acquiring Bird’s Eye View Qualitative Spatial Representation from
2D Images in Automated Vehicle Perception

Nassim Belmecheri . 14:1–14:6

The Temporal Vadalog System
Luigi Bellomarini, Livia Blasi, Markus Nissl, and Emanuel Sallinger 15:1–15:8

Solutions to the Generalised Alibi Query in Moving Object Databases
Arthur Jansen and Bart Kuijpers . 16:1–16:4

Visit Probability in Space-Time Prisms for Moving Object Data
Arthur Jansen and Bart Kuijpers . 17:1–17:4

Prompting LLMs for the Run-Time Event Calculus
Andreas Kouvaras, Periklis Mantenoglou, and Alexander Artikis 18:1–18:7

Temporal Association Rules from Motifs
Mauro Milella, Giovanni Pagliarini, Guido Sciavicco, and Ionel Eduard Stan 19:1–19:7

Temporal Considerations in DJ Mix Information Retrieval and Generation
Alexander Williams, Gregor Meehan, Stefan Lattner, Johan Pauwels,
and Mathieu Barthet . 20:1–20:8

A Translation of Probabilistic Event Calculus into Markov Decision Processes
Lyris Xu, Fabio Aurelio D’Asaro, and Luke Dickens . 21:1–21:5

Preface

“If you knew Time as well as I do,” said the Hatter, “you wouldn’t talk about wasting it.”
— Lewis Carroll, Alice’s Adventures in Wonderland

We are delighted to welcome you to the 32nd International Symposium on Temporal
Representation and Reasoning (TIME 2025), hosted at Queen Mary University of London,
UK.

TIME has been for more than twenty years the only yearly multidisciplinary international
event dedicated to the topic of time in computer science. The purpose of the symposium
is to bring together active researchers in different scientific fields involving temporal and
spatio-temporal data, information and/or knowledge management. Such a concern arises in
a number of different though often related research domains, namely Artificial Intelligence
(both symbolic approaches based on explicit Logic or Constraint-based models, and numerical
data-based approaches such as Deep Learning and Large Language Models), Databases
and Data Mining, or System Specification and Verification. In an effort to broaden the
symposium program we have introduced in TIME 2025 three types of submissions:

Original long papers (12 pages), presenting unpublished theoretical (algorithms, models,
proofs) or applied (systems, evaluations, applications) work;
Survey papers (12 pages), offering concise overviews of established research areas; and
Extended abstracts (4 pages), initially intended to stimulate discussion and include
work-in-progress, project reviews, PhD summaries, or summaries of papers published
elsewhere.

This year, we received 27 submissions. Following a rigorous single blind peer-review
process, 19 papers were accepted for presentation: 11 as original 12-page long papers, which
were allocated a 30 minutes talk, and 8 as 4-page short papers (either as submitted extended
abstracts, or initial original long papers which received a more balanced assessment), which
were allocated a 20 minutes talk. Unfortunately this year submitted survey papers did not
meet our quality requirements, next editions will have to decide if that type of submission
will be maintained.

The program also features two invited talks:
Michael Zakharyaschev (Birkbeck, University of London, UK): Separation and inter-
polation problems related to linear temporal logic LTL
Michael Wooldridge (University of Oxford, UK): From Synthesis to Rational Verifica-
tion

Moreover, which is another novelty in TIME 2025, the program includes an invited
tutorial:

Nicola Gigante (Free University of Bozen-Bolzano, Italy): An Introduction to First-
Order Linear Temporal Logic

The conference program also includes social events themed around the notion of time.
We will host a welcome reception in the heart of London, near Big Ben – an iconic symbol
of both the city and the passage of time. In addition, we organise an excursion to the
Royal Observatory in Greenwich, home of the Prime Meridian and the historical centre of
timekeeping. There, participants will have the opportunity to explore the origins of modern
time measurement and stand on the zero longitude line.
32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:viii Preface

We are deeply grateful to the members of the programme committee for their diligence
and commitment to maintaining the scientific quality of the symposium, as well as to all
authors for the care taken in their submissions and final versions of their articles, and in
their oral presentations, including our invited speakers. In view of the high quality of these
contributions, we have decided this year to award two prizes:

The recipient of the best paper award is On the Complexity of the Realisability Problem
for Visit Events in Trajectory Sample Databases which authors are Arthur Jansen and
Bart Kuijpers.
The recipient of the best reviewer award is Emanuel Sallinger from the Technical
University of Wien.

We also thank the local organizing team for their dedication in making this event a
success, and express our appreciation to LIPIcs for publishing the proceedings and supporting
open-access dissemination of scientific knowledge.

We hope that TIME 2025 provides a stimulating and collaborative environment for all
participants, and contributes meaningfully to the advancement of temporal representation
and reasoning.

TIME 2025 Program Committee Chairs
Thierry Vidal, Technical University of Tarbes, France
Przemysław Wałęga, Queen Mary University of London, UK

TIME Steering Committee

Alexander Artikis
University of Piraeus & NCSR Demokritos
Greece
a.artikis@unipi.gr
Patricia Bouyer
CNRS & ENS Paris-Saclay
France
bouyer@lsv.fr
Carlo Combi (Chair)
University of Verona
Italy
carlo.combi@univr.it
Johann Eder
University of Klagenfurt
Austria
johann.eder@aau.at
Thomas Guyet
IRISA
France
thomas.guyet@irisa.fr
Luke Hunsberger
Vassar College
United States
hunsberger@vassar.edu
Martin Lange (Chair)
University of Kassel
Germany
martin.lange@uni-kassel.de
Angelo Montanari
University of Udine
Italy
angelo.montanari@uniud.it
Shankara Narayanan Krishna (Krishna S.)
IIT Bombay
India
krishnas@cse.iitb.ac.in
Mark Reynolds
University of Western Australia
Australia
mark.reynolds@uwa.edu.au

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee Members

Sundaraman Akshay
Indian Institute of Technology Bombay
India
akshayss@cse.iitb.ac.in

Beatrice Amico
University of Verona
Italy
beatrice.amico@univr.it

Alexandros Artikis
NCSR Demokritos & University of Piraeus
Greece
a.artikis@iit.demokritos.gr

Massimo Benerecetti
Università di Napoli “Federico II”
Italy
massimo.benerecetti@unina.it

Béatrice Bérard
Sorbonne University
France
beatrice.berard@lip6.fr

Florian Bruse
University of Kassel
Germany
florian.bruse@uni-kassel.de

Jaewook Byun
Sejong University
South Korea
jwbyun@sejong.ac.kr

Carlo Combi
University of Verona
Italy
carlo.combi@univr.it

Nicola Gigante
Free University of Bozen-Bolzano
Italy
nicola.gigante@unibz.it

Thomas Guyet
Inria-AIstroSight
France
thomas.guyet@inria.fr

Peter Jonsson
Linköping University
Sweden
peter.jonsson@liu.se

Roman Kontchakov
Birkbeck, University of London
United Kingdom
roman@dcs.bbk.ac.uk

Martin Lange
University of Kassel
Germany
martin.lange@uni-kassel.de

Ruizhe Ma
University of Massachusetts Lowell
United States of America
ruizhe_ma@uml.edu

Periklis Mantenoglou
Örebro University
Sweden
periklis.mantenoglou@oru.se

Maria Chiara Meo
"G. d’Annunzio" University of Chieti-Pescara
Italy
mariachiara.meo@unich.it

Andrea Micheli
FBK, Trento
Italy
amicheli@fbk.eu

Angelo Montanari
University of Udine
Italy
angelo.montanari@uniud.it

Andrea Orlandini
ISTC-CNR, Roma
Italy
andrea.orlandini@istc.cnr.it

Yannick Pencolé
LAAS-CNRS, Toulouse
France
yannick.pencole@laas.fr

Sophie Pinchinat
IRISA, Rennes
France
sophie.pinchinat@irisa.fr

Roberto Posenato
University of Verona
Italy
roberto.posenato@univr.it

Vladislav Ryzhikov
Birkbeck, University of London
United Kingdom
v.ryzhikov@bbk.ac.uk

Marco Saelzer
University of Kassel
Germany
marco.saelzer@uni-kassel.de

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Program Committee Members

Yakoub Salhi
Artois University
France
salhi@cril.fr

Emanuel Sallinger
Technical University, Wien
Austria
emanuel.sallinger@tuwien.ac.at

Guido Sciavicco
University of Ferrara
Italy
scvgdu@unife.it

Michael Sioutis
University of Montpellier
France
michael.sioutis@lirmm.fr

Kathleen Stewart
University of Maryland
US
stewartk@umd.edu

Ajdin Sumic
ONERA, Toulouse
France
aidin.sumic@onera.fr

Paolo Terenziani
University of Piemonte Orientale, Alessandria
Italy
paolo.terenziani@unipmn.it

Matteo Zavatteri
University of Padua
Italy
matteo.zavatteri@unipd.it

Local Organizing Committee

Fredrik Dahlqvist Raymond Hu
Niki Omidvari Marc Roth
Yongxin Yang
Queen Mary University of London
United Kingdom

Antonio Di Stasio
City, University of London
United Kingdom

David Tena Cucala
RHUL, University of London
United Kingdom

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Rashmie Abeysinghe (13)
The University of Texas Health Science Center
at Houston, TX, USA

Eric Alsmann (3)
Theoretical Computer Science / Formal
Methods, University of Kassel, Germany

Alexander Artikis (18)
University of Piraeus, Greece;
NCSR “Demokritos”, Athens, Greece

Mathieu Barthet (20)
Aix-Marseille Univ CNRS PRISM, France;
Centre for Digital Music, Queen Mary
University of London, United Kingdom

Pietro Bellodi (4)
Department of Mathematics and Computer
Science, University of Ferrara, Italy

Luigi Bellomarini (15)
Bank of Italy, Rome, Italy

Nassim Belmecheri (14)
Simula Research Laboratory, Oslo, Norway

Jiang Bian (13)
Indiana University Bloomington, Bloomington,
IN, USA

Livia Blasi (15)
TU Wien, Vienna, Austria;
Bank of Italy, Rome, Italy

Florian Bruse (5)
TUM School of Computation, Information and
Technology, Technical University of Munich,
Munich, Germany

Pietro Casavecchia (4)
Department of Mathematics and Computer
Science, University of Ferrara, Italy

Hongyu Chen (13)
University of Florida, Gainesville, FL, USA

Mark Chevallier (6)
School of Engineering, University of Edinburgh,
UK

Licong Cui (13)
The University of Texas Health Science Center
at Houston, TX, USA

Fabio Aurelio D’Asaro (21)
Dip. di Studi Umanistici,
Università del Salento, Lecce, Italy

Giuseppe De Giacomo (7)
University of Oxford, UK

Antonio Di Stasio (7)
City St George’s, University of London, UK

Luke Dickens (21)
Dept. of Information Studies,
University College London, UK

Riccardo Dondi (8)
Università degli Studi di Bergamo, Italy

Curtis E. Dyreson (9)
Department of Computer Science,
Utah State University, Logan, UT, USA

Jacques D. Fleuriot (6)
School of Informatics,
University of Edinburgh, UK

Luca Geatti (10)
University of Udine, Italy

Nicola Gigante (2)
Free University of Bozen-Bolzano, Italy

Xing He (13)
Indiana University Bloomington,
Bloomington, IN, USA

Yan Huang (13)
The University of Texas Health Science Center
at Houston, TX, USA

Luke Hunsberger (11)
Vassar College, Poughkeepsie, NY, USA

Arthur Jansen (12, 16, 17)
Hasselt University, Databases and Theoretical
Computer Science Group and Data Science
Institute (DSI), Agoralaan, Building D,
3590 Diepenbeek, Belgium

Andreas Kouvaras (18)
University of Piraeus, Greece

Bart Kuijpers (12, 16, 17)
Hasselt University, Databases and Theoretical
Computer Science Group and Data Science
Institute (DSI), Agoralaan, Building D,
3590 Diepenbeek, Belgium

Martin Lange (3)
Theoretical Computer Science / Formal
Methods, University of Kassel, Germany

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://orcid.org/0000-0002-2603-7827
https://doi.org/10.4230/LIPIcs.TIME.2025.3
https://orcid.org/0000-0001-6899-4599
https://doi.org/10.4230/LIPIcs.TIME.2025.18
https://orcid.org/0000-0002-9869-1668
https://doi.org/10.4230/LIPIcs.TIME.2025.20
https://orcid.org/0009-0001-9040-8266
https://doi.org/10.4230/LIPIcs.TIME.2025.4
https://orcid.org/0000-0001-6863-0162
https://doi.org/10.4230/LIPIcs.TIME.2025.15
https://orcid.org/0000-0003-3436-0154
https://doi.org/10.4230/LIPIcs.TIME.2025.14
https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://orcid.org/0000-0003-0701-1688
https://doi.org/10.4230/LIPIcs.TIME.2025.15
https://orcid.org/0000-0001-6800-7135
https://doi.org/10.4230/LIPIcs.TIME.2025.5
https://orcid.org/0009-0000-9117-234X
https://doi.org/10.4230/LIPIcs.TIME.2025.4
https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://orcid.org/0000-0001-5307-7018
https://doi.org/10.4230/LIPIcs.TIME.2025.6
https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://orcid.org/0000-0002-2958-3874
https://doi.org/10.4230/LIPIcs.TIME.2025.21
https://orcid.org/0000-0001-9680-7658
https://doi.org/10.4230/LIPIcs.TIME.2025.7
https://orcid.org/0000-0001-5475-2978
https://doi.org/10.4230/LIPIcs.TIME.2025.7
https://orcid.org/0000-0003-0896-1407
https://doi.org/10.4230/LIPIcs.TIME.2025.21
https://orcid.org/0000-0002-6124-2965
https://doi.org/10.4230/LIPIcs.TIME.2025.8
https://orcid.org/0000-0003-0236-1515
https://doi.org/10.4230/LIPIcs.TIME.2025.9
https://orcid.org/0000-0002-6867-9836
https://doi.org/10.4230/LIPIcs.TIME.2025.6
https://orcid.org/0000-0002-7125-787X
https://doi.org/10.4230/LIPIcs.TIME.2025.10
https://orcid.org/0000-0002-2254-4821
https://doi.org/10.4230/LIPIcs.TIME.2025.2
https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://orcid.org/0009-0005-8603-4803
https://doi.org/10.4230/LIPIcs.TIME.2025.11
https://orcid.org/0000-0002-4970-803X
https://doi.org/10.4230/LIPIcs.TIME.2025.12
https://doi.org/10.4230/LIPIcs.TIME.2025.16
https://doi.org/10.4230/LIPIcs.TIME.2025.17
https://orcid.org/0009-0000-6741-5532
https://doi.org/10.4230/LIPIcs.TIME.2025.18
https://orcid.org/0000-0001-5774-0948
https://doi.org/10.4230/LIPIcs.TIME.2025.12
https://doi.org/10.4230/LIPIcs.TIME.2025.16
https://doi.org/10.4230/LIPIcs.TIME.2025.17
https://orcid.org/0000-0002-1621-0972
https://doi.org/10.4230/LIPIcs.TIME.2025.3
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Authors

Stefan Lattner (20)
Sony CSL, Paris, France

Pengze Li (13)
Mayo Clinic in Florida, Jacksonville, FL, USA

Xiaojin Li (13)
The University of Texas Health Science Center
at Houston, TX, USA

Periklis Mantenoglou (18)
Örebro University, Sweden

Rares-Ioan Mateiu (8)
Department of Computer Science,
University of Bucharest, Romania

Gregor Meehan (20)
Centre for Digital Music, Queen Mary
University of London, United Kingdom

Mauro Milella (19)
Department of Mathematics and Computer
Science, University of Ferrara, Italy

Markus Nissl (15)
TU Wien, Vienna, Austria

Giovanni Pagliarini (19)
Department of Mathematics and Computer
Science, University of Ferrara, Italy

Alberto Paparella (4)
Department of Mathematics and Computer
Science, University of Ferrara, Italy

Gianmarco Parretti (7)
La Sapienza University of Rome, Italy

Johan Pauwels (20)
Centre for Digital Music, Queen Mary
University of London, United Kingdom

Stefano Pessotto (10)
University of Udine, Italy

Alexandru Popa (8)
Department of Computer Science,
University of Bucharest, Romania

Roberto Posenato (11)
University of Verona, Italy

Emanuel Sallinger (15)
TU Wien, Vienna, Austria;
University of Oxford, Oxford, UK

Bishal Sarkar (9)
Department of Computer Science,
Utah State University, Logan, UT, USA

Richard Schmoetten (6)
School of Informatics,
University of Edinburgh, UK

Guido Sciavicco (4, 19)
Department of Mathematics and Computer
Science, University of Ferrara, Italy

Filip Smola (6)
School of Informatics,
University of Edinburgh, UK

Ionel Eduard Stan (4, 19)
Department of Informatics, Systems, and
Communications, University of Milano-Bicocca,
Italy

Zenan Sun (13)
The University of Texas Health Science Center
at Houston, TX, USA

Cui Tao (13)
Mayo Clinic in Florida, Jacksonville, FL, USA

Shiqiang Tao (13)
The University of Texas Health Science Center
at Houston, TX, USA

Stefano Tonetta (10)
Fondazione Bruno Kessler, Italy

Alexander Williams (20)
Centre for Digital Music, Queen Mary
University of London, United Kingdom

Lyris Xu (21)
Dept. of Information Studies,
University College London, UK

Michael Zakharyaschev (1)
School of Computing and Mathematical
Sciences, Birkbeck, University of London, UK

Guo-Qiang Zhang (13)
The University of Texas Health Science Center
at Houston, TX, USA

https://orcid.org/0000-0002-3945-7580
https://doi.org/10.4230/LIPIcs.TIME.2025.20
https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://orcid.org/0009-0002-3275-1522
https://doi.org/10.4230/LIPIcs.TIME.2025.18
https://orcid.org/0009-0004-2333-5150
https://doi.org/10.4230/LIPIcs.TIME.2025.8
https://orcid.org/0009-0007-2619-9299
https://doi.org/10.4230/LIPIcs.TIME.2025.20
https://orcid.org/0000-0001-7128-6745
https://doi.org/10.4230/LIPIcs.TIME.2025.19
https://orcid.org/0000-0001-8196-5688
https://doi.org/10.4230/LIPIcs.TIME.2025.15
https://orcid.org/0000-0002-8403-3250
https://doi.org/10.4230/LIPIcs.TIME.2025.19
https://orcid.org/0009-0007-1653-3660
https://doi.org/10.4230/LIPIcs.TIME.2025.4
https://orcid.org/0000-0003-1433-7117
https://doi.org/10.4230/LIPIcs.TIME.2025.7
https://orcid.org/0000-0002-5805-7144
https://doi.org/10.4230/LIPIcs.TIME.2025.20
https://orcid.org/0009-0002-4547-1239
https://doi.org/10.4230/LIPIcs.TIME.2025.10
https://orcid.org/0000-0003-3364-1210
https://doi.org/10.4230/LIPIcs.TIME.2025.8
https://orcid.org/0000-0003-0944-0419
https://doi.org/10.4230/LIPIcs.TIME.2025.11
https://orcid.org/0000-0001-7441-129X
https://doi.org/10.4230/LIPIcs.TIME.2025.15
https://orcid.org/0009-0004-1633-5590
https://doi.org/10.4230/LIPIcs.TIME.2025.9
https://orcid.org/0000-0003-1473-071X
https://doi.org/10.4230/LIPIcs.TIME.2025.6
https://orcid.org/0000-0002-9221-879X
https://doi.org/10.4230/LIPIcs.TIME.2025.4
https://doi.org/10.4230/LIPIcs.TIME.2025.19
https://orcid.org/0009-0003-2045-3971
https://doi.org/10.4230/LIPIcs.TIME.2025.6
https://orcid.org/0000-0001-9260-102X
https://doi.org/10.4230/LIPIcs.TIME.2025.4
https://doi.org/10.4230/LIPIcs.TIME.2025.19
https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://orcid.org/0000-0001-9091-7899
https://doi.org/10.4230/LIPIcs.TIME.2025.10
https://orcid.org/0000-0003-2387-6876
https://doi.org/10.4230/LIPIcs.TIME.2025.20
https://orcid.org/0009-0004-2371-4548
https://doi.org/10.4230/LIPIcs.TIME.2025.21
https://orcid.org/0000-0002-2210-5183
https://doi.org/10.4230/LIPIcs.TIME.2025.1
https://doi.org/10.4230/LIPIcs.TIME.2025.13

Interpolation and Separation Problems for Linear
Temporal Logics
Michael Zakharyaschev #

School of Computing and Mathematical Sciences, Birkbeck, University of London, UK

Abstract
The talk gives a survey of recent results on two types of problems for linear temporal logics: one is
related to the existence of a Craig interpolant for a given implication in a temporal logic, the other
to the existence of a temporal query separating two given sets of temporal data instances.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Linear temporal logic, Craig interpolation, query-by-example

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.1

Category Invited Talk

1 Extended Abstract

This talk discusses two types of problems that have recently been posed and investigated in
the context of linear time temporal logics.

The first problem is related to Craig interpolation. Recall that a logic L has the Craig
interpolation property (CIP, for short) if, for any two formulas φ and ψ in the language of L,
whenever φ → ψ is valid in L, then there exists a formula χ, constructed from the common
non-logical symbols of φ and ψ, such that both φ → χ and χ → ψ are valid in L. Such a
formula χ is called an interpolant of φ and ψ in L. Classical and intuitionistic propositional
and first-order logics, standard modal and description logics as well as numerous other logics
enjoy the CIP. The vast majority of temporal logics do not, including all logics with the
operators ♢ (some time in the future) and □ (always in the future) interpreted over any
class of connected Kripke frames of unbounded depth, their Priorean extensions with the
past-time operators, and full linear temporal logic LTL over any interesting time line.

A different, non-uniform approach to Craig interpolation in logics L without the CIP
was suggested in [4] by posing the following interpolant existence problem (IEP): given any
formulas φ and ψ in the language of L, decide whether there exists an interpolant χ for φ
and ψ in L. For L with the CIP, interpolant existence reduces to validity; for L without the
CIP, the IEP is typically harder as far as computational complexity is concerned.

The first part of the talk gives a survey of the recent results on the IEP in temporal
logics obtained in [5, 6]. In particular, it discusses how a semantic criterion of interpolant
existence in terms of descriptive frames can be used to design a coNP-algorithm that is
capable of deciding the IEP for any given finitely axiomatisable temporal logic with the
operators ♢ and □. In this case, the IEP is as complex as the decision problem for the logic.
For LTL over finite strict linear orders, the talk discusses how the IEP can be reduced to the
following separation problem: given two regular languages L1 and L2, decide whether there
is a first-order definable (= star-free) language L separating L1 and L2 in the sense that
L1 ⊆ L and L2 ∩ L = ∅. A classical result of [7] shows that deciding first-order separability of
two regular languages is in 2ExpTime in the size of the DFAs specifying the given languages.
Thus, the IEP for LTL is decidable in 4ExpTime, being PSpace-hard. The same bounds
hold for LTL over (N, <). In both cases, the exact complexity remains open.

© Michael Zakharyaschev;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 1; pp. 1:1–1:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.zakharyaschev@bbk.ac.uk
https://orcid.org/0000-0002-2210-5183
https://doi.org/10.4230/LIPIcs.TIME.2025.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

1:2 Interpolation and Separation Problems for Linear Temporal Logics

The second part of the talk is concerned with the scenario where temporal models over
finite strict linear orders represent timestamped (qualitative) data. We discuss the reverse
engineering (or query-by-example) setting that deals with pairs (E+, E−) of finite sets of
“positive” and “negative” data examples. An LTL-formula (query) q separates (E+, E−) if
M, 0 |= q for all M ∈ E+, and M, 0 ̸|= q for all M ∈ E−. Based on the results from [1, 2, 3],
we give a survey of recent developments in the study of the following problems:

Given any pair (E+, E−) of positive and negative examples and a class Q of LTL-queries,
1. How hard is it to decide whether (E+, E−) is separable by a query in Q?
2. How hard is it to compute a Q-separator of (E+, E−), which is (i) shortest/longest or

(ii) most specific (logically strongest)/most general (weakest) Q-separator?
3. How hard is it to decide whether there is a unique most specific/general Q-separator?
4. Given a Q-separator q of (E+, E−), how hard is it to decide whether q is (i) shortest/

longest, (ii) most general/specific, (iii) unique, etc.?
5. Given any q ∈ Q, how hard is it to decide whether there is (E+, E−) that uniquely

characterises q in Q in the sense that q′ ∈ Q separates (E+, E−) iff q′ ≡ q?
6. Does there exist a polynomial-size unique characterisation of a given q ∈ Q?
Interesting and practically relevant classes Q consist of conjunctive LTL formulas. We also
outline generalisations of the problems above to combinations of LTL and description logics.

References
1 Marie Fortin, Boris Konev, Vladislav Ryzhikov, Yury Savateev, Frank Wolter, and Michael

Zakharyaschev. Unique characterisability and learnability of temporal instance queries. In
Gabriele Kern-Isberner, Gerhard Lakemeyer, and Thomas Meyer, editors, Proceedings of the
19th International Conference on Principles of Knowledge Representation and Reasoning, KR
2022, Haifa, Israel, July 31 - August 5, 2022, 2022. URL: https://proceedings.kr.org/
2022/17/.

2 Jean Christoph Jung, Vladislav Ryzhikov, Frank Wolter, and Michael Zakharyaschev. Tem-
poralising unique characterisability and learnability of ontology-mediated queries (extended
abstract). In Oliver Kutz, Carsten Lutz, and Ana Ozaki, editors, Proceedings of the 36th
International Workshop on Description Logics (DL 2023) co-located with the 20th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning and the 21st
International Workshop on Non-Monotonic Reasoning (KR 2023 and NMR 2023)., Rhodes,
Greece, September 2-4, 2023, volume 3515 of CEUR Workshop Proceedings. CEUR-WS.org,
2023. URL: https://ceur-ws.org/Vol-3515/abstract-13.pdf.

3 Jean Christoph Jung, Vladislav Ryzhikov, Frank Wolter, and Michael Zakharyaschev. Extremal
separation problems for temporal instance queries. In Proceedings of the Thirty-Third Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9,
2024, pages 3448–3456. ijcai.org, 2024. URL: https://www.ijcai.org/proceedings/2024/
382.

4 Jean Christoph Jung and Frank Wolter. Living without beth and craig: Definitions and
interpolants in the guarded and two-variable fragments. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–14.
IEEE, 2021. doi:10.1109/LICS52264.2021.9470585.

5 Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. A non-uniform view of Craig
interpolation in modal logics with linear frames. CoRR, abs/2312.05929, 2023. doi:
10.48550/arXiv.2312.05929.

6 Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. From interpolating formulas to
separating languages and back again, 2026. To appear, preprints accessible from https:
//cibd.bitbucket.io/taci/.

7 Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. Log.
Methods Comput. Sci., 12(1), 2016. doi:10.2168/LMCS-12(1:5)2016.

https://proceedings.kr.org/2022/17/
https://proceedings.kr.org/2022/17/
https://ceur-ws.org/Vol-3515/abstract-13.pdf
https://www.ijcai.org/proceedings/2024/382
https://www.ijcai.org/proceedings/2024/382
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.48550/arXiv.2312.05929
https://doi.org/10.48550/arXiv.2312.05929
https://cibd.bitbucket.io/taci/
https://cibd.bitbucket.io/taci/
https://doi.org/10.2168/LMCS-12(1:5)2016

An Introduction to
First-Order Linear Temporal Logic
Nicola Gigante #Ñ

Free University of Bozen-Bolzano, Italy

Abstract
Linear temporal logic (LTL), most commonly defined as a propositional modal logic, is the de-facto
standard language for specifying temporal properties of systems in formal verification, artificial
intelligence, and other fields. First-order linear temporal logic (FOLTL) lifts LTL to the setting of
first-order logic, obtaining a remarkably flexible and expressive formalism. First-order modal and
temporal logics have a long history, but recent years have seen a rise of interest in (well-behaved
fragments of) FOLTL for the specification of complex infinite-state systems. This tutorial is a gentle
introduction to the field of first-order temporal logics, starting from classic results and exploring
recent directions.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Temporal logic, first-order logic, knowledge-representation, infinite-state
systems

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.2

Category Invited Talk

1 Introduction

Linear Temporal Logic (LTL) [16] is one of the most common formalisms to express temporal
properties of systems in many fields including formal verification and artificial intelligence.
In its classic form, LTL is a propositional modal logic interpreted over infinite linear orders
or words, although recently interest has risen in the artificial intelligence field for LTLf [3],
i.e. LTL interpreted over finite words.

The success of LTL stems from its intuitive syntax and semantics and the existence of
many efficient techniques for reasoning about the logic. Indeed, although satisfiability of LTL
formulas is PSPACE-complete [21], many efficient techniques are known [9,12,22], and the
same can be said for model checking [15].

However, in many scenarios, the propositional nature of LTL poses some limits to its
applicability. Consider the following classic example:

G(req → Fgrant)

The above formula states that at any given moment (G), if a request is received, then
eventually (F) an answer is granted. This kind of specification is quite common, but it is
rarely sufficient to express it in the above way. That is because the above formula makes no
connection between the answer that is granted and the request that is being answered. For
example, the formula is also satisfied by a single answer after many requests.

What one would really like to express is that each request gets its own answer. One may
wonder what the identity of requests consist in. Let us suppose requests have unique identifiers
that last for all the execution of the system, and suppose that, instead of propositions, we
can use the req(r) predicate to tell that the request r has been requested, and grant(r) to
tell that r has been answered. Then, we can write the following:

∀r . G(req(r) → Fgrant(r))
© Nicola Gigante;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 2; pp. 2:1–2:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicola.gigante@unibz.it
https://www.inf.unibz.it/~gigante/
https://orcid.org/0000-0002-2254-4821
https://doi.org/10.4230/LIPIcs.TIME.2025.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

2:2 An Introduction to First-Order Linear Temporal Logic

The above specification is a sentence in first-order linear temporal logic (FOLTL). FOLTL
combines the usual temporal operators from LTL with classic first-order logic, obtaining a
remarkably expressive and sophisticated language. In what follows we introduce the semantics
of this language (Section 2), its major computational trade-offs (Section 3), and we describe
some current trends (Section 4).

2 Semantics

In first-order logic, once the signature Σ is fixed (i.e. the set of constant, predicate and
function symbols used), sentences (i.e. formulas with no free variables) are interpreted over
Σ-structures that interpret the signature’s symbols. In FOLTL, sentences are interpreted over
sequences of Σ-structures, representing the evolution over time of the symbols’ interpretation.
Classically, FOLTL has been studied over many different kind of sequences or linear orders
of Σ-structures: finite or infinite, discrete or dense, etc., with most classic results holding
independently of the nature of the underlying linear order [5]. Here, for simplicity, let us
assume discrete linear orders, either finite or infinite.

When formally defining the semantics of the satisfaction of FOLTL formulas, one im-
mediately encounters a non-trivial question about the meaning of existence of the objects
of first-order quantification. To see what this means, suppose we are modeling the human
resources of a company, and we care about the feelings of our employees. We may write a
sentence like the following.

ψ := ∀x.Ghappy(x) → G∀x.happy(x)

The above sentence is an instance of a scheme called the Barcan formula [14]. In this case,
it is saying that, in the company, if everyone is happy every day, then every day everyone is
happy. One may consider ψ to be obviously a valid FOLTL sentence or not, depending on
two different views:
1. the sentence is valid because the two mentions of “everyone” in the above phrase refer to

the same set of people, i.e. the domain of the two universal quantifiers is the same; or
2. the sentence is not valid because who is “everyone” today may include or not include

people that will be absent or present tomorrow, i.e. the domain of the two universal
quantifiers may differ.

Depending on our choice of point of view, we can identify a different semantics for FOLTL:
1. eternalist or constant-domain semantics: every and all objects in the quantification

domain always exist at any point in time, as the domain does not change;
2. presentist or varying-domain semantics: objects in the domain pop up into existence at

some time and cease to exist at some later time, as the domain varies over time.

In the eternalist semantics, the Barcan sentence is valid and we can swap the universal
quantifier with the always temporal operator (or, equivalently, the existential quantifier with
the eventually operator). In the presentist semantics, we cannot do that. The choice of
semantics affects the semantics of purely first-order sentences as well. Consider for example
the following sentence:

∀x.happy(x) → happy(Nik)

This is an instance of the universal instantiation axiom which is valid in classical first-order
logic for any formula in the place of happy(x). However, in the varying-domain semantics
the sentence is not valid anymore, because the constant Nik may refer to somebody that is
not currently in the domain (e.g. because he still has to be hired) and therefore may be not
happy. An axiomatization of FOLTL in both semantics can be found in McArthur’s book [14].

N. Gigante 2:3

Note that, in modeling terms, the constant-domains semantics is the most general: one
can simulate the varying-domain semantics in a constant-domain sentence by introducing an
existence predicate exists(x) guarding all occurrences of quantifiers.

3 Computational trade-offs

Depending on the signature Σ and the Σ-theory we consider, FOLTL can be extremely
expressive. Of course, this expressiveness is payed in terms of tractability, as both satisfiability
and validity are undecidable and not even semi-decidable [5]. This can be seen easily, for
example, by reducing the recurrent tiling problem [23] to FOLTL satisfiability.

Unfortunately, research has shown that decidable fragments of FOLTL are rare and far
apart [5]. A classic example of decidable fragment of FOLTL is the monodic fragment. A
sentence is monodic if any temporal subformula has at most one free variable. For example:

∀x[p(x) → Gp(x)]

is a monodic sentence, as is the Barcan sentence discussed above. Instead:

∀xy[r(x, y) → Gr(x, y)]

is not monodic. The monodic fragment is made of relational monodic sentences with no
equality symbol, and can be proved to be decidable over any kind of linear order through a
reduction to Büchi’s decidability result for monadic second-order logic [5] or, for discrete
linear orders, via first-order automata [7].

It is clear that the major restriction of the monodic fragment is the inability of transferring
relational information across time. As this is a major limitation for the modeling of many
scenarios, one may wonder whether more expressiveness can be recovered by accepting
semi-decidability. After all, many decades of research in the automated reasoning community
have proven that semi-decidable problems can be addressed in practice is suitably effective
semi-decision procedures are found. An example is that of constrained Horn clauses, a
semi-decidable fragment of first-order logic effectively solved in practice by property-directed
reachability techniques [11].

In this vein, one may prove (e.g., again via first-order automata [7]) that if one starts
from a combination of decidable first-order logic fragment and theory (e.g. the two-variable
fragment [10] or many decidable theories employed in satisfiability modulo theories (SMT) [2]),
then FOLTL over finite words is semi-decidable.

4 Recent trends

Recent trends go in the mentioned direction of accepting computational trade-offs in exchange
of more expressive power, unlocking the usage of (well-behaved fragments of) FOLTL in the
specification of infinite-state systems.

An example of work in this direction is LTLf modulo theories (LTLMT
f) [6, 8], a recently-

introduced fragment of FOLTL interpreted over finite words that, although semi-decidable,
has a decision procedure effectively implementable in terms of modern SMT solvers.

LTLMT
f poses semantic and syntactic restrictions to FOLTL. Semantically, it is interpreted,

in the constant-domain semantics, over finite linear orders where the interpretation of
predicates and function symbols is rigid, i.e. arbitrary but fixed in time, and only the

TIME 2025

2:4 An Introduction to First-Order Linear Temporal Logic

interpretation of constants is allowed to change. Syntactically, it forbids the alternation of
quantifiers and temporal operators but allows the usage of a lookahead operator that, applied
to a constant, designates the value of the constant at the next time step. For example:

(▷ a = a+ 1) U (a = 42)

is a LTLMT
f sentence saying that the constant a increments by one at each time step until it

reaches the value 42. One may rewrite such a sentence in pure FOLTL as follows1:

(∃x.[X(x = a) ∧ x = a+ 1]) U (a = 42)

The LTLMT
f logic has been defined over finite words because its semi-decidability (under

the conditions mentioned in the previous section) cannot be proven in general if infinite
words are involved. However, some decidability conditions have been identified [8] which
hold for infinite words as well (i.e. LTLMT). These results complement the classic ones on the
monodic fragment: LTLMT

f can be translated into monodic FOLTL sentences, but the classic
decidability results mentioned above hold for rigid constants and non-rigid predicates, which
is exactly the opposite semantic setting than LTLMT

f , in addition to the fact that LTLMT
f

allows the equality symbol.
The structure of the logic has been designed in order to have its satisfiability problem

being easily reduced into a sequence of SMT calls that can be solved by standard solvers,
obtained by an SMT encoding of a suitable extension of Reynolds’ tree-shaped tableau for
LTL [9, 18]. Performance are promising in practice, although more work is still needed to
exploit the full potential of the approach.

Recently, interest has sparked about a task that goes beyond satisfiability and validity, i.e.
reactive synthesis. This is the task of synthesizing a controller that can ensure the satisfaction
of a temporal formula independently from the actions of an external antagonistic environment.
Reactive synthesis for propositional LTL and LTLf is already a hard problem (2EXPTIME-
complete [4, 17]), and is of course undecidable for FOLTL and for LTLMT

f as well.
However, progress has been made on addressing the problem in practice. In particular,

equirealizable Boolean abstractions have been found for LTLMT without lookaheads [20] which
can be given to propositional LTL synthesizers, whose produced strategies can be mapped
back to a strategy for the original LTLMT sentence. Then, the approach has been extended to
LTLMT with lookaheads by a counterexample-guided abstraction refinement procedure [19],
although unlocking full potential of this technique requires manual intervention in the loop.

5 Conclusions

The field of first-order temporal logics intersects with first-order modal logics, knowledge
representation, temporal description logics [1, 13], satisfiability modulo theories, and many
other corners of computer science, in a fascinating and intricate web of connections.

Because of its discouraging computational behavior, FOLTL has been studied during
the decades in mostly theoretical terms and with a focus on modeling and knowledge
representation rather than reasoning. Nevertheless, recent work has highlighted the possibility
of dealing in practice with reasoning tasks over expressive fragments of FOLTL, including
reactive synthesis. Progress in this field is encouraging and this short abstract also wants to
be a call to action for the community to invest resources in this promising direction.

1 The semantics given in [6] needs to be slightly tweaked for this translation to work in general.

N. Gigante 2:5

References
1 Alessandro Artale and Enrico Franconi. Temporal description logics. In Michael Fisher,

Dov M. Gabbay, and Lluís Vila, editors, Handbook of Temporal Reasoning in Artificial
Intelligence, volume 1 of Foundations of Artificial Intelligence, pages 375–388. Elsevier, 2005.
doi:10.1016/S1574-6526(05)80014-8.

2 Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability
modulo theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 825–885. IOS Press, 2009. doi:10.3233/978-1-58603-929-5-825.

3 Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In Proceedings of 23rd IJCAI, pages 854–860, 2013. URL: http:
//www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997.

4 Giuseppe De Giacomo and Moshe Y. Vardi. Synthesis for LTL and LDL on finite traces. In
Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 1558–1564. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/223.

5 D.M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Fragments of first-order temporal
logics. In Many-Dimensional Modal Logics, volume 148 of Studies in Logic and the Foundations
of Mathematics, pages 465–545. Elsevier, 2003. doi:10.1016/S0049-237X(03)80012-5.

6 Luca Geatti, Alessandro Gianola, and Nicola Gigante. Linear temporal logic modulo theories
over finite traces. In Proceedings of the 31st IJCAI, pages 2641–2647, 2022. doi:10.24963/
ijcai.2022/366.

7 Luca Geatti, Alessandro Gianola, and Nicola Gigante. First-order automata. In Toby
Walsh, Julie Shah, and Zico Kolter, editors, AAAI-25, Sponsored by the Association for the
Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA,
pages 14940–14948. AAAI Press, 2025. doi:10.1609/AAAI.V39I14.33638.

8 Luca Geatti, Alessandro Gianola, Nicola Gigante, and Sarah Winkler. Decidable fragments of
ltlf modulo theories. In Proceedings of the 26th ECAI, volume 372 of Frontiers in Artificial
Intelligence and Applications, pages 811–818. IOS Press, 2023. doi:10.3233/FAIA230348.

9 Luca Geatti, Nicola Gigante, Angelo Montanari, and Gabriele Venturato. SAT meets tableaux
for linear temporal logic satisfiability. J. Autom. Reason., 68(2):6, 2024. doi:10.1007/
S10817-023-09691-1.

10 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for two-
variable first-order logic. Bull. Symb. Log., 3(1):53–69, 1997. doi:10.2307/421196.

11 Arie Gurfinkel and Nikolaj S. Bjørner. The science, art, and magic of constrained horn clauses.
In Proceedings of the 21st International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, pages 6–10. IEEE, 2019. doi:10.1109/SYNASC49474.2019.00010.

12 Jianwen Li, Yinbo Yao, Geguang Pu, Lijun Zhang, and Jifeng He. Aalta: an LTL satisfiability
checker over infinite/finite traces. In Shing-Chi Cheung, Alessandro Orso, and Margaret-Anne D.
Storey, editors, Proc. of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 731–734. ACM, 2014. doi:10.1145/2635868.2661669.

13 Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal description logics: A survey.
In Stéphane Demri and Christian S. Jensen, editors, 15th International Symposium on Temporal
Representation and Reasoning, TIME 2008, Université du Québec à Montréal, Canada, 16-18
June 2008, pages 3–14. IEEE Computer Society, 2008. doi:10.1109/TIME.2008.14.

14 Robert P. McArthur. Tense Logic. Springer, 1976. doi:10.1007/978-94-017-3219-2.
15 Kenneth L. McMillan. Interpolation and model checking. In Edmund M. Clarke, Thomas A.

Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages
421–446. Springer, 2018. doi:10.1007/978-3-319-10575-8_14.

16 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science, pages 46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

TIME 2025

https://doi.org/10.1016/S1574-6526(05)80014-8
https://doi.org/10.3233/978-1-58603-929-5-825
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://ijcai.org/Abstract/15/223
https://doi.org/10.1016/S0049-237X(03)80012-5
https://doi.org/10.24963/ijcai.2022/366
https://doi.org/10.24963/ijcai.2022/366
https://doi.org/10.1609/AAAI.V39I14.33638
https://doi.org/10.3233/FAIA230348
https://doi.org/10.1007/S10817-023-09691-1
https://doi.org/10.1007/S10817-023-09691-1
https://doi.org/10.2307/421196
https://doi.org/10.1109/SYNASC49474.2019.00010
https://doi.org/10.1145/2635868.2661669
https://doi.org/10.1109/TIME.2008.14
https://doi.org/10.1007/978-94-017-3219-2
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1109/SFCS.1977.32

2:6 An Introduction to First-Order Linear Temporal Logic

17 Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In 16th
International Colloquium on Automata, Languages and Programming, volume 372 of Lecture
Notes in Computer Science, pages 652–671. Springer, 1989. doi:10.1007/BFB0035790.

18 Mark Reynolds. A New Rule for LTL Tableaux. In Proc. of the 7th International Symposium
on Games, Automata, Logics and Formal Verification, volume 226 of EPTCS, pages 287–301,
2016. doi:10.4204/EPTCS.226.20.

19 Andoni Rodriguez, Felipe Gorostiaga, and Cesar Sanchez. Counter example guided reactive
synthesis for ltl modulo theories. In Proceedings of the 37th International Conference on
Computer Aided Verification (CAV 2025), page to appear, 2025.

20 Andoni Rodríguez and César Sánchez. Boolean abstractions for realizability modulo theories.
In Proceedings of the 35th CAV, volume 13966 of Lecture Notes in Computer Science, pages
305–328. Springer, 2023. doi:10.1007/978-3-031-37709-9_15.

21 A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985. doi:10.1145/3828.3837.

22 M. Suda and C. Weidenbach. A PLTL-Prover Based on Labelled Superposition with Partial
Model Guidance. In Proc. of the 6th International Joint Conference on Automated Reasoning,
volume 7364 of LNCS, pages 537–543. Springer, 2012. doi:10.1007/978-3-642-31365-3_42.

23 Peter van Emde Boas et al. The convenience of tilings. Lecture Notes in Pure and Applied
Mathematics, pages 331–363, 1997.

https://doi.org/10.1007/BFB0035790
https://doi.org/10.4204/EPTCS.226.20
https://doi.org/10.1007/978-3-031-37709-9_15
https://doi.org/10.1145/3828.3837
https://doi.org/10.1007/978-3-642-31365-3_42

Metric Linear-Time Temporal Logic with Strict
First-Time Semantics
Eric Alsmann
Theoretical Computer Science / Formal Methods, University of Kassel, Germany

Martin Lange
Theoretical Computer Science / Formal Methods, University of Kassel, Germany

Abstract
We introduce strict first-time semantics for the Until operator from linear-time temporal logic
which makes assertions not just about some future moment but about the first time in the future
that its argument should hold. We investigate Metric Linear-Time Temporal Logic under this
interpretation in terms of expressive power, relative succinctness and computational complexity.
While the expressiveness does not exceed that of pure LTL, there are properties definable in this
logic which can only be expressed in LTL with exponentially larger formulas. Yet, we show that
the complexity of the satisfiability problem remains PSPACE-complete which is in contrast to the
EXPSPACE-completeness of Metric LTL. The motivation for this logic originates in a study of the
expressive power of State Space Models, a recently proposed alternative to the popular transformer
architectures in machine learning.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Automata over infinite objects

Keywords and phrases linear-time temporal logic, metric temporal logic, computational complexity,
Streett automata

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.3

1 Introduction

The linear-time temporal logic LTL is a well-known formalism for specifying properties of
runs of reactive systems [14]. Its model-theoretic and computational properties are well
researched and understood, for instance its satisfiability problem being PSpace-complete [17]
and its expressiveness coinciding with that of First-Order Logic [6], resp. star-free regular
expressions over ω-words or over finite words [7].

The relative weakness in expressive power has led to the study of several extensions of
LTL, some of which genuinely extend its expressiveness, typically to that of full (ω-)regularity,
for instance the Linear-Time µ-Calculus [3, 19], the industry standard PSL [5], Quantified
LTL [16], etc. Others extend LTL only pragmatically by providing further constructs without
extending the expressive power altogether, but providing means to express certain properties
more easily.

One such variant is the Metric Linear-Time Temporal Logic MTL [1]. The term “metric
temporal logic” does not uniquely identify one particular formalism, not even within the
linear-time framework. It describes temporal logics in which the temporal operators are
extended so that they do not simply make assertions about the future (or past) moments in
a linear sequence of events, but additionally constrain their distance to the current moment.
For example p U[3,5] q does not only demand that q holds at some point in the future with p

being continuously true up to that point, but this future point also has to occur within three
to five time units from now on. The exact semantics then depends on the underlying models
etc. Metric temporal logic has been developed for reasoning about real-time systems [9], but

© Eric Alsmann and Martin Lange;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2603-7827
https://orcid.org/0000-0002-1621-0972
https://doi.org/10.4230/LIPIcs.TIME.2025.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

3:2 Metric LTL with Strict 1st-Time Semantics

it can also be used for systems evolving in discrete steps. Here we use MTL only as a logic
over discrete time, resp. (untimed) ω-words. Consequently, the intervals adorning the metric
operators are always interpreted over the natural numbers.

It is not hard to see that MTL does not exceed LTL in expressiveness: temporal operators
with metric constraints can easily be unravelled. The property above can be expressed as “p
holds now and in the next two steps; afterwards we have q or p followed by q or p followed
by another p, followed by q” using only the next-time operator (in this case). A general
translation from MTL to LTL is an easy exercise, and it incurs a blow-up that is polynomial
in the value of the involved interval bounds. Hence, when such bounds are encoded unarily,
MTL satisfiability is also PSpace-complete. The more reasonable assumption of binary
encodings then yields an exponential translation into LTL and therefore an ExpSpace upper
bound on its satisfiability problem. This is tight, satisfiability for MTL with binarily encoded
interval bounds is in fact ExpSpace-complete [10].

The lower bound uses a standard reduction from the word problem for exponentially
space bounded Turing Machines (TM). The key to the proof is then MTL’s ability to express
“something holds after 2n steps” which, using binary encodings, can be done with a formula
of size polynomial in n. This is used to express, for instance, that a symbol b is seen at that
distance, i.e. at the same cell on the tape in the next configuration, formalising a potential
writing operation of the TM. Clearly, the tape may contain more occurrences of that symbol,
so the one seen at distance 2n is usually not the first one to be seen in the future.

This paper is motivated by the study of the expressive power of a recent machine learning
model, so-called State-Space Models (SSM) [13]. They have been proposed as an alternative
to the well-known transformer architectures underlying prominent Large Language Model
tools, promising more efficient evaluation of long input strings. Here we do not go further
into the details of SSMs; they merely serve as a motivation for studying a particular variant
of MTL which is geared towards the expressive capabilities of SSMs. To motivate this variant,
we recall the well-known unfolding principles for temporal operators.

▶ Example 1. Suppose that, in the context of some decision procedure, we were to establish
the truth of the LTL formula G(pU q) at position i of some ω-sequence of events. By unfolding
the G-operator, this typically amounts to establishing truth of both (i) pU q and (ii) X G(pU q)
at moment i. To solve (i) we can either prove q or defer it to a later point by unfolding the
Until-formula and proving p as well as (iii) X(p U q) at moment i. Now, (ii) and (iii) both
start with a Next-operator, so they imply proving G(p U q) and (iii’) p U q at moment i+ 1.
The former can be handled as done at moment i; in particular it means proving p U q at
moment i+ 1 which is already the task identified as (iii’). In a sense, there are two reasons
for the need to prove p U q at moment i+ 1, and they just collapse to a single task.

Now suppose that the original formula was one of MTL, namely G(p U[3,5] q). Here the
reasoning can be done in the same way, but when unfolding the metric Until we obtain an
index shift: p U[3,5] q is established at moment i when X(p U[2,4] q) is established there. Hence,
when carrying out this kind of reasoning we obtain two tasks regarding moment i+ 1 that
do not collapse into one, namely to prove p U[2,4] q as well as p U[3,5] q there.

This can also be seen as an indication for MTL’s higher complexity: truth of a formula
at moment i does not just depend on the truth of its subformulas at moments i and i+ 1,
but also on variants of the subformulas obtained through index shifts.

The mechanisms in SSMs naturally suggest a comparison of their expressiveness with
formulas of metric linear-time temporal logic (on finite words), since SSMs can easily track
the distance between occurrences of events in a word, they seem to be unable to cope with
the blow-up in formulas that need to be tracked through unfolding.

E. Alsmann and M. Lange 3:3

In this paper we initiate the study of a variant of MTL– called Metric Temporal Logic
with Strict First-Time Semantics here, MTL1– which is defined because of a certain similarity
to the mechanics in SSMs. It features the Metric Until operator φ U1

[x,y] ψ which does
not just demand that some future moment at distance between x and y satisfies ψ, but
this also has to be the first time (from the current moment on) that ψ is satisfied. Note
that this remedies the problem with a potential blow-up indicated by the example above:
while (p U[2,4] q) ∧ (p U[3,5] q) cannot be simplified into a formula using only a single metric
Until operator, (p U1

[2,4] q) ∧ (p U1
[3,5] q) is indeed equivalent to p U1

[3,4] q, suggesting that
the strict first-time semantics makes formulas easier to handle computationally. It is also
not hard to see that the proof of ExpSpace-hardness for MTL breaks down under the
strict first-time semantics, as suggested above. So apart from the obvious question about
MTL1’s expressiveness in relationship to the other variants of LTL, its complexity somewhere
between PSpace and ExpSpace is to be pinpointed as well. An ExpSpace upper bound
is obtained easily because of a simple linear translation into MTL, based on principles like
φ U1

[x,y] ψ ≡ (φ ∧ ¬ψ) U[x,y] ψ.
This paper is organised as follows. In Section 2 we formally recall known concepts needed

for this study, in particular LTL and its extension MTL. We also recall the definition of
Streett automata [18] which will serve as a main tool in a decision procedure for MTL1

which is formally introduced in Section 3. There, we also investigate its expressiveness and
succinctness relative to LTL. In Section 4 we construct a singly exponential translation from
MTL1 into Streett automata thus pinpointing the former’s complexity as being PSpace-
complete only. In Section 5 we conclude with remarks on further work in this area.

2 Preliminaries

We recall the necessary definitions from temporal logics and automata theory.

Linear-time temporal logic. Let P = {p, q, . . .} be a non-empty, countable set of atomic
propositions. Formulas of the linear-time temporal logic LTL are given by the following
grammar.

φ ::= q | φ ∧ φ | ¬φ | Xφ | φ U φ

where q ∈ P. Further Boolean operators like tt, ff,∨,→,↔ are introduced as abbreviations
in the usual way, and so are the temporal operators F φ := tt U φ, G φ := ¬ F ¬φ, φ R ψ :=
¬(¬φ U ¬ψ).

The set Sub(φ) of subformulas of φ is defined in the usual way. The size of a formula φ
is measured in terms of the number of its subformulas: |φ| := |Sub(φ)|. For our purposes
here, it makes no difference whether formulas with abbreviated operators are written out in
the original syntax or the abbreviated operators are seen as first-class citizens. The size in
the former case is only larger by a constant factor compared to the latter case.

Formulas of LTL are interpreted over traces of labelled transition systems which are
just ω-words over the alphabet 2P . Note that any formula can contain only finitely many
propositional symbols. Hence, the alphabet underlying any given formula can always be
assumed to be finite. Let w = a0a1 . . . ∈ (2P)ω and i ∈ N. Satisfaction of an LTL formula φ
in w at position i is explained inductively as follows.

w, i |= q iff q ∈ ai

w, i |= φ ∧ ψ iff w, i |= φ and w, i |= ψ

TIME 2025

3:4 Metric LTL with Strict 1st-Time Semantics

w, i |= ¬φ iff w, i ̸|= φ

w, i |= Xφ iff w, i+ 1 |= φ

w, i |= φ U ψ iff there is j ≥ i s.t. w, j |= ψ and w, h |= φ for all h with i ≤ h < j

A word w satisfies a formula φ, written w |= φ, if φ is satisfied in its initial position, i.e.
w, 0 |= φ. The language of a formula φ is the set of all words satisfying it: L(φ) := {w |
w |= φ}. Two formulas are equivalent, written φ ≡ ψ, when their languages coincide, i.e.
L(φ) = L(ψ). Note that this is the case if and only if they are satisfied by exactly the
same positions in the same words, i.e. w, i |= φ iff w, i |= ψ. The “if”-direction is trivial
because two formulas that are satisfied by the same words at arbitrary positions are clearly
satisfied by the same words at initial positions. The “only if”-direction holds because LTL
has future-only operators, so we have a0a1 . . . , i |= φ iff aiai+1 . . . , 0 |= χ for any φ. Thus,
any position in a word is the initial position of another word, namely the suffix starting at
this position.

A formula is valid, written |= φ, if L(φ) = (2P)ω, i.e. it is satisfied by any word. The
satisfiability problem – given a formula φ, decide whether L(φ) ̸= ∅ – is well-known to be
decidable. We write SAT(L) for the satisfiability problem for logic L. We assume familiarity
with standard complexity classes, in particular the space complexity classes NLogSpace,
PSpace and ExpSpace. For further details we refer to standard textbooks in complexity
theory, e.g. [2].

▶ Proposition 2 ([17]). SAT(LTL) is PSpace-complete.

Metric linear-time temporal logic. The term “metric” temporal logic usually refers to
extensions of ordinary temporal logics (like LTL) with modifications of the temporal operators
that impose restrictions on the moments that witness their satisfaction in case of an Until or
a Finally, resp. relax the future moments under consideration of a Generally, resp. Release
formula. The logic MTL is obtained by extending the syntax of LTL with a metric version
of Until, written φ UI ψ for a non-empty interval I over the natural numbers.

We use standard notation for closed, half-open and open intervals like [x, y], (x, y], [x, y)
and (x, y) for x, y ∈ N∪ {∞} with x ≤ y. Because of the discrete nature of N and the lack of
a direct predecessor of ∞ in this structure, we can restrict our attention to intervals of the
form [x, y] for x, y ∈ N, and of the form [x,∞) for x ∈ N. Note that (x, y] = [x+ 1, y] etc.

Intervals of the form [0, y] or [x,∞) for some x, y ∈ N are called simple and written more
compactly as ≤y, resp. ≥x.

The semantics of formulas of MTL is extended accordingly for words w = a0a1 . . . ∈ (2P)ω

and i ∈ N by

w, i |= φ UI ψ iff there is j ≥ i s.t. j − i ∈ I and w, j |= ψ and
w, h |= φ for all h with i ≤ h < j

Hence, φ UI ψ note only requires a position i in w to satisfy φ U ψ in the usual sense that
some future moment satisfies ψ and all future moments before that satisfy φ. It additionally
requires that future moment to be found at a distance which falls into the interval I.

This clearly extends the non-metric version of LTL because φ U ψ ≡ φ U≥0 ψ. The metric
extension is then applied to the other derived temporal operators F, G and R accordingly.

Because of the use of natural numbers as interval bounds in temporal operators, number
of subformulas is not a realistic measure of the representation size of a formula anymore.
Note that F[x,y] p, stating that p occurs in a word at some distance between x and y would

E. Alsmann and M. Lange 3:5

have constant size regardless of the values of x and y. We assume that such interval bounds
are given in binary encoding and therefore measure the size of a formula more appropriately
as follows. Let m(φ) :=

max{k ∈ N | ∃ψ1, ψ2 ∈ Sub(φ),∃h ∈ N s.t. ψ1 UI ψ2 ∈ Sub(φ) for I = [h, k] or I = [k,∞)}

denote the largest integer constant that is used as an interval bound in a subformula of φ.
Then |φ| := |Sub(φ)| · ⌈logm(φ)⌉.

▶ Proposition 3 ([10]). SAT(MTL) is ExpSpace-complete.

Finite automata on ω-words. Let P be a finite set of atomic propositions. A nondetermin-
istic Streett automaton (NSA) is an A = (Q,P, qI , δ,F) where Q is a finite set of states,
qI ∈ Q is the designated initial state, δ ⊆ Q× B(P) ×Q is a finite set of transition triples
(p, β, q) with B(P) denoting the set of Boolean formulas over P (with the usual Boolean
operators ∧, ∨, ¬, . . .). Finally, F = {(F1, G1), . . . , (Fm, Gm)} with Fi, Gi ⊆ Q for all
i = 1, . . . ,m is the acceptance condition.

Note that here such finite automata have a symbolically represented transition table
instead of the general δ ⊆ Q × Σ × Q for a finite alphabet Σ. The reason for this choice
is their use in a decision procedure for a temporal logic whose formulas are naturally
interpreted over ω-words whose letters are finite sets of propositions, i.e. Σ = 2P . Instead of
enumerating all such possible sets and explaining the automaton’s one-step behaviour for
each step, the symbolic representation here is more convenient for such special cases. There
are straightforward translations for the transition relations between symbolic and explicit
representations, and for a fixed set of propositions, they are polynomial. Hence, we can safely
use Streett automata in this form and still appeal to known results about them, even though
they were perhaps formulated for the form with an explicit alphabet.

A run of the NSA A = (Q,P, qI , δ,F) with F = {(F1, G1), . . . , (Fm, Gm)} on a word
w = a0a1 . . . ∈ (2P)ω is a ρ = q0, q1, . . . ∈ Qω such that q0 = qI and for all i ∈ N there is
some (p, β, q) ∈ δ such that qi = p, ai |= β and q = qi+1. Here, satisfaction of a Boolean
formula β over P by a set a ⊆ P, a |= β, is explained in the usual way: β evaluates to true
when all q ∈ a are set to true and all q ̸∈ a are set to false.

We write Inf (ρ) to denote the set of all states that occur infinitely often in ρ. By finiteness
of Q, we always have Inf (ρ) ̸= ∅.

The run ρ is accepting if it satisfies the Streett condition F in the sense that for all
i = 1, . . . ,m: if Inf (ρ) ∩ Fi ̸= ∅ then Inf (ρ) ∩Gi ̸= ∅. As usual, L(A) is the language of the
NSA A, and it consists of all words on which A has an accepting run.

So both NSA and formulas of linear-time temporal logics defines languages of ω-words
which is why these different formalisms can be compared to one another in terms of express-
iveness, and satisfiability of a formula corresponds to non-emptiness of the language of an
automaton. Algorithms for non-emptiness problems for ω-automata are routinely used to
obtain decision procedures for linear-time temporal logics [21, 20, 4]. It has been shown
that non-emptiness for Streett automata can be decided in polynomial time [8, 12] and this
requires an explicit construction. A polynomial (equivalence-preserving) translation into
Büchi automata is not possible, let alone one computable in logarithmic space. This would
immediately transfer the upper bound of NLogSpace to Streett automata. Nevertheless, it
does hold, too; it simply needs to be shown directly.

▶ Theorem 4. The non-emptiness problem for NSA is decidable in NLogSpace.

TIME 2025

3:6 Metric LTL with Strict 1st-Time Semantics

Proof. The key observation is the following. The language of an NSA A = (Q,P, qI , δ,F)
with n := |Q| and F = {(F1, G1), . . . , (Fk, Gk)} is non-empty iff there is an ultimately
periodic word w = uvω ∈ L(A). This follows from finiteness of n and k by the pigeon hole
principle. An accepting run on an arbitrary word must eventually traverse a state q for the
second time such that in between, for every i = 1, . . . , k, either no state from Fi or some
state from Gi has been seen.

This gives rise to a nondeterministic algorithm for deciding non-emptiness. It guesses,
step-by-step, the states of a run and also nondeterministically remembers some state q

occurring in this simulation. It then maintains 2k bits to remember, for each i = 1, . . . , k,
whether some state in Fi and some state in Gi has been seen. It accepts, when q occurs
again, and the bits indicate that the Streett condition has been met in between.

In order to terminate and reject on computation paths with unsuccessful guesses, it counts
the number of steps done in this simulation. It is not hard to see that the first occurrence of
q can be required to occur after at most n steps. The second occurrence can be expected to
occur after no more than a further 2nk steps, for otherwise the run contains parts that could
be skipped. Hence, the space needed for the counter is at most logarithmic in |A|. ◀

3 Metric LTL with First-Time Semantics

Syntax and Semantics. We introduce Metric Linear-Time Temporal Logic with Strict
First-Time Semantics (MTL1) which, instead of metric Until formulas of the form φ UI ψ,
features a special modification φ U1

I ψ that is interpreted under strict first-time semantics.
Intuitively, it does not just demand that some occurrence of ψ in the future happens at a
distance that falls into the interval I. Instead, it requires this to be the first time in the
future that this happens.

▶ Definition 5. Let P = {p, q, . . .} be a non-empty, countable set of atomic propositions as
usual. Formulas of the linear-time temporal logic MTL1 are built according to the following
grammar.

φ ::= q | φ ∧ φ | ¬φ | Xφ | φ U1
I φ

where q ∈ P and I is an interval over N as discussed above.
We also introduce its fragment sMTL1– Simple MTL1– which only features simple

intervals ≤k or ≥k in its formulas. Other Boolean and temporal operators, in particular the
strict first-time variants F1

I , G1
I and R1

I are introduced as abbreviations in the usual way. The
set Sub(φ) of subformulas of an MTL1 formula φ is defined as usual by induction over the
syntax tree of the formula.

The intuition behind the restriction to first-time occurrences is made formal as follows.

▶ Definition 6. Let P be given as above and w = a0a1 . . . ∈ (2P)ω. Satisfaction of an MTL1

formula φ at a position i of the word w is explained inductively over the structure of φ as
for LTL, apart from the following case.

w, i |= φ U1
I ψ iff there is j ≥ i s.t. j − i ∈ I, and w, j |= ψ and

w, h |= φ ∧ ¬ψ for all h s.t. i ≤ h < j

E. Alsmann and M. Lange 3:7

Expressiveness. LTL trivially embeds into sMTL1 which trivially embeds into MTL1. The
reason for this is the fact whenever an Until-formula gets satisfied somewhere then there is
also a first time that this happens. A more interesting question concerns the other direction,
and therefore also the connection to MTL. Since LTL can trivially be embedded into MTL,
we immediately obtain a translation from MTL1 into MTL, from one from MTL1 into LTL.

We remark that the translations introduced in the following are not polynomial for
formula length, measure in terms of length of string representations, but only for formula
size, measured in terms of number of subformulas, as they often require the duplication of
subformulas.

The first observation about expressiveness is the expressive equivalence between MTL1

and sMTL1. This is perhaps a little bit surprising as this principle does not apply to MTL.

▶ Theorem 7. For every φ ∈ MTL1 there is a φ̂ ∈ sMTL1 of size O(|φ|) such that φ̂ ≡ φ.

Proof. We can define φ̂ inductively. The only non-trivial case is that of an Until formula.
Then we have

̂φ U1
[x,y] ψ := (φ̂ U1

≥x ψ̂) ∧ (φ̂ U1
≤y ψ̂)

for x, y ∈ N. Clearly, this increases the number of subformulas at most by factor 3. Correctness
of this translation is straightforward by inspection of the semantics. ◀

Because of Thm. 7 we can restrict our attention to sMTL1 formulas down below as this
simplifies the technical details of various constructions slightly.

One reason for considering numerical values in formulas to be represented in binary (as
opposed to unary), apart from this being natural, is the fact that the expressive power of
sMTL1– and that of MTL in fact – does not exceed that of LTL. However, translations back
into LTL are polynomial in the value of interval bounds only, i.e. they are in fact exponential
in the size of a formula.

▶ Theorem 8. For every sMTL1 formula φ there is an LTL formula φ̂ such that φ̂ ≡ φ and
|φ̂| = 2O(|φ|).

Proof. We define a translation ·̂ : sMTL1 → LTL as follows.

q̂ := q

φ̂ ∧ ψ := φ̂ ∧ ψ̂

¬̂φ := ¬φ̂
X̂φ := X φ̂

φ̂ U1
≤k ψ := ψ̂

�
∨ (φ̂ ∧ X(ψ̂

�
∨ . . .

�
∨ X(ψ̂

�
∨ (φ̂ ∧ X ψ̂︸ ︷︷ ︸

k occurrences of X

) . . .)))

φ̂ U1
≥k ψ := φ̂ ∧ ¬ψ̂ ∧ X(φ̂ ∧ ¬ψ̂ ∧ X(. . . X(φ̂ ∧ ¬ψ̂ ∧ X(φ U ψ))︸ ︷︷ ︸

k occurrences of X

. . .))

The translation of an operator U1
∼k clearly produces a formula whose size is linear in the

value k, i.e. exponential in the representation size of k. Replacing the abbreviated biased
disjunctions by plain Boolean formulas only incurs a further polynomial blow-up because
formula size is measured in terms of number of subformulas.

Correctness of the translation is proved by a straightforward induction on the structure
of φ, showing that for all w ∈ (2P)ω and all i ∈ N, we have w, i |= φ̂ iff w, i |= φ. ◀

Succinctness. The exponential blow-up predicted by Thm. 8 may seem like a downside
at first sight. However, it should be read as the possibility that certain properties, which
are definable in LTL, can be defined in sMTL1 with much shorter formulas. The same

TIME 2025

3:8 Metric LTL with Strict 1st-Time Semantics

phenomenon is of course known from LTL. It is easy to show that every family of LTL
formulas equivalent to the MTL formulas φn := F≥2n q require size O(2n). The proof can be
re-used entirely to show that sMTL1 is also exponentially more succinct than LTL. Note
that | F1

≥2n q| = O(n).

▶ Theorem 9. There is a family of LTL-definable languages (Ln)n≥1 over a singleton P such
that each Ln is expressible in sMTL1 by a formula of size O(n) but every family (φn)n≥1 of
LTL formulas with L(φn) = Ln is such that |φn| = Ω(2n).

Proof. Consider the sMTL1 formulas φn := F1
≥2n q for n ≥ 1. Clearly, |φn| = O(n). By

a standard induction on the structure of LTL formulas we can show that formulas of size
< 2n cannot distinguish between the two words wn = ∅2n−1{q}∅ω and w′

n = ∅2n{q}∅ω. Since
wn |= φn but w′

n ̸|= φn for all n ≥ 1, we get that any presumed LTL-formula equivalent to
φn needs to have size 2n at least. ◀

4 An Automata-Theoretic Decision Procedure

We give an automata-theoretic decision procedure for MTL1. Decidability of its satisfiability
problem is not a surprise in the light of Thm. 8, stating that sMTL1– and therefore also
MTL1 according to Thm. 7 – can be translated into LTL at an exponential blow-up. This is
unavoidable according to Thm. 9. Then it is perhaps rather surprising that the complexity
of MTL1 is asymptotically no worse than that of LTL. We give an upper bound of PSpace,
based on a translation into Streett automata. According to Thm. 8, it suffices to do so for
sMTL1.

Temporal formulas and their unfoldings. For convenience, we work with sMTL1 formulas
in negation normal form (NNF), i.e. those that are built from literals q,¬q using the Boolean
operators ∧,∨ and the temporal operators X, U1 and R1 where φR1

∼k ψ := ¬(¬φU1
∼k ¬ψ). The

following is a standard observation about the ability to push negations inwards in formulas
to obtain NNF.

▶ Lemma 10. For every sMTL1 formula φ there is an sMTL1 formula φ in NNF of size
O(|φ|) such that φ ≡ φ.

The construction of a Streett automaton recognising L(φ) for some sMTL1 formula φ in
NNF then follows the same principles as the standard construction of a Büchi automaton
for an LTL formula. Temporal operators are typically handled by unfolding, not just in
automata-theoretic decision procedures. The term denotes the two equivalences

φ U ψ ≡ ψ ∨ (φ ∧ X(φ U ψ)) and φ R ψ ≡ ψ ∧ (φ ∨ X(φ R ψ)) .

These can be extended to the temporal operators in sMTL1 as follows. The proof is just
by close inspection of the semantics of MTL1.

▶ Lemma 11. Let φ,ψ ∈ sMTL1, k ≥ 0. We have

φ U1
≤0 ψ ≡ ψ φ R1

≤0 ψ ≡ ψ

φ U1
≥0 ψ ≡ ψ ∨ (φ ∧ X(φ U1

≥0 ψ)) φ R1
≥0 ψ ≡ ψ ∧ (φ ∨ X(φ R1

≥0 ψ))
φ U1

≤k+1 ψ ≡ ψ ∨ (φ ∧ X(φ U1
≤k ψ)) φ R1

≤k+1 ψ ≡ ψ ∧ (φ ∨ X(φ R1
≤k ψ))

φ U1
≥k+1 ψ ≡ ¬ψ ∧ φ ∧ X(φ U1

≥k ψ) φ R1
≥k+1 ψ ≡ ¬ψ ∨ φ ∨ X(φ R1

≥k ψ)

E. Alsmann and M. Lange 3:9

A formula χ of the form on one of the left-hand sides in these equations is called a
temporal formula and we use unf (χ) to denote the corresponding right-hand side. Temporal
formulas of the form φ U1

≥k ψ, i.e. Until-formulas whose metric parameter is a half-open
interval to the right, are called critical.

Later on we will need a second observation about temporal formulas. The proof is
straightforward from an inspection of the semantics of MTL1. The lemma already holds for
MTL in fact.

▶ Lemma 12. Let φ,ψ be sMTL1 formulas and k, ℓ ∈ N such that k ≤ ℓ. Then we have

|= (φ U1
≤k ψ) → (φ U1

≤ℓ ψ) |= (φ R1
≤ℓ ψ) → (φ R1

≤k ψ)
|= (φ R1

≥k ψ) → (φ R1
≥ℓ ψ) |= (φ U1

≥ℓ ψ) → (φ U1
≥k ψ)

The Fischer-Ladner closure of a formula χ is a collection of all subformulas and perhaps
others derived from them that may play a role in determining the truth of χ at some point
in a word.

▶ Definition 13. Let χ ∈ sMTL1 be in NNF. Its Fischer-Ladner closure is the least set FL(χ)
that contains χ and is closed under the following operations.

If φ ∧ ψ ∈ FL(χ) or φ ∨ ψ ∈ FL(χ) then {φ,ψ} ⊆ FL(φ).
If Xφ ∈ FL(χ) then φ ∈ FL(χ).
If φ ∈ FL(χ) for a temporal φ, then unf (φ) ∈ FL(χ).

The key concept in an automata construction for sMTL1 formulas is that of a Hintikka
set – a set of formulas that is closed under propositional logic consequence. We need to refine
the standard definition slightly in order to obtain the intended complexity bound in the end.

▶ Definition 14. Let χ ∈ sMTL1 be in NNF. A Φ ⊆ FL(χ) is called a Hintikka set for χ if
it satisfies the following conditions.

If φ ∧ ψ ∈ Φ then {φ,ψ} ⊆ Φ.
If φ ∨ ψ ∈ Φ then {φ,ψ} ∩ Φ ̸= ∅.
If φ ∈ Φ for a temporal φ then unf (φ) ∈ Φ.

Φ is called (propositionally) consistent if there is no q ∈ P such that {q,¬q} ⊆ Φ. It is called
lean if for all φ,ψ there is at most one temporal formula φ U1

≤k ψ ∈ Φ for any k ≥ 0, and
likewise for temporal formulas of the three other forms with operators U1

≥k, R1
≤k and R1

≥k.
We write H(χ), resp. Hln(χ) for the set of all lean, propositionally consistent Hintikka sets
for χ, resp. those that are additionally lean.

While the Fischer-Ladner closure of an sMTL1 formula χ is generally exponential in
|χ| and there are, thus, doubly exponentially many Hintikka sets, there are only singly
exponentially many lean Hintikka sets.

▶ Lemma 15. Let χ ∈ sMTL1 be in NNF. Then |Hln(χ)| = 2O(|χ|2).

Proof. Note that there are at most O(|χ|) many formula schemes, i.e. members of FL(χ)
modulo concrete metric parameters. A lean set can then be seen as a mapping for each
such formula scheme to a value in {⊥, 0, . . . ,m(χ)}, indicating (non-)inclusion in the set
and giving a concrete parameter value for a temporal formula. Since m(χ) ∈ 2O(|χ|) due to
binary encoding, there are at most (2O(|χ|))O(|χ|) = 2O(|χ|2) many lean (Hintikka) sets. ◀

TIME 2025

3:10 Metric LTL with Strict 1st-Time Semantics

Streett automata for sMTL1 formulas. We are now in a position to define a Streett
automaton of singly exponential size that recognises exactly the models of an sMTL1 formula
in NNF.

Fix an sMTL1 formula χ in NNF over some finite P. We will need three constructions
on (lean) Hintikka sets for χ. The first one collects all literals in a lean Hintikka set.

Now(Φ) :=
∧
q∈Φ

q ∧
∧

¬q∈Φ
¬q

It can be seen as the extraction of a propositional formula determining the letter at a position
in a word where all formulas in Φ are supposed to be true. On the other hand,

Nxts(Φ) := {ln(Ψ) | Ψ ∈ H(χ) and ∀ Xψ ∈ Φ : ψ ∈ Ψ}

collects all “leanifications” of Hintikka sets that are potential successors to Φ in the sense that
they contain all formula ψ which Φ needs to be true at the next position. The leanification
ln(Ψ) of Ψ is obtained by successively replacing temporal formulas as follows until no further
steps are applicable.

If {φU1
≤k ψ,φU1

≤ℓ ψ} ⊆ Ψ or {φR1
≥k ψ,φR1

≥ℓ ψ} ⊆ Ψ for some φ,ψ and k < ℓ then replace
all occurrences of the latter that do not occur under the scope of a X-operator by the
former.
If {φU1

≥k ψ,φU1
≥ℓ ψ} ⊆ Ψ or {φR1

≤k ψ,φR1
≤ℓ ψ} ⊆ Ψ for some φ,ψ and k < ℓ then replace

all occurrences of the former that do not occur under the scope of a X-operator by the
latter.

It should be clear that Nxts(Φ) is indeed a set of lean Hintikka sets for χ.
The important observation about the leanification process is the preservation of the

semantics in a strong sense.

▶ Lemma 16. Let χ ∈ sMTL1 be in NNF and Φ ∈ H(χ). For every φ ∈ Φ there is φ′ ∈ ln(Φ)
such that φ′ differs from φ only in the values of metric parameters and |= φ′ → φ.

Proof. This is proved in a straight-forward induction on the structure of φ. The only
non-trivial cases are those of temporal formulas. These are covered by Lemma 12. Since
leanification also replaces subformulas, we also need the fact that χ (and all its subformulas)
are given in NNF. Hence, if |= φ′ → φ then also |= ψ → ψ[φ/φ′] for any ψ, i.e. all formulas
are monotonic. ◀

The acceptance condition of the NSA Aχ is determined by the set of all critical temporal
formulas that can occur in lean Hintikka sets for χ. However, unfolding decreases interval
bounds by one, so the number of critical temporal formulas in FL(χ) is exponential: if χ
contains the subformula φ U1

≥k ψ for some k ∈ N, then FL(χ) contains φ U1
≥h ψ for all h ≤ k,

i.e. exponentially many in |χ| because of binary encodings of interval bounds.
The exact interval bounds are irrelevant for the acceptance condition. It is only used to

ensure that no critical temporal formula φU1
≥k ψ gets unfolded forever without ever satisfying

its right argument ψ. We introduce the notion of a critical formula scheme φ U1
≥∗ ψ and write

(φ U1
≥∗ ψ) ∈ Φ if there is some k ∈ N such that (φ U1

≥k ψ) ∈ Φ.
Note that there is no need to treat the other three kinds of temporal formulas in the same

way. A temporal Release-formula is a greatest fixpoint, and unfolding it infinitely often is a
legitimate way of determining its truth. A non-critical, temporal Until-formula of the form
φ U1

≤k ψ cannot get unfolded infinitely often because each unfolding step decreases the metric
parameter in it until it eventually becomes 0, and the formula is replaced by ψ anyway. Note

E. Alsmann and M. Lange 3:11

that this is not the case for critical Until-formulas. Unfolding them still decreases the metric
parameter. However, the leanification process can increase it again, whereas leanification for
non-critical Until-formulas can only decrease it further.

Let {γ1, . . . , γn} be the set of all schemes of critical temporal Until-formulas in FL(χ),
i.e. γi = αi U1

≥∗ βi for some αi, βi. We define the NSA Aχ as (Hln(χ),P, I, δ,F) where
I := {Φ ∈ Hln(χ) | χ ∈ Φ},
δ := {(Φ,Now(Φ),Ψ) | Ψ ∈ Nxts(Φ)},
F := {(F1, G1), . . . , (Fn, Gn)} with Fi := {Φ | γi ∈ Φ} and Gi := {Φ | βi ∈ Φ}. Note
that βi may contain other temporal formulas, so βi is to be understood as a scheme
potentially, and βi ∈ Φ means that some formula deviating from βi in metric parameters
only is contained in Φ.

The next two lemmas are devoted to the soundness and completeness of the construction.

▶ Lemma 17. Let χ ∈ sMTL1 over P be in NNF and Aχ as above. Then L(Aχ) ⊆ L(χ).

Proof. Let w = a0a1 . . . (2P)ω be such that there is an accepting run ρ = Φ0,Φ1, . . . of Aχ on
w. By the construction of Aχ we have (i) χ ∈ Φ0 and, for all i ≥ 0, (ii) ai |= Now(Φi) and (iii)
there is Ψi+1 ∈ H(χ) such that ψ ∈ Ψi+1 for all Xψ ∈ Φi and Φi+1 = ln(Ψi+1) ∈ Nxts(Φi).

We show by induction on the structure of formulas φ that for all i ∈ N and all φ ∈ Φi

we have w, i |= φ. For literals q or ¬q this follows immediately from (ii). For conjunctions
and disjunctions this follows by the hypothesis for both conjuncts, resp. one disjunct and
the fact that each Φi is a lean Hintikka set that behaves like a Hintikka set in this case,
i.e. it contains both conjuncts of a conjunction etc. This is the case because leanification
replaces either none or all occurrences that are not under the scope of a X-operator. Hence,
a replacement takes place in a conjunction iff it takes place in both conjuncts etc.

Suppose φ is of the form Xψ. Because of (iii), there is a Ψi+1 ∈ H(χ) with ψ ∈ Ψi+1
with Φi+1 = ln(Ψi+1). According to Lemma 16, there is ψ′ ∈ Φi+1 that is structurally not
greater than ψ. Hence, we can apply the induction hypothesis to it and obtain w, i+ 1 |= ψ′.
According to Lemma 16, we then also have w, i+ 1 |= ψ and therefore w, i |= φ.

Suppose φ is of the form ψ1 U1
≤k ψ2. By inspection of the unfolding rule (Lemma 11)

and successive applications of the principles (ii) and (iii) with the same kind of reasoning
using Lemma 16, we get some k′ ≤ k and a sequence Ψi+1, . . . ,Ψi+k′ of Hintikka sets such
that Φi+j = ln(Ψi+j), ψ′ ∈ Ψi+k′ for some ψ′ with |= ψ′

2 → ψ2 and ψ′′
h ∈ Φi+h for some

ψ′′
0 , . . . , ψ

′′
k′−1 such that |= ψ′′

h → ψ1. Applying the induction hypothesis to ψ′
2 at position

i+ k′ and for ψ′′
0 , . . . , ψ

′′
k′−1 at positions i, . . . , i+ k′ − 1 shows that these are satisfied at the

respective positions in w. Lemma 16 then yields w, i + k′ |= ψ2 and w, i + h |= ψ1 for all
h = 0, . . . , k′ − 1. Thus, w, i |= φ.

Suppose φ is of the form ψ1 U1
≥k ψ2. Note that it is a critical temporal formula in this

case. We can apply the same reasoning as in the previous case using Lemmas 11 and 16.
However, here the leanification process may replace metric parameters by larger ones. Hence,
this alone does not guarantee the existence of a k′ ≥ k such that ψ2 ∈ Φi+k′ . This is where
Aχ’s acceptance condition comes into place. Since ρ is accepting, it must either contain
finitely many lean Hintikka sets containing φ or infinitely many containing ψ2. The latter
case immediately implies the existence of such a k′ ≥ k. The former case does so, too, by
inspection of Lemma 11 and the construction of Hintikka sets. It is only possible to have
(the scheme) φ finitely often only when some Φi+k′ contains ψ1 U1

≥k ψ2 and therefore also ψ2.
The rest of this case is handled as the previous one.

The remaining two cases of temporal Release-formulas are also handled in a way that is
analogous to those of the Until-formulas.

TIME 2025

3:12 Metric LTL with Strict 1st-Time Semantics

At last, (i) says that χ ∈ Φ0. By the reasoning above we then have w, 0 |= χ, i.e. w ∈ L(χ)
which completes the claim. ◀

▶ Lemma 18. Let χ ∈ sMTL1 over P be in NNF and Aχ as above. Then L(χ) ⊆ L(Aχ).

Proof. Suppose w = a0a1 . . . ∈ L(χ). We need to construct an accepting run Φ0,Φ1, . . . of
Aχ on w. To this end, we construct a sequence Φ′

0,Φ′
1, . . . via Φ′

i := {φ ∈ FL(χ) | w, i |= φ}.
It is not hard to see that each Φ′

i is indeed a propositionally consistent Hintikka set. Moreover,
if Xφ ∈ Φi then φ ∈ Φi+1. This therefore determines a sequence of lean Hintikka sets by
leanification: Φi := ln(Φ′

i) for all i ≥ 0, forming a run ρ = Φ0,Φ1,
It remains to be seen that it is indeed an accepting run. Take some critical Until-formula

scheme γ = α U1
≥∗ β and suppose that ρ contains an infinite subsequence Φi1 ,Φi2 , . . . with

γj := (αU1
≥kj

β) ∈ Φij
for all j ≥ 1. By construction, we have w, ij |= γj . By the semantics of

MTL1 there are k′
1, k

′
2, . . . with k′

j ≥ kj such that w, ij + k′
j |= β and, again, by construction

β ∈ Φ′
ij+k′

j
. Since i1 < i2 < . . ., the set {ij + k′

j | j ≥ 1} is infinite. Hence, the sequence
Φ′

0,Φ′
1, . . . has an infinite subsequence in which every Hintikka set contains β. Then the run

ρ has an infinite subsequence in which every lean Hintikka set either contains β itself or an
instantiation of the scheme β. In any case, the run ρ satisfies the Streett pair associated
with γ. Since this is the case for any critical γ, ρ is indeed accepting and so we have
w ∈ L(Aχ). ◀

Putting all of the above together we obtain that MTL1 is not just decidable but that its
satisfiability problem is no worse than that of ordinary LTL (and therefore exponentially
easier than that of MTL), even though there is an exponential succinctness gap between
MTL1 and LTL.

▶ Theorem 19. SAT(MTL1) is PSpace-complete.

Proof. The lower bound is straightforwardly inherited from LTL. For the upper bound, note
that every MTL1 formula χ can be translated into an equivalent sMTL1 formula in NNF at a
linear blow-up only (Thm. 7 and Lemma 10). This can in turn be translated into an equivalent
NSA (Lemmas 17 and 18) of exponential size in |χ| (Lemma 15). Language equivalence
entails particularly that its language is non-empty iff χ is satisfiable. Non-emptiness for
NSA can be decided in NLogSpace (Thm. 4) which is NPSpace measured in the size of χ.
Savitch’s Theorem [15] then gives a PSpace upper bound. ◀

5 Conclusion

We have investigated the expressiveness and computational complexity of MTL1, a variant of
Metric Linear-Time Temporal logic MTL in wich the metric parameters do not constrain the
occurrence of some event but their first occurrence (in an Until formula). The resulting logic
is still exponentially more succinct than LTL. Unlike full MTL whose satisfiability problem
is ExpSpace-complete, we obtained a PSpace upper bound for MTL1 by the construction
of equivalent Streett automata of exponential size.

The main motivation for the study of this logic is given by links to State-Space Models in
machine learning. Further work will elaborate on the connections between these formalisms.
On the side of temporal logics, there is obvious further work in terms generalisations of the
strict first-time semantics to a strict n-th time semantics, constraining further moments in
which an Until-formula gets satisfied. We suspect that for every fixed n, the resulting logic
MTLn remains PSpace-complete.

E. Alsmann and M. Lange 3:13

There are also obvious connections to Counting LTL [11], a variant of LTL with a counting
operator. The first-time semantics is clearly expressible using counting operators by stating
that the number of positions beforehand is zero. The relative succinctness between the two
formalisms remains to be investigated, as is the case for MTL and MTL1.

References
1 R. Alur and T. Henzinger. Real-time logics: Complexity and expressiveness. Information and

Computation, 104(1):35–77, 1993. doi:10.1006/INCO.1993.1025.
2 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Univ.

Press, 2006.
3 B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Proc. Coll. on Temporal

Logic in Specification, volume 398 of LNCS, pages 62–73. Springer, 1989. doi:10.1007/
3-540-51803-7_22.

4 S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2016.

5 C. Eisner and D. Fisman. A Practical Introduction to PSL. Series on Integrated Circuits and
Systems. Springer, 2006. doi:10.1007/978-0-387-36123-9.

6 D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Proc.
7th Symp. on Principles of Programming Languages, POPL’80, pages 163–173. ACM, 1980.
doi:10.1145/567446.567462.

7 G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic on finite
traces. In Proc. 23rd Int. Joint Conf. on A.I., IJCAI’13, pages 854–860. IJCAI/AAAI, 2013.
URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997.

8 M. Rauch Henzinger and J. A. Telle. Faster algorithms for the nonemptiness of streett automata
and for communication protocol pruning. In Proc. 5th Scand. Workshop on Algorithm Theory,
SWAT’96, volume 1097 of LNCS, pages 16–27. Springer, 1996. doi:10.1007/3-540-61422-2_
117.

9 Ron Koymans. Specifying real-time properties with metric temporal logic. Real Time Syst.,
2(4):255–299, 1990. doi:10.1007/BF01995674.

10 F. Laroussinie, N. Markey, and Ph. Schnoebelen. Efficient timed model checking for discrete-
time systems. Theoretical Computer Science, 353(1):249–271, 2006. doi:10.1016/j.tcs.2005.
11.020.

11 F. Laroussinie, A. Meyer, and E. Petonnet. Counting LTL. In Proc. 17th Int. Symp. on
Temporal Representation and Reasoning, TIME’10, pages 51–58. IEEE, 2010. doi:10.1109/
TIME.2010.20.

12 T. Latvala and K. Heljanko. Coping with strong fairness. Fundam. Informaticae, 43(1-4):175–
193, 2000. doi:10.3233/FI-2000-43123409.

13 W. Merrill, J. Petty, and A. Sabharwal. The illusion of state in state-space models. In Proc.
41st Int. Conf. on Machine Learning, ICML’24, volume 235, pages 35492–35506. JMLR.org,
2024.

14 A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations of Computer
Science, FOCS’77, pages 46–57. IEEE, 1977. doi:10.1109/SFCS.1977.32.

15 W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4:177–192, 1970. doi:10.1016/S0022-0000(70)
80006-X.

16 A. P. Sistla. Theoretical Issues in the Design of Distributed and Concurrent Systems. PhD
thesis, Harvard Univ., Cambridge, MA, 1983.

17 A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. Journal
of the ACM, 32(3):733–749, 1985. doi:10.1145/3828.3837.

18 R. S. Streett. Propositional dynamic logic of looping and converse is elementarily decidable.
Information and Control, 54(1/2):121–141, 1982. doi:10.1016/S0019-9958(82)91258-X.

TIME 2025

https://doi.org/10.1006/INCO.1993.1025
https://doi.org/10.1007/3-540-51803-7_22
https://doi.org/10.1007/3-540-51803-7_22
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1145/567446.567462
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1007/3-540-61422-2_117
https://doi.org/10.1007/3-540-61422-2_117
https://doi.org/10.1007/BF01995674
https://doi.org/10.1016/j.tcs.2005.11.020
https://doi.org/10.1016/j.tcs.2005.11.020
https://doi.org/10.1109/TIME.2010.20
https://doi.org/10.1109/TIME.2010.20
https://doi.org/10.3233/FI-2000-43123409
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1145/3828.3837
https://doi.org/10.1016/S0019-9958(82)91258-X

3:14 Metric LTL with Strict 1st-Time Semantics

19 M. Y. Vardi. A temporal fixpoint calculus. In Proc. Conf. on Principles of Programming
Languages, POPL’88, pages 250–259. ACM, 1988. doi:10.1145/73560.73582.

20 M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic, volume 1043 of
LNCS, pages 238–266. Springer, New York, NY, USA, 1996. doi:10.1007/3-540-60915-6_6.

21 M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, 1994. doi:10.1006/INCO.1994.1092.

https://doi.org/10.1145/73560.73582
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1006/INCO.1994.1092

Assessing the (In)Ability of LLMs to Reason in
Interval Temporal Logic
Pietro Bellodi #

Department of Mathematics and Computer Science, University of Ferrara, Italy

Pietro Casavecchia #

Department of Mathematics and Computer Science, University of Ferrara, Italy

Alberto Paparella #

Department of Mathematics and Computer Science, University of Ferrara, Italy

Guido Sciavicco #

Department of Mathematics and Computer Science, University of Ferrara, Italy

Ionel Eduard Stan #

Department of Informatics, Systems, and Communications, University of Milano-Bicocca, Italy

Abstract
The logical reasoning skills of Large Language Models (LLMs) is poorly understood and often over-
stated. Current evaluation suites rely on algebraic or commonsense puzzles that mix reasoning with
symbolic manipulation and/or provide static datasets that quickly saturate or leak into pretraining
corpora. In purely logical terms, the most relevant reasoning skill is the meta-mathematical task
of valid formula recognition, which is at the foundation of higher-level reasoning tasks (including
deduction and minimization of assertions, to name just a few). In the current landscape of LLMs
benchmarking, puzzles are most often stated in propositional or first-order logic, with a few ex-
ceptions for point-based temporal logic, such as LTL; yet, in the real world, event-based temporal
statements are prevalent, and they are more naturally expressed in interval-based temporal logic.
Interval temporal logic offers a much richer (w.r.t. point-based temporal logic, for example) variety
of problems, and not only do different languages present different expressive powers, but also the
computational complexity of the validity problem can vary widely. In this paper, we tackle the
problem of assessing the ability of LLMs to reason about interval-based statements in the form
of validity recognition. We explore whether their accuracy is sensible to the underlying language,
the computational complexity of the associated validity problem, and the intrinsic hardness of the
problem in terms of formula length and modal depth of the problem. We benchmark several frontier
LLMs (Gemma 3 27b It, Llama 4 Maverick, DeepSeek Chat V3 release 0324, Qwen 3 32b, and Qwen
3 235b) and show that, despite apparently impressive performance on algebraic or commonsense
benchmarks, they falter on logically rigorous tasks.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Theory and algorithms for application domains

Keywords and phrases Large Language Models, Benchmarking, Interval Temporal Logic

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.4

Supplementary Material Software: https://github.com/aclai-lab/TIME2025-LLM
archived at swh:1:dir:de0d3840df7e24429dd48c845a7e784aa32e4da2

Acknowledgements We acknowledge the support of the FIRD project Methodological Developments
in Modal Symbolic Geometric Learning, funded by the University of Ferrara.

1 Introduction

Large Language Models (LLMs) have achieved remarkable success across a wide range of
natural language tasks in recent years. Models like GPT-3 [7] and its successors demonstrated
emergent capabilities in reasoning and problem-solving when prompted appropriately [33].
Notably, benchmarks such as GSM8K [10] and MATH [16] spurred progress in arithmetic

© Pietro Bellodi, Pietro Casavecchia, Alberto Paparella, Guido Sciavicco, and Ionel Eduard Stan;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pietro.bellodi@unife.it
https://orcid.org/0009-0001-9040-8266
mailto:pietro.casavecchia@unife.it
https://orcid.org/0009-0000-9117-234X
mailto:alberto.paparella@unife.it
https://orcid.org/0009-0007-1653-3660
mailto:guido.sciavicco@unife.it
https://orcid.org/0000-0002-9221-879X
mailto:ioneleduard.stan@unimib.it
https://orcid.org/0000-0001-9260-102X
https://doi.org/10.4230/LIPIcs.TIME.2025.4
https://github.com/aclai-lab/TIME2025-LLM
https://archive.softwareheritage.org/swh:1:dir:de0d3840df7e24429dd48c845a7e784aa32e4da2;origin=https://github.com/aclai-lab/TIME2025-LLM;visit=swh:1:snp:01580998d2bc902c27594f4904234390aedd5927;anchor=swh:1:rev:b6f9186a182bc6b5eba265fd5a6629c8139f0e62
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

4:2 LLMs and Interval Temporal Logic

and mathematical reasoning by encouraging multi-step chain-of-thought solutions. However,
the question of whether LLMs can reliably perform logical reasoning, in the rigorous sense
of formal logic, remains underexplored and challenging [27, 25]. Logical consistency and
deductive inference are critical for advanced AI reasoning, yet even state-of-the-art models
often stumble on tasks requiring strict logical entailment, especially in the presence of
negation or complex rules [25, 21].

There is growing evidence that current LLMs struggle with basic logical deductive
questions that humans find trivial. For example, a recent evaluation called SimpleBench
showed that non-expert humans significantly outperform frontier LLMs on a set of 200
straightforward reasoning questions involving spatial-temporal reasoning and logical trick
questions [2]. Similarly, general intelligence tests like the Abstraction and Reasoning Corpus
(ARC) [8], which requires solving abstract visual puzzles independent of prior knowledge,
remain far from solved by machines, underscoring the gaps in core reasoning abilities. These
observations highlight the need for systematic evaluation of LLMs’ logical reasoning skills,
beyond the realms of arithmetic or commonsense reasoning.

In this work we consider the problem of benchmarking the ability of LLMs to reason about
temporal events and their relationships. Our approach automatically generates instances
from first principles, using logic tautologies and formal inference rules, so that each example’s
label (valid or invalid formula) is guaranteed correct by construction. By leveraging the
well-defined semantics of formal logics, we avoid the ambiguities and potential errors of
human-crafted logical puzzles, providing a reliable ground truth for model evaluation. In
our specific testbed we focus on Halpern-Shoham interval temporal logic (HS) [14], which
can be considered a standard logical setting for event-based reasoning at the qualitative
level. Reasoning in HS can be considered a hard problem; depending on the specific subset
of operators that occur in a formula, establishing its validity status is a problem whose
complexity ranges from NP-complete, to PSPACE-complete, to EXPSPACE-complete, to
non primitive recursive (NPR)-complete, to undecidable. In the particular case of linear
models based on the set of natural numbers, the status of every possible syntactic fragment
is reported in [5].

Our approach fundamentally differs from existing work in three ways. First, we target
logical validity in a formal sense, rather than numerical or symbolic manipulation. Many
prior reasoning benchmarks for LLMs (e.g., math word problems in GSM8K/MATH, or code
execution tasks) involve algebraic reasoning or pattern matching that, while complex, do
not probe a model’s ability to apply abstract logical rules or handle operators like negation
and implication in a principled way. In contrast, our evaluation specifically stresses logical
consistency and the handling of negation, which has been identified as a stumbling block for
LLMs’ reasoning [25]. Second, we focus on event-based temporal reasoning, so far neglected
in the context of LLMs benchmarking. Third, we explore LLMs reasoning ability in relation
to problem length (i.e., number of involved symbols), problem abstraction level (i.e., modal
depth), and intrinsic problem complexity (i.e., computational class to which it belongs).
Fourth, we employ an algorithmic test generator that produces valid formulas, rather than a
fixed set of predetermined ones, avoiding the risk of future leaking into training datasets.
We validate our approach by conducting an extensive evaluation of several leading LLMs on
the generated logical reasoning tasks. In particular, we benchmark a suite of state-of-the-art
models, namely Gemma 3 27b It, Llama 4 Maverick, DeepSeek Chat V3 release 0324, Qwen 3
32b, and Qwen 3 235b. Through systematic experiments on these diverse systems, we analyze
their performance on problems that require genuine logical reasoning. As we show later, even
the best models struggle on logically challenging instances, confirming findings from recent
studies that current LLMs have not attained robust logical competence [21, 25, 30].

P. Bellodi, P. Casavecchia, A. Paparella, G. Sciavicco, and I. E. Stan 4:3

In a sense, a test of reasoning capabilities as we designed it is a test of general intelligence
level. We can safely assume that an LLM does not know what interval-based temporal logic is
in the strict sense (the amount of existing and available material on this topic is exponentially
lower than, for example, linear time point-based temporal logic); for the test purposes such a
notion is therefore explained to the LLM (via prompting); finally the ability of the LLM to
reason about what was explained are tested. A positive result from a test so designed would
not be a proof that a model possesses general intelligence; a negative one would be a proof
that the model does not.

2 Related Work

The quest to measure and improve reasoning in LLMs has led to a variety of benchmarks
targeting different reasoning facets.

On the numerical side, the Grade School Math 8K dataset (GSM8K) [10] and the MATH
competition dataset [16] have become standard tests for arithmetic and mathematical
problem solving. These datasets require multi-step reasoning and have spurred innovations
like chain-of-thought prompting [17, 33] to elicit latent reasoning steps from models. More
generally, BIG-bench and related efforts compiled diverse reasoning tasks, like commonsense
and symbolic, to probe emerging capabilities of large models [28]. However, formal logical
reasoning was not a primary focus in these early benchmarks. Notably, ARC challenge [8]
targeted abstract pattern reasoning via visual puzzles to evaluate general intelligence; LLMs
have struggled with ARC-style tasks unless augmented with specialized tools, reflecting a gap
in out-of-distribution reasoning. Recently, the SimpleBench evaluation explicitly highlighted
fundamental reasoning gaps in frontier models: on a suite of basic logic, spatial, and trick
questions, human participants achieved over 80% accuracy while even top-tier LLMs (e.g.,
o3, Claude Sonnet, Gemini, Grok 3, and DeepSeek R1) remained far lower (30–50% range),
often failing on problems requiring careful logical consistency. These findings motivate the
development of dedicated logical reasoning benchmarks.

A different line of work has emerged to directly evaluate (and train) models on logical
deduction tasks using controlled datasets. A pioneering example is RuleTaker [9], which gener-
ated synthetic natural language facts and rules and quizzed models on deductive conclusions.
Remarkably, transformers fine-tuned on RuleTaker showed the ability to correctly answer
many queries, even generalizing to some deeper inference chains, hinting at the possibility of
learned logical reasoning. Subsequent efforts extended this approach: LogicNLI [31] expanded
the scope to first-order logic, and ProofWriter [29] augmented the RuleTaker paradigm by
asking models not only for yes/no answers but also to generate explicit natural language
proofs for their conclusions. ProofWriter demonstrated that models could produce plausible
step-by-step derivations for synthetic logic puzzles, though evaluation of proof correctness
remained difficult. Saparov and He proposed PrOntoQA [27], another synthetic QA dataset
that encodes formal deductive reasoning problems, used it to formally analyze how models
reason, and founding that LLMs tend to be superficial reasoners often jumping to conclusions
that are logically invalid if they appear superficially plausible. In addition to fully synthetic
data, there have been expert-crafted datasets to test logical reasoning. A notable benchmark
is FOLIO [15], introduced by Han et al., which consists of logically complex natural language
puzzles written by experts and annotated with first-order logic forms. FOLIO problems are
open-domain and diverse, covering, among others, quantifiers and implications, intended to
require genuine logical deduction from the given premises. Models like GPT-3 and PaLM were
reported to perform poorly on FOLIO, indicating that pretraining alone does not equip LLMs

TIME 2025

4:4 LLMs and Interval Temporal Logic

with robust logic skills [15]. Another example is the AR-LSAT corpus [35], which contains
analytical reasoning questions from law school admission tests; these are high-level logical
puzzles in natural language, and zero-shot GPT-4 still finds many of them challenging [34].
One last contribution is [18], that proposes an automatic test generator (ATG), similar to
our proposal, but limited to propositional logic. Overall, these works illustrate a spectrum
from purely synthetic logic exercises to realistic logical reasoning problems. Across the board,
negation and multi-step inference emerge as common pain points for current models [15, 25].

More recently, researchers have started assembling more systematic benchmarks to
thoroughly probe LLMs’ logical reasoning across multiple phenomena. Parmar et al. introduce
LogicBench [25], a collection of 25 distinct logical reasoning patterns expressed in natural
language. Each LogicBench question focuses on a single inference rule (e.g. modus ponens,
modus tollens, syllogism, transitivity, etc.) either in propositional, first-order, or non-
monotonic logic, presented as a small textual scenario with a yes/no question. This controlled
setup allows one to pinpoint which specific forms of inference a model handles or fails.
Testing GPT-4, ChatGPT, Gemini, Llama-2 and others, they found that existing LLMs do
not fare well on LogicBench – especially on instances involving more complex reasoning or
embedded negations, performance was near chance. Our work is closely aligned with this
goal of systematic evaluation, though we approach it by generating formula-based entailment
instances from formal semantics (as opposed to natural language templated questions).
Another recent benchmark, LTLBench [30], specifically targets temporal logic reasoning.
Tang and Belle developed a pipeline using random graph generation and an LTL model
checker to create 2,000 temporal reasoning challenges, and evaluated six LLMs on them.
Their results showed that while some LLMs exhibit basic competence on simple temporal
queries, they struggle as the complexity increases (e.g. more events or nested temporal
operators) and substantially underperform compared to what would be required for sound
temporal reasoning. LTLBench demonstrates the feasibility of combining formal verification
tools with LLM evaluation – an approach our work generalizes and extends to other logics.
In a similar vein, Morishita et al. present the Formal Logic Deduction benchmark (FLD) [21],
generated from a complete set of first-order logic deduction rules. They report that even
GPT-4 solves only about half of the problems in FLD, underlining that pure logical deduction
(even when posed in natural language) remains a serious challenge for LLMs.

Beyond temporal logic, reasoning about space and structured knowledge are important
dimensions of logical evaluation. Spatial relation formalisms such as RCC5 and RCC8 [26]
provide a calculus for qualitative spatial reasoning (e.g. relations like disjoint, overlap, and
containment between regions). These have not yet been widely used to evaluate LLMs, but
they present an attractive next step: one could generate spatial scenarios and queries in
natural language underpinned by RCC constraints, and test if LLMs can infer implied spatial
relations. We posit that our methodology can be applied here by generating spatial logic
formulas with known entailments. Similarly, Description Logics (DL) underpin knowledge
graphs and ontologies in the Semantic Web, enabling rigorous inference of subclass relations,
instance membership, etc. [4]. Traditional AI systems employ DL reasoners (like FaCT++ or
HermiT) to perform these inferences reliably. In contrast, an LLM might be used to answer
ontology queries or complete a knowledge graph, but concerns arise about whether it can
honor the formal logical constraints (e.g. avoid asserting mutually inconsistent facts). There
is ongoing research in combining LLMs with symbolic reasoners to ensure logical consistency
in knowledge-intensive applications. These neuro-symbolic approaches typically involve
translating natural language to a logical form, using a logic reasoner to derive conclusions or
check consistency, and then translating back to text [24, 23].

P. Bellodi, P. Casavecchia, A. Paparella, G. Sciavicco, and I. E. Stan 4:5

A consistent observation across these benchmarks is that negation and non-monotonic
reasoning are weak spots for LLMs. For instance, LogicBench finds that models often
misunderstand statements with negated conditions or conclusions [25]; similarly, PrOntoQA
analysis noted that models are apt to assume a fact is true unless explicitly contradicted, even
if logically it should be undetermined [27]. This tendency relates to the shallow heuristics
LLMs might pick up from text, which break down for logical constructs like negation that
require careful semantic interpretation. The broader implication is that purely neural models
alone may lack the guarantees of logical soundness that symbolic reasoning provides. By
developing benchmarks grounded in formal logic (as we do in this paper), we contribute
toward bridging this gap. A robust evaluation methodology for LLMs logical reasoning
is not only academically interesting but also practically vital as these models begin to be
deployed in areas like legal reasoning, safety-critical decision making, and knowledge graph
completion, where logical correctness is paramount. Our work specifically addresses this
by including a variety of entailment cases with negated formulas and ensuring that only
logically valid inferences count as correct. We thereby force models to confront the full
truth-functional meaning of negation and other operators. Another aspect is combinatorial
complexity: multi-step logical reasoning (combining several premises) taxes the models’
limited reasoning depth and working memory. Datasets like ProofWriter and FLD explicitly
vary the number of inference steps, and performance drops as steps increase [29, 21]. In
our evaluation, we similarly consider entailments that may require reasoning across multiple
temporal steps or combining multiple logical conditions. This allows us to examine whether
models can perform reasoning beyond one-hop inference in a formal setting.

3 Interval Temporal Logic

While several different interval temporal logics have been proposed in the recent literature [13],
Halpern and Shoham’s Modal Logic for Time Intervals (HS) [14] is certainly the formalism
that has received the most attention. Let D = ⟨D,<⟩ be a linear order with domain D; in the
following, we shall use D and D interchangeably. A strict interval over D is an ordered pair
[x, y], where x, y ∈ D and x < y. If we exclude the identity relation, there are 12 different
binary ordering relations between two strict intervals on a linear order, often called Allen’s
interval relations [3]: the six relations RA (adjacent to, also known as after), RL (later
than), RB (begins, also known as starts), RE (ends, also known as finishes), RD (during)
and RO (overlaps), depicted in Tab. 1, and their inverses, that is, RX = (RX)−1, for each
X ∈ {A,L,B,E,D,O}. We interpret interval structures as Kripke structures, with Allen’s
relations playing the role of accessibility relations. Thus, we associate an existential modality
⟨X⟩ with each Allen’s relation RX . Moreover, for each X ∈ {A,L,B,E,D,O}, the transpose
of modality ⟨X⟩ is the modality ⟨X⟩ corresponding to the inverse relation RX of RX . Now,
let X = {A,A,L, L,B,B,E,E,D,D,O,O}; well-formed HS formulas are built from a set of
propositional letters P, the classical connectives ∨ and ¬, and a modality for each Allen’s
interval relation, as follows:

φ ::= p | ¬φ | φ ∨ φ | ⟨X⟩φ,

where p ∈ P and X ∈ X . The other propositional connectives and constants (i.e., ψ1 ∧ ψ2 ≡
¬(¬ψ1 ∨ ¬ψ2), ψ1 → ψ2 ≡ ¬ψ1 ∨ ψ2 and ⊤ = p ∨ ¬p), as well as, for each X ∈ X , the
universal modality [X] (e.g., [A]φ ≡ ¬⟨A⟩¬φ), can be derived in the standard way. The set
of all subformulas of a given HS formula φ is denoted by sub(φ).

TIME 2025

4:6 LLMs and Interval Temporal Logic

Table 1 Allen’s interval relations and HS modalities.

HS modality Definition w.r.t. the interval structure Example

x y

w z

w z

w z

w z

w z

w z

⟨A⟩ (adjacent) [x, y]RA[w, z] ⇔ y = w

⟨L⟩ (later) [x, y]RL[w, z] ⇔ y < w

⟨B⟩ (begins) [x, y]RB [w, z] ⇔ x = w ∧ z < y

⟨E⟩ (ends) [x, y]RE [w, z] ⇔ y = z ∧ x < w

⟨D⟩ (during) [x, y]RD[w, z] ⇔ x < w ∧ z < y

⟨O⟩ (overlaps) [x, y]RO[w, z] ⇔ x < w < y < z

The strict semantics of HS is given in terms of interval models of the type M = ⟨I(D), V ⟩,
where D is a linear order, I(D) is the set of all strict intervals over D, and V is a valuation
function V : P → 2I(D) which assigns to every atomic proposition p ∈ P the set of intervals
V (p) on which p holds. The truth of a formula φ on a given interval [x, y] in an interval
model M , denoted by M, [x, y] ⊩ φ, is defined by structural induction on the complexity of
formulas, as follows:

M, [x, y] ⊩ p if and only if [x, y] ∈ V (p), for each p ∈ P,
M, [x, y] ⊩ ¬ψ if and only if M, [x, y] ̸⊩ ψ,

M, [x, y] ⊩ ψ1 ∨ ψ2 if and only if M, [x, y] ⊩ ψ1 or M, [x, y] ⊩ ψ2,

M, [x, y] ⊩ ⟨X⟩ψ if and only if there exists [w, z] s.t. [x, y]RX [w, z] and M, [w, z] ⊩ ψ,

where X ∈ X . Given a model M = ⟨I(D), V ⟩ and a formula φ, we say that M satisfies φ if
there exists an interval [x, y] ∈ I(D) such that M, [x, y] ⊩ φ. A formula φ is satisfiable if there
exists an interval model that satisfies it. Moreover, a formula φ is valid if it is satisfiable at
every interval of every (interval) model or, equivalently, if its negation ¬φ is unsatisfiable.

By setting D = N, we limit our attention to interval models based on the set of natural
numbers. This is not the only scenario that has been studied in the context of HS, but it is
a very common one; it is the interval counterpart to the typical interpretation of LTL on the
same domain. The satisfiability problem for HS is undecidable, and a great amount of effort
has been devoted to the search of well-behaved syntactic fragments of it. The result of such
an effort, in the case of natural numbers, is summarized in [5], and pictured in Fig. 1.

Interval temporal logic is an important tool in formal reasoning about temporal events.
It is applied in several areas of artificial intelligence and machine learning (see, e.g., [19, 20],
and being able to correctly reason in such a language can be of relevance. In the past, sound
and complete tableau systems have been introduced in prototypical form in [6, 11, 12, 22] for
variants, fragments, and generalizations of HS; however, the problem of reasoning in HS is
still open in practical terms. While reasoning tasks can vary, it is known that most of them
can be reduced to validity recognition, which is therefore representative of the reasoning
challenges that a specific logical system poses. The question we pose is whether LLMs are
able to establish if a given HS-formula is valid, and if their accuracy is sensible to the intrinsic
difficulty of the problem. Such difficulty can be measured in several ways, including the
length of the formula, its modal depth, and the computational complexity class to which the
smallest fragment that contains the formula belongs to.

P. Bellodi, P. Casavecchia, A. Paparella, G. Sciavicco, and I. E. Stan 4:7

Complexity Class

1: Undecidable

2: Non-primitive recursive

3: EXPSPACE-complete

4: NEXPTIME-complete

5: NP-complete

AABB1

ABBL1 AAB1 AAB1

ABL1 ABL1

AAEE1

AAE1 AAE1 AEEL1

AE1 AE1

AEE1AEL1 AEL1

AB2 AB2

ABB2

ABBL3 AEEL3

AB3 AB3

ABB3 ABL3 ABL3

AE3 AE3

AEE3AEL3 AEL3AA4

A4 A4

AL4 AL4

B5 B5

BB5

BBL5 BBL5

BBLL5

BL5 BL5 BL5 BL5

BLL5 BLL5

E5 E5

EE5

EEL5 EEL5

EELL5

EL5 EL5EL5 EL5

ELL5 ELL5

L5 L5

LL5

Figure 1 Relative expressive power and computational complexity of fragments of HS interpreted
on models based on N; unreported fragments are undecidable.

4 Benchmark Generation

The key point of our problem generation approach is the observation that reasoning cor-
responds to validity recognition. By their own nature, LLMs convey the idea of natural
language reasoning, that is, the idea of reaching some logical conclusion from some set of
premises. In turn, this reflects the concept of logical reasoning. However, while in most cases
existing approaches to LLMs benchmarking relay on common sense logic, an automatic and
systematic approach suggests the uses of formal logic. As a consequence, one should be
easily convinced that testing reasoning capabilities corresponds to testing the ability of a
system to identify a valid assertion, which is, by definition, a valid formula. The nature of
LLMs to seemingly comprehend natural language should therefore not be seen as a limit,
i.e., by focusing on testing common sense, natural language reasoning instances, but as an
opportunity to explore their ability of following instructions, such as, given a sound and
complete explanation of a chosen formal logic system, identify whether a certain reasoning is
valid in it, that is, identify whether a given formula is valid. Moreover, the practice of testing
and using LLMs to deal with code, such as LaTex code, programming code, Markdown, and
tasking models with writing, correcting, completing, and modifying it, is now folklore. In the
same spirit, the idea of testing LLMs with formal logic should be considered natural, and it
should not be criticized as unnatural. The question we pose is: can formal reasoning tasks
be carried out with distributional semantics?

Automatic theorem generation is a simply defined problem: given a set of theorems,
produce a new theorem. However, it is also an ill-defined one, as it is unclear what constitutes
an interesting theorem, especially from the point of view of its proof. While there exist
attempts at solving this problem in propositional logic [18], automatic theorem generation
is at its initial research stage (unlike, for example, automatic theorem proving) and, as it
seems, there are no available systems for the case of modal, and in particular temporal case.

The starting point for theorem generation is existing theorems or axioms. In classic
axiomatic theory, new theorems are generated by applying sound deduction rules to existing
ones; classical deduction rules include modus ponens, universal generalization, and uniform

TIME 2025

4:8 LLMs and Interval Temporal Logic

substitution. For most modal, temporal, and spatial logics that do have a sound and complete
finite axiomatization, the latter is based on the above rules only; in some cases, such as that of
HS, other, non-standard, rules must be added. It is well-known that Hilbert-style deduction
system does not excel in producing very intuitive proofs, unlike other systems such as natural
deduction (however, while Hilbert-style axiomatic systems have been studied for several
logics, there exist essentially no natural deduction systems other than for propositional and
first-order logics, plus some few minor exceptions). The purpose of an axiomatic system is
to be able to produce a proof of a valid formula, and, as a consequence, to prove that in
fact a given formula is valid, while the purpose of an automatic theorem generator is that of
producing new valid formulas from existing ones, and an immediate algorithm reduces the
latter to the former. In the case of HS, known validities in the language of HS come from
three sources, that is, the original axiomatic system for HS [32], the axiomatic system for
the fragment AA [12], and the collection of inter-definability of operators presented in [1]
(examples of axioms can be seen in Tab. 2), and the process can be described as follows. Let
L be a collection of valid HS-formulas, and S a collection of random well-formed HS-formulas,
and apply one of the following rules:

i) uniform substitution: choose a random validity φ ∈ L, a random formula ψ ∈ S, and a
propositional letter p that occurs in φ, and produce the formula φ[p/ψ];

ii) universal generalization: choose a random validity φ ∈ L and a universal modality [X],
and produce the formula [X]φ;

iii) modus ponens: choose two random validities φ,φ → ψ ∈ L, and produce the formula ψ.

▶ Proposition 1. Given a set of valid HS-formulas L = {φ1, . . . , φn} and a set of well-formed
HS-formulas S, one application of the above algorithm produces a valid formula φn+1.

The above algorithm produces valid formulas of the type φ → ψ, with arbitrary syntactical
complexity. Well-knowingly, (modal, temporal) logical formulas with Boolean semantics can
be valid, if they are satisfied in every model (and world), contradictory, if they are never
satisfied, or contingencies, if they are not valid nor contradictory. In this work, we focused
on the ability of a LLM to distinguish between valid and contradictory formulas. In order to
generate a random contradictory formula, it suffices to negate a valid one generated by the
above algorithm; however, this creates a clear syntactic difference between the two classes,
which may create bias towards one of the two classes. To circumvent this problem, we applied
the following strategy:

i) we produced a set S of valid formulas of the type φ → ψ, randomly partitioned into two
sets Sv and Sc;

ii) we replaced every formula φ → ψ in Sv by its equivalent one ¬¬(φ → ψ);
iii) we replaced every formula φ → ψ in Sc by its opposite one ¬(φ → ψ);
iv) finally, for every resulting formula in both Sv and Sc, we applied standard transformation

rules to progressively push the negation symbols within the formula, up to a randomly
chosen level.

As a result, formulas in both Sv and Sc have a non-predefined syntactical aspect, eliminating
the risk of syntactic bias.

5 Results and Discussion

We approached this problem using the standard prompting techniques context (ctx), few
shots (fs) [7], and chain of thought (cot) [33], combining them in a systematic way. As a form
of baseline, we also prompted each model with no instructions, except the question itself; we

P. Bellodi, P. Casavecchia, A. Paparella, G. Sciavicco, and I. E. Stan 4:9

Table 2 Examples of axioms used to generate HS-theorems.

Axiom Comment
all propositional validities
⟨A⟩⟨A⟩p → ⟨L⟩p definition of later
⟨B⟩⟨E⟩p ↔ ⟨D⟩p definition of during
⟨B⟩⟨E⟩p ↔ ⟨D⟩p definition of during
⟨B⟩⟨B⟩p ↔ ⟨B⟩p transitivity of starts
⟨A⟩⟨A⟩⟨A⟩p ↔ ⟨A⟩⟨A⟩p pseudo-transitivity of meets
⟨B⟩⟨E⟩p ↔ ⟨E⟩⟨B⟩p commutativity of starts/finishes

refer to this technique as barebone; on the other hand, chain of thought, few shots, and context
are combined in the 8 possible ways, whereas the minimal configuration corresponding to a
context without instructions is referred to as base, obtaining, in the end, 9 different prompts
per single problem.

Taken individually, the prompts we used are as follows. The barebone baseline:

Given an interval temporal logic formula in the language of Halpern and Shoham’s Modal
Logic of Allen’s Relations, reply with uppercase “[VALID]” if the formula is valid or uppercase
“[INVALID]” if it is not.

Then, we designed the following context, structured, in turn, into the sections purpose,
syntax, semantics, task, and objective:

Purpose
HS is a formal system for reasoning about interval-based events on a linear model based on
the natural numbers. This context will define HS’s syntax and semantics. The ultimate goal
is to check if a HS formula is logically valid.
Syntax of HS
Propositional Letters
Let AP be a countable set of atomic propositions (p, q, r, ...), representing basic facts.
Well-Formed Formulas (wffs)
HS formulas are built inductively:

- **Base case**: Every p in AP is a wff.
- **Inductive cases**: If φ and ψ are wffs, then so are:
. . .
Semantics over Infinite Traces Formulas of HS are interpreted over interval models
based on the natural numbers N. Define I(N) as the set of all intervals [x,y] where x and y
are natural numbers and x<y, and V as a function that assigns to each interval [x,y], the
subset of AP of all and only propositional letters that are true on [x,y]. A model M is a pair
(I(N),V). The satisfaction relation ** M,[x,y]|= φ ** for a model M and an interval [x,y] is
defined by induction on the formula:

- **Atomic Propositions:**
- M,[x,y] |= p if and only if p belongs to V([x,y]), for all atomic propositions p in AP.
- **Boolean Operators:**
. . .
Task: Evaluate HS Formula Validity

TIME 2025

4:10 LLMs and Interval Temporal Logic

Table 3 Overall accuracy in positive (TP) and negative (TN) cases, and overall average accuracy
(AC) per model and prompt configuration.

Gemma 3 27b It Llama 4 Maverick DeepSeek Chat V3 Qwen 3 32b Qwen 3 235b
TP TN AC TP TN AC TP TN AC TP TN AC TP TN AC

barebone 0.17 0.92 0.55 0.69 0.72 0.71 0.39 0.92 0.65 0.41 0.93 0.67 0.50 0.72 0.61
base 0.07 0.97 0.52 0.35 0.91 0.62 0.04 1.00 0.52 0.12 0.96 0.54 0.51 0.73 0.62
ctx 0.09 0.96 0.52 0.47 0.78 0.62 0.05 1.00 0.53 0.09 0.98 0.54 0.34 0.88 0.61
cot 0.20 0.97 0.58 0.47 0.86 0.67 0.55 0.91 0.73 0.41 0.96 0.69 0.45 0.94 0.69
fs 0.48 0.80 0.64 0.83 0.73 0.77 0.53 0.86 0.69 0.71 0.55 0.63 0.80 0.60 0.70
ctx+cot 0.19 0.95 0.57 0.54 0.83 0.69 0.54 0.92 0.73 0.43 0.97 0.70 0.48 0.94 0.71
ctx+fs 0.48 0.68 0.58 0.50 0.79 0.65 0.58 0.86 0.72 0.45 0.75 0.60 0.75 0.66 0.70
cot+fs 0.26 0.94 0.60 0.87 0.78 0.82 0.58 0.84 0.71 0.48 0.93 0.71 0.49 0.88 0.68
ctx+cot+fs 0.30 0.92 0.61 0.83 0.78 0.81 0.64 0.85 0.75 0.47 0.93 0.71 0.61 0.84 0.72
average 0.25 0.90 0.57 0.62 0.80 0.71 0.43 0.91 0.67 0.40 0.88 0.64 0.55 0.80 0.67

Objective
Determine whether the formula is valid using HS semantics and reasoning. The formula can
be written using symbols for atomic propositions (e.g., p, q, r, ...), negation operator (i.e., !),
conjunction operator (i.e., &), . . .

The objective section when we prompted the models without chain of thought has the
following structure:

Instructions
Reply **only** with uppercase “[VALID]” if the formula is valid or uppercase “[INVALID]”
if it is not. **Do not explain your reasoning**.

When using chain of thought the latter becomes:

Instructions
Follow these steps rigorously:
1. **Parse the Formulas**: Identify operators and subformulas.
2. **Apply Semantics**: Check if the formula necessarily holds in all infinite traces.
3. **Construct Proof/Counterexample**:
- If valid: Provide a **step-by-step proof** showing an argument for validity.
- If invalid: Build a **concrete model** M and identify an interval on it where the formula
does not hold.
4. **Conclude**: Answer with uppercase “[VALID]” if the formula is valid or uppercase
“[INVALID]” if it is not. No other responses are allowed.

When few shots are used, three positive examples and three negative examples are extracted
from a pool of pre-determined positive and negative examples containing 600 formulas, 300
of which are valid while the remaining ones are not, and randomly rotated for each individual
problem.

We generated 1000 valid instances and 1000 non-valid ones, with length up to 139 symbols
and modal depths up to 11, and submitted them in each of the 9 prompt configurations to
each of the models. We used the following providers: DeepInfra, for Gemma 3 27b It, Qwen 3
32b, and Qwen 3 235b, NovitaAI for Gemma 3 27b It, and CentML for Llama 4.

The overview of the overall accuracies per model and per prompt configuration is reported
in Tab. 3. The performances of each model and prompt configuration across progressively
longer and progressively modally more complex is shown in Fig. 2. The first important

P. Bellodi, P. Casavecchia, A. Paparella, G. Sciavicco, and I. E. Stan 4:11

0-19 (N
=

3942)

20-39 (N
=

3978)

40-59 (N
=

2808)

60-79 (N
=

2592)

80-99 (N
=

2124)

100-119 (N
=

1746)

120-139 (N
=

810)

Formula Size Group (N = total samples in bin for model)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll

A
cc

u
ra

cy
(9

5%
C

I)
Gemma 3 27b It
Accuracy vs. Formula Size (Balanced, Window: 20, Min Samples per Config: 20)

0-3
(N

=
5526)

4-7
(N

=
5922)

8-11 (N
=

3312)

12-15 (N
=

1890)

16-19 (N
=

756)

20-23 (N
=

414)

Modal Depth Group (N = total samples in bin for model)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll

A
cc

u
ra

cy
(9

5%
C

I)

Gemma 3 27b It
Accuracy vs. Modal Depth (Balanced, Window: 4, Min Samples per Config: 20)

0-19 (N
=

2908)

20-39 (N
=

2874)

40-59 (N
=

2158)

60-79 (N
=

2086)

80-99 (N
=

1800)

100-119 (N
=

1532)

120-139 (N
=

738)

Formula Size Group (N = total samples in bin for model)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll

A
cc

u
ra

cy
(9

5%
C

I)

Llama 4 Maverick
Accuracy vs. Formula Size (Balanced, Window: 20, Min Samples per Config: 20)

0-3
(N

=
4126)

4-7
(N

=
4520)

8-11 (N
=

2684)

12-15 (N
=

1590)

16-19 (N
=

636)

20-23 (N
=

348)

Modal Depth Group (N = total samples in bin for model)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll

A
cc

u
ra

cy
(9

5%
C

I)

Llama 4 Maverick
Accuracy vs. Modal Depth (Balanced, Window: 4, Min Samples per Config: 20)

0-19 (N
=

3904)

20-39 (N
=

3932)

40-59 (N
=

2790)

60-79 (N
=

2574)

80-99 (N
=

2106)

100-119 (N
=

1744)

120-139 (N
=

808)

Formula Size Group (N = total samples in bin for model)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll

A
cc

u
ra

cy
(9

5
%

C
I)

Deepseek Chat V3 0324
Accuracy vs. Formula Size (Balanced, Window: 20, Min Samples per Config: 20)

0-3
(N

=
5474)

4-7
(N

=
5874)

8-11 (N
=

3288)

12-15 (N
=

1876)

16-19 (N
=

756)

20-23 (N
=

410)

Modal Depth Group (N = total samples in bin for model)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll

A
cc

u
ra

cy
(9

5%
C

I)

Deepseek Chat V3 0324
Accuracy vs. Modal Depth (Balanced, Window: 4, Min Samples per Config: 20)

0-19 (N
=

3882)

20-39 (N
=

3924)

40-59 (N
=

2792)

60-79 (N
=

2580)

80-99 (N
=

2122)

100-119 (N
=

1736)

120-139 (N
=

808)

Formula Size Group (N = total samples in bin for model)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll

A
cc

u
ra

cy
(9

5
%

C
I)

Qwen3 32b
Accuracy vs. Formula Size (Balanced, Window: 20, Min Samples per Config: 20)

0-3
(N

=
5450)

4-7
(N

=
5860)

8-11 (N
=

3296)

12-15 (N
=

1888)

16-19 (N
=

756)

20-23 (N
=

414)

Modal Depth Group (N = total samples in bin for model)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll

A
cc

u
ra

cy
(9

5%
C

I)

Qwen3 32b
Accuracy vs. Modal Depth (Balanced, Window: 4, Min Samples per Config: 20)

0-19 (N
=

3940)

20-39 (N
=

3976)

40-59 (N
=

2806)

60-79 (N
=

2590)

80-99 (N
=

2122)

100-119 (N
=

1740)

120-139 (N
=

808)

Formula Size Group (N = total samples in bin for model)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll

A
cc

u
ra

cy
(9

5%
C

I)

Qwen3 235b A22b
Accuracy vs. Formula Size (Balanced, Window: 20, Min Samples per Config: 20)

0-3
(N

=
5524)

4-7
(N

=
5918)

8-11 (N
=

3306)

12-15 (N
=

1886)

16-19 (N
=

756)

20-23 (N
=

414)

Modal Depth Group (N = total samples in bin for model)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll

A
cc

u
ra

cy
(9

5%
C

I)

Qwen3 235b A22b
Accuracy vs. Modal Depth (Balanced, Window: 4, Min Samples per Config: 20)

Figure 2 Accuracy per model, prompt configuration, and difficulty level, in terms of formula
length (left hand side) and modal depth (right hand side).

TIME 2025

4:12 LLMs and Interval Temporal Logic

N
P-C

om
pl

et
e
(n

=
10

0)

N
EX

PT
IM

E-C
om

pl
et

e
(n

=
10

0)

EX
PSP

A
C
E-C

om
pl

et
e
(n

=
10

0)

N
on

-P
rim

iti
ve

R
ec

ur
siv

e
(n

=
10

0)

U
nd

ec
id

ab
le

(n
=

10
0)

Complexity Class

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy
(9

5%
C

I)

0.950
0.880 0.860

0.910

0.800

Llama 4 Maverick (cot + fs)
Accuracy by complexity class

Figure 3 Accuracy of Llama 4 in the ctx+fs configuration for different complexity classes.

observation that can be drawn is that no model and no configuration reached more than 0.82
in overall accuracy; such value was achieved by Llama 4 in the cot+fs configuration. The
overall accuracy in other models and configuration varies in a quite wide range, with a lower
end of 0.52, which is essentially equivalent to the random answer. The models have behaved
in very different ways to the different configurations. Those that have a lower overall accuracy
across configurations, such as Gemma 3 27b It, seem to react positively to the progressively
more detailed and precise information that is prompted from the base configuration up to
the ctx+cot+fs one, although the improvement does not seem to be always linear. On the
other hand, the ones with higher overall accuracy across configurations, such as Llama 4,
seem not be too influenced by the type of prompt; Qwen 3 32b, in particular, presents an
accuracy between 0.54 and 0.71 in all configurations, including barebone, indicating a close-
to-null response from the instructions. All models have a predetermined strong bias towards
answering that a formula is not valid (which in absolute terms is the most probable status of
a random formula); DeepSeek Chat V3 showed the strongest bias: in two configurations, ctx
and base, returned a true negative rate of 1.00, balanced by a true positive rate of 0.04 and
0.05, respectively. Adding few shots to the prompt, in general, slightly improves the results
in almost every model.

Let us now analyse of the performances from the point of view of the intrinsic difficulty of
the problem. The most evident phenomenon is the variability of the performances compared
to the increasing hardness of the problem. Models, in general, exhibit the expected decrease
of accuracy proportional to the length of the problem or its modal depth, but such decrease
is not always clear. Thus, in some cases the worst performances do not correspond to the
most difficult problems, such as in the case of Llama 4 Maverick and Qwen 3 235b, for several
configurations.

Finally, in Fig. 3 we can see the result of a further experiment to assess the relationship
between the ability of LLMs for interval temporal logic reasoning and the hardness of the
problem in terms of computational complexity of the fragment that contains a formula. We

P. Bellodi, P. Casavecchia, A. Paparella, G. Sciavicco, and I. E. Stan 4:13

considered the top performing model(Llama 4) in the top performing configuration (ctx+cot),
and devised a small dataset of 500 (small) formulas, 100 for each different computational class.
As it can be seen, essentially no difference arises, despite the fact that the computational
problem underlying such questions varies very much. The generally high performance is most
probably due to formulas being short and with a low modal depth.

6 Conclusions

In this paper we considered the problem of benchmarking Large Language Models on their
ability for formal logical reasoning, specifically interval temporal logical reasoning. Our
results seem to indicate, quite reasonably, that statistical tools may not be the right solution
for logical tasks; the fact that such tools are sometimes presented as representative of general
intelligence, as well as the resonance that they have received in the recent past contributes
to this confusion.

The high variability, the generally low accuracy, but most importantly the lack of
consistency of the results is a clear indication of the unreliability of LLMs to perform logical
reasoning on unseen problems. It is however of notice that some of models tested on our
benchmark were capable, at least in some configurations, to correctly identify several valid
and invalid formulas despite their high syntactical complexity, even if the tokenizer often
produces syntactic mistakes such as merging double symbols (e.g., negation), useful for
natural language but detrimental in this scenario.

References
1 L. Aceto, D. Della Monica, A. Ingólfsdóttir, A. Montanari, and G. Sciavicco. On the ex-

pressiveness of the interval logic of allen’s relations over finite and discrete linear orders.
In Proc. of the 14th European Conference on Logics in Artificial Intelligence (JELIA),
volume 8761 of Lecture Notes in Computer Science, pages 267–281. Springer, 2014. doi:
10.1007/978-3-319-11558-0_19.

2 AI Insiders. Simple bench. https://simple-bench.com, 2024.
3 J. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26(11):832–843, 1983. doi:10.1145/182.358434.
4 F. Baader, D. Calvanese, D.L. McGuinness, and others, editors. The Description Logic

Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2003.
5 D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. Interval temporal

logics over strongly discrete linear orders: Expressiveness and complexity. Theor. Comput.
Sci., 560:269–291, 2014. doi:10.1016/J.TCS.2014.03.033.

6 D. Bresolin, D. Della Monica, A. Montanari, and G. Sciavicco. A tableau system for right
propositional neighborhood logic over finite linear orders: An implementation. In Proc.
of the 22th International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX), volume 8123 of LNCS, pages 74–80. Springer, 2013. doi:
10.1007/978-3-642-40537-2_8.

7 T.B. Brown, B. Mann, N. Ryder, and others. Language models are few-shot learners. In Proc.
of the 33rd Annual Confernce on Advances in Neural Information Processing Systems, pages
1–25, 2020.

8 F. Chollet. On the measure of intelligence. CoRR, abs/1911.01547, 2019. arXiv:1911.01547.
9 P. Clark, O. Tafjord, and K. Richardson. Transformers as soft reasoners over language. In

Proc. of the 29th International Joint Conference on Artificial Intelligence, pages 3882–3890,
2020.

10 K. Cobbe, V. Kosaraju, M. Bavarian, and others. Training verifiers to solve math word
problems, 2021. arXiv:2110.14168.

TIME 2025

https://doi.org/10.1007/978-3-319-11558-0_19
https://doi.org/10.1007/978-3-319-11558-0_19
https://simple-bench.com
https://doi.org/10.1145/182.358434
https://doi.org/10.1016/J.TCS.2014.03.033
https://doi.org/10.1007/978-3-642-40537-2_8
https://doi.org/10.1007/978-3-642-40537-2_8
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2110.14168

4:14 LLMs and Interval Temporal Logic

11 V. Goranko, A. Montanari, P. Sala, and G. Sciavicco. A general tableau method for pro-
positional interval temporal logics: Theory and implementation. Journal of Applied Logics,
4(3):305–330, 2006. doi:10.1016/J.JAL.2005.06.012.

12 V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighborhood tem-
poral logics. Journal of Universal Computer Science, 9(9):1137–1167, 2003. doi:10.3217/
JUCS-009-09-1137.

13 V. Goranko, A. Montanari, and G. Sciavicco. A road map of interval temporal logics
and duration calculi. Journal of Applied Non-Classical Logics, 14(1–2):9–54, 2004. doi:
10.3166/JANCL.14.9-54.

14 Joseph Y. Halperns and Yoav Shoham. A propositional modal logic of time intervals. Journal
of the ACM, 38(4):935–962, 1991. doi:10.1145/115234.115351.

15 S. Han, H. Schoelkopf, Y. Zhao, and others. FOLIO: natural language reasoning with first-order
logic. In Proc. of the Conference on Empirical Methods in Natural Language Processing, pages
22017–22031, 2024.

16 D. Hendrycks, C. Burns, S. Kadavath, and others. Measuring mathematical problem solving
with the MATH dataset. In Proc. of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks, 2021.

17 T. Kojima, S. Shane Gu, M. Reid, and others. Large language models are zero-shot reasoners.
In Proc. of the 35th Annual Conference on Advances in Neural Information Processing Systems,
pages 1–15, 2022.

18 X. Lin, Q. Cao, Y. Huang, and others. ATG: benchmarking automated theorem generation
for generative language models. In Findings of the Association for Computational Linguistics,
pages 4465–4480. Association for Computational Linguistics, 2024. doi:10.18653/V1/2024.
FINDINGS-NAACL.279.

19 E. Lucena-Sánchez, G. Sciavicco, and I.E Stan. Feature and language selection in temporal
symbolic regression for interpretable air quality modelling. Algorithms, 14(3):76, 2021. doi:
10.3390/A14030076.

20 F. Manzella, G. Pagliarini, G. Sciavicco, and I.E. Stan. The voice of COVID-19: breath and
cough recording classification with temporal decision trees and random forests. Artificial
Intelligence in Medicine, 137:102486, 2023. doi:10.1016/J.ARTMED.2022.102486.

21 T. Morishita, G. Morio, A. Yamaguchi, and others. Learning deductive reasoning from
synthetic corpus based on formal logic. In Proc. of the International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 25254–25274, 2023.
URL: https://proceedings.mlr.press/v202/morishita23a.html.

22 E. Muñoz-Velasco, M. Pelegrín-Garcí, P. Sala, G. Sciavicco, and I. E. Stan. On coarser interval
temporal logics. Artificial Intelligence, 266:1–26, 2019. doi:10.1016/J.ARTINT.2018.09.001.

23 T. Olausson, A. Gu, B. Lipkin, and others. LINC: A neurosymbolic approach for logical
reasoning by combining language models with first-order logic provers. In Proc. of the
Conference on Empirical Methods in Natural Language Processing, pages 5153–5176. Association
for Computational Linguistics, 2023. doi:10.18653/V1/2023.EMNLP-MAIN.313.

24 L. Pan, A. Albalak, X. Wang, and others. Logic-LM: Empowering large language models with
symbolic solvers for faithful logical reasoning. In Findings of the Association for Computational
Linguistics, pages 3806–3824. Association for Computational Linguistics, 2023. doi:10.18653/
V1/2023.FINDINGS-EMNLP.248.

25 M. Parmar, N. Patel, N. Varshney, and others. Logicbench: Towards systematic evaluation of
logical reasoning ability of large language models. In Proc. of the 62nd Annual Meeting of the
Association for Computational Linguistics, pages 13679–13707, 2024.

26 D.A. Randell, Z. Cui, and A.G. Cohn. A spatial logic based on regions and connection. In
Proc. of the 3rd International Conference on Principles of Knowledge Representation and
Reasoning, pages 165–176. Morgan Kaufmann, 1992.

https://doi.org/10.1016/J.JAL.2005.06.012
https://doi.org/10.3217/JUCS-009-09-1137
https://doi.org/10.3217/JUCS-009-09-1137
https://doi.org/10.3166/JANCL.14.9-54
https://doi.org/10.3166/JANCL.14.9-54
https://doi.org/10.1145/115234.115351
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.279
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.279
https://doi.org/10.3390/A14030076
https://doi.org/10.3390/A14030076
https://doi.org/10.1016/J.ARTMED.2022.102486
https://proceedings.mlr.press/v202/morishita23a.html
https://doi.org/10.1016/J.ARTINT.2018.09.001
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.313
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.248
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.248

P. Bellodi, P. Casavecchia, A. Paparella, G. Sciavicco, and I. E. Stan 4:15

27 A. Saparov and H: He. Language models are greedy reasoners: A systematic formal analysis of
chain-of-thought. In Proc. of the 11th International Conference on Learning Representations,
2023.

28 A. Srivastava, A. Rastogi, A. Rao, and others. Beyond the imitation game: Quantifying and
extrapolating the capabilities of language models. Transactions on Machine Learning Research,
2023.

29 O. Tafjord, B. Dalvi, and P. Clark. ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Findings of the Association for Computational
Linguistics, pages 3621–3634, 2021.

30 W. Tang and V. Belle. LTLBench: Towards benchmarks for evaluating temporal logic reasoning
in large language models. CoRR, abs/2407.05434, 2024. doi:10.48550/arXiv.2407.05434.

31 J Tian, Y Li, W. Chen, and others. Diagnosing the first-order logical reasoning ability through
logicNLI. In Proc. of the Conference on Empirical Methods in Natural Language Processing,
pages 3738–3747, 2021.

32 Y. Venema. Expressiveness and completeness of an interval tense logic. Notre Dame Journal
of Formal Logic, 31(4):529–547, 1990. doi:10.1305/NDJFL/1093635589.

33 J. Wei, X. Wang, D. Schuurmans, and others. Chain-of-thought prompting elicits reasoning
in large language models. In Proc. of the 35th Annual Conference on Advances in Neural
Information Processing Systems, pages 1–14, 2022.

34 W. Zhong, R. Cui, Y. Guo, and others. AGIEval: A human-centric benchmark for eval-
uating foundation models. In Findings of the Association for Computational Linguistics,
pages 2299–2314. Association for Computational Linguistics, 2024. doi:10.18653/V1/2024.
FINDINGS-NAACL.149.

35 W. Zhong, S. Wang, D. Tang, and others. Analytical reasoning of text. In Findings of the
Association for Computational Linguistics, pages 2306–2319, 2022.

TIME 2025

https://doi.org/10.48550/arXiv.2407.05434
https://doi.org/10.1305/NDJFL/1093635589
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.149
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.149

Higher-Order Timed Automata and Tail Recursion
Florian Bruse #

TUM School of Computation, Information and Technology,
Technical University of Munich, Munich, Germany

Abstract
Timed Automata (TA) are a popular formalism to model systems in dense linear time. However,
due to their finite state-space, they can only model systems with a finitary logical behavior. There
are extensions to e.g., timed pushdown systems and timed recursive state machines. Higher-Order
Recursion Schemes (HORS) are another popular model for infinite-state, non-regular systems,
naturally stratified by their type-theoretic order. We recently introduced Real-Time Recursion
schemes as an approximation of HORS to real-time systems.

This paper updates Real-Time Recursion Schemes into Higher-Order Timed Automata, a
formalism that defines a tree-shaped timed automaton, which is more suitable to model actual
systems. We show that the model-checking problem against the timed version of the modal mu-
calculus exhibits the expected complexity bounds, i.e., an increase by one exponential towards the
untimed version. We also show that, in the presence of tail recursion, half an exponential can be
recovered, mirroring similar gains in the untimed setting. We also give a matching lower bound for
the special case of order-1 HORTA. We conjecture that this can be generalized for all orders.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models; Theory of
computation → Tree languages; Theory of computation → Automata over infinite objects

Keywords and phrases Timed Automata, Higher-Order Recursion Schemes, Tree Automata, Tail
Recursion

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.5

1 Introduction

Verification of real-time systems plays an ever important role, as more and more aspects
of life become computerized. Often, systems are required to not only respond to certain
input eventually, but within specific time bounds. For example, electronic stability control
or anti-lock braking systems need to respond within fractions of a second.

Timed Automata (TA) [5] are a popular tool to model real-time systems [1, 16]. TA model
time not in a discrete fashion, as used in e.g., CTL or the modal µ-calculus, but rather in a
dense linear fashion. The well-known region abstraction allows us to recover finiteness by re-
discretization of said dense linear time, which yields decidability (and PSPACE-completeness)
of e.g., the model-checking problem for the temporal version of CTL, TCTL [5]. A less
well-known real-time logic used in conjunction with timed automata is the timed µ-calculus
(Tµ) [17], for which model-checking is EXPTIME-complete.

There are several attempts to generalize the notion of timed automata beyond a finite
state space, for example timed recursive state machines [7], recursive timed automata [22], or
timed pushdown automata [8, 13]. Recently, we proposed Real-Time Recursion Schemes [3],
an extension of the notion of timed automata to Higher-Order Recursion Schemes (HORS).
HORS are a well-studied framework in the context of infinite-state verification [14, 18]. A
HORS is a higher-order grammar that generates a tree, e.g., the syntax tree of a functional
program. The question of HORS model-checking is to decide whether a given alternating
parity tree-automaton (APT) accepts the tree generated by the HORS. This is known to
be decidable for order-k HORS in k-EXPTIME [20, 19]. We showed in [3] that mixing
HORS and real-time systems had the typical effect of increasing the complexity of the
model-checking problem by one exponential as compared to the untimed base problem.

© Florian Bruse;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 5; pp. 5:1–5:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:f.bruse@tum.de
https://orcid.org/0000-0001-6800-7135
https://doi.org/10.4230/LIPIcs.TIME.2025.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

5:2 Higher-Order Timed Automata and Tail Recursion

This paper extends the idea of Real-Time Recursion Schemes into a proper recursive
grammar for timed automata called Higher-Order Timed Automata (HORTA), which makes
the problem more natural and rather intuitive to handle. We show that the model-checking
problem remains in (k + 1)-EXPTIME for the updated problem, which asks whether the
timed transition system defined by a HORTA satisfies a given formula of the timed µ-calculus.

Moreover, we connect the new formalism to existing research in the area of tail recursion.
Higher-order model-checking problems like the HORS model-checking problem often have
high theoretical complexities, and passing to tail-recursive fragments can shave off half an
exponential, not only for recursion schemes [9], but also for model-checking problems where
the logic is higher-order [12, 11]. We confirm that these findings also hold for HORTA
and the timed µ-calculus, i.e., that the model-checking problem becomes easier by half an
exponential in the tail-recursive setting. We establish a matching lower bound which, for
space considerations, is given for the order-1-case only.

The paper is structured as follows: in Sect. 2, we introduce APT, TA, the timed µ-calculus,
HORS, and existing results regarding tail recursion. In Sect. 3 we define HORTA, in Sect. 4
we define the tail-recursive fragment of the HORTA model-checking problem. In Sect. 5, we
establish upper bounds for the model-checking problem, and give a matching lower bound
for the order-1 case in Sect. 6. We conclude in Sect. 7. Most proofs have been omitted due
to space considerations.

2 Preliminaries

2.1 Trees and Automata

A tree is a finite, left-closed set T ⊆ N∗, i.e., for all vi ∈ T , we have v ∈ T and, moreover,
vi− 1 ∈ T if i > 0. A tree alphabet is a finite, nonempty set Σ and a function ar : Σ → N
indicating the arity of each symbol. We write Σi for the set of symbols of arity i in Σ. A
Σ-tree is a pair (T, l) of a tree T and a labeling function l : T 7→ Σ, such that each v ∈ T has
exactly ar(l(v)) successors. We often identify a tree with its labeling function.

Let S be a set. B+(S) is the set of positive Boolean expressions over S, derived from the
grammar φ := s | ⊥ | ⊤ | φ ∨ φ | φ ∧ φ with s ∈ S.

An alternating parity tree-automaton (APT) is a P = (Q,Σ, δ, qI ,Λ) where Q is a finite,
nonempty set of states, Σ is a tree alphabet containing a special nullary symbol ω, δ =

⋃
i≤n δ

i

is the transition function with δi : Q × Σi → B+(Qi) and n being the maximal arity that
occurs in Σ. We write δ(q, l(v)) for δi(q, l(v)) if ar(l(v)) = i. Finally, qI ∈ Q is the starting
state and Λ: Q → N is the priority function. The size of an APT is the number of its states.

A run of an APT P on some Σ-tree T (for matching Σ) is a parity game G(P, T) between
∃ and ∀, called the acceptance game. It has positions from T × (Q ∪

⋃
i≤n B+(Qi)) where n

is the maximal arity in Σ. Its starting position is (ϵ, qI). In a position of the form (v, q), the
unique successor is (v, δ(q, l(v))). Positions of the forms (v, φ1 ∨ φ2) and (v, φ1 ∧ φ2) have
two successors, namely (v, φ1) and (v, φ2). A position of the form (v, (q0, . . . , qi−1)) has i
successors (v0, q0), . . . , (vi− 1, qi−1), a position of the form (v,⊤) or (v,⊥) has no successors.
Positions of the forms (v,⊤) and (v, φ1 ∧ φ2) and (v, (q0, . . . , qi−1)) belong to ∀, all other
positions belong to ∃. Finally, the priorities of the game are Ω(v, q) = Λ(q); for all other
positions we have Ω(v, φ) = 1. P accepts a tree T if ∃ wins G(P, T). In the following, we
assume APT to have designated states q⊤, q⊥ from which all, resp. no trees are accepted.

F. Bruse 5:3

2.2 Higher-Order Recursion Schemes
Instead of the classical definition of Higher-Order Recursion Schemes (HORS, cf. e.g., [18]),
we use a version going back to Damm [14] and re-introduced by Walukiewicz and Salvati
[21], using the λY -calculus as syntax.

Types and Terms. The set of types is defined inductively via τ ::= • | τ → τ where • is
the type of trees, • → • is the type of functions that consume a tree and yield a tree, etc.
We write τ i → • for the type τ → · · · τ → • with i many copies of τ . The order of a type is
defined via ord(•) = 0 and ord(τ1 → τ2) = max{1 + ord(τ1), ord(τ2)}.

Let Σ be a tree alphabet. Each a ∈ Σ of arity i is a tree constructor of type •i → •. Let
L be a set of typed λ variables, F be a set of typed Y variables. Lower case letters a, b, . . .
denote tree constructors, lower case letters x, y, . . . denote λ variables, upper case letters
F,G, . . . denote Y variables. If necessary, (x : τ), (F : τ) indicates the type of a variable.

Given Σ,L,F , the set of λY terms is defined inductively: a tree constructor of type
•i → • is a term of type •i → •, a lambda variable x : τ and a Y variable F : τ are terms
of type τ . Given x : τ1 and a term t of type τ2, λ(x : τ). t is a term of type τ1 → τ2. Given
terms t1, t2 of type τ2 → τ1 and τ2, resp., (t1 t2) is a term of type τ1. If F : τ is a Y variable
and t is a term of type τ , then Y (F : τ). t is a term of type τ .

t[t′/x] denotes capture-avoiding substitution of t′ for all free occurrences of x in t, and
similarly for t[t′/F], assuming that the types match. Each variable may also be bound at
most once in a term. Hence, for closed terms there is a function term that maps each Y

variable F to term(F), defined as t if the unique binding of F is Y F. t. The order of a term
is that of the highest order of any of its subterms, its size the number of its distinct subterms.

Semantics. Besides α-conversion, i.e., variable renaming, the λY calculus has β-reduction
and δ-reduction. β-reduction →β reduces ((λx. t) t′), where x and t′ have the same type, to
t[t′/x]. δ-reduction →δ reduces Y F. t to t and F to term(F). The reflexive transitive closure
of →β ∪ →δ is →∗

βδ. Since both β-reduction and δ-reduction maintain the type of a term, so
does →∗

βδ, and this relation is confluent. A closed term of type • is in weak head normal
form if it is of the form a t0 · · · tj . Not every λY term reduces to a head normal form.

Let Σ be a tree signature and let ω be a new nullary symbol, i.e, of type •. We define the
Böhm tree BT (t) of a closed term of type • as follows: If t does not reduce via →∗

βδ to a weak
head normal form, then BT (t) = ω, i.e., the tree has just one node. Otherwise, let a t0 · · · tj
be a weak head normal form of t. The root of BT (t) is labeled by a, and its successors are,
in order, the roots of BT (t0), . . . ,BT (tj). Due to confluence, this definition is sound.

The HORS model-checking problem (defined via λY terms) is the following: Given a
closed term t of type • over Σ and an APT A with alphabet Σ ∪ {ω : •}, does A accept
BT (t)? For terms of order k ≥ 0, this is known to be a k-EXPTIME complete problem [20].

2.3 Timed Automata
Let X = {x, y, . . . } be a set of R≥0-valued variables, called clocks. CC (X) is the set of clock
constraints over X , defined as conjunctive formulas over ⊤ and x ⊕ c for x ∈ X and c ∈ N,
where ⊕ ∈ {≤, <,>,≥}. Clock constraints are denoted by χ, χ′ etc.

A clock evaluation is a mapping η : X → R≥0; it satisfies a clock constraint as follows:
(i) η |= ⊤ always, (ii) η |= x ⊕ c iff η(x) ⊕ c and (iii) η |= φ1 ∧ φ2 iff η |= φ1 and η |= φ2.
For a clock evaluation η and d ∈ R≥0, we write η+d for the clock evaluation defined via
(η+d)(x) = η(x) + d for all x ∈ X . For R ⊆ X , η|R is the clock evaluation defined via
η|R(x) = η(x) if x /∈ R and η|R(x) = 0 if x ∈ R.

TIME 2025

5:4 Higher-Order Timed Automata and Tail Recursion

Let Prop be a finite set of propositions. A timed automaton over clocks in X and with
propositions in Prop is an A = (L,X , ℓ0, ι,∆, λ) where (i) L is the set of locations of the timed
automaton, including the initial location ℓ0, (ii) X is a finite set of clocks, (iii) ι : L → CC (X)
assigns a clock constraint called an invariant to each location, (iv) ∆ ⊆ L× CC (X) × 2X ×L

is a finite set of transitions; we write ℓ g,R−−−→ ℓ′ for (ℓ, g, R, ℓ′) ∈ δ. In such a transition, g
is the guard and R are the resets of the transition. Finally, (v) λ : L → 2Prop labels each
location with the propositions valid there. The index m(A) of a timed automaton A is the
largest constant that occurs in its guards or invariants. Its size is defined as

|A| = |∆| · (2 · log(|L|) + |X |2 · logm(A)) + |L| · (log |X |2 · logm(A)) + |L| · |Prop|.

due to the coding of the constants in clock constraints in binary. A TA defines a timed
Transition System (tTS), to be defined in more general fashion in Sect. 3.

2.4 The Timed µ-Calculus
We define the timed modal µ-calculus (Tµ) following [17]. Let X be a set of clocks and let Y
disjoint from X be a set of specification clocks. Let Prop be a set of propositions and let V
be a set of fixpoint variables. A formula of Tµ is one derived from the following grammar:

φ ::= p | X | χ | ¬φ | φ ∨ φ | φ ∧ φ | φ▷ φ | φ⊟ φ | z. φ | µX. φ | νX. φ

where p ∈ Prop, X ∈ V, χ ∈ CC (X ∪ Y) and z ∈ Y. Moreover, every variable X must be
bound exactly once and occur under an even number of negations in µX. φ or νX. φ, a
standard convention for the modal µ-calculus. This induces, for each Tµ formula φ, a function
fp where fp(X) is the unique ψ with µX. ψ or νX. ψ a subformula of φ. Moreover, we
assume w.l.o.g. that every Tµ formula is guarded in the sense that, on the path from µX. ψ

or νX. ψ to X in the syntax tree of the formula, there is an instance of ▷ or ⊟. Analogously
to the ordinary µ-calculus [10], every Tµ formula can be converted into an equivalent guarded
one, potentially at the cost of exponential blowup1.

z. φ resets the specification clock z to 0. Hence, patterns like z. . . . z = 4 . . . serve to
test for elapsed time. The intuition for φ1 ▷ φ2 is that of a temporal next operator: it is
satisfied if φ2 is true after a sequence of a delay, a discrete transition, and another delay, and
φ1 is true all the way before. The operator ⊟ is the dual of it, i.e., a temporal next with
universal quantification over delays and transitions.

Let T = (S,−→, s0, λ) be a tTS, let α : V → 2S be a variable assignment. The semantics
JφKα

T of a Tµ formula φ is defined inductively via

JpKα
T = {s ∈ S | p ∈ λ(s)} JXKα

T = α(X)
JχKα

T = {s ∈ S | s |= χ} Jz. ψKα
T = {s ∈ S | s|{z} ∈ JψKα

T }
Jψ1 ∨ ψ2Kα

T = Jψ1Kα
T ∪ Jψ2Kα

T Jψ1 ∧ ψ2Kα
T = Jψ1Kα

T ∩ Jψ2Kα
T

J¬ψKα
T = S \ JψKα

T Jψ1 ⊟ ψ2Kα
T = J¬(¬ψ1 ⊟ ¬ψ2)Kα

T

with

JµX. ψKα
T =

⋂
{S ′ ⊆ S | JψKα[X 7→S′]

T ⊆ S ′}

JνX. ψKα
T =

⋃
{S ′ ⊆ S | JψKα[X 7→S′]

T ⊇ S ′}

1 This blowup can be avoided at the cost of extra complexity, so we decide to simply stipulate guardedness
for the sake of simplicity.

F. Bruse 5:5

and where Jψ1 ▷ ψ2Kα
T is defined as

{s | ex. s′ ∈ S, d, d′ ∈ R≥0 s.t. s+ d−→ s′ and s′ + d′ ∈ Jψ2Kα
T ,

and s+ d′′ ∈ Jψ1Kα
T f.a. 0 ≤ d′′ ≤ d and s′ + d′′′ ∈ Jψ1 ∨ ψ2Kα

T f.a. 0 ≤ d′′′ ≤ d′}.

Here, the temporal next relation ▷ is defined as the composition of a delay, a discrete
transition, and another delay. The clause that all states after the discrete transition need to
satisfy ψ1 ∨ ψ2 is standard to cope with the fact that there might not be a smallest delay
that makes ψ2 true. Standard patterns in temporal logic, e.g., E(p U[3,4] q), which says that
there is a path on which p holds until q holds, and that q holds after time elapsed between 3
and 4 time units, can be expressed as e.g., z. µX. (q ∧ 3 ≤ z ∧ z ≤ 4) ∨ p▷X.

The model-checking problem for Tµ is then to decide, given a timed automaton and a Tµ

formula φ, whether T |= φ where T is the tTS defined by the timed automaton.

▶ Proposition 1 ([2]). The model-checking problem for Tµ is EXPTIME-complete.

2.5 Tail Recursion
Bounded-Alternation Parity Automata. Let Σ be partitioned into Σre ∪ Σur. Let P =
(Q,Σ, δ, qI ,Λ) be an APT such that Q is partitioned into sets {q⊤, q⊥} ∪ Qur, Q1, . . . , Qm

for some m. Let q ∈ Qj for some 1 ≤ j ≤ m and let a ∈ Σ2. We say that A is branching
at q and a if δ(q, a) = (q1, q⊤) ∨ (q⊤, q2) with q1, q2 ∈ Qj ∪ {q⊤, q⊥} or δ(q, a) = (q1, q2)
with q2 ∈ Qj ∪ {q⊤, q⊥} and q1 ∈ Qj−1 ∪ · · · ∪ Q1 ∪ {q⊤, q⊥}. It is universal at q and a

if δ(q, a) = (q1, q2) with both q1, q2 ∈ Qj ∪ {q⊤, q⊥}, or δ(q, a) = (q1, q⊤) ∨ (q⊤, q2) with
q1 ∈ Qj−1 ∪ · · · ∪Q1 ∪ {q⊤, q⊥} and q2 ∈ Qj ∪ {q⊤, q⊥}.

P is called a bounded-alternation APT (baAPT) if it satisfies the following conditions:
1. Q is partitioned into sets {q⊤, q⊥}, Qur, Q1, . . . , Qm as per above.
2. For each 1 ≤ i ≤ m, each Qi is labeled as either branching or universal. Qur is not labeled.
3. If Qi is branching, then for each q ∈ Qi and for each a ∈ Σre, A is branching at q and a.

If Qi is universal, then for each q ∈ Qi and for each a ∈ Σre, A is universal at q and a.
4. For each q ∈ Q and a ∈ Σi

ur, we have that δ(q, a) ∈ B+(Qi
ur).

5. For each q ∈ Qur and a ∈ Σi
re, we have that δ(q, a) ∈ B+((Q \Qur)i).

The intuition here is as follows: The acceptance problem of a baAPT in which each state
is branching or in which each state is universal can be reduced to a one-player game. The
acceptance problem for such a baAPT with empty set Qur is a bounded-alternation game.
For general baAPT, the reduction to a bounded-alternation game is still possible if offending
states are in a set of lower index and there is an a priori bound on the number of times a play
passes through states in Qur. The definition of tail-recursive HORS below yields this bound.

Tail-Recursion for λY Terms. Let t be a term of the λY calculus over Σre ∪ Σur, L and F .
It is called tail-recursive if it satisfies the following conditions:
1. For all subterms of t of the form t1 t2, the operand-side subterm t2 has no free F variables.
2. For all subterms of the form a t0 · · · tj with a ∈ Σur, none of the ti has free F variables.
Note that there are no restrictions w.r.t. variables in L.

▶ Definition 2. Let Σ be partitioned into Σre ∪ Σur. Let t be a closed tail-recursive term of
type • in the λY calculus over Σ, and let P be a baAPT. The problem of tail-recursive HORS
model checking is to decide whether P accepts BT (t).

▶ Proposition 3 ([9]). The problem of tail-recursive HORS model checking (i.e., against a
baAPT) for terms of order k > 0 is complete for (k−1)-EXPSPACE.

TIME 2025

5:6 Higher-Order Timed Automata and Tail Recursion

3 Higher-Order Recursive Timed Automata

Timed automata define tTS, where each state is a pair of a location and a clock evaluation,
the former which defines the propositonal labeling of the state. Transitions in tTS are either
delay transitions that let time flow but keep the location component, or discrete transitions
that keep time fixed, change the location, and reset clocks as indicated by the transition. The
first kind of transition respects location invariants, while the second kind respects guards.

The idea for recursively defined tTS is that locations are not a fixed, finite set, but are
the nodes of a tree generated by a λY term. The propositional labeling is derived from the
labeling of the respective node, i.e., the tree constructor in question. Moreover, we define
HORS for tTS in such a way that a tree constructor also carries information on the location
invariant associated to it, and the guards and resets of its successors.

▶ Definition 4. Let X be a finite set of clocks and let Prop be a finite set of propositions. A
timed tree alphabet (over X and Prop) is a finite, nonempty set Σ together with functions
ar , λ, ι, trns of domain Σ where, for each a ∈ Σ,
1. ar(a) ∈ N indicates the arity of the symbol (as for standard tree alphabets),
2. λ(a) ⊆ Prop indicates the propositional labeling of a node labeled by the symbol,
3. ι(a) ∈ CC (X) indicates the invariant of a node labeled by the symbol, and
4. trns(a) ∈ (CC (X) × 2X)i where i = ar(a) indicates the guards and resets on the edges to

the i many successors of a node labeled by the symbol.
We write trnsi(a) to denote the ith element of the tuple trns(a).

Of course, a timed tree alphabet is a tree alphabet by ignoring the extra functions. A
tree labeled by such a timed alphabet gives rise to a tTS as follows.

▶ Definition 5. Let Σ be a timed tree alphabet over X and Prop and let (T, l) be a Σ-tree.
The tTS defined by (T, l) is TT = (S,−→, s0, λ) where

S = {(v, η) | η |= ι(l(v))}, where v ∈ T and η : X → R≥0,
the initial state is (ϵ, η0) with η0(x) = 0 f.a. x ∈ X ,
delay transitions keep the tree node but let time flow: for any (v, η) ∈ S and d ∈ R≥0 we
have a transition (v, η) d−→(v, η + d) if η + d′ |= ι(l(v)) for all 0 ≤ d′ ≤ d.
discrete transitions are derived from trns(l(v)): for all (v, η) ∈ S, i < ar(lv), we have
(v, η) −→(vi, η|R) if trnsi(l(v)) = (χ,R) and η |= χ and η|R |= ι(l(vi)),
the propositional labeling λ feeds through the labeling of a tree node, i.e., λ(v, η) = λ(l(v)),
all states are labeled by the clock constraints that hold there, i.e., (v, η) |= χ iff η |= χ.

Note that TT is generally not a tree due to additivity of time: there are uncountably many
paths from (v, η) to (v, η+ d) for any d > 0 s.t. the location invariant is satisfied. Other than
this, the transition system is a tree though.

A λY term t over a timed alphabet is called a Higher-Order Recursive Timed Automaton
(HORTA). It generates a tTS Tt via the tree generated from the term. Its order is that of
the order of the underlying λY term. The index m(t) of a HORTA is the largest constant
that occurs in its guards or invariants, its arity ar(t) is the maximal arity of a symbol in its
tre alphabet. The size of a HORTA is ||t|| = |t| · |Σ| · (|Prop| + |X |2 ·m(A) · ar(t)) where |t|
defines the size of the underlying λY term.

The HORTA model-checking problem is then the following:

given: a HORTA t and a formula φ of the timed µ-calculus
decide: does Tt |= φ hold?

An example can be found in the appendix.

F. Bruse 5:7

4 Tail Recursion

Let X be a set of clocks, Y be a set of specification clocks and Prop be a set of atomic
propositions with psf ∈ Prop a designated proposition. This proposition takes the role
of a tree constructor from Σur for tail-recursive terms, i.e., it signals tree nodes s.t. its
subtrees are defined using terms without free Y variables. Hence, given a HORTA, this
designated proposition psf partitions its tree alphabet Σ into Σur = {a | psf ∈ λ(a)} and
Σre = {a | psf /∈ λ(a)}. A HORTA is tail recursive if it is tail recursive as a HORS using this
partition.

Now let V = Vbr
1 ∪ Vun

1 ∪ · · · ∪ Vbr
m ∪ Vun

m ∪ Vur be the set of fixpoint variables, partitioned
into 2m+ 1 different sets. Each such variable plays the same role as a state in a baAPT,
including being either branching, universal, or unrestricted, an being partitioned into different
sets. Hence, the the annotations mark the variables as branching, universal, or unrestricted
(superscript), and fix the respective set of the partition (subscript).

A Tµ formula has bounded-alternation if it can be derived from ψbr
m or ψun

m in the following
grammar:

ψsf = tt | ff | p | ¬p | χ | ¬χ | ψsf ∨ ψsf | ψsf ∧ ψsf | psf ∧ ψur

ψbr
m = ψsf | Xbr

m | ¬ψm−1 | ψbr
m ∨ ψbr

m | ψm−1 ∧ ψbr
m | ψm−1 ▷ ψbr

m | µXbr
m. ψ

br
m | νXbr

m. ψ
br
m

ψun
m = ψsf | Xun

m | ¬ψm−1 | ψm−1 ∨ ψun
m | ψun

m ∧ ψun
m | ψm−1 ⊟ ψun

m | µXun
m . ψun

m | νXun
m . ψun

m

...
...

ψbr
1 = ψsf | Xbr

1 | ψbr
1 ∨ ψbr

1 | ψsf ∧ ψbr
1 | ψsf ▷ ψbr

1m | µXbr
m. ψ

br
m | νXbr

m. ψ
br
mx

ψun
1 = ψsf | Xun

1 | ψsf ∨ ψun
1 | ψun

1 ∧ ψun
1 | ψsf ⊟ ψun

1 | µXun
1 . ψbr

1 | νXun
1 . ψbr

1

ψur = ψsf | ψur ∨ ψur | ψur ∧ ψur | ψsf ▷ ψsf | ψsf ⊟ ψsf

| µXur. ψur | νXur. ψur | (¬psf ∧ ψm)

where Xbr
i , X

un
i are in the respective sets of variables for all i, and so is Xur. A term ψi can

denote both ψun
i and ψbr

i .
We give some intuition for this definition of bounded-alternation Tµ-formulas. A key

point for tail-recursive behavior is limited boolean alternation, i.e. between ∨ and ∧. The
reason for that is that space-bounded algorithms need bounded boolean alternation, for
(fully) alternating space is exponential time. baAPT achieve this by (partially) limiting
the acceptance game to a game that is played by one player only, either ∃ or ∀, with the
other player only making token moves without associated freedom of decision. This is then
captured in the intuition for bounded-alternation Tµ formulas in a syntactic way.

However, a better intuition is that a formula is alternation-free if it either does not
contain ∧ and ⊟, or if it does not contain ∨ and ▷, and no negations. An example of this is
µX. p∨ (tt▷X), or µX. p∧ (tt⊟X). Note that the polarity of the fixpoint does not matter
here.

Limited alternation is then allowed by stratifying these formulas (via the indices in e.g.,
ψbr

m, . . . , ψ
br
1) and allowing one-time use of forbidden operators at the price of dropping to a

lower level in the hierarchy. Of course, formulas that contain no recursive definitions at all,
e.g., those in ψsf are also safe. Hence, we obtain e.g.,

µX.(tt ▷ x) ∨
(
¬p ∧ (q ∨ νZ. p ∧ (tt ⊟ Z))

)
.

Since bounded-alternation formulas are to be evaluated over tTS defined by tail-recursive
λY terms, there is an additional ingredient: In tail-recursive λY terms, subterms in operand
position cannot contain free Y variables, whence the tree generated by such a subterm is

TIME 2025

5:8 Higher-Order Timed Automata and Tail Recursion

completely independent of the rest of the term (excluding arguments of its own, of course).
Moreover, we use special alphabet symbols (those in Σur) to signal that a term appears
e.g., in operand position, or that it contains no free Y variables. Since the tree defined
by such a term is independent of the rest of the tree, and since this can only repeat a
polynomial amount of times (due to passing to a strict subterm), a model-checking procedure
can solve the problem for the tree generated by the subterm first, and then return to the
model-checking problem for the overall tree. Since this is such an independent subproblem,
it is not harmful to “reset” the amount of boolean alternation possible in a Tµ formula/a
baAPT. This is what happens in formulas of the form ψur, which have nontrivial semantics
only in states where psf is true (and, hence a tree constructor from Σur was read, whence we
are in such an independent subproblem). Note that it is not important that this generates a
polynomial bound on the number of “alternation resets” in a run of a baAPT/the evaluation
of a bounded-alternation Tµ formula. In general, there is no such bound. However, the
model-checking problem will always only generate a polynomial stack of open subproblems
due to alternation resets, and that suffices to yield the complexity bound.

The example in the appendix contains a simple example of a pair of a tail-recursive
HORTA and a bounded-alternation Tµ formula.

5 Upper Bounds for Model-Checking

The goal of this section is to establish upper bounds for model checking of the trees generated
by HORTA (tail recursive or not) against Tµ formulas. For the rest of the section, fix a tree
alphabet Σ, a λY term t and a Tµ formula φ. Assume w.l.o.g. that φ is in negation normal
form, i.e., that negations appear only in front of propositions or clock constraints.

5.1 The Region Abstraction
The region abstraction is a classical result (see e.g., [4] or [6], Def. 9.42), that maps the
infinite transition system defined by a TA onto a finite transition system. While we work with
tTS defined by HORTA, the key point is the same: the region abstraction uses an equivalence
relation ≃m, for m ∈ N, on clock evaluations. Let X be a set of clocks, specification or
otherwise. Then ≃m is defined as follows: η ≃m η′ iff

for all x ∈ X : η(x) > m and η′(x) > m

or ⌊η(x)⌋ = ⌊η′(x)⌋ and frac(η(x)) = 0 ⇔ frac(η′(x)) = 0
and for all y ∈ X with η(y) ≤ m and η′(y) ≤ m :

frac(η(x)) ≤ frac(η(y)) ⇔ frac(η′(x)) ≤ frac(η′(y)).

frac(r) is the fractional part of a real number. Clock evaluations are equivalent if, for each
clock, (i) either both clocks have a value greater than m, or (ii) they compare in the same way
with respect to all integers ≤ m. Moreover, the passage of time makes equivalent evaluations
reach the next integral value first for the same clock. ≃m is an equivalence relation for any
m; an equivalence class in ≃m is called a region. The equivalence class of η under ≃m is [η]m
(or just [η] when m is clear). We define the notion of a successor region:

▶ Definition 6. Let ≃m denote the region equivalence w.r.t. m. For each region [η]m, the
unique successor region is

suc([η]m) = [η]m if η(x) > m for all x ∈ X ,
suc([η]m) = [η′]m iff there is d ∈ R≥0 such that η+d = η′, and η+d′ ∈ [η]m ∪ [η′]m for
all 0 < d′ < d, and [η]m ̸= [η′]m.

F. Bruse 5:9

The second term defines the successor region of [η] to be the first region that is entered if
time passes from any η′′ ∈ [η], and the first term makes the successor region well-defined in
regions where all clocks have values greater than m. We call this region the maximal region.

5.2 The Untiming Construction
Let X be a set of clocks, let Y be a set of specification clocks. Let Tt = (S,−→, s0, λ) be the
tTS generated by the HORTA t. Note that S ⊆ {(v, η) | v ∈ T, η |= ι(lv)}.

Let Prop,Ξ be the propositions, resp. clock constraints mentioned by φ, and let Y be the
specification clocks that φ mentions. Define an (untimed) µ-calculus formula φ̂ via

p̂ = p X̂ = X

χ̂ = χ ¬̂φ′ = ¬φ̂′

φ̂1 ∨ φ2 = φ̂1 ∨ φ̂2 φ̂1 ∧ φ2 = φ̂1 ∧ φ̂2

φ̂1 ▷ φ2 = µZ. (φ̂1 ∧ ♢DZ) ∨ (♢T (µZ ′. (φ̂1 ∧ ♢DZ
′) ∨ (φ̂1 ∨ φ̂2))) ẑ. φ′ = ♢zφ̂′

̂φ1 ⊟ φ2 = νZ. (φ̂1 ∧ □DZ) ∧ (□T (νZ ′. (φ̂1 ∧ □DZ
′) ∧ (φ̂1 ∨ φ̂2)))

µ̂X. φ′ = µX. φ̂′ ν̂X. φ′ = νX. φ̂′

where the Z,Z ′ for the ▷ and ⊟ are fresh for each subformula. The semantics of the untimed
modal operators are standard: J♢DψKα

T = {s | ex. s′ ∈ JψKα
T s.t. s D−−→ s′} and similarly for

□D and the other modalities. Note that this definition is for untimed transition systems.
Let m be that largest integer in any location invariant or guard in t or a clock constraint

in φ. Let [η] denote [η]m from now on. Define a new (untimed) transition system with
transitions {D,T} ∪ {z | z ∈ Y} and propositions in Prop ∪ Ξ via T u

T = (Su,−→u, s
′
0, λ

′) via
Su = {(v, [η]) | (v, η) ∈ S},
−→u = {(v, [η]) D−−→(v, suc(η)) | suc(η) |= ι(l(v))}∪{(v, [η]) T−−→(vi, [η′]) | (v, η) −→(vi, η′)}∪
{(v, [η]) z−→(v, [η]|z) | η|z |= ι(l(v))},
s′

0 = (ϵ, [η0]),
λ′((v, [η])) = λ(v, η) = λ(v) ∪ {χ ∈ Ξ | η |= χ}.

Finally, given a variable assignment α : V → 2S , define α̂ : V → 2S′ via α̂(X) = {(v, [η]) |
(v, η) ∈ α(X)}.

▶ Proposition 7 ([2]). For all subformulas ψ of φ, for all (v, η) ∈ S, and for all variable
assignments α we have (v, η) ∈ JψKα

T iff (v, [η]) ∈ Jψ̂Kα̂
T u

T
.

Technically the proof in [2] is only for tTS defined via TA, not via HORTA. However, finiteness
is not a crucial ingredient of the proof, and the region graph construction is very robust.

5.3 The Reduction
We have seen before that, on the region graph, the formula φ̂ captures the semantics of φ.
We define an APT Pφ alongside the logic of φ̂, but based on the syntax of φ itself. The
reason for that is in the details of the translation of ▷ and ⊟, where we have to make sure
that the regions are visited one by one, but must also avoid excessive pointless delays. The
states of Pφ will be the product of the set of subformulas of φ and the set of regions in
the region graph, plus some extra copies in some places. Transitions will follow the logic of
subformulas in the first component, and pass through the regions as need be at formulas
with real-time semantics, e.g., ▷,⊟.

TIME 2025

5:10 Higher-Order Timed Automata and Tail Recursion

As a preparation, let Σ be the tree alphabet used in t. Define Σ′ = Σ ∪ {aaux | a ∈ Σ}
where all the new tree constructors are unary. Let m be the integer used for the region graph.
The longest sequence of delay transitions that can be taken before reaching the maximal
region is less than k′ = |X ∪ Y| · 3 ·m. Let k be the length of the longest path in the syntax
tree of φ that contains no formulas of the form ψ1 ▷ψ2 or ψ1 ⊟ψ2, including passing through
fixpoint variables. This number exists due to guardedness. Write k for 2 · k′ + k.

Obtain a λY term t̂ from t by replacing each occurrence of a tree constructor a by ak
aux a.

i.e., by prepending it by a sequence of k many copies of aaux. These tree constructors give
the yet-to-be-defined automaton enough space to (i) explicitly simulate delay transitions in
the region graph by transitions reading aaux in the tree, and (ii) allow easy handling of the
logic of subformulas by transitions without advancing in the tree proper.

Let Pφ = (Q,Σ′, δ, qI ,Λ) with the individual components defined as follows:
Q = sub(φ) × R≥0/≃m × {0, 1, 2} and qI = (φ, [η0], 0)
Λ is defined inductively via the alternation index of a subformula of φ. Let ai(ψ) be
defined inductively for formulas of the form µX. ψ′ and νx. ψ′ as follows:

For formulas of the form ψ = µx. ψ′ set ai(ψ) to the smallest even integer that is at
least as big as ai(ψ′′) for all subformulas ψ′′ of ψ, but at least 0.
For formulas of the form ψ = µx. ψ′ set ai(ψ) to the smallest odd integer that is at
least as big as ai(ψ′′) for all subformulas ψ′′ of ψ, but at least 1.

Fo other ψ′, set ai(ψ) to ai(ψ′) where ψ′ is the first subformula of the form µX. ψ′ or
νX. ψ′ on the path to the root in the syntax tree of φ. Then Λ((ψ, [η], i)) = ai(ψ).

Finally, δ is defined (for the non-modalities) as follows:

δ((p, [η], 0), aaux) = ⊤ if p ∈ λ(a); ⊥ ow.
δ((¬p, [η], 0), aaux) = ⊥ if p ∈ λ(a); ⊤ ow.
δ((χ, [η], 0), aaux) = ⊤ if η |= χ; ⊥ ow.

δ((¬χ, [η], 0), aaux) = ⊥ if η ̸|= χ; ⊤ ow.
δ((ψ1 ∨ ψ2, [η], 0), aaux) = (ψ1, [η], 0) ∨ (ψ2, [η], 0)
δ((ψ1 ∧ ψ2, [η], 0), aaux) = (ψ1, [η], 0) ∧ (ψ2, [η], 0)
δ((µX. ψ, [η], 0), aaux) = (ψ, [η], 0)
δ((νX. ψ, [η], 0), aaux) = (ψ[η], 0)

δ((X, [η], 0), aaux) = (fp(X), [η], 0)
δ((z. ψ, [η], 0), aaux) = (ψ, [η|{z}], 0) if η|{z} |= ι(a)

The intuition here is that the acceptance game simply follows the logic of the subformula in
question. The transitions for ▷ are

δ((ψ1 ▷ ψ2, [η], 0), aaux) = (ψ1, [η], 0) ∧ (ψ1 ▷ ψ2, [η], 1) if suc([η]m) ̸|= ι(a) or [η] is max.
δ((ψ1 ▷ ψ2, [η], 0), aaux) = (ψ1, [η], 0) ∧ ((ψ1 ▷ ψ2, [η], 1) ∨ (ψ1 ▷ ψ2, suc([η]), 0))

if suc([η]m) |= ι(a) and [η] is not max.
δ((ψ1 ▷ ψ2, [η], 1), aaux) = (ψ1 ▷ ψ2, [η], 1)

δ((ψ1 ▷ ψ2, [η], 1), a) =
∨

j∈{0,...,ar(a),trnsj(a)=(χ,R),η|=χ

(qi
⊤, (ψ1 ▷ ψ2, [η|R], 2), qar(a)−i−1

⊤)

δ((ψ1 ▷ ψ2, [η], 2), aaux = ⊥ if η ̸|= ι(a)
δ((ψ1 ▷ ψ2, [η], 2), aaux) = (ψ2, [η], 0) if η |= ι(a) and suc([η]m) ̸|= ι(a) or [η] is max.
δ((ψ1 ▷ ψ2, [η], 2), aaux) = (ψ1, [η], 2) ∧ ((ψ2, [η], 0) ∨ (ψ1 ▷ ψ2, suc([η]), 2))

if η |= ι(a) and suc([η]m) |= ι(a) and [η] is not max.

F. Bruse 5:11

We omit the clauses for ψ1 ⊟ψ2 as they are dual to those for ψ1 ▷ψ2. The logic of a temporal
next follows three phases: a delay, a discrete transition, and then another delay. First, if the
last component of the state is 0, ∃ advances to successor regions of she so desires, and if this
is possible. Then, if the last component is 1, the sequence of aaux is consumed and an actual
transition happens at a, with an immediate check for satisfaction of the location invariant.
Then, ∃ can delay further if she so desires. After she is done with this, the APT tracks ψ2.

▶ Lemma 8. Let Tt̂ be the tree generated by t̂. Then Pφ accepts Tt̂ iff (ϵ, η0) ∈ JφKTt
.

It is immediate that t̂ is tail-recursive if t is. Moreover, one can show that Pφ is a baAPT if
φ has bounded alternation.

▶ Theorem 9. The model-checking problem for order-k HORTA against Tµ formulas is in
(k + 1)-EXPTIME. For tail-recursive order-k-HORTA and bounded-alternation formulas, the
problem is in k-EXPSPACE.

Proof. Note that Pφ is exponential in the input, since it contains the region graph in its
state space. Since the model-checking problem for order-k HORS is k-EXPTIME-complete
[20], we obtain the result. For the tail-recursive case, we obtain the claim via Prop. 3. ◀

6 Matching Lower Bounds

We now show that the model-checking problem for bounded-alternation Tµ formulas against
trees generated by order-1 HORTA is EXPSPACE-hard, via a reduction from the corridor
tiling problem (see below). The general case of k-EXPSPACE-hardness for model-checking
order-k HORTA is left for a future publication. The proof uses an idea from [12, 11].

6.1 Tiling Problems
A tiling system is a K = (K,H, V, kI , t□, tF) where K is a finite set of tiles, H,V ⊆ K ×K

are the horizontal and vertical matching relations, and kI , k□, kF are the initial, blank and
final tiles. The corridor tiling problem consumes as input a tiling system K and some n ∈ N
encoded unarily. It asks whether there is a sequence ρ0, . . . , ρm−1, where each of the ρi is a
K-word of length 2n that satisfies the following:

ρ0 = kIk□ · · · k□,
for each 0 ≤ i ≤ m− 1, and 0 ≤ j < 2n − 1, we have (ρi(j), ρi(j + 1)) ∈ H,
for each 0 ≤ i ≤ m− 2 and 0 ≤ j ≤ 2n − 1, we have (ρi(j), ρi+1(j)) ∈ V , and
ρm−1(0) = kF ,

where ρi(j) denotes the jth tile in ρi. We call the ith word in this solution the ith row.

▶ Proposition 10 ([23, 15]). The corridor tiling problem is EXPSPACE-hard.

6.2 Encoding Rows
Let K = (K,H, V, kI , k□, kF) be a tiling system, and assume that K is ordered, e.g., via
K = {k0, . . . , km−1} for m = |K|. W.l.o.g. let kI = k0, k□ = k1. A row candidate is a
K-word of length 2n. Such a row candidate is a row if it satisfies the horizontal matching.
Row candidates are also lexicographically ordered. Given a row candidate ρ, we obtain the
lexicographically next one ρ′ by setting ρ′(j) = ρ(j) if there is j < j′ < 2n s.t. ρ(j) ̸= km−1,
and if ρ(j) = ki and ρ(j′) = km−1 for all j < j′ < 2n, then ρ′(j) = ki+1 (mod m).

TIME 2025

5:12 Higher-Order Timed Automata and Tail Recursion

We now encode rows and row candidates into trees generated by λY terms over a timed
tree alphabet (i.e., HORTA), and, for each k ∈ K, define a Tµ formula that checks whether a
given tile in a the row encoded by such a tree is k. These formulas are mutually recursive,
but the recursion is guarded by the designated proposition psf (cf. Sec. 4). The HORTA
has one clock x. A node v in the underlying tree encodes a row ρ if, for each 0 ≤ i < 2n,
(v, x 7→ i) ∈ JψkKTT

iff k = ρ(i). Here, TT is the tTS defined by the HORTA.
Let Prop = {pI , p□, psf} and let Σ = {a1

nxt, a
2
rw, b

1
I , b

1
□} with arities indicated by super-

scripts. Let trns0(bI) = trns0(b□) = (z = 1, {z}). Set λ−1(pI) = {bI} and λ−1(p□) = {b□}
and λ−1(psf) = {anxt}, where psf is the designated proposition from the definition of tail recur-
sion/bounded alternation. We write ▷iψ for z. tt▷(z = i∧ψ), and ⊟iψ for z. tt⊟(z = i∧ψ).
Consider the λY terms

init = bI (Y F. b□ F) next t = anxt(Y F. arw F t).

The first one defines a tree with bI as the root and then an infinite sequence of b□ after that.
The other consumes a tree and returns a tree that contains anxt as the root, and then below
it an infinite leftward sequence of arw that each contain t as their right son. All rows and
row candidates we work with are obtained from init via repeated application of next.

Now consider the mutually recursive Tµ formulas

ψk0 = pI ∨
(
▷0 (psf ∧ ψkm−1 ∧ ▷0µX. ¬psf ∧ ψkm−1 ∧ (x = 2n − 1 ∨ ▷1X))

)
∨

(
▷0 (psf ∧ ψk0 ∧ ▷0µX. ¬psf ∧ (x ≤ 2n − 1 ∧ ¬ψkm−1 ∨ ▷1X))

)
ψk1 = p□ ∨

(
▷0 (psf ∧ ψk0 ∧ ▷0µX. ¬psf ∧ ψkm−1 ∧ (x = 2n − 1 ∨ ▷1X))

)
∨

(
▷1 (psf ∧ ψk0 ∧ ▷0µX. ¬psf ∧ (x ≤ 2n − 1 ∧ ¬ψkm−1 ∨ ▷1X))

)
ψki+2 =

(
▷0 (psf ∧ ψki+1 ∧ ▷0µX. ¬psf ∧ ψkm−1 ∧ (x = 2n − 1 ∨ ▷1X))

)
∨

(
▷0 (psf ∧ ψki+2 ∧ ▷0µX. ¬psf ∧ (x ≤ 2n − 1 ∧ ¬ψkm−1 ∨ ▷1X))

)
.

The idea is that encoding a tile is signaled by a proposition (only for kI , k□), or it holds due
to the recursive characterization of the lexicographic successor, applied recursively until the
propositional base case is reached. This is done by traversing along arw (used to let time
elapse in increments of 1) or anxt (from next t to t). Given a row candidate ρ, let nexti(ρ)
be the lexicographically ith successor of ρ modulo 2n.

▶ Lemma 11. The tree generated by init encodes the initial row. Given a tree that encodes
a row candidate ρ, the tree generated by nexti t encodes nexti(ρ).

6.3 The Reduction
Extend Σ by {a1

v, a
1
h} and Prop by {ph, pv} with λ−1(pv) = {av}, λ−1(ph) = {ah}. Now

consider the λY terms

horiz t = ah(Y F. arw F t)
vert t t′ = (Y F. av (av (F t t′)) (arw t (arw(t′ t′)))

and the Tµ formulas

ψhoriz = ▷0

(
ph ∧

(∧
(k,k′)/∈H

νX. (ψk → ¬ψk′) ∧ ((x = 2n − 1 ∨ ▷1(¬psf ∧X)))
))

ψvert =
∧

(k,k′)/∈V

νX. (▷0ψk → ¬ ▷0 (¬psf ∧ ▷0¬psf ∧ ψk′)

∧ ((x = 2n − 1 ∨ ▷0(pv ∧ ▷1¬psf ∧X))))

F. Bruse 5:13

▶ Lemma 12. ψhoriz holds on the tree generated by horiz t iff t encodes a row, i.e., if the
row candidate it encodes satisfies horizontal matching. ψvert holds on the tree generated by
vert t t′ iff the rows encoded by t and t′ match vertically.

Finally, extend Prop by {p∨, p∧, pf } and Σ by {a2
∨, a

2
∧, a

1
f } with λ−1(p∨) = {a∨} and

λ−1(p∧) = {a∧} and λ−1(pf) = {af }. Consider the λY terms

check t t′ = a∧ (horiz t′) (vert t t′)
exists t t′ = Y F. a∨ (a∧(check t t′) (G t′)) (F t (next t′))

tiling =
(
Y G. λt. a∨ (af t) (exists t init)

)
init

and the Tµ formulas

ψfinal = ψk1

ψchk = ⊟0((ph ∧ ψhoriz) ∨ (pv ∧ ψvert))
ψsrch = µXsrch. ▷0

(
pf ∧ ψfinal)(

p∨ ∧ µY. ▷0 (p∧ ∧ (⊟0(p∧ ∧ ψcheck ∨ (p∨ ∧X))) ∨ (p∨ ∧ Y))
)

▶ Lemma 13. ψfinal holds on the tree generated by final t iff t encodes a final row. ψcheck

holds on the tree generated by check t t′ if (i) t encodes a row and (ii) t and t′ match
vertically.

Finally, ψsrch holds on the tree generated by tiling iff K has a solution.

It is not hard to show that tiling is tail recursive, but not obvious that ψsrch has bounded
alternation.

▶ Lemma 14. The λY term tiling is tail recursive. The Tµ fomula ψsrch is bounded-
alternation and of polynomial size in K.

This yields the following theorem.

▶ Theorem 15. The model-checking problem of tail-recursive HORTA against bounded-
alternation Tµ formulas is EXPSPACE-hard.

Proof. By Prop. 10, the corridor tiling problem is EXPSPACE-hard. By Lem. 13, an instance
of the corridor tiling problem has a solution iff ψsrch holds on the tree generated by tiling.
Since by Lem. 14, the former is bounded-alternation and the latter is tail-recursive, and both
are of polynomial size in K, this constitutes a polynomial-time reduction. ◀

7 Conclusion

We have refined the notion of Real-Time Recursion Schemes [3] into that of HORTA, and
established matching upper bounds for the model-checking problem. We have also shown
that the model-checking problem for HORTA becomes easier by half an exponential in the
tail-recursive setting. The lower bound has been established for the order-1 case, but we
conjecture that it can be extended to all orders. The corridor tiling problem needs to be
replaced by an exponential version [15], and the encoding of a row needs to be lifted from a
tree to a function that consumes a tree, and returns a tree etc., see e.g., [3, 9].

TIME 2025

5:14 Higher-Order Timed Automata and Tail Recursion

References
1 Yasmina Abdeddaïm, Eugene Asarin, and Oded Maler. Scheduling with timed automata.

Theor. Comput. Sci., 354(2):272–300, 2006. doi:10.1016/J.TCS.2005.11.018.
2 Luca Aceto and François Laroussinie. Is your model checker on time? on the complexity of

model checking for timed modal logics. J. Log. Algebraic Methods Program., 52-53:7–51, 2002.
doi:10.1016/S1567-8326(02)00022-X.

3 Eric Alsmann and Florian Bruse. Real-time higher-order recursion schemes. In Pietro Sala,
Michael Sioutis, and Fusheng Wang, editors, 31st International Symposium on Temporal
Representation and Reasoning, TIME 2024, October 28-30, 2024, Montpellier, France, volume
318 of LIPIcs, pages 16:1–16:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.TIME.2024.16.

4 Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2–34, 1993. doi:10.1006/inco.1993.1024.

5 Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In Mike Paterson,
editor, Automata, Languages and Programming, 17th International Colloquium, ICALP90,
Warwick University, England, UK, July 16-20, 1990, Proceedings, volume 443 of Lecture Notes
in Computer Science, pages 322–335. Springer, 1990. doi:10.1007/BFB0032042.

6 C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
7 Massimo Benerecetti, Stefano Minopoli, and Adriano Peron. Analysis of timed recursive state

machines. In 2010 17th International Symposium on Temporal Representation and Reasoning,
pages 61–68, 2010. doi:10.1109/TIME.2010.10.

8 Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. On the automatic verification of
systems with continuous variables and unbounded discrete data structures. In Hybrid Systems
II, pages 64–85, Berlin, Heidelberg, 1995. Springer-Verlag.

9 Florian Bruse. Space-efficient model-checking of higher-order recursion schemes. In Shankara-
narayanan Krishna, Sriram Sankaranarayanan, and Ashutosh Trivedi, editors, Verification,
Model Checking, and Abstract Interpretation - 26th International Conference, VMCAI 2025,
Denver, CO, USA, January 20-21, 2025, Proceedings, Part I, volume 15529 of Lecture Notes
in Computer Science, pages 29–51. Springer, 2025. doi:10.1007/978-3-031-82700-6_2.

10 Florian Bruse, Oliver Friedmann, and Martin Lange. On guarded transformation in the modal
µ-calculus. Log. J. IGPL, 23(2):194–216, 2015. doi:10.1093/JIGPAL/JZU030.

11 Florian Bruse and Martin Lange. The tail-recursive fragment of timed recursive CTL. Inf.
Comput., 294:105084, 2023. doi:10.1016/J.IC.2023.105084.

12 Florian Bruse, Martin Lange, and Étienne Lozes. Space-efficient fragments of higher-order
fixpoint logic. In Matthew Hague and Igor Potapov, editors, Reachability Problems - 11th
International Workshop, RP 2017, London, UK, September 7-9, 2017, Proceedings, volume
10506 of Lecture Notes in Computer Science, pages 26–41. Springer, 2017. doi:10.1007/
978-3-319-67089-8_3.

13 Lorenzo Clemente and Slawomir Lasota. Timed pushdown automata revisited. In 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10,
2015, pages 738–749. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.73.

14 Werner Damm. The IO- and oi-hierarchies. Theor. Comput. Sci., 20:95–207, 1982. doi:
10.1016/0304-3975(82)90009-3.

15 Stéphane Demri, Valentin Goranko, and Martin Lange. Temporal Logics in Computer Sci-
ence: Finite-State Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2016. doi:10.1017/CBO9781139236119.

16 Martijn Hendriks and Marcel Verhoef. Timed automata based analysis of embedded system
architectures. In Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium, pages 8–pp. IEEE, 2006.

17 Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic model
checking for real-time systems. Inf. Comput., 111(2):193–244, 1994. doi:10.1006/INCO.1994.
1045.

https://doi.org/10.1016/J.TCS.2005.11.018
https://doi.org/10.1016/S1567-8326(02)00022-X
https://doi.org/10.4230/LIPICS.TIME.2024.16
https://doi.org/10.1006/inco.1993.1024
https://doi.org/10.1007/BFB0032042
https://doi.org/10.1109/TIME.2010.10
https://doi.org/10.1007/978-3-031-82700-6_2
https://doi.org/10.1093/JIGPAL/JZU030
https://doi.org/10.1016/J.IC.2023.105084
https://doi.org/10.1007/978-3-319-67089-8_3
https://doi.org/10.1007/978-3-319-67089-8_3
https://doi.org/10.1109/LICS.2015.73
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.1016/0304-3975(82)90009-3
https://doi.org/10.1017/CBO9781139236119
https://doi.org/10.1006/INCO.1994.1045
https://doi.org/10.1006/INCO.1994.1045

F. Bruse 5:15

18 Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order pushdown trees are
easy. In Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and
Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble,
France, April 8-12, 2002, Proceedings, volume 2303 of Lecture Notes in Computer Science,
pages 205–222. Springer, 2002. doi:10.1007/3-540-45931-6_15.

19 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proceedings of the 24th Annual IEEE
Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA,
USA, pages 179–188. IEEE Computer Society, 2009. doi:10.1109/LICS.2009.29.

20 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In 21th
IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA,
USA, Proceedings, pages 81–90. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.38.

21 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. Information
and Compututation, 239:340–355, 2014. doi:10.1016/J.IC.2014.07.012.

22 Ashutosh Trivedi and Dominik Wojtczak. Recursive timed automata. In Ahmed Bouajjani
and Wei-Ngan Chin, editors, Automated Technology for Verification and Analysis - 8th
International Symposium, ATVA 2010, Singapore, September 21-24, 2010. Proceedings, volume
6252 of Lecture Notes in Computer Science, pages 306–324. Springer, 2010. doi:10.1007/
978-3-642-15643-4_23.

23 P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity, Logic, and
Recursion Theory, volume 187 of Lecture notes in pure and applied mathematics, pages 331–363.
Marcel Dekker, Inc., 1997.

A Additional Material

A.1 An example of a HORTA
Consider the example of a delivery truck that waits at a station to leave for its deliveries. It
can either leave, or stay at the station, for example because the driver’s mandatory break is
not over. Every time the option is presented and the truck stays, however, it is loaded with
an additional parcel that will need to be delivered during the next tour of the truck. Waiting
at the station takes between 1 and 2 time units, and the driver has to wait for at least 5
minutes. Delivering each parcel will take between 2 or 3 minutes. We ask: is it possible
to complete the mandatory waiting time of 5 minutes, but end up with a tour that can be
completed in 10 minutes or less?

We model this as follows: Let {stat2, par1, end0} be a tree alphabet with arities as
indicated. Add a unique proposition pend with λ(pend) = {end}.

Consider the λY term t =
(
Y F. λx. stat x (F (par x))

)
end. Note that this term is tail

recursive. It defines an infinite tree of the following form, which encodes the different ways
waiting and delivering can play out:

stat

end stat

par

end

stat

par

par

end

stat

par

...

...

TIME 2025

https://doi.org/10.1007/3-540-45931-6_15
https://doi.org/10.1109/LICS.2009.29
https://doi.org/10.1109/LICS.2006.38
https://doi.org/10.1016/J.IC.2014.07.012
https://doi.org/10.1007/978-3-642-15643-4_23
https://doi.org/10.1007/978-3-642-15643-4_23

5:16 Higher-Order Timed Automata and Tail Recursion

We now convert the λY term t into a HORTA by setting ι(stat) = x ≤ 2, ι(par) = x ≤ 3
and trns0(stat) = (z ≥ 5, {z}), trns1(stat) = (x ≥ 1, {x}), trns0(par) = (x ≥ 2, {x}).

The intuition here is that clock x is used to measure waiting times at the station and
delivery times of the individual parcels, while clock z is used to measure the break, and the
overall delivery time.

We can visualize the tree like this:

stat
x ≤ 2

end
pend

stat
x ≤ 2

par
x ≤ 3

end
pend

stat
x ≤ 2

par
x ≤ 3

parx ≤ 3

end
pend

stat
x ≤ 2

par
x ≤ 3

...

...

z ≥ 5, {z} x ≥ 1, {x}

z ≥ 5, {z} x ≥ 1, {x}

x ≥ 2, {x}
z ≥ 5, {z} x ≥ 1, {x}

x ≥ 2, {x}

x ≥ 2, {x}

z ≥ 5, {z} x ≥ 1, {x}

x ≥ 2, {x}

Here, location invariants are drawn next to the nodes, and pairs of transition guards and
resets drawn next to the edges. The proposition pend appears next to the final nodes.

A Tµ formula that verifies the property above is µX. (p∧z ≤ 10)∨(tt▷X). Note that the
dependence between the waiting times and the overall delivery time cannot be incorporated
into a finite-state TA due to the strictly nonregular behavior of loading additional parcels.
Also note that this formula has bounded boolean alternation. Since the term that gives riseto
the HORTA above is also tail recursive, a problem like this can be verified more efficiently,
since the

In a real-time recursion scheme (cf. [3]), such a situation could also be modeled, but less
naturally. Such a real-time recursion scheme generated trees where the tree constructors are
simply annotated by plain intervals, which roughly signals how much time it takes to process
such a constructor. No connection to individual clocks is made by the tree. Instead, the
tree generated by such a real-time scheme is to be verified against a pair of a TA and an
APT, with some synchronization between the two. This means that a significant part of the
behavior of the system that is being modeled must be added to this automaton, and great
care must be taken to synchronize the APT and he TA. Conversely, in a HORTA, the system
being modeled manifests itself almost exclusively in the (recursive) TA, as can be seen above.
The formulas that specify the desired property can then be comparatively simple. In the
case above, a simple reachability property suffices.

GradSTL: Comprehensive Signal Temporal Logic
for Neurosymbolic Reasoning and Learning
Mark Chevallier #

School of Engineering, University of Edinburgh, UK

Filip Smola #

School of Informatics, University of Edinburgh, UK

Richard Schmoetten #

School of Informatics, University of Edinburgh, UK

Jacques D. Fleuriot #

School of Informatics, University of Edinburgh, UK

Abstract
We present GradSTL, the first fully comprehensive implementation of signal temporal logic (STL)
suitable for integration with neurosymbolic learning. In particular, GradSTL can successfully
evaluate any STL constraint over any signal, regardless of how it is sampled. Our formally verified
approach specifies smooth STL semantics over tensors, with formal proofs of soundness and of
correctness of its derivative function. Our implementation is generated automatically from this
formalisation, without manual coding, guaranteeing correctness by construction. We show via a case
study that using our implementation, a neurosymbolic process learns to satisfy a pre-specified STL
constraint. Our approach offers a highly rigorous foundation for integrating signal temporal logic
and learning by gradient descent.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Computing
methodologies → Neural networks

Keywords and phrases Signal temporal logic, spatio-temporal reasoning, neurosymbolic learning

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.6

Acknowledgements We thank the referees for their feedback. This research was funded by the
Edinburgh Laboratory for Integrated Artificial Intelligence (ELIAI) EPSRC (EP/W002876/1), by
the Fonds National de la Recherche, Luxembourg (AFR 15671644), and by the Legal & General
Group (research grant to establish the independent Advanced Care Research Centre at University of
Edinburgh). Legal & General had no role in conducting the study, interpretation or the decision to
submit for publication. The views expressed are those of the authors and not necessarily those of
Legal & General. The Artificial Intelligence and its Applications Institute (AIAI) provided support
for attending TIME 2025.

1 Introduction

Signal temporal logic (STL) [18] is a formal language suitable for expressing a wide variety of
temporal constraints with relevance to control methods [21], robotics [1], and more recently,
machine learning [11, 14]. These constraints can be used to describe safety conditions, for
example in autonomous vehicles [3]. In neurosymbolic processes, STL can be used to define
interpretable objectives or constraints over learning. However, previous implementations of
differentiable STL support either only a part of the language or rely on assumptions about
the signal it is applied to (for example, assuming uniform time sampling). This fails to
achieve the full potential of STL, limiting its applicability.

We introduce GradSTL, the first comprehensive and formally verified implementation of
a differentiable semantics of STL expressed over tensors, applicable to any finite signal and
suitable for immediate use in neurosymbolic learning. By “comprehensive”, we mean a full

© Mark Chevallier, Filip Smola, Richard Schmoetten, and Jacques D. Fleuriot;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mchevall@ed.ac.uk
https://orcid.org/0000-0001-5307-7018
mailto:f.smola@ed.ac.uk
https://orcid.org/0009-0003-2045-3971
mailto:richard.schmoetten@sms.ed.ac.uk
https://orcid.org/0000-0003-1473-071X
mailto:jdf@ed.ac.uk
https://orcid.org/0000-0002-6867-9836
https://doi.org/10.4230/LIPIcs.TIME.2025.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

6:2 GradSTL: Comprehensive STL for Neurosymbolic Reasoning & Learning

implementation of all aspects of the STL language, syntax and full semantics, usable with
any signal. Using the Isabelle theorem prover [19], we formalise the STL language and its
standard semantics, its robustness and the derivative of its robustness, all in an algorithmic
form which recurses over arbitrary signals.

We formally prove both the soundness of the robustness function with respect to STL’s
standard semantics, and the correctness of the derivative function. GradSTL’s specification
is comprehensive, allowing for nested temporal constraints, the Until constraint and making
no additional assumptions about the signals it is defined over. We have found no previous
implementation of STL for learning via gradient descent that has achieved all of these
properties (see Section 2.2). To do this, we use a novel adaptive temporal window technique
to change temporal constraints as they recurse down a signal temporally (see Section 3.1).

From this specification, we automatically generate executable OCaml code, avoiding any
unverified manual implementation. This integrates directly with PyTorch-based learning
processes, allowing the STL robustness value to be used as a loss function in (for example) a
neural network. We demonstrate experimentally that we can then learn behaviours satisfying
arbitrary STL constraints.

Our contribution is both theoretical and practical: a sound and comprehensive STL
semantics for recursing over irregularly sampled signals; a formally verified, differentiable
robustness function; a verified-to-executable implementation pipeline; and empirical validation
in a modern machine learning framework. By eliminating ad hoc and unverifiable logic
handling, our work offers a rigorous and trustworthy foundation for constrained neural
learning and formal specification-guided AI.

This work is an extension of previous work integrating formalised linear temporal logic
over finite traces (LTLf) into neurosymbolic learning [5]. It expands on this previous work
substantially, with a novel approach to working with temporal constraints in STL, as well
as expanding the applicability of STL to learning as discussed above. The most important
innovations over the previous work are a method of evaluating differentiable functions as
atomic constraints, and a temporal recursion method required for STL to work well over
irregularly sampled time periods (discussed further in Section 3.1). The current work also
demonstrates how the same pipeline of formal verification methods and code generation can
be successfully used with a substantially more complicated logic.

1.1 Organisation of the paper

In the next section, we briefly introduce STL and discuss the background to our work.
Then, in Section 3, we present our formal specification of a recursive algorithm to evaluate
STL and statements of its formally proven properties. We also detail how we were able to
overcome previous limitations using the adaptive temporal window technique. We also briefly
describe the automatic code generation for our algorithms and how to integrate them into a
learning process. In Section 4, we consider a case study showing the comprehensiveness of
our implementation, concentrating specifically on irregular sampling. Lastly, in Section 5, we
discuss the significance of our work.

2 Background

In this section, we introduce signal temporal logic before going on to examine previous work
integrating it with neurosymbolic processes.

M. Chevallier, F. Smola, R. Schmoetten, and J. D. Fleuriot 6:3

2.1 Signal temporal logic: a brief overview
STL is a formal language intended to make a statement ρ about some continuous function of
time C [18]. This function C can model anything that changes over time: performance in
an engine, the location of a vehicle, or health statistics of a patient, for example. The state
at time t, C(t), is typically a vector in Rm of state variables (v0, v1, . . . , vm−1) representing
measures of interest – from our examples, perhaps these measures are the heat in the fuel
chamber, the x-coordinate of a path, or the systolic blood pressure of a patient. This vector
is called the sample at time t of C.

In this paper, we examine two ways of assigning meaning to an STL constraint: the
standard boolean semantics and the robustness (see below). The standard semantics for
STL evaluates a statement ρ as being either satisfied (true) or unsatisfied (false). Such STL
statements are often called constraints as they describe conditions that might be breached
or respected by C. This evaluation takes place in the context of a temporal signal which
summarises C.

A signal SC,T = (C(t0), C(t1), . . . , C(tn−1)) is a vector of samples of C where T is a
vector of time indices in Rn, (t0, t1, . . . , tn−1), ordered so that for all i < j we have ti < tj .
These time indices ti hold the time when each sample was taken, and can be arbitrarily close
together or far apart. We typically drop the subscripts C, T where there is no ambiguity. As
S is a vector of vectors, we can represent it as a matrix (a two dimensional tensor). Figure 1
shows how a signal samples an underlying function of three state variables.

time

0 1 2 3 4 5 6 7 8 9 10 11 12

0.4 2.8 5.0 8.0 9.4

0.0 0.0 0.0 25.0
0.4 0.1 0.1 20.6
2.8 2.0 2.4 8.1
5.0 18.4 28.6 8.2
8.0 24.7 26.1 17.9
9.4 26.9 18.2 17.0





Timet x y z

S =

Figure 1 Example of a signal sampling three state variables x (in blue), y (in green), and z (in
yellow), at times 0.0, 0.4, 2.8, 5.0, 8.0 and 9.4. An illustration of sampling is on the left, and the
signal in matrix form is on the right.

The precise time indices used for the samples can make a particular constraint true or
false, even over the same underlying function C. Thus, effective sampling is critical to ensure
that the signal reflects C sufficiently well for the constraint to be useful.

In the remainder of this paper, we will use the notation t← S to express that t is a time
at which signal S is sampled, in other words, that t is a component of the time vector T

used by S. We define |S| as the total number of samples in the signal S.
We define Sn = C(tn) if tn ← S. We denote the standard semantic evaluation of a

constraint ρ at time tn ← S over signal S by ES(ρ, n) and assume that n < |S|, otherwise
ES is undefined.

As well as the standard semantics, STL also can be evaluated via a robustness semantics,
which is also considered over a signal. This returns a real value whose magnitude corresponds,
roughly speaking, to how much the signal would need to be changed for the constraint’s
truth value to change from true to false (or vice versa). If robustness is negative for some
constraint ρ, then ρ is false. If it is positive, then ρ is true. If robustness is exactly 0 for ρ,
we do not know if it is true or false – it is on the cusp and might be either. We denote the
robustness of a constraint ρ at time tn ← S by RS(ρ, n) and, as for ES , we assume n < |S|.

TIME 2025

6:4 GradSTL: Comprehensive STL for Neurosymbolic Reasoning & Learning

Syntactically, STL constraints are represented by logical formulae. The smallest constraint
possible is an atomic one which, when evaluated at sample n, compares f(Sn) to some constant
c, where f is some differentiable real-valued function. We denote these constraints by µf,c

whose semantics depends on the function f and constant c. For example, if we are monitoring
the location of a robot, and we can extract its x and y coordinates from Sn, we can calculate
its distance from the origin using f(x, y) =

√
x2 + y2 to evaluate if it has travelled past some

boundary distance. The semantics of an atomic constraint is then defined as follows:

ES(µf,c, n) ::= f(Sn) > c

Building on this, the STL formulae used to capture the more general constraints are:

ρ ::= µf,c | ¬ρ | ρ1 ∧ ρ2 | □[x,y]ρ | ♢[x,y]ρ | ρ1 U[x,y] ρ2

The first three are understood as per the syntax and semantics of propositional logic, with
µf,c being the atomic constraint (proposition), and ¬ρ and ρ1 ∧ ρ2 representing negation and
conjunction, respectively. Disjunction can be represented by ¬(¬ρ1 ∧ ¬ρ2).

The remaining formulae introduce various temporal constraints. Each of these has a
subscript [x, y], with 0 ≤ x ≤ y, which shows that when the constraint is evaluated at a
sample with time index t, it applies at times sampled between t + x and t + y. These can be
understood as follows:

Always

ES(□[x,y]ρ, n) ::= ∀ti ← S. tn + x ≤ ti ≤ tn + y =⇒ ES(ρ, i)

In other words, when evaluated at a sampled time tn, □[x,y]ρ is true if and only if ρ is
true at all sampled times between and including tn + x and tn + y.

Eventually

ES(♢[x,y]ρ, n) ::= ∃ti ← S. tn + x ≤ ti ≤ tn + y ∧ ES(ρ, i)

When evaluated at a sampled time tn, ♢[x,y]ρ is true if and only if ρ is true at some
sampled time between and including tn + x and tn + y.

Until

ES(ρ1 U[x,y] ρ2, n) ::= ∃ti ← S. tn + x ≤ ti ≤ tn + y ∧ ES(ρ2, i) ∧(
∀tj ← S. tn + x ≤ tj ≤ ti → ES(ρ1, j)

)
When evaluated at a sampled time tn, ρ1 U[x,y] ρ2 is true if and only if ρ2 is true at some
time between tn +x and tn +y, and ρ1 is true for all sampled times between and including
tn + x and whenever ρ2 is first true.

Our treatment of STL is not minimal – we could define the language without expressly
including the □[x,y]ρ and ♢[x,y]ρ as primitive constraints, instead using ¬(⊤ U[x,y] ¬ρ) and
⊤ U[x,y] ρ, respectively (where ⊤ is True which can be defined to be any tautology). We
provide these constraints and their semantics explicitly to allow more efficient code generation
(see Section 3.3).

Robustness is calculated using the RS(ρ, n) function, which returns a real value that, as
noted above, corresponds to how well the constraint is satisfied over the signal. Its definition
over our STL syntax is as follows:

M. Chevallier, F. Smola, R. Schmoetten, and J. D. Fleuriot 6:5

RS(µf,c, n) = f(Sn)− c

RS(¬ρ, n) = −RS(ρ, n)
RS(ρ1 ∧ ρ2, n) = min{RS(ρ1, n), RS(ρ2, n)}
RS(□[x,y]ρ, n) = min{RS(ρ, i) : i < |S| ∧ tn + x ≤ ti ≤ tn + y}
RS(♢[x,y]ρ, n) = max{RS(ρ, i) : i < |S| ∧ tn + x ≤ ti ≤ tn + y}
RS(ρ1U[x,y]ρ2, n) =

max
{

min
{

RS(ρ2, i), min{RS(ρ1, j) : j < |S| ∧ tn + x ≤ tj ≤ tn + ti}
}

: i < |S| ∧ tn + x ≤ ti ≤ tn + y
}

Examining these sub-definitions, one can prove by induction, through both the constraint
structure and the temporal dimension, that whenever RS(ρ, n) > 0, ES(ρ, n) is true, and
that whenever RS(ρ, n) < 0, ES(ρ, n) is false [18]. When RS(ρ, n) = 0, it also holds that
RS(¬ρ, n) = 0, so this tells us nothing about ES(ρ, n). We call this RS sound with respect
to ES . Soundness is one of many useful (in this case, essential) properties a robustness can
satisfy [8]. In Section 3.2, we give an algorithmic specification of a semantics similar to the
above, but which is differentiable and recurses efficiently.

The definition of RS can be derived from that of ES following some simple principles.
The RS rule for the atomic constraint is fundamental and clearly follows from the equivalent
rule for ES (likewise for negation). For the others, we take minimums of sets of RS values to
represent the universal quantifier over (resp. conjunctions between) their corresponding ES

truth values, and maximums to represent the existential quantifier (resp. disjunction). If we
conjoin two values, and one is false – implying that its RS value is non-positive – the result
will also be non-positive (similar reasoning for disjunctions).

It is important to note that these definitions given for ES and RS cannot easily be
translated to an efficient, recursive algorithm that computes its value over a signal. GradSTL
uses provably equivalent definitions of these functions that give us recursive algorithms that
compute over arbitrary signals efficiently. We discuss the details in Sections 3.1 and 3.2.

2.2 Previous work on neurosymbolic integration of STL
There are several previous approaches to integrating STL with neurosymbolic learning. Our
work is aimed at using an arbitrary STL constraint to learn signal outputs which satisfy
that constraint. Not all neurosymbolic work using STL has the same goal, and, to our
knowledge, no previous neurosymbolic approach provides a comprehensive implementation
of STL against arbitrary signals. We next review previous work in this area, assessing each
approach in terms of its goal and how comprehensively it implements STL.

Leung et al. worked on predicting a STL constraint (given a fixed structure) would best
satisfy a given signal [13]. The goal of this work was to learn the numeric parameters for the
fixed STL constraint using neural methods and a parametric STL approach [4]. Computation
graphs implemented through the PyTorch library were fundamental to this work, which
assumed that any signal was uniformly sampled.

The use of computation graphs is also a hallmark of later work by the same authors
on STLCG [14], and work on its successor STLCG++ [11]. Of the work discussed in this
section, these two methods are the closest to our own – aimed at providing a way to use
satisfaction of an STL constraint in learning some temporal output. Backpropagation using
these computation graphs is key to how they enable learning. However, STLCG and its
successor both assume uniform time sampling across the signal, which means they can only
be applied to a proper subset of signals. In contrast, as discussed in Section 3.1, our own
work can be applied to signals with any sampling.

TIME 2025

6:6 GradSTL: Comprehensive STL for Neurosymbolic Reasoning & Learning

Yan et al. worked on STONE, a method aimed at learning weighted STL subconstraints
that efficiently classify time series [23]. Rather than using an STL constraint to help learn
a temporal output, this work uses a temporal input (a time series) to learn the weights
for a STL constraint’s subconstraints, to help interpret and classify subsequent time series.
Each subconstraint is represented as an individual neuron within a network, integrating the
constraint with the neural process. However, the STL implemented by STONE is only a
fragment of STL – it omits the important Until constraint, and requires its initial structure
to be configured ahead of time; only the weights are learned.

X. Li et al. have enhanced the work on STL constraint classification, but their approach
retains the limitation of only considering a fragment of STL, ignoring the Until constraint [15].
This inability to account for Until is shared by the work on differentiable logic layers by
D. Li et al. [16]. Again, aimed at learning an STL constraint using temporal inputs, this
uses a layer of the neural network to represent the STL constraint itself, adjusting the layer’s
weights to represent how the constraint might function. As these methods use the structure
of the neural network to learn the constraint, what they learn is limited by said structure
but also the size of the neural network. They cannot learn general constraints.

Liu et al. use earlier work on BarrierNets [22] to guarantee that the output of a given
process will satisfy an STL constraint [17]. These approaches have a similar goal to our
own work, but the use of BarrierNets provides a guarantee that a given STL constraint will
be satisfied by modifying the neural network’s output. Again, this uses a fragment of STL
ignoring the Until constraint, and also enforces restrictions on the domain it can work with:
those with safety methods involving reaching or avoiding circular regions.

As can be seen, no previous work in this area has managed to deal with a fully compre-
hensive treatment of STL. Either the language is limited (excluding the Until constraint or
lacking nested temporal constraints), or its applicability relies on significant assumptions
(working only with uniformly sampled signals). It is precisely these limitations GradSTL
overcomes.

Outside of work applicable to neurosymbolic learning, other STL monitors like Breach [7]
and S-TaLiRo [2] can work with irregularly sampled signals, but unlike GradSTL, they find
a non-differentiable robustness and are only used for falsification. They are also coded by
hand, leading to the potential for error.

3 Formal Semantics for GradSTL

We next discuss the details of our algorithmic specification of STL and its properties in two
sections: first we discuss our work specifying an algorithm for STL semantics in the Isabelle
theorem prover, presenting a simple algorithm to compute its boolean semantics and showing
how, from this, we can derive a function for its robustness that is differentiable. Secondly,
we briefly review code generation and how our formalisation feeds into it.

3.1 Recursive algorithm for the standard semantics of STL
Notation

Sn Sample n in signal S, expressed as a vector of state variables
|S| The total number of temporal samples in S

t← S Time t, where S contains a sample at time t

∆tn t n+1 − tn (time gap between sample n and n + 1)

M. Chevallier, F. Smola, R. Schmoetten, and J. D. Fleuriot 6:7

We now examine how to algorithmically evaluate the semantics of an STL constraint
over a signal. We specify the function E∗

S(ρ, n) for this purpose, where S is a signal, ρ is
the constraint being evaluated, and n a natural number indexing the signal’s samples. This
algorithm is structured such that E∗

S(ρ, n) = ES(ρ, n). The evaluation proceeds by recursion
through the constraint ρ. The propositional component of the constraint proceeds exactly as
in Section 2.1:

E∗
S(µf,c, n) ::= f(Sn) > c

E∗
S(¬ρ, n) ::= ¬

(
E∗

S(ρ, n)
)

E∗
S(ρ1 ∧ ρ2, n) ::= E∗

S(ρ1, n) ∧ E∗
S(ρ2, n)

The temporal constraints are more complicated. In addition to recursion through the
constraint itself, E∗

S may recurse down the signal’s temporal dimension to evaluate at a
later time. The key to correctly evaluating temporal constraints is the adaptive temporal
window, which changes as temporal recursion takes place. After each temporal position n,
if n < |S| − 1, we subtract ∆tn from the temporal window, where ∆tn = tn+1 − tn. This
technique allows for nesting of temporal constraints to any depth, and the full expressiveness
of STL over arbitrary signals. This overcomes the limitations of previous attempts that did
not use this method at applying STL to neurosymbolic learning.

We illustrate this using E∗
S(♢[x,y]ρ, n). Informally, this is true if and only if:

Case 1: x ≤ 0 ≤ y ∧ E∗
S(ρ, n) is true. The first part of this case (x ≤ 0 ≤ y) checks if the

temporal window contains 0. If so, it means that if the second condition (E∗
S(ρ, n)) is

true, we can confirm that the Eventually constraint has been satisfied (as defined in
Section 2.1: ∃ti ← S. tn + x ≤ ti ≤ tn + y ∧ ES(ρ, i)). If and only if this case is not true,
then we check Case 2.

Case 2: E∗
S(♢[x−∆tn,y−∆tn]ρ, n + 1) is true. In other words, we re-evaluate at the next

temporal position. The adaptive temporal window for the constraint changes, subtracting
how much time difference there is between positions n and n + 1 (∆tn). If this changes
the temporal window so that it contains 0, we know that the time index for the current
position is within the temporal window, so Case 1 above might become true.

We also perform certain boundary checks as we recurse, ensuring that n < |S|, i.e. that we
do not pass the final temporal position in the signal, leaving the function undefined if we
breach this boundary check. We also terminate temporal recursion if we would otherwise exit
the temporal window (as once y < 0, we know that there are no more samples that could
satisfy the constraint).

For example, consider an STL constraint of ♢[5,10]µv,20. This is true at time index t in
signal S if and only if ∃t′ ← S. t + 5 ≤ t′ ≤ t + 10 where v > 20 is true. The adaptive
temporal window begins as [5, 10], but changes as it recurses to capture when it is in the
correct position relative to the point of its first evaluation. This is illustrated in Figure 2.

The full definitions of E∗ for the temporal constraints, including the boundary checks,
are given below:

E∗
S(♢[x,y]ρ, n) ::=



x ≤ 0 ∧ E∗
S(ρ, n) if n = |S| − 1 ∨

y −∆tn < 0(
x ≤ 0 ∧ E∗

S(ρ, n)
)
∨ if n < |S| − 1

E∗
S(♢[x−∆tn,y−∆tn]ρ, n + 1)

TIME 2025

6:8 GradSTL: Comprehensive STL for Neurosymbolic Reasoning & Learning

0.0 1.6
2.3 1.9
3.9 12.0
7.7 15.3
9.1 14.2

11.4 28.2





2.3
1.6
3.8
1.4
2.3
. . .

t v ∆t

E∗
S(♢[5,10]µv,20, 0) −→

E∗
S(♢[2.7,7.7]µv,20, 1) −→

E∗
S(♢[1.1,6.1]µv,20, 2) −→

E∗
S(♢[−2.7,2.3]µv,20, 3) −→

E∗
S(♢[−4.1,0.9]µv,20, 4) −→

Figure 2 How E∗
S(♢[5,10]µv,20, 0) changes as it temporally recurses over S. At each recursion, the

value ∆t is subtracted from the adaptive temporal window. When the temporal window contains 0,
µv,20 is evaluated. Temporal recursion terminates early at position 4, as the next recursion would
breach a boundary condition. In this example, v > 20 only after the temporal recursion terminates,
so E∗

S(♢[5,10]µv,20, 0) is false.

E∗
S(□[x,y]ρ, n) ::=



x ≤ 0 ∧ E∗
S(ρ, n) if n = |S| − 1 ∨

y −∆tn < 0(
x > 0 ∨ E∗

S(ρ, n)
)
∧ if n < |S| − 1

E∗
S(□[x−∆tn,y−∆tn]ρ, n + 1)

E∗
S(ρ1U[x,y]ρ2, n) ::=



x ≤ 0 ∧ E∗
S(ρ1 ∧ ρ2, n) if n = |S| − 1 ∨

y −∆tn < 0((
x > 0 ∨ E∗

S(ρ1, n)
)
∧ if n < |S| − 1

E∗
S(ρ1U[x−∆tn,y−∆tn]ρ2, n + 1)

)
∨(

x ≤ 0 ∧ E∗
S(ρ1 ∧ ρ2, n)

)
Each time that E∗(ρ, n) recurses, it either reduces the size of the STL constraint or approaches
the signal termination by a single step. Isabelle proves that the lexicographic measure
⟨|S| − n, |ρ|⟩ strictly decreases with every recursion (where |ρ| is the number of sub-formulae
in ρ). Thus, E∗ runs in O(|S||ρ|) time. This is also true of R∗ and dR∗, described in
Section 3.2.

The E∗ function is formally specified in the Isabelle theorem prover. It is equivalent to
the standard semantics for STL given in Section 2.1. The E∗ function thus allows us to
algorithmically evaluate constraints with STL’s standard semantics over a signal by recursion.

3.2 Recursive algorithm for smooth robustness semantics of STL

In an analogous way to how we implement the evaluation of the standard semantics, we
now address formalising a robustness function. Recall that this is a function describing to
what degree a signal does or does not satisfy a constraint. This makes it useful as a loss
function in learning to satisfy the constraint, as it can be treated as an error. In order to
enable learning by gradient descent, this robustness function should also be differentiable.

Neither the minimum nor the maximum function used extensively in the usual robustness
function (as described in Section 2.1) are differentiable everywhere. Because of this, we
implement smooth, binary versions of these functions, maxγ and minγ , which use γ as a
smoothing parameter [6]. Their definitions are as follows:

M. Chevallier, F. Smola, R. Schmoetten, and J. D. Fleuriot 6:9

maxγ(a, b) =
{

max{a, b} if γ ≤ 0
γ ln(ea/γ + eb/γ) if γ > 0

minγ(a, b) =
{

min{a, b} if γ ≤ 0
−maxγ(−a,−b) if γ > 0

We prove in Isabelle that limγ→0(maxγ(a, b)) = max{a, b}, and likewise for minγ . Import-
antly, for γ > 0 both functions are differentiable everywhere with respect to either parameter
a or b.

We now specify the differentiable function R∗
γ,S(ρ, n), used to compute the robustness of

ρ recursively over a signal S from temporal position n, with a smoothness parameter γ as
used above. This function is equivalently referred to as a smooth semantics for STL.

We derive the R∗ function from E∗ following similar guidelines as those used in deriving
the standard robustness function R from the standard semantics E (discussed in Section 2.1).
We replace disjunctions in E∗ with maxγ in R∗, and conjunctions with minγ . Where E∗

checks if x ≤ 0 we simply use −x (and x if checking x > 0). We give an example of this
translation below using the Always constraint:

R∗
γ,S(□[x,y]ρ, n) =



minγ

(
−x, R∗

γ,S(ρ, n)
)

if n = |S| − 1 ∨
y −∆tn < 0

minγ

(
maxγ

(
x, R∗

γ,S(ρ, n)
)
, if n < |S| − 1

R∗
γ,S(□[x−∆tn,y−∆tn]ρ, n + 1)

)
We now have a function that gives us an algorithm to compute robustness. As already
mentioned, robustness can tell us how well a constraint is satisfied, or how badly it is
unsatisfied. This second use can be adapted as a loss function. But we need to go further to
meet the needs of learning that uses gradient descent, by having an algorithm to compute
the derivative of robustness with respect to any state variable of the signal.

We proceed to build this derivative function dR∗
γ,S(ρ, n, vi,k), which calculates the de-

rivative with respect to vi,k, the ith state variable at temporal position k. We derive dR∗

using the chain derivative rule and the derivatives for maxγ , minγ and the atomic constraint.
The derivatives for maxγ (and minγ) take four parameters: the values being compared and
their derivatives. For example, the function maxγ(a, b) has a derivative calculated using
the function dmaxγ(a, da, b, db, vi,k), where da and db are the derivatives (with respect to
vi,k) for the functions used to calculate a and b. We formally prove with Isabelle that this
derivative is correct under the assumption that da and db are correct.

We present an illustration of how dR∗ is defined using the Always constraint as an
example (compare with the R∗ definition above):

dR∗
γ,S(□[x,y]ρ, n, vi,k) =



dminγ

(
−x, 0, if n = |S| − 1 ∨

R∗(ρ, n), dR∗(ρ, n, vi,k)
)

y −∆tn < 0

dminγ

(
maxγ

(
x, R∗

γ,S(ρ, n)
)
, if n < |S| − 1

dmaxγ

(
x, 0, R∗

γ,S(ρ, n), dR∗
γ,S(ρ, n, vi,k), vi,k

)
,

R∗
γ,S(□[x−∆tn,y−∆tn]ρ, n + 1),

dR∗
γ,S(□[x−∆tn,y−∆tn]ρ, n + 1, vi,k), vi,k

)

TIME 2025

6:10 GradSTL: Comprehensive STL for Neurosymbolic Reasoning & Learning

We can then use dR∗ with any gradient descent method to learn how that variable can be
changed to maximise robustness.

As with the E∗ function, both the R∗ function and its derivative dR∗ are formally
specified in the Isabelle theorem prover. We use Isabelle to formally prove two important
theorems about these functions, namely the soundness and the correctness of the derivative:

▶ Theorem 1 (Soundness).

lim
γ→0

R∗
γ,S(ρ, n) > 0 =⇒ E∗

S(ρ, n)

lim
γ→0

R∗
γ,S(ρ, n) < 0 =⇒ ¬E∗

S(ρ, n)

▶ Theorem 2 (Derivative correctness). Assuming γ > 0,

d
(
R∗

γ,S(ρ, n)
)

dvi,n
= dR∗

γ,S(ρ, n, vi,n)

The proofs of both these theorems proceed by induction on the size of the constraint and
the size of the signal being examined. In the base case we establish the conclusion for the
simplest constraint at a single time index. In the inductive step we extend the conclusion
from smaller constraints and shorter segments of the signal to increasingly larger constraints
and segments. Both of these directions of induction are vital to cover both the propositional
and temporal aspects of the logic. Initially, we establish the soundness without smoothing
(i.e. γ = 0) and expand this result to γ > 0 by using continuity of R∗.

The full formal proofs of these facts, which are part of an Isabelle formalisation that is
too extensive to cover in this article, provide us with strong, a priori guarantees about our
overall approach.

3.3 Code generation
We use the code generation capabilities of Isabelle to export our specifications as working
OCaml code [9]. This means that the structure of our formal definitions is translated via a
thin layer of trusted equivalences into OCaml code, without additional human intervention.
This translation layer is small and comes with partial correctness proofs [10], and so we have
strong confidence that the proofs we have established for our Isabelle specifications remain
valid for the code that is generated.

As we discussed in Section 2.1, our definition of STL is not minimal. We include the
Eventually and Always constraints as primitives instead of defining them via the Until
constraint. This means our generated code is more efficient, as our approach prevents a
complicated chain of constraints slowing down calculations during code execution.

The code is then called from an instance of the torch.autograd.Function PyTorch
class, with R∗ as its forward method, and dR∗ as its backwards method [5, 20]. This can then
be handled like any other function used by PyTorch for optimisation via gradient descent,
and incorporated into neurosymbolic learning.

4 Case Study

We replicated many of the experiments from the STLCG paper [14], then extended these
with one that uses an irregularly sampled signal (which is out of scope for STLCG). In the
latter, described below, we demonstrate how an agent can learn to respect pre-specified
(spatio-)temporal rules in a complicated and irregularly sampled environment.

M. Chevallier, F. Smola, R. Schmoetten, and J. D. Fleuriot 6:11

Consider this setting: a medical robot, assisting a disabled patient in a single room, which
must perform certain tasks in a 50 second time limit while also avoiding risks to the patient
and to the structure of the room. All tasks begin with the robot in a docking position. The
specific task we use in our demonstration requires that the robot go from the docking position
to a medical cabinet, retrieve some medicine, and then administer it to the patient in bed,
before returning to its dock. To complete the retrieval and administration tasks the robot
must remain in the correct area for 5 seconds (we do not specify the exact requirements of
these fine motor control tasks as we are only concerned with navigation in our problem). At
all times, the robot must be careful to avoid furniture (the chair, a desk, and the bed), and
not to exceed the speed limit vm.

We represent the task by the following STL constraint, annotated with an informal
interpretation for each of the clauses that need to be simultaneously satisfied:

□[0.0,50.0]µ−v,−vm ∧ The whole time follow the speed limit, v < vm and
□[0.0,50.0]¬Desk ∧ avoid the desk area for the whole time period, and
□[0.0,50.0]¬Chair ∧ likewise avoid the chair area, and
□[0.0,50.0]¬Bed ∧ likewise avoid the bed area, and

♢[0.0,50.0]

(
□[0.0,5.0]Access ∧ access the cabinet for 5s to gather medicine, and

♢[0.0,50.0]
(
□[0.0,5.0]Bedside ∧ then go to bedside for 5s to administer medicine, and

♢[0.0,50.0](□[0.0,50.0]Dock)
))

then return to the dock for any remaining time.

For our speed limit, recall that at any sample n with velocity vn, E∗(µ−v,−vm
, n) ⇐⇒

−vn > −vm ⇐⇒ vn < vm. Each constraint in boldface above is an abbreviation for a
conjunction of atomic constraints on the x, y co-ordinates, which are satisfied if the robot is
within a specific region (either rectangular or circular).

Planning the trajectory to finish each task involves plotting a path through the room.
We can sample from this path to produce a signal, but this sampling need not be uniform.
Physical constraints (disruption to transmission, for example) may introduce randomness to
the sampling times. Additionally we may wish to sample more often when there is a higher
risk of breaching a constraint, and less often when we are in safer areas.

The trajectory to learn is initialised as a set of straight lines going from each task location
to the next, ignoring possible risks and time-requirements for tasks, and assuming uniform
travel speed. The initial signal is found from this path by sampling fifty times, each time
taking two state variables directly from the path, the (x, y) co-ordinates. A third state
variable is computed from these and the time indices of the samples, representing the speed
v. We introduce non-uniform sampling by sampling more frequently where there is higher
risk of constraint breach – in particular in the second section of the path between the cabinet
and the bed. We know the fixed room layout, so we can determine where this risk is highest
by seeing where the initial path crosses through obstacles most frequently.

The STL constraint we are learning from is not simple: it involves extracting different
kinds of data in a path, and nesting temporal constraints. In addition, the signal is sampled
irregularly and more frequently where we suspect the path has higher risk, as discussed
above. Nonetheless, as GradSTL is formally verified, we have confidence that the signal will
be correctly evaluated by it, and this result is what we see in Figure 3.

TIME 2025

6:12 GradSTL: Comprehensive STL for Neurosymbolic Reasoning & Learning

GradSTL computes the robustness of the signal and its derivative for each state variable
in the signal, using the STL constraint above. This is then optimised using the Adam
optimiser to adjust the signal [12]. This process is repeated 500 times. The difference
between the initial and the result signals, illustrated in Figure 3, clearly demonstrates that
the optimisation process has learned to satisfy the constraint.

Figure 3 Result showing the agent accessing specific points and navigating the obstacles in the
environment. The light blue line is the unaltered original path, with dots indicating when samples
were taken for the initial signal. The black line and dots are the trained final path and signal.

5 Conclusion

To our knowledge, GradSTL is the first implementation of STL suitable for neurosymbolic
learning over any signal. Our formally verified approach using theorem proving gives great
confidence that it is both comprehensive and sound with respect to the standard semantics
of STL. Experimental work in our case study demonstrates that it enables successful learning
even with complicated constraints and irregular sampling of the signal.

GradSTL overcomes the limitations of previous work, namely implementations of STL
which restrict the class of supported constraints or signals. This is possible because our
adaptive temporal window technique adjusts STL constraints during temporal recursion.
This allows us to identify the correct times that need to be evaluated by any temporal
constraint, regardless of when it is first evaluated and whether it is nested.

GradSTL uses a formally specified, recursive algorithm for smooth STL semantics to
automatically generate faithful code. Neurosymbolic AI is a growing research area, and finding
ways to directly integrate logic and domain knowledge into learning will be of increasing
importance. GradSTL is a step in that direction.

References
1 E Abele, F Haehn, M Pischan, and F Herr. Time optimal path planning for industrial robots

using STL data files. Procedia Cirp, 55:6–11, 2016. doi:10.1016/j.procir.2016.08.038.
2 Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. [s-taliro:

A tool for temporal logic falsification for hybrid systems]. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 254–257. Springer,
2011. doi:10.1007/978-3-642-19835-9_21.

https://doi.org/10.1016/j.procir.2016.08.038
https://doi.org/10.1007/978-3-642-19835-9_21

M. Chevallier, F. Smola, R. Schmoetten, and J. D. Fleuriot 6:13

3 Nikos Arechiga. Specifying safety of autonomous vehicles in signal temporal logic. In 2019
IEEE Intelligent Vehicles Symposium (IV), pages 58–63. IEEE, 2019. doi:10.1109/IVS.2019.
8813875.

4 Eugene Asarin, Alexandre Donzé, Oded Maler, and Dejan Nickovic. Parametric identification
of temporal properties. In Runtime Verification: Second International Conference, RV 2011,
San Francisco, CA, USA, September 27-30, 2011, Revised Selected Papers 2, pages 147–160.
Springer, 2012. doi:10.1007/978-3-642-29860-8_12.

5 Mark Chevallier, Filip Smola, Richard Schmoetten, and Jacques D. Fleuriot. Formally verified
neurosymbolic trajectory learning via tensor-based linear temporal logic on finite traces, 2025.
arXiv preprint arXiv:2501.13712. doi:10.48550/arXiv.2501.13712.

6 Marco Cuturi and Mathieu Blondel. Soft-dtw: a differentiable loss function for time-series. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70
of Proceedings of Machine Learning Research, pages 894–903. PMLR, 2017. doi:10.48550/
arXiv.1703.01541.

7 Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of hy-
brid systems. In Computer Aided Verification: 22nd International Conference, CAV
2010, Edinburgh, UK, July 15-19, 2010. Proceedings 22, pages 167–170. Springer, 2010.
doi:10.1007/978-3-642-14295-6_17.

8 Thomas Flinkow, Barak A. Pearlmutter, and Rosemary Monahan. Comparing differentiable
logics for learning with logical constraints. Sci. Comput. Program., 244:103280, 2025. doi:
10.1016/j.scico.2025.103280.

9 Florian Haftmann and Lukas Bulwahn. Code generation from Isabelle/HOL theories, 2021.
Found online at https://isabelle.in.tum.de/doc/codegen.pdf, last checked April 24 2025.

10 Florian Haftmann and Tobias Nipkow. Code generation via higher-order rewrite systems.
In Matthias Blume, Naoki Kobayashi, and Germán Vidal, editors, Functional and Logic
Programming, pages 103–117, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-12251-4_9.

11 Parv Kapoor, Kazuki Mizuta, Eunsuk Kang, and Karen Leung. STLCG++: A Masking
Approach for Differentiable Signal Temporal Logic Specification, 2025. doi:10.48550/arXiv.
2501.04194.

12 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
doi:10.48550/arXiv.1412.6980.

13 Karen Leung, Nikos Aréchiga, and Marco Pavone. Backpropagation for parametric STL. In
2019 IEEE Intelligent Vehicles Symposium (IV), pages 185–192. IEEE, 2019. doi:10.1109/
IVS.2019.8814167.

14 Karen Leung, Nikos Aréchiga, and Marco Pavone. Backpropagation through signal temporal
logic specifications: Infusing logical structure into gradient-based methods. The International
Journal of Robotics Research, 42(6):356–370, 2023. doi:10.1177/02783649221082115.

15 Danyang Li, Mingyu Cai, Cristian-Ioan Vasile, and Roberto Tron. TLINet: Differentiable
Neural Network Temporal Logic Inference, 2024. arXiv preprint arXiv:2405.06670. doi:
10.48550/arXiv.2405.06670.

16 Xiao Li, Guy Rosman, Igor Gilitschenski, Jonathan A. DeCastro, Cristian Ioan Vasile, Sertac
Karaman, and Daniela Rus. Differentiable logic layer for rule guided trajectory prediction. In
Jens Kober, Fabio Ramos, and Claire J. Tomlin, editors, 4th Conference on Robot Learning,
CoRL 2020, 16-18 November 2020, Virtual Event / Cambridge, MA, USA, volume 155 of
Proceedings of Machine Learning Research, pages 2178–2194. PMLR, PMLR, 2020. URL:
https://proceedings.mlr.press/v155/li21b.html.

TIME 2025

https://doi.org/10.1109/IVS.2019.8813875
https://doi.org/10.1109/IVS.2019.8813875
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.48550/arXiv.2501.13712
https://doi.org/10.48550/arXiv.1703.01541
https://doi.org/10.48550/arXiv.1703.01541
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1016/j.scico.2025.103280
https://doi.org/10.1016/j.scico.2025.103280
https://isabelle.in.tum.de/doc/codegen.pdf
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.48550/arXiv.2501.04194
https://doi.org/10.48550/arXiv.2501.04194
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/IVS.2019.8814167
https://doi.org/10.1109/IVS.2019.8814167
https://doi.org/10.1177/02783649221082115
https://doi.org/10.48550/arXiv.2405.06670
https://doi.org/10.48550/arXiv.2405.06670
https://proceedings.mlr.press/v155/li21b.html

6:14 GradSTL: Comprehensive STL for Neurosymbolic Reasoning & Learning

17 Wenliang Liu, Wei Xiao, and Calin Belta. Learning robust and correct controllers from signal
temporal logic specifications using BarrierNet. In 2023 62nd IEEE Conference on Decision
and Control (CDC), pages 7049–7054. IEEE, 2023. doi:10.1109/CDC49753.2023.10383857.

18 Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In
International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
pages 152–166. Springer, 2004. doi:10.1007/978-3-540-30206-3_12.

19 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic, volume 2283. Springer Science & Business Media, 2002. doi:10.1007/
3-540-45949-9.

20 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
volume 32, pages 8024–8035, 2019. URL: https://proceedings.neurips.cc/paper/2019/
hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

21 Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M Murray, and Sanjit A Seshia.
Reactive synthesis from signal temporal logic specifications. In Proceedings of the 18th
international conference on hybrid systems: Computation and control, pages 239–248, 2015.
doi:10.1145/2728606.2728628.

22 Wei Xiao, Ramin Hasani, Xiao Li, and Daniela Rus. Barriernet: A safety-guaranteed layer for
neural networks, 2021. arXiv preprint arXiv:2111.11277. doi:10.48550/arXiv.2111.11277.

23 Ruixuan Yan, Agung Julius, Maria Chang, Achille Fokoue, Tengfei Ma, and Rosario Uceda-
Sosa. STONE: Signal temporal logic neural network for time series classification. In 2021
International Conference on Data Mining Workshops (ICDMW), pages 778–787. IEEE, 2021.
doi:10.1109/ICDMW53433.2021.00101.

https://doi.org/10.1109/CDC49753.2023.10383857
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1145/2728606.2728628
https://doi.org/10.48550/arXiv.2111.11277
https://doi.org/10.1109/ICDMW53433.2021.00101

PDDL to DFA: A Symbolic Transformation for
Effective Reasoning
Giuseppe De Giacomo #

University of Oxford, UK

Antonio Di Stasio #

City St George’s, University of London, UK

Gianmarco Parretti #

La Sapienza University of Rome, Italy

Abstract
ltlf reactive synthesis under environment specifications, which concerns the automated generation
of strategies enforcing logical specifications, has emerged as a powerful technique for developing
autonomous AI systems. It shares many similarities with Fully Observable Nondeterministic
(fond) planning. In particular, nondeterministic domains can be expressed as ltlf environment
specifications. However, this is not needed since nondeterministic domains can be transformed
into deterministic finite-state automata (dfa) to be used directly in the synthesis process. In this
paper, we present a practical symbolic technique for translating domains expressed in Planning
Domain Definition Language (pddl) into dfas. The technique allows for the integration of the
planning domain, reduced to dfa in a symbolic form, into current symbolic ltlf synthesis tools.
We implemented our technique in a new tool, pddl2dfa, and applied it to solve fond planning
by using state-of-the-art reactive synthesis techniques in a tool called syft4fond. Our empirical
results confirm the effectiveness of our approach.

2012 ACM Subject Classification Computing methodologies → Planning and scheduling; Theory
of computation → Logic and verification; Computing methodologies → Symbolic and algebraic
manipulation

Keywords and phrases Fully Observable Nondeterministic Planning, Linear Temporal Logics on
finite traces, Reactive Synthesis, DFA

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.7

Supplementary Material Software (Source Code): https://github.com/GianmarcoDIAG/syft4fond
[33]

1 Introduction

In recent years there has been a growing interest in applying Formal Methods techniques to
Artificial Intelligence in order to develop autonomous AI systems that can operate effectively
in dynamic and complex environments.

These techniques include reactive synthesis, which concerns the automated generation of
winning strategies that enforce requirements given in the form of logical specifications [16, 34].
Specifically, we consider reactive synthesis for specifications in Linear Temporal Logic on
Finite Traces (ltlf) [26, 27], which maintains the syntax of ltl [35], the formalism typically
used to express complex dynamic properties in Formal Methods [8], but it is interpreted on
finite traces.

A key aspect shared by all synthesis work in AI is the need for a model of the environment
in which the agent acts. In fully observable nondeterministic (fond) planning [18, 17], such
a model is given as a state-based domain that specifies, in each state, how the environment
enacts the (possibly nondeterministic) effects of agent actions. In its most common form,
fond planning involves computing a strong plan that guarantees reaching one of the goal
states independently of the nondeterminism in the domain, thus sharing many similarities

© Giuseppe De Giacomo, Antonio Di Stasio, and Gianmarco Parretti;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 7; pp. 7:1–7:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giuseppe.degiacomo@cs.ox.ac.uk
https://orcid.org/0000-0001-9680-7658
mailto:antonio.di-stasio@city.ac.uk
https://orcid.org/0000-0001-5475-2978
mailto:parretti@diag.uniroma1.it
https://orcid.org/0000-0003-1433-7117
https://doi.org/10.4230/LIPIcs.TIME.2025.7
https://github.com/GianmarcoDIAG/syft4fond
https://github.com/GianmarcoDIAG/syft4fond
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

7:2 PDDL to DFA: A Symbolic Transformation for Effective Reasoning

with ltlf reactive synthesis [27, 15]. Specifically, a fond domain represented with functions
and sets can be expressed as an ltlf environment specification and transformed into a
deterministic finite-state automaton (dfa) that accepts the traces consistent with the domain
specification [25, 1, 6, 23]. It follows that fond planning can be reduced to synthesizing a
winning strategy over a dfa game [25, 23], as ltlf reactive synthesis [27].

In practice, fond domains are often specified in a compact language like the Planning
Domain Definition Language (pddl) [31], which has been extensively used in planning
competitions1. However, while how to transform a fond domain into dfa is well-known
in theory, how to effectively transform pddl into dfa in practice is still open to further
investigation.

In this paper, we present an effective technique for transforming pddl into a symbolic dfa
with transitions and final states represented as Boolean functions encoded by using Binary
Decision Diagrams (bdds) [13]. This technique allows for the integration of fond domains into
symbolic ltlf synthesis tools, which are known for their scalability and efficiency [39, 10, 9, 37].
The construction process involves representing the nondeterminism in the domain through
suitable agent actions and environment reactions. Once this representation is established,
the symbolic dfa of the domain can be efficiently constructed by manipulating bdds. Our
technique has the notable property that, while worst-case exponential in the size of the input
domain, it is often polynomial due to its concise representation of the nondeterminism in the
domain through a compact set of environment reactions.

We implemented our method in a new tool, pddl2dfa, and applied it to devise a
reduction of fond planning into reactive synthesis (optimal wrt complexity of fond planning,
i.e., exptime-complete [17]) in a tool called syft4fond. We applied this construction to
various case studies, including the classic blocks world, blocks world extended, an elevator
system, and two navigation environments. Our empirical results show the performance of
our approach in these different cases. Specifically, our technique successfully constructs the
dfa for a considerable number of instances and solves the synthesis problem for a reasonable
number of them, showing the practical feasibility of reducing planning to synthesis.

Our approach takes a step towards integrating planning and synthesis more closely and
serves as a promising starting point for future research.

2 Preliminaries

Notations. A trace over an alphabet of symbols Σ is a finite or infinite sequence of elements
from Σ. The empty trace is denoted λ. Traces are indexed starting at zero, and we write
π = π0π1 · · · . For a finite trace π, let lst(π) denote the index of the last element of π, i.e.,
lst(π) = |π| − 1.

2.1 Linear Temporal Logic on finite traces (ltlf)
ltlf is a variant of ltl interpreted over finite traces [26] instead of infinite traces [35]. ltlf

has the same syntax as ltl. Given a set AP of atomic propositions (aka atoms), the ltlf

formulas over AP are generated by the following grammar:

φ ::= a | φ1 ∧ φ2 | ¬φ | ◦φ | φ1 U φ2

Where a ∈ AP . Here ◦ (Next) and U (Until) are temporal operators. We use standard
Boolean abbreviations such as ∨ (or), ⊃ (implies), true and false. Moreover, we define
the following abbreviations: •φ ≡ ¬◦¬φ (Weak Next), ♢φ ≡ true U φ (Eventually), and

1 See https://www.icaps-conference.org/competitions/.

https://www.icaps-conference.org/competitions/

G. De Giacomo, A. Di Stasio, and G. Parretti 7:3

□φ ≡ ¬♢¬φ (Always). The size of φ, written |φ|, is the number of its subformulas. Formulas
are interpreted over finite traces π over the alphabet Σ = 2AP , i.e., the alphabet consisting
of the propositional interpretations of the atoms. Thus, for 0 ≤ i ≤ lst(π), πi ∈ 2AP is the
i-th interpretation of π. That an ltlf formula φ holds at instant i ≤ lst(π), written π, i |= φ,
is defined inductively:

π, i |= a iff a ∈ πi (for a ∈ AP);
π, i |= ¬φ iff π, i ̸|= φ;
π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2;
π, i |= ◦φ iff i < lst(π) and π, i + 1 |= φ;
π, i |= φ1 U φ2 iff ∃j such that i ≤ j ≤ lst(π) and π, j |= φ2, and ∀k, i ≤ k < j we have
that π, k |= φ1.

We say that π satisfies φ, written π |= φ, if π, 0 |= φ.

2.2 Deterministic Finite Automata

A deterministic finite automaton (dfa) is a tuple A = (Σ, Q, q0, δ, F), where: Σ is a finite
input alphabet; Q is a finite set of states; q0 ∈ Q is the initial state; δ : Q × Σ → Q is
the transition function; and F ⊆ Q is the set of final states. The size of A is |Q|. Given
a finite trace α = α0α1 . . . αn over Σ, we extend δ to be a function δ : Q × Σ∗ → Q as
follows: δ(q, λ) = q, and, if qn = δ(q, α0 . . . αn−1), then δ(q, α0 . . . αn) = δ(qn, αn). A trace
α is accepted by A if δ(q0, α) ∈ F . The language of A, written L(A), is the set of traces that
the automaton accepts.

▶ Theorem 1 ([26]). Given an ltlf formula φ, we can build a dfa of at most doubly-
exponential size in |φ| whose language is the set of traces satisfying φ.

2.3 ltlf Reactive Synthesis

ltlf reactive synthesis [27] concerns finding a strategy to satisfy an ltlf goal specification.
Goals are expressed as ltlf formulas over AP = X ∪ Y, where X and Y are disjoint sets of
variables. Intuitively, X (resp. Y) is under the environment’s (resp. agent’s) control. Traces
over Σ = 2X ∪Y will be denoted π = (X0 ∪ Y0)(X1 ∪ Y1) . . . where Xi ⊆ X and Yi ⊆ Y for
every i. Infinite traces of this form are also called plays.

An agent strategy is a function σ : (2X)∗ → 2Y mapping sequences of environment moves
to an agent move. The domain of σ includes the empty sequence λ as we assumed that
the agent moves first. A trace π is σ-consistent if Y0 = σ(λ) and Yj+1 = σ(X0 · · · Xj) for
every j ≥ 0. Let φ be an ltlf formula over X ∪ Y. An agent strategy σ is winning for (aka
enforces) φ if, for every play π that is σ-consistent, some finite prefix of π satisfies φ. ltlf

reactive synthesis is the problem of finding an agent strategy σ that enforces φ, if one exists,
and is 2exptime-complete in the size of φ [27].

In many AI applications the agent has some knowledge about how the environment works,
which it can exploit to enforce the goal [2]. This knowledge can be expressed by an ltlf

formula E over X ∪ Y, which we call environment specification. In the synthesis of winning
strategies, we can intuitively see E as restricting traces of interest to those satisfying E . In
this setting, synthesis amounts to computing a strategy that enforces the implication E ⊃ φ,
if one exists.

TIME 2025

7:4 PDDL to DFA: A Symbolic Transformation for Effective Reasoning

2.4 dfa Games
A dfa game is a dfa G = (Σ, Q, q0, δ, F) with input alphabet Σ = 2X ∪Y . The notions of
agent strategy and play defined above also apply to dfa games. A play is winning if it
contains a finite prefix that is accepted by the dfa. An agent strategy is winning if, for every
play π that is σ-consistent, π is winning. That is, the agent wins the game if it can force the
play to visit the set of final states at least once. The winning region is the set of states q ∈ Q

for which the agent has a winning strategy in the game G′, where G′ = (2X ∪Y , Q, q, δ, F),
i.e., the same game as G, but with initial state q. Solving a dfa game is the problem of
computing the agent winning region and a winning strategy, if one exists. dfa games can
be solved in polynomial time by a backward-induction algorithm that performs a fixpoint
computation over the state space of the game [7]. Synthesis of an ltlf formula φ can be
reduced in doubly-exponential time to solve the dfa game Gφ corresponding to φ [27].

Solving ltlf synthesis reduces to solving a reachability game over the dfa corresponding
to the ltlf specification. The procedure for solving ltlf synthesis is detailed in Algorithm 1.

Algorithm 1 ltlf Synthesis.
Input: ltlf formula φ

Output: strategy σag realizing φ;

1: Compute the corresponding NFA Aφ;
2: Determinize Aφ into a dfa Bφ;
3: Solve the reachability game over Bφ.

2.5 Symbolic Synthesis
We consider the dfa representation described above as an explicit-state representation.
Instead, we are able to represent a dfa more compactly in a symbolic way by using a
logarithmic number of propositions to encode the state space [40]. Formally, the symbolic
representation of a dfa A = (2X ∪Y , Q, q0, δ, F) is a tuple As = (X , Y, Z, Z0, η, f), where: Z
is a set of state variables such that |Z| = ⌈log |Q|⌉, and every state q ∈ Q corresponds to
an interpretation Z ∈ 2Z ; Z0 ∈ 2Z is the interpretation corresponding to the initial state
q0; η : 2Z × 2X × 2Y → 2Z is a Boolean function such that η(Z, X, Y) = Z ′ if and only if Z

is the interpretation of a state q and Z ′ is the interpretation of the state δ(q, X ∪ Y); and
f is a Boolean function over Z such that f(Z) = 1 if and only if Z is the interpretation
corresponding to a state q ∈ F . Note that the transition function η can be represented by an
indexed family consisting of a Boolean formula ηz for each state variable z ∈ Z, which when
evaluated over an assignment to Z ∪ X ∪ Y returns the next assignment to z.

A symbolic dfa game can be solved by performing a least fixpoint computation over two
Boolean formulas w over Z and t over Z ∪ Y which represent the winning region and winning
states with agent moves such that, regardless of how the environment behaves, the agent
reaches the final states, respectively [40]. Specifically, w and t are initialized as w0(Z) = f(Z)
and t0(Z, Y) = f(Z), since every final state is a winning state. Note that t0 is independent
of the propositions from Y, since once the play reaches the final states, the agent can do
whatever it wants. Then, ti+1 and wi+1 are constructed as follows:

ti+1(Z, Y) = ti(Z, Y) ∨ (¬wi(Z) ∧ ∀X.wi(η(X, Y, Z)))
wi+1(Z) = ∃Y.ti+1(Z, Y)

G. De Giacomo, A. Di Stasio, and G. Parretti 7:5

The computation reaches a fixpoint when wi+1 ≡ wi. When the fixpoint is reached, no
more states will be added, and all winning states have been collected. By evaluating Z0 on
wi+1 we can determine if there exists a winning strategy. If that is the case, ti+1 can be
used to compute a uniform positional winning strategy through the mechanism of Boolean
synthesis [28].

2.6 Fully Observable Non-Deterministic (fond) Planning
Following [23], we define a fond domain as a tuple D = (2F , s0, Act, React, α, β, δ), where:
F is a finite set of fluents, |F| is the size of D, and 2F is the state space; Act and React

are finite sets of agent actions and environment reactions, respectively; α : 2F → 2Act is a
function denoting agent action preconditions; β : 2F × Act → 2React is a function denoting
environment reaction preconditions; and δ : 2F × Act × React → 2F is the transition function
such that δ(s, a, r) is defined if and only if a ∈ α(s) and r ∈ β(s, a). We assume that planning
domains satisfy the properties of:

Existence of agent action: ∀s ∈ 2F .∃a ∈ α(s);
Existence of environment reaction: ∀s ∈ 2F .∀a ∈ α(s).∃r ∈ β(s, a);
Uniqueness of environment reaction:

∀s ∈ 2F .∀a ∈ α(s).∀r1, r2 ∈ β(s, a).δ(s, a, r1) = δ(s, a, r2) ⊃ r1 = r2.

With these properties, inspired by [22], we can capture classical fond domains [18, 29]
by explicitly introducing environment reactions corresponding to nondeterministic effects of
agent actions.

A state trace of D is a finite sequence τ = s0 · · · sn of states such that s0 is the initial
state of D and, for every i < n, there exists an agent action ai ∈ α(si) and an environment
reaction ri ∈ β(si, ai) such that si+1 = δ(si, ai, ri). A plan is a partial function κ : 2F → Act

such that, if κ(s) is defined, then κ(s) ∈ α(s). A plan terminates its execution in states where,
being a partial function, it specifies no action. A state trace τ = s0 · · · sn is κ-consistent if:
(i) s0 is the initial state of D; (ii) for every i < n, si+1 = δ(si, ai, ri) for ai = κ(si) and some
ri ∈ β(si, ai); and (iii) κ(sn) is undefined.

fond (strong) planning concerns finding a plan to satisfy a goal regardless of the
nondeterminism in the domain, called strong plan. A goal G is a conjunction of fluents
and negations of fluents. Given a goal G and a domain D, a plan κ is strong for G in
D if, for every state trace τ = s0, · · · , sn that is κ-consistent, sn |= G. Formally, fond
planning is the problem of finding a strong plan for G in D, if one exists. fond planning is
exptime-complete in the size of D [17].

In this paper, we always assume that we have fond domains expressed in pddl [31],
i.e., the fluents defining the states of the domain are predicates over objects. We write
predicate/k to specify that k objects participate in the predicate relation. Predicates,
actions, and action preconditions are specified in first-order syntax in a domain.pddl file,
whereas the initial state, goal, and objects, are usually specified in a separate problem.pddl
file.

3 pddl to Symbolic dfa

In this paper, we present a technique for transforming pddl into symbolic dfa. A naive
approach is to translate pddl into ltlf [2] and build its corresponding symbolic dfa. However,
this approach is limited by the doubly-exponential blow-up resulting from transforming ltlf

formulas in dfas [26]. Instead, our technique ensures only a single-exponential blowup in the
number of fluents.

TIME 2025

7:6 PDDL to DFA: A Symbolic Transformation for Effective Reasoning

Our transformation is based on representing the nondeterminism in the domain with agent
actions and environment reactions, as described in Section 2. Once such a representation
is established, the symbolic dfa of the domain can be easily built by constructing suitable
Boolean formulas.

The core idea to represent the nondeterminism in the domain with agent actions and
environment reactions is as follows. For every state of the domain s ∈ 2F and possible
nondeterministic effect s1, · · · , sn of an agent action a ∈ α(s) (specified in its oneof clause),
we introduce an environment reaction r1, · · · , rn such that, for every i < n, we have
δ(s, a, ri) = si and ri ∈ β(s, a). That is, ri represents the i-th nondeterministic effect
of applying action a in s. Applying this construction to every state s ∈ 2F and agent
action a ∈ Act generates a planning domain D = (2F , s0, Act, React, α, β, δ) as detailed in
Algorithm 2

Algorithm 2 Pddl2ActsAndReacts(domain.pddl, problem.pddl).

Require: pddl description of planning domain as domain.pddl and problem.pddl
Ensure: A nondeterministic planning domain D = (2F , s0, Act, React, α, β, δ)

1: Let F be the set of fluents in domain.pddl and problem.pddl
2: Let s0 be the initial state from problem.pddl
3: Let Act and α be actions and preconditions from domain.pddl and problem.pddl
4: for s ∈ 2F :
5: for a ∈ Act:
6: if a ∈ α(s):
7: Let {s1, · · · , sn} be the successor states of s specified in a’s oneof clause
8: Update: React = React ∪ {r1, · · · , rn}
9: Define: δ(s, a, ri) = si and ri ∈ β(s, a) for every i

10: Return D = (2F , s0, Act, React, α, β, δ)

▶ Example 2. Consider a robotic agent that operates in a blocksworld environment where
it can pick up/drop blocks from/in top of other blocks as well as pick up/drop blocks from/on
the table. The domain defines the predicates emptyhand/0, holding/1, on-table/1, on/2,
clear/1 to specify that the agent holds no block, the agent holds a block, a block is on the
table, a block is on top of another block, and a block can be picked, respectively.

Assume that there exist two blocks, yellow and green, and that in the initial state green
is on the table, yellow is on top of green, and the agent holds no block. Consider the agent
actions pick-up and put-on-block defined as follows.

1 (: action pick-up
2 : parameters (?b1 ?b2 - block)
3 : precondition (and
4 (not (= ?b1 ?b2))
5 (emptyhand)
6 (clear ?b1)
7 (on ?b1 ?b2))
8 : effect (oneof
9 (and

10 (holding ?b1)
11 (clear ?b2)
12 (not (emptyhand))
13 (not (clear ?b1))
14 (not (on ?b1 ?b2)))

G. De Giacomo, A. Di Stasio, and G. Parretti 7:7

15 (and
16 (clear ?b2)
17 (on-table ?b1)
18 (not (on ?b1 ?b2)))))
19
20 (: action put-on-block
21 : parameters (?b1 ?b2 - block)
22 : precondition (and
23 (holding ?b1)
24 (clear ?b2))
25 : effect (oneof
26 (and
27 (on ?b1 ?b2)
28 (emptyhand)
29 (clear ?b1)
30 (not (holding ?b1))
31 (not (clear ?b2)))
32 (and
33 (on-table ?b1)
34 (emptyhand)
35 (clear ?b1)
36 (not (holding ?b1)))))

Intuitively, action pick-up specifies that whenever the agent tries to pick up a block, either
it succeeds, or it does not and the block falls on the table. Similarly for action put-on-block.
We can capture the nondeterministic effects of actions pick-up and put-on-block with two
reactions succeed and fail. A fragment of the planning domain resulting from applying
Algorithm 2 to the pddl description above is shown in Figure 1.

Figure 1 Fragment of the domain resulting from applying Algorithm 2 to the pddl description
in Example 2.

▶ Remark 3. Algorithm 2 returns a domain D = (2F , s0, Act, React, α, β, δ) with fluents,
initial state, agent actions, and action preconditions as in its pddl description. The number
of environment reactions is at most single-exponential in the number of fluents |F|. To
see this, observe that there may exist an action a ∈ Act that, from some state s ∈ 2F of

TIME 2025

7:8 PDDL to DFA: A Symbolic Transformation for Effective Reasoning

the domain, nondeterministically leads to every other state s′ ∈ 2F , thus generating an
environment reaction for each such successor state. However, in practice the number of
reactions is often several orders of magnitude less than 2F , since the possible nondeterministic
effects in oneof clauses of agent actions are usually very few.

Once the nondeterminism in the domain is represented through deterministic action-
reaction pairs (a, r), we can construct the symbolic dfa of the domain. To do this, we
characterize each pair (a, r) in terms of its add-list add(a, r) and delete-list del(a, r), which
are the sets of fluents added and deleted by (a, r), respectively. Formally, a fluent f is in
add(a, r) (resp. del(a, r)) iff for every s ∈ 2F , if a ∈ α(s) and f ̸∈ s (resp. f ∈ s), then
f ∈ δ(s, a, r) (resp. f ̸∈ δ(s, a, r)). The add- and delete-lists of action-reaction pairs can
be extracted immediately from the pddl description of the domain. Specifically, fluents
appearing without (resp. with) not in the oneof clause of an action a are in the add-list
(resp. delete-list) of the corresponding action-reaction pair (a, r).

We give in Algorithm 3 a technique to transform a fond domain with a goal into a
symbolic dfa. Algorithm 3 constructs a symbolic dfa with a state variable for each fluent and
two error state variables, AgErr and EnvErr, denoting that the agent and the environment
violated the domain specification, respectively, and whose initial state is that of the domain
(Line 1). The alphabet of the symbolic dfa is partitioned into actions and reactions, which
are under the control of the agent and the environment, respectively (Line 2). For every
state variable corresponding to a fluent, Algorithm 3 constructs its transition function as
specified in Line 3. Intuitively, the transition function ηf of fluent f specifies that in the
next time step f holds if and only if either:
1. f was true in the previous time step and was not deleted by an action-reaction pair (a, r)

such that f ∈ del(a, r); or
2. f was added by some action reaction pair (a, r) such that f ∈ add(a, r).

Algorithm 3 constructs the transition functions of AgErr and EnvErr in Lines 4 and 5.
Intuitively, the transition function ηAgErr of AgErr specifies that in the next time step the
agent reaches the error state if and only if either:
1. The agent was in its error state in the previous time step, written AgErr; or
2. The agent violated the mutual exclusion axiom for its actions, which states that, at each

time step, the agent must execute one and only one action, written ¬AgMutex(Y);
3. The agent violated an action precondition, written ¬AgPre(Z, Y).

The transition function of EnvErr is constructed similarly.
Taking the agent’s point of view, Algorithm 3 constructs the final states of the dfa so

that a trace is accepted if the agent does not reach its error state and either the environment
reaches its error state or the goal is reached (Line 6).

The size of the symbolic dfa constructed by Algorithm 3, i.e., the number of its state
variables, is polynomial in the size of the domain. Each line can be executed in polynomial
time in the size of the domain. As a result, Algorithm 3 runs in polynomial time in the size
of the input domain.

Together, Algorithms 2 and 3 form our technique for transforming pddl into symbolic
dfa. While worst-case exponential in the size of the input domain, our transformation
is often polynomial due to its compact representation of nondeterministic effects of agent
actions with suitable environment reactions.

4 Reduction of fond Planning to Synthesis

As an application to demonstrate the effectiveness of our pddl to dfa transformation
technique, we show how to use it to solve fond planning problems.

G. De Giacomo, A. Di Stasio, and G. Parretti 7:9

Algorithm 3 DomainToDfa(D, G).

Require: A fond domain D = (2F , s0, Act, React, α, β, δ) with goal G

Ensure: A symbolic dfa As = (Z, X , Y, Z0, η, f)
1: Define Z = F ∪ {AgErr, EnvErr}
2: Define initial state Z0 = s0
3: Define Y = Act

4: Define X = React

5: for each f ∈ F :

ηf (Z, X , Y) =

f ∧ ¬
∨

(a,r)|f∈del(a,r)

(a ∧ r)

 ∨
∨

(a,r)|f∈add(a,r)

(a ∧ r)

6: Define agent error transition:

ηAgErr(Z, X , Y) = AgErr ∨ ¬AgMutex(Y) ∨ ¬AgPre(Z, Y)

where:

AgMutex(Y) =
(∨

a∈Act

a

)
∧

 ∧
a,a′∈Act,a̸=a′

a ⊃ ¬a′


AgPre(Z, Y) =

∧
a∈Act

a ⊃
∨

s∈2F ,a∈α(s)

s


7: Define environment error transition:

ηEnvErr(Z, X , Y) = EnvErr ∨ ¬EnvMutex(X) ∨ ¬EnvPre(Z, Y, X)

where:

EnvMutex(X) =
(∨

r∈React

r

)
∧

 ∧
r,r′∈React,r ̸=r′

r ⊃ ¬r′


EnvPre(Z, Y, X) =

∧
r∈React

r ⊃
∨

(s,a)∈(2F ×Act),r∈β(s,a)

(s ∧ a)


8: Define accepting condition:

f(Z) = ¬AgErr ∧ (EnvErr ∨ G)

9: Return As = (X , Y, Z, Z0, η, f)

Let D and G be a fond domain and goal in pddl. Construct its symbolic dfa As by
using Algorithms 2 and 3. Solve the symbolic dfa game over As, assigning actions and
reactions to agent and environment, respectively.

▶ Theorem 4. Let D and G be a fond domain and goal in pddl and As their dfa. There
is a strong plan for G in D iff there is a winning strategy in As.

TIME 2025

7:10 PDDL to DFA: A Symbolic Transformation for Effective Reasoning

This synthesis technique is exponential in the size of the pddl domain and therefore
optimal wrt the computational complexity of fond planning. However, we also observe that
synthesis on dfa games is based on basic backward search algorithms. While we do not
introduce sophisticated optimization techniques, we show that we can include them in our
synthesis algorithm.

Specifically, we show how to include a simple form of invariants, i.e., properties of
states of the domain that must remain unchanged during the execution of every sequence
of actions [12]. Invariants can be used to prune the search space by eliminating actions or
states that violate these unchanging properties.

We consider mutual exclusion invariants specifying that, at every state, no more than
one fluent or negation of fluent l in a set I can be true. Such invariants can be captured
as a Boolean formula i(Z) over the state variables of the symbolic dfa constructed in
Algorithm 3 as:

i(Z) =
∧
l∈I

(l ⊃
∧

l′∈I.l ̸=l′

¬l′)

To include invariants in backward search, we rewrite the fixpoint computation in Section 2.
Specifically, w and t are now initialized as w0(Z) = f(Z) ∧ i(Z) and t0(Z, Y) = f(Z) ∧ i(Z),
since every goal state must satisfy the invariant. Then, ti+1 and wi+1 are constructed as
follows:

ti+1(Z, Y) = ti(Z, Y) ∨ (¬wi(Z) ∧ ∀X .wi(η(X , Y, Z)))

wi+1(Z) = (∃Y.ti+1(Z, Y)) ∧ i(Z)

That is, only states satisfying the invariant are added to the winning region.
▶ Remark 5. An approach alternative to ours is to reduce fond planning to ltlf synthesis
of the formula E ⊃ φ, where E and φ describe the domain and the agent goal, respectively [2].
The ltlf formula is transformed in dfa in doubly-exponential time (Theorem 1) and a
strong plan is obtained by solving the corresponding dfa game. However, this approach is
limited by the doubly-exponential blowup resulting from transforming the ltlf formula in
dfa.

5 Evaluation

We implemented Algorithms 2 and 3 in a tool called pddl2dfa. For parsing, grounding,
and computing invariants for the input pddl domain, we based on the tool prp [32]. We
code Boolean functions representing transitions and final states of symbolic dfas by Binary
Decision Diagrams (bdds) [13] with the bdd library cudd 3.0.0 [36]. The size of a bdd is
the number of its nodes. pddl2dfa also implements the transformation from pddl to ltlf

(see Remark 5), in which case the dfas of ltlf formulas are constructed with lydia [21],
which is among the best performing tools publicly available for ltlf -to-dfa conversion.

We applied the transformation in pddl2dfa to implement the reduction of fond planning
to synthesis (ref. Section 4) in a tool called syft4fond2. For solving symbolic dfa games,
we use the symbolic synthesis framework in [40] at the base of state-of-the-art ltlf synthesis
tools [11, 37]. We compute winning strategies for dfa games through Boolean synthesis [28].

2 pddl2dfa and syft4fond at https://github.com/GianmarcoDIAG/syft4fond

https://github.com/GianmarcoDIAG/syft4fond

G. De Giacomo, A. Di Stasio, and G. Parretti 7:11

Setup. Experiments were run on a laptop running 64-bit Ubuntu 22.04, 3.6 GHz CPU, and
12 GB of memory. Timeout was 1000 secs.

5.1 Benchmark
We performed experiments on a suite of 170 classical fond planning benchmarks divided in five
classes: blocks world (50 instance), extended blocks world (50 instances), triangle-tire world
(40 instances), rectangle-tire world (15 instances), and elevators (15 instances). In blocks
world instances, the agent manipulates blocks with actions that can nondeterministically
succeed or fail. In extended blocks world instances, the agent can also move towers of
two blocks, with similar nondeterministic success or failure in actions. In triangle-tire and
rectangle-tire instances, the agent navigates a grid environment, dealing with nondeterministic
success or failure when moving. Elevator instances involve managing elevators to collect
coins across multiple floors. For each class, the instances grow by increasing the problem
size, which depends on their parameters.

5.2 Empirical Results
We performed experiments to evaluate the efficiency of our technique for translating pddl
into symbolic dfa and the practical feasibility of reducing fond planning to synthesis.

We evaluated the performance of pddl2dfa in transforming pddl to ltlf and ltlf to
symbolic dfa. When employing this transformation, pddl2dfa was unable to construct the
symbolic dfa of the pddl domain in the considered benchmarks, except in very few cases.
The bottleneck was transforming ltlf into dfa, which requires doubly-exponential time in
the size of the ltlf formula [26].

Table 1 Coverage achieved by pddl2dfa (constructed dfas/instances in benchmark), and domain
size (|F|), number of actions (|Act|), size of largest fluent bdd (Max{F} bdd), size of smallest fluent
bdd (Min{F} bdd), size of agent error bdd (AgErr bdd), and size of environment error bdd (EnvErr
bdd) in the largest solved instance.

Bench. Coverage |F| |Act| Max{F} bdd Min{F} bdd AgErr bdd EnvErr bdd

Blocks 31/50 1055 1953 514 14 6549 109
BlocksExt 19/50 379 12654 5085 277 156509 562
Triangle 30/40 2881 4709 1305 17 40247 740

Rect. 10/15 53 52249 5432 2077 66261 1783
Elev. 15/15 66 105 42 10 511 41

Total 105/170 – – – – – –

We evaluated the performance of pddl2dfa in transforming pddl to symbolic dfa with
Algorithms 2 and 3. Table 1 shows that pddl2dfa constructed the dfa for a considerable
number of benchmarks. Notably, pddl2dfa was able to construct the dfa of triangle-tire
domains with side 61. The bottleneck of the dfa construction was computing the agent
error bdd. Indeed, Table 1 shows that the size of the agent error bdd in the hardest solved
instances is orders of magnitude larger than that of the other bdds, including that of the
largest fluent bdd. The reason is that constructing the bdd of the agent error requires
iterating over all actions of the domain. Instead, constructing the bdds of the fluents requires
only considering actions containing that fluent in their add- and delete-lists. Constructing
the environment error bdd requires iterating over all environment reactions, but these are
often several orders of magnitude less than fluents and agent actions (see Remark 3). As

TIME 2025

7:12 PDDL to DFA: A Symbolic Transformation for Effective Reasoning

a result, the number of actions is the parameter that affects most the performance of the
dfa construction. The size of the pddl domain, i.e., its fluents, has less impact than the
number of agent actions on the dfa construction performance. Overall, this is a good result
and shows the effectiveness of our construction.

Table 2 Coverage achieved by syft4fond (solved instances/instances in benchmark), and domain
size (|F|), number of actions (|Act|), size of largest fluent bdd (Max{F} bdd), size of smallest fluent
bdd (Min{F} bdd), size of agent error bdd (AgErr bdd), and size of environment error bdd (EnvErr
bdd) in the largest solved instance.

Bench. Coverage |F| |Act| Max{F} bdd Min{F} bdd AgErr bdd EnvErr bdd

Blocks 6/50 55 78 46 10 403 29
BlocksExt 3/50 19 81 33 8 327 32
Triangle 9/40 298 467 169 12 2119 111

Rect. 8/15 25 15481 2272 1057 74757 884
Elev. 7/15 44 68 28 10 281 28

Total 33/170 - - - - - -

We evaluated the performance of syft4fond in reducing fond planning to synthesis.
Table 2 shows that syft4fond is able to solve a reasonable number of instances. Indeed,
syft4fond was able to solve triangle-tire planning instances with side 19, though based on
plain backward search. The bottleneck of the synthesis was constructing the bdds of the
agent winning moves and region during the fixpoint computation, which are mostly affected
by the size of the agent error bdd. In general, we consider this result adequate to show the
practical feasibility of reducing fond planning to synthesis.

6 Conclusion

In this paper, we have presented an effective method for translating pddl into symbolic
dfa. We implemented our method in a new tool, pddl2dfa, and applied it to solving
planning problems through reduction to synthesis in the tool syft4fond. Testing these
tools on various case studies demonstrated the practicality and performance of our approach.
Indeed, we demonstrated that our method successfully constructs dfas for considerably large
domains and solves a practical number of planning instances, performing significantly better
than straightforward approaches based on translating pddl in ltlf . Our work makes a step
towards integrating planning and synthesis more closely. Future research can build on this
foundation, aiming to integrate fond domains into advanced synthesis techniques developed
for temporally extended goals [27, 19], structured environment specifications [20, 9, 30, 3],
multiple goal specifications [14, 38], and for handling goal unrealizability [4, 5, 24, 23].

References
1 Benjamin Aminof, Giuseppe De Giacomo, Aniello Murano, and Sasha Rubin. Planning and

synthesis under assumptions. CoRR, abs/1807.06777, 2018. arXiv:1807.06777.
2 Benjamin Aminof, Giuseppe De Giacomo, Aniello Murano, and Sasha Rubin. Planning under

LTL environment specifications. In ICAPS, pages 31–39, 2019. URL: https://ojs.aaai.org/
index.php/ICAPS/article/view/3457.

3 Benjamin Aminof, Giuseppe De Giacomo, Gianmarco Parretti, and Sasha Rubin. Effective
approach to ltlf best-effort synthesis in multi-tier environments. In IJCAI, 2024.

https://arxiv.org/abs/1807.06777
https://ojs.aaai.org/index.php/ICAPS/article/view/3457
https://ojs.aaai.org/index.php/ICAPS/article/view/3457

G. De Giacomo, A. Di Stasio, and G. Parretti 7:13

4 Benjamin Aminof, Giuseppe De Giacomo, and Sasha Rubin. Best-effort synthesis: Doing your
best is not harder than giving up. In IJCAI, pages 1766–1772, 2021. doi:10.24963/IJCAI.
2021/243.

5 Benjamin Aminof, Giuseppe De Giacomo, and Sasha Rubin. Reactive synthesis of dominant
strategies. In AAAI, pages 6228–6235. AAAI Press, 2023. doi:10.1609/AAAI.V37I5.25767.

6 Benjamin Aminof, Giuseppe De Giacomo, Aniello Murano, and Sasha Rubin. Planning
under LTL environment specifications. In ICAPS, pages 31–39. AAAI Press, 2019. URL:
https://ojs.aaai.org/index.php/ICAPS/article/view/3457.

7 Krzysztof R. Apt and Erich Grädel, editors. Lectures in Game Theory for Computer Scientists.
Cambridge University Press, 2011.

8 Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of Model Checking.
MIT Press, 2008.

9 Suguman Bansal, Giuseppe De Giacomo, Antonio Di Stasio, Yong Li, Moshe Y. Vardi, and
Shufang Zhu. Compositional safety LTL synthesis. In VSTTE, volume 13800 of Lecture Notes
in Computer Science, pages 1–19. Springer, 2022. doi:10.1007/978-3-031-25803-9_1.

10 Suguman Bansal, Yong Li, Lucas M. Tabajara, and Moshe Y. Vardi. Hybrid compositional
reasoning for reactive synthesis from finite-horizon specifications. In AAAI, pages 9766–9774,
2020. doi:10.1609/AAAI.V34I06.6528.

11 Suguman Bansal, Yong Li, Lucas M. Tabajara, and Moshe Y. Vardi. Hybrid compositional
reasoning for reactive synthesis from finite-horizon specifications. In AAAI, pages 9766–9774,
2020. doi:10.1609/AAAI.V34I06.6528.

12 Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis. Artif.
Intell., 90(1-2):281–300, 1997. doi:10.1016/S0004-3702(96)00047-1.

13 Randal E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.
ACM Comput. Surv., 24(3):293–318, 1992. doi:10.1145/136035.136043.

14 Alberto Camacho, Meghyn Bienvenu, and Sheila A. McIlraith. Finite LTL synthesis with
environment assumptions and quality measures. In KR, pages 454–463. AAAI Press, 2018.
URL: https://aaai.org/ocs/index.php/KR/KR18/paper/view/18072.

15 Alberto Camacho, Meghyn Bienvenu, and Sheila A McIlraith. Towards a unified view of AI
planning and reactive synthesis. In ICAPS, pages 58–67, 2019. URL: https://ojs.aaai.org/
index.php/ICAPS/article/view/3460.

16 Alonzo Church. Logic, arithmetic and automata. In Proc. International Congress of Mathem-
aticians, 1963.

17 Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. Artificial Intelligence, 147:35–84, 2003.
doi:10.1016/S0004-3702(02)00374-0.

18 Alessandro Cimatti, Marco Roveri, and Paolo Traverso. Strong Planning in Non-Deterministic
Domains Via Model Checking. In AIPS, pages 36–43. AAAI, 1998. URL: http://www.aaai.
org/Library/AIPS/1998/aips98-005.php.

19 Giuseppe De Giacomo, Antonio Di Stasio, Francesco Fuggitti, and Sasha Rubin. Pure-
past linear temporal and dynamic logic on finite traces. In IJCAI, pages 4959–4965, 2020.
doi:10.24963/IJCAI.2020/690.

20 Giuseppe De Giacomo, Antonio Di Stasio, Moshe Y Vardi, and Shufang Zhu. Two-stage
technique for LTLf synthesis under LTL assumptions. In KR, pages 304–314, 2020. doi:
10.24963/KR.2020/31.

21 Giuseppe De Giacomo and Marco Favorito. Compositional approach to translate LTLf /LDLf

into deterministic finite automata. In ICAPS, pages 122–130, 2021. URL: https://ojs.aaai.
org/index.php/ICAPS/article/view/15954.

22 Giuseppe De Giacomo and Yves Lespérance. The nondeterministic situation calculus. In KR,
pages 216–226, 2021. doi:10.24963/KR.2021/21.

23 Giuseppe De Giacomo, Gianmarco Parretti, and Shufang Zhu. LTLf best-effort synthesis in
nondeterministic planning domains. In ECAI, pages 533–540, 2023. doi:10.3233/FAIA230313.

TIME 2025

https://doi.org/10.24963/IJCAI.2021/243
https://doi.org/10.24963/IJCAI.2021/243
https://doi.org/10.1609/AAAI.V37I5.25767
https://ojs.aaai.org/index.php/ICAPS/article/view/3457
https://doi.org/10.1007/978-3-031-25803-9_1
https://doi.org/10.1609/AAAI.V34I06.6528
https://doi.org/10.1609/AAAI.V34I06.6528
https://doi.org/10.1016/S0004-3702(96)00047-1
https://doi.org/10.1145/136035.136043
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18072
https://ojs.aaai.org/index.php/ICAPS/article/view/3460
https://ojs.aaai.org/index.php/ICAPS/article/view/3460
https://doi.org/10.1016/S0004-3702(02)00374-0
http://www.aaai.org/Library/AIPS/1998/aips98-005.php
http://www.aaai.org/Library/AIPS/1998/aips98-005.php
https://doi.org/10.24963/IJCAI.2020/690
https://doi.org/10.24963/KR.2020/31
https://doi.org/10.24963/KR.2020/31
https://ojs.aaai.org/index.php/ICAPS/article/view/15954
https://ojs.aaai.org/index.php/ICAPS/article/view/15954
https://doi.org/10.24963/KR.2021/21
https://doi.org/10.3233/FAIA230313

7:14 PDDL to DFA: A Symbolic Transformation for Effective Reasoning

24 Giuseppe De Giacomo, Gianmarco Parretti, and Shufang Zhu. Symbolic LTLf best-effort
synthesis. In EUMAS, pages 228–243, 2023.

25 Giuseppe De Giacomo and Sasha Rubin. Automata-theoretic foundations of FOND planning
for LTLf and LDLf goals. In IJCAI, pages 4729–4735, 2018. doi:10.24963/IJCAI.2018/657.

26 Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic logic on
finite traces. In IJCAI, pages 854–860, 2013. URL: http://www.aaai.org/ocs/index.php/
IJCAI/IJCAI13/paper/view/6997.

27 Giuseppe De Giacomo and Moshe Y. Vardi. Synthesis for LTL and LDL on finite traces. In
IJCAI, pages 1558–1564, 2015. URL: http://ijcai.org/Abstract/15/223.

28 Dror Fried, Lucas M. Tabajara, and Moshe Y. Vardi. BDD-based Boolean functional synthesis.
In CAV, pages 402–421, 2016. doi:10.1007/978-3-319-41540-6_22.

29 Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods for Automated
Planning. Morgan & Claypool, 2013.

30 Giuseppe De Giacomo, Antonio Di Stasio, Lucas M. Tabajara, Moshe Y. Vardi, and Shufang
Zhu. Finite-trace and generalized-reactivity specifications in temporal synthesis. Formal
Methods Syst. Des., 61(2):139–163, 2022. doi:10.1007/S10703-023-00413-2.

31 Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise. An Introduction to
the Planning Domain Definition Language. Morgan & Claypool, 2019.

32 Christian Muise, Sheila A McIlraith, and J Christopher Beck. Improved non-deterministic
planning by exploiting state relevance. In ICAPS, 2012.

33 Gianmarco Parretti. Syft4Fond. Software (visited on 2025-09-18). URL: https://github.
com/GianmarcoDIAG/syft4fond, doi:10.4230/artifacts.24786.

34 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179–190,
1989.

35 Amir Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57, 1977. doi:10.1109/
SFCS.1977.32.

36 Fabio Somenzi. CUDD: CU Decision Diagram Package 3.0.0. Universiy of Colorado at Boulder,
2016.

37 Shufang Zhu and Marco Favorito. Lydiasyft: A compositional symbolic synthesis framework for
ltlf specifications. In TACAS 2025, pages 295–302, 2025. doi:10.1007/978-3-031-90643-5_
15.

38 Shufang Zhu and Giuseppe De Giacomo. Act for your duties but maintain your rights. In KR,
2022.

39 Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, and Moshe Y. Vardi. Symbolic
LTLf synthesis. In IJCAI, pages 1362–1369, 2017. doi:10.24963/IJCAI.2017/189.

40 Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, and Moshe Y. Vardi. Symbolic
LTLf synthesis. In IJCAI, pages 1362–1369, 2017. doi:10.24963/IJCAI.2017/189.

https://doi.org/10.24963/IJCAI.2018/657
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://ijcai.org/Abstract/15/223
https://doi.org/10.1007/978-3-319-41540-6_22
https://doi.org/10.1007/S10703-023-00413-2
https://github.com/GianmarcoDIAG/syft4fond
https://github.com/GianmarcoDIAG/syft4fond
https://doi.org/10.4230/artifacts.24786
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-031-90643-5_15
https://doi.org/10.1007/978-3-031-90643-5_15
https://doi.org/10.24963/IJCAI.2017/189
https://doi.org/10.24963/IJCAI.2017/189

Heuristics for Covering the Timeline in Temporal
Graphs
Riccardo Dondi #

Università degli Studi di Bergamo, Italy

Rares-Ioan Mateiu #

Department of Computer Science, University of Bucharest, Romania

Alexandru Popa #

Department of Computer Science, University of Bucharest, Romania

Abstract
We consider a variant of the Vertex Cover problem on temporal graphs, called Minimum Timeline
Cover (k-MinTimelineCover). Temporal graphs are used to model complex systems, describing
how edges (relations) change in a discrete time domain. The k-MinTimelineCover problem has
been introduced in complex data summarization and synthesis jobs. Given a temporal graph G,
k-MinTimelineCover asks to define k activity intervals for each vertex, such that each temporal
edge is covered by at least one active interval. The objective function is the minimization of the sum
of interval lengths. k-MinTimelineCover is NP-hard and even hard to approximate within any
factor for k > 1. While the literature has mainly focused on the cases k = 1, in this contribution we
consider the case k > 1. We first present an ILP formulation that is able to solve the problem on
moderate size instances. Then we develop an efficient heuristic, based on local search which is built
on top of the solution of an existing literature method.

Finally, we present an experimental evaluation of our algorithms on synthetic data sets, that
shows in particular that our heuristic has a consistent improvement on the state-of-the art method.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of com-
putation → Design and analysis of algorithms; Theory of computation → Mathematical optimization;
Theory of computation → Discrete optimization

Keywords and phrases Temporal Networks, Activity Timeline, Vertex Cover, Heuristic, Dynamic
Programming

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.8

1 Introduction

Complex systems are usually modeled through graphs or networks in order to understand
their properties and behaviors. The availability of temporal information of relations between
vertices has led to the introduction of temporal graphs [7, 13, 9], where edges, called temporal
edges, represent interactions between two entities at a given time. Note that different
variations of the temporal graph model have been introduced; here we consider a model
where the time domain, over which the temporal edges are defined, is discrete [7, 13, 9].

Temporal graphs have been considered in several domains, e.g., social network analysis [17],
computational biology [8] and epidemiology [1]. We consider an approach defined for the
summarizations of temporal interactions in social networks [12, 16, 15, 14]. In this context,
a user activity in a social network (called activity timeline) is represented with one or more
time intervals; the goal is to represent users interaction, so that if an interaction is observed
at time t, then at least one of the user activity timeline include t [14, 15, 6, 3, 2, 4, 5]. The
objective function, following a parsimonious approach, is the minimization of the overall
length (called span) of timeline activities or the minimization of the maximum length of the
timeline activity. Here, we focus on the first objective function.

© Riccardo Dondi, Rares-Ioan Mateiu, and Alexandru Popa;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:riccardo.dondi@unibg.it
https://orcid.org/0000-0002-6124-2965
mailto:rares.mateiu@s.unibuc.ro
https://orcid.org/0009-0004-2333-5150
mailto:alexandru.popa@fmi.unibuc.ro
https://orcid.org/0000-0003-3364-1210
https://doi.org/10.4230/LIPIcs.TIME.2025.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

8:2 Heuristics for Covering the Timeline in Temporal Graphs

#KingCharles

#RoyalFamily

#Coronation

#WestmisterAbbey

#QueenCamilla

#Windsor

Time −→

Figure 1 An example of k-MinTimelineCover with k = 2. Activity timelines (pink) show two
intervals that are useful in summarizing temporal interactions, identifying the two main hashtags
that explain the event.

We present an example to show how activity timelines can be useful in understanding
evolution of events. Consider the King Charles Coronation in May 2023. Figure 1 shows
temporal co-occurrence of hashtag related to this event. The timelines, associated indicated
in pink, helps to identify the main topics in the online discussions.

Several papers have studied the complexity of k-MinTimelineCover [15, 6, 3, 2], also
in some restricted variant. In particular, the case k = 1, where the activity timeline of each
vertex is defined as a single interval, has been deeply studied, due also to the link with a
foundational problem in theoretical computer science, that is Minimum Vertex Cover.
For k = 1 k-MinTimelineCover is NP-hard and hard to approximate within constant
factor [15, 6, 3, 2]. For k ≥ 2, the problem is even harder, as even deciding if there exists a
solution (of any span) is an NP-complete problem [15].

Due to the hardness of the problem and of its restrictions, some heuristic methods have
been developed, for the general problem [15, 14] and for the restriction with k = 1 [15, 14, 11].
Only the paper that has introduced k-MinTimelineCover has designed practical methods
for the problem [15] when k ≥ 2, thus in this contribution we focus on designing methods
for it. First, we design an ILP method that is able to solve the problem for moderate size
instances, then we present a polynomial-time heuristic for k-MinTimelineCover, based
on local search, so that it is applicable even on larger temporal graphs. In order to design
our heuristic, we present a dynamic programming algorithm for a related problem, called
k-MinIntervalCover, that runs in polynomial time.

We consider the performance of our methods on synthetic datasets, both in for the
efficiency and the quality of the solutions returned. For this latter aspect we show that our
heuristic, is able to shrink significantly the activity timeline lengths, with respect to the
methods presented in [15].

1.1 Related Works
The complexity of k-MinTimelineCover, including the parameterized and approximation
complexity, has been considerably investigated. k-MinTimelineCover is NP-hard, even for
many restrictions. Rozenstein et al. have shown that it is NP-complete to decide whether

R. Dondi, R.-I. Mateiu, and A. Popa 8:3

the exists a solution of any span [15]; this implies that is not possible to approximate the
problem within any factor. Also for k = 2 it is NP-complete to decide whether there exists a
solution of k-MinTimelineCover that has span equal to 0 [6].

The case k = 1 is known NP-hard also when temporal graphs have some restrictions: at
most one temporal edge is defined in each timestamp [2], the time domain consists of three
timestamps and each vertex has degree bounded by two [2], the time domain consists of two
timestamps [6].

k-MinTimelineCover have also been considered through the lens of parameterized
complexity, for parameters the number of vertices, the number of timestamps in the time
domain, and k [6]. For k = 1, k-MinTimelineCover has been show to be fixed-parameter
tractable, for parameter the span of a solution, when the time domain consists of two
timestamps [6] and later for any number of timestamps [3]. It is unlikely that the previous
result can be extended to larger values of k, since for k = 2 it is NP-complete to decide
whether there exists a solution of k-MinTimelineCover that has span equal to 0 [6].

As for the approximation complexity, we have already noted that k-MinTimelineCover
cannot be approximated within any factor. For k = 1, while the problem is known to be
hard to approximate within constant factor assuming the Unique Game Conjecture [6, 3], it
admits a O(T log |V |)-approximation algorithm [4, 5] (T is the number of timestamps of the
time domain, V is the set of vertices).

As for heuristics, Rozenshtein et al. [14] have presented k-Inner, which is based on solving
a problem, called k-Coalesce, that requires to cover some predetermined timestamps. These
timestamps represent an estimation of the activity timeline of a vertex. In our contribution,
we present a local search heuristic which is meant to be built on top of this heuristic, in
order possibly improve the computed solutions (that is we are able to reduce the span).
Other heuristics have been proposed recently for the case k = 1 [11, 10]. We note that other
complexity results and a heuristic, called k-Budget, have been given for the problem that
has as objective function the minimization of the maximum span [15, 6].

The rest of the paper is organized as follow. In Section 2 we give some definitions and
we formally introduce the k-MinTimelineCover problem. In Section 3 we present the
ILP formulation for k-MinTimelineCover, then in Section 4 we describe our local search
heuristic. In Section 5 we give an experimental evaluation of our methods on synthetic
datasets. We conclude the paper with some future directions described in Section 6.

2 Preliminaries

A temporal graph G = (V, E), with V a set of vertices and E a set of temporal edges, which
are defined on time domain [T] = [1, T] of timestamps (note that in the model we consider
the time domain is discrete and T represents the maximum timestamp value). Each temporal
edge is represented by a timestamped triplet (u, v, t) such that u, v ∈ V and t ∈ [T] represents
the time when the interaction between u and v occurred. Note that in the temporal graphs
we consider, temporal edges are undirected and unweighted.

Consider a vertex v and two timestamps sv ∈ [T] and ev ∈ [T] with sv ≤ ev, Iv = [sv, ev]
is an activity interval of v. An activity timeline Tk(v) of a vertex v ∈ V is a set of k (where
k ≥ 1) activity intervals Ivi

= [svi
, evi

], i ∈ [k], where svi
≤ evi

, with the constraint that
evi

< svi+1 for each i ∈ [k − 1]. The last constraint guarantees that the activity intervals
of an activity timeline of a vertex are time disjoint. Given a vertex v ∈ V and an activity
timeline Tk(v) of v, we say that v is active in a timestamp t that is included in an interval of
Tk(v); if t is not included in an interval of Tk(v), v is said to be inactive in t.

TIME 2025

8:4 Heuristics for Covering the Timeline in Temporal Graphs

Moreover, we define the span of interval Ivi δ(Ivi) = evi − svi as the duration of the
interval i for the vertex v. We define the span of an activity timeline Tk(v) of v, consisting
of interval Ivi

= [svi
, evi

], i ∈ [k], as

S(Tk(v)) =
k∑

i=1
δ(Ivi

).

The activity timeline of temporal graph G is defined as:

Tk =
⋃

v∈V

Tk(v)

The sum span of the activity timeline Tk of a graph G is defined as the sum spam over
all vertices in the temporal graph:

S(Tk) =
∑
v∈V

S(Tk(v)) =
∑
v∈V

∑
j∈[1...k]

δ(Ivi
)

An important fact to note is that a vertex can have at most k activity intervals, so the
problem setting admits empty intervals.

Now, we define how an activity timeline covers temporal edges of a temporal graph.

▶ Definition 1. Given a temporal graph G = (V, E) and an activity timeline Tk of G, Tk

covers G if ∀(u, v, t) ∈ E, there is an interval Iv ∈ Tk(v) or Iu ∈ Tk(u) such that t ∈ Iv or
t ∈ Iu.

Now, we are able to formally define the problem we are interested in.

▶ Problem 1. k-Minimum Timeline Cover (k-MinTimelineCover)
Input: A temporal graph G = (V, E), k ∈ N.
Output: An activity timeline Tk that covers G and minimizes the total sum span S(Tk).

Note that in the following, we will focus on the case k ≥ 2.
Figure 2 shows an example of timeline covering over a 2-timestamps graph with 5 vertices.

3 An ILP Formulation for k-MinTimelineCover

In the following, we present an ILP model formulation for k-MinTimelineCover. Let
G = (V, E) be a temporal graph, and k be the number of activity intervals per vertex. The
ILP model is based on the following variables. Binary variables xt

v, v ∈ V, t ∈ [T], are used
to define the timestamp that belongs to an activity timeline of v; xt

v = 1 if and only if vertex
v is active at time t. The ILP formulation also defines variables yt

v, v ∈ V, t ∈ [T], which are
used to guarantee that the activity timeline of v consists of k intervals. yt

v = 1 if and only if
vertex v ∈ V is defined active (inactive, respectively) at time t, t ∈ [T − 1], and becomes
inactive (active, respectively) at time t + 1.

▶ Theorem 2. Let G = (V, E) be a temporal graph, and k be the number of maximum activity
intervals per node. The activity timeline Tk that covers G and minimizes the total sum span
S(Tk) is the solution to the following integer linear programming formulation:

R. Dondi, R.-I. Mateiu, and A. Popa 8:5

v

u

z

w

t = 1 t = 2 t = 3 t = 4 t = 5

Figure 2 An example of k-MinTimelineCover with k = 2. The activity timeline of each vertex
is represented with two pink rectangles. Note that the only vertex that has positive span is u, all the
other vertices have span equal to 0. Every temporal edge is covered by at least an activity timeline.

min(
∑
v∈V

(
T∑

t=1
xt

v − k)) (1)

s. t.
xt

v + xt
u ≥ 1,∀(u, v, t) ∈ E (2)

T∑
t=1

yt
v ≤ 2 ∗ k,∀v ∈ V (3)

where yt
v = 0 if xt

v and xt+1
v have the same state and yt

v = 1 otherwise
T∑

t=1
xt

v ≥ k,∀v ∈ V (4)

Proof. We now prove the correctness of the ILP model. The first constraint of the ILP
formulation (which is represented by Equation 2) guarantees that for every temporal edge
(u, v, t) ∈ E, at least one of the endpoints is active at timestamp t, which shows that
the timeline activity output by the ILP covers each temporal edge (u, v, t). Constraint 3
introduces another binary variable yt

v which does not allow us to have more than k disjoint
intervals in a timeline activity of each vertex. Constraint 4 is explained more formally by the
following inequalities:

yt
v ≥ xt

v − xt+1
v ∀v ∈ V, t ∈ [T − 1]

yt
v ≥ xt+1

v − xt
v∀v ∈ V, t ∈ [T − 1]

y0
v = 0

yT
v = 0

TIME 2025

8:6 Heuristics for Covering the Timeline in Temporal Graphs

Each interval of an activity timeline of a vertex is defined by a start and an end timestamp,
consisting of two switches. A timestamp is defined as a switch - represented by yt

v = 1 - if
the vertex either becomes active or inactive at that respective timestamp. Thus, the total
number of switches for every vertex v can be at most 2k, because each vertex will become
active - and then inactive k times.

The last constraint (Equation 4) ensures that for each vertex, its activity interval contains
at least k different active timestamps. This ensures that in the objective function (Equation 1)
no term is negative. Note that the assumption that each activity interval contains at least k

different active timestamps is not restrictive, as an activity interval containing one timestamp
has span 0, thus we can possibly create one-timestamp intervals without increasing the span.
Also, note that we assume that we have two timestamps, 0 and T + 1, where no temporal
edge is defined, and we added fixed values y0

v = yT +1
v = 0. This makes sure that, for cases

when it happens, activation of the first timestamp and the deactivation of the last timestamp
are considered in the sum of Constraint 3. The objective function corresponds to minimize
the sum of the lengths of all active intervals across all vertices which is equivalent to the
sum span defined in the preliminaries section:

S(Tk) =
∑
v∈V

S(Tk(v))) =
∑

j∈[1...k]

∑
v∈V

δ(Ivi
)

Basically, for every vertex v we create k timestamp intervals; we sum up the number of
timestamps of these k intervals from which we subtract k in order ensure that the ILP model
respects the definition of span. For example if we need to have a vertex active at all times,
that will be interpreted by the y activation variable as a single interval I. But by subtracting
k, we are sure that this interval is split into k subintervals; indeed while I has a span of
T − 1, the k subintervals have a total span of T − k, which has a lower span with respect
to I. To sum up, a solution to the ILP provides a minimum temporal activity timeline for
each vertex, constrained to at most k intervals, which ensures that all temporal edges are
covered. ◀

4 A Local Search Heuristic

In this section, we present a heuristic based on local search and on a polynomial-time
algorithm for a subproblem of k-MinTimelineCover. The motivation behind the use of
the local search technique is that for large graph instances and a large k, we have observed
that along the intervals produced by the heuristic solutions there were many which could be
left out of the solution without affecting the correctness of k-MinTimelineCover.

Before we introduce the steps of the local search procedure (see below), we introduce
the concept of loss inspired by the paper of Lazzarinetti et al. [10]. For each vertex v ∈ V

at timestamp t ∈ [T] we define its associated loss loss(v, t) as the number of edges covered
that would become uncovered if v becomes inactive at time t. Given an interval I(v) of an
activity timeline T (v) of a vertex v, the interval loss loss(I(v)) is defined as:

loss(I(v)) =
∑

t∈I(v)

loss(v, t).

Our improvement algorithm improves the solution provided by the heuristics in [15] and
refines it using local search. The local search algorithm: (1) finds for each vertex v if there
exists an activity interval of loss = 0 in the solution; (2) it removes the activity timeline Tk(v)
from the solution; (3) it computes the timestamps associated with the temporal edges incident
in v left uncovered by the pruning of step (2); (4) it computes by dynamic programming
algorithm an activity timeline of v of minimum span, containing the timestamps of step (3).

R. Dondi, R.-I. Mateiu, and A. Popa 8:7

The motivation for this strategy is that, if there is an interval I(v) of loss = 0, it is
not useful to cover temporal edges, instead of removing only I(v), we decide to remove all
the activity timeline Tk(v). This allows us to define a new activity timeline for v with k

intervals. Basically, by reconfiguring the whole activity interval, we can find a new structure
for ordering the activity timestamps which would allow for a smaller span than the one which
would result by only deleting a single activity interval. Even though the strategy produces
additional cost regarding computation, it can produce a much better solution because it
saves not only the span of the deleted interval, but also the span saved by reshuffling the
activity timestamps into new intervals.

For example, assume that Tk(v) contains another interval I ′(v) of positive loss, such that
I ′(v) covers a temporal edge (u, v, t). If (u, v, t) is covered also by an interval of vertex u, we
don’t require to cover (u, v, t) when we recompute the timeline activity of v. Note that the
activity timeline computed at point (4) does not increase the span with respect to Tk(v).

We begin by describing how our heuristic deals with steps (1) - (3), by constructing
a specialized data structure, to which we will refer as loss dictionary, based on the initial
solution. This structure associates each activity interval of every vertex with a corresponding
loss value, which is initialized to zero. For each temporal edge in G, we examine whether it is
covered in the initial solution by both incident vertices or only by one. If the edge is covered
by both vertices, no modification is made in the loss dictionary. However, if it is covered
by only one vertex, this implies that the vertex must be active at that specific timestamp,
otherwise the temporal edge would become uncovered. Consequently, we increment the loss
value loss(I(v)) of the activity interval of the corresponding vertex by one. After iterating
through all temporal edges and updating the loss dictionary accordingly, we identify all
vertices that possess at least one activity interval with a loss value of zero. These intervals
are deemed redundant and subsequently, for that vertex we recalculate its activity timeline
from scratch, by parsing through the timestamps and looking for the uncovered timestamped
edges.

Following this pruning step, we recompute the activity timeline for that vertex using a
dynamic programming algorithm. We must specify the fact that indeed, the pruning step
can be done also for vertices not associated with an activity interval of loss = 0. We tested
this on relatively small synthetically generated datasets and the result was very similar to
the result of our approach, because for most of the vertices which do not contain loss = 0
intervals, the recalculation process is not able to shrink the activity timeline.

Now, we formally present the dynamic programming step (4), which solves the following
problem.

▶ Problem 2. k-Min-Interval-Cover (k-MinIntervalCover)
Input: An ordered set U of timestamps, k ∈ N.
Output: A sequence I of k intervals of minimum span such that each timestamp in U is
covered .

Note that, given i ∈ [z], we denote by U [i] the i-th timestamp in U . Now, we give the
dynamic programming recurrence to solve in polynomial time k-MinIntervalCover. Let
z = |U |. Define DP [i][j], where i ∈ [z] and j ∈ [k], as the minimum span of a sequence
of j intervals in [U [i],U [z]] that covers each timestamp in U from the i-th to the z-th one.
Furthermore, we assume that z is a timestamp that contains no temporal edge and thus not
need to be covered. This is used to allow some interval to be empty. Also note that empty
intervals do not need to be time disjoint. The recurrence of compute DP [i][j], where i ∈ [z]
and j ∈ [k], is defined in the following.

TIME 2025

8:8 Heuristics for Covering the Timeline in Temporal Graphs

DP [i][j] = mini<l≤z{DP [l][j − 1] + U [l − 1]− U [i]) with j ≥ 1 (5)

For the base cases DP [i][0] = +∞, for each i ∈ z; DP [z][0] = 0.
Next, we prove the correctness of Recurrence 5.

▶ Theorem 3. DP [i][j] = s if and only if there exists sequence of j intervals in [i, T] that
covers each timestamp in U from U [i] to z and has minimum span s.

Proof. We prove the theorem by induction on j. The lemma holds for j = 0, as an empty
sequence of intervals does not cover any timestamp.

Assume that the lemma holds for j − 1, we prove it for j. Consider a sequence of j

intervals in [U [i],U [z]] that covers timestamps from U [i] to U [z] and has minimum span s.
There is an interval I = [U [i],U [l−1]], with l > i, that covers all the timestamps between U [i]
and U [l− 1]; moreover, there is a sequence of j − 1 intervals that covers timestamps between
U [l] and U [z] and has total span s′, where s = s′ + h− i. By induction DP [h + 1][j − 1] = s′,
and thus DP [i][j] = s.

Assume that DP [i][j] = s. Then since j ≥ 1, it follows that there exists a value l ≥ j

such that DP [i][j] = minl>i{DP [l][j − 1] + U [l − 1]− U [i]). By induction hypothesis, there
is a sequence of j − 1 intervals in [U [i][l],U [z]] that covers each timestamp between U [l] to
U [z] and have span DP [l][j − 1]. By adding the interval [U [i],U [l − 1]] to the sequence, we
obtain a sequence of intervals that covers each timestamp in U [i] to U [z] and has minimum
span s. ◀

The pseudocode of the dynamic programming is described in Algorithm 1.
Next, we prove two properties of the local search procedure: (1) that it covers each

temporal edge and (2) that it never increases the span of a timeline activity.

▶ Lemma 4. Consider a vertex v and a sequence of intervals I1, I2, . . . Im, m ≤ k of span s.
From those intervals we extract an ordered set U of timestamps, used as input to Algorithm
1. Then Algorithm 1 produces a sequence of intervals I ′

1, I ′
2, . . . I ′

k of span at most s, such
that all timestamps are covered.

Proof. Let Tk be a solution of k-MinTimelineCover on instance G and a vertex v having
an interval of loss equal to 0 in Tk. The local search heuristic is applied to v. First note that
DP [z][k] outputs the span of a sequence of intervals of minimum span that covers all the
timestamps in U . Since each timestamp of U is covered, then the corresponding intervals
define an activity timeline of v, thus with the activity timelines of other vertices, a feasible
solution of k-MinTimelineCover, as each temporal edge is covered. Furthermore, note that
the span of intervals I1, I2, . . . Im must be at least s, otherwise they will induce a sequence
of intervals covering the timestamps in U and having span less than DP [z][k], contradicting
Theorem 3. Finally, each temporal edge incident in v and not defined in a timestamp of U is
covered by the solution Tk of k-MinTimelineCover, thus concluding the proof. ◀

Finally, we present the complexity of the Dynamic Programming algorithm which can
solve k-MinIntervalCover.

▶ Lemma 5. Algorithm 1 computes the optimal intervals and minimum total interval length
in O(n2 ∗ k) time, where n represents the total number of timestamps in the input list U , and
k is the maximum number of intervals.

R. Dondi, R.-I. Mateiu, and A. Popa 8:9

Proof. Let n be the total number of timestamps in U . The DP table dp thus will have
dimensions (n + 1) ∗ (k + 1). The algorithm can be broken into 3 main components: (1)
initialization, (2) base case setup and (3) the DP Computation. (1) involves iterating through
all (n + 1)(k + 1) elements, taking O(n ∗ k) time. (2) involves asigning base case variables
dp[n][i], i ∈ k and takes O(k) time. (3) consists of three nested loops, which form the core of
the computation. Because each operation within the innermost loop takes O(1), our total
running time will be O(n2 ∗ k). Summing the time complexities of these three stages will be
equal to the dominant term in the sum, which is O(n2 ∗ k) and represents a polynomial time
algorithm. ◀

Algorithm 1 Dynamic programming solution for ordering the timestamps for vertices with 0 loss.
Input: A sorted list of timestamps t[1 . . . n], k

Output: Optimal intervals and minimum total interval length
1: dp[0..T][0..k]←∞ ▷ Initialize DP table
2: prev[0..T][0..k]← 0 ▷ For solution reconstruction
3: dp[T][0]← 0 ▷ Base case: empty sequence
4: for j ← 1 to k do
5: dp[T][j]← 0 ▷ Empty sequence with any intervals
6: end for
7: for i← T − 1 down to 0 do
8: for j ← 1 to k do
9: for l← i + 1 to T do

10: if l = i + 1 then
11: intervalLength← 0
12: else
13: intervalLength← timestamps[l − 1]− timestamps[i] + 1
14: end if
15: totalLength← intervalLength + dp[l][j − 1]
16: if totalLength < dp[i][j] then
17: dp[i][j]← totalLength

18: prev[i][j]← l

19: end if
20: end for
21: end for
22: end for
23: Reconstruct the dp matrix
24: return intervals, dp[0][k]

5 Experiments

We begin this section by describing how we create the synthetically generated dataset on
which we will test both the ILP model and the heuristic. It is based on the generated
dataset of [14] and for each iteration of our algorithms we consider a static underlying graph
structure G = (V, E). For each v ∈ V we simulate a set of temporal interaction intervals
at different timestamps. The parameters controlling the generation process include the
number of interaction intervals per vertex, the distance between events, the inter-interval
spacing, and the degree of temporal overlap between consecutive intervals. For simplicity

TIME 2025

8:10 Heuristics for Covering the Timeline in Temporal Graphs

and replicability, parameters were held constant across iterations. The generator ensures
stochastic yet reproducible behavior through a fixed random seed. The resulting dataset
consists of a chronologically ordered list of timestamped interactions (u, v, t), as well as
a mapping of vertices to their corresponding k active time intervals. Experiments were
conducted on a Macbook Pro machine with 11 CPU cores, 18 GB RAM, and M3 ARM

processor to ensure consistency in runtime comparisons.
We evaluate the performance of our Integer Linear Programming (ILP) formulation

on synthetically generated temporal networks. We used a Gurobi solver in its current
configuration, the model scales effectively to instances comprising up to 50, 000 temporal
edges, with total runtime remaining under 25 minutes. The formulation demonstrates optimal
performance in scenarios characterized by a relatively small number of activity intervals per
vertex. For our standard benchmarking experiments, we fixed the number of activity intervals
at k = 10 and used an overlap coefficient of 0.5. Additionally, to assess the scalability of the
approach under alternative structural conditions, we conducted a separate test with a reduced
k value and a larger graph containing more vertices and edges. Empirically, we observed that
lower overlap coefficients lead to faster computational times; nonetheless, we maintained a
minimum overlap of 0.5 in most experiments to better reflect real-world temporal dynamics.
Across all tested configurations, the ILP formulation consistently achieved high solution
accuracy, with both precision and recall exceeding 99%, indicating the correctness and
robustness of the approach.

Figure 3 ILP Execution Time vs the total number of timestamps.

In the following, we compare the results of the k-Baseline and k-Inner heuristics of [14]
with their improved versions using the heuristic algorithm. We will do a separate analysis for
each of the considered algorithms. Starting with k-Baseline, we observe that, precision-wise
the results are similar. This apparent discrepancy occurs because both sets of intervals
are being compared against the ground-truth results, which remain considerably smaller in
magnitude. The standard comparison metrics do not fully capture the practical significance
of our improvements because both the initial approach and our method necessarily produce
solutions that deviate substantially from the optimal (given the NP-hard nature of the
problem and its known approximation hardness of any factor). Nevertheless, when examining
the total interval length across all vertex variations, we observe a clear and consistent
improvement. This improvement stems directly from our algorithm (as detailed in Section
5), which calculates the loss of every interval for each vertex and, for vertices containing
intervals with zero loss, recalculates the activity timestamps and optimally reorders them
using dynamic programming.

R. Dondi, R.-I. Mateiu, and A. Popa 8:11

Comparative analysis of our approach against the baseline reveals consistent improvements
in precision and recall metrics, which are represented by an average improvement that exceeds
2.5% and peak differentials of more than 5% in maximum values. We use Figure 4 for reference.
Other relevant average comparisons are for recall, which stays the same for the Baseline and
the Heuristic Improvement algorithm at 0.65. More significantly, our method demonstrates
substantial optimization of the total interval length, reducing it from 3.0 ∗ 1e6 to 2.5 ∗ 1e6,
which constitutes a reduction of 16.7%. This considerable decrease in total length, coupled
with the consistent precision improvements, underscores the robustness and practicality of
our algorithmic refinements.

Figure 4 Precision Comparison between Baseline and Improved Heuristic.

Figure 5 Total Length Comparison between Baseline and Improved Heuristic.

In the experimental phase aimed at enhancing the k-Inner algorithm, we adopted a
slightly modified approach. Specifically, we conducted a dry run for all vertices v ∈ V with a
loss value of zero, retaining the newly generated activity intervals only if they resulted in
a lower total cost compared to the baseline established by the original k-Inner algorithm.
This conservative strategy was employed as a safeguard, given that the original heuristic
already achieves a high precision of approximately 75%. In earlier iterations, we observed
instances where modifying certain vertices adversely affected the interval structure, leading
to significant reductions in overall precision. Despite these challenges, our modified heuristic
yields slight but consistent improvements. However, given the already high baseline precision,
these gains typically fall within a margin of approximately 1%. To ensure robustness in

TIME 2025

8:12 Heuristics for Covering the Timeline in Temporal Graphs

evaluation, we extended the number of iterations and increased the total number of vertices
analyzed. As shown in Figure 6, our approach surpasses the 75% precision threshold for
a limited number of vertices, after which the performance aligns closely with that of the
original k-Inner algorithm. This convergence is expected, as the algorithm already performs
near-optimally, leaving few opportunities for zero-loss interval modifications. Consequently,
the impact on the total interval length remains minimal.

Figure 6 Total Length Comparison between Baseline and Improved Heuristic.

6 Conclusion and Future Works

We have considered k-MinTimelineCover, a problem defined for complex data summar-
ization. We have presented an ILP formulation for moderate size instances and we have
designed an efficient heuristic based on local search. We have presented an experimental
evaluation on synthetic data sets for both methods. Future works include an experimental
evaluation on real-word datasets and an investigation of the performance of variants of our
heuristics that extend the local search approach, for example when more than one vertex
containing an interval of loss equal to 0 is considered in this step.

References

1 Argyrios Deligkas, Michelle Döring, Eduard Eiben, Tiger-Lily Goldsmith, and George Skretas.
Being an influencer is hard: The complexity of influence maximization in temporal graphs
with a fixed source. Inf. Comput., 299:105171, 2024. doi:10.1016/J.IC.2024.105171.

2 Riccardo Dondi. Untangling temporal graphs of bounded degree. Theor. Comput. Sci.,
969:114040, 2023. doi:10.1016/J.TCS.2023.114040.

3 Riccardo Dondi and Manuel Lafond. An FPT algorithm for temporal graph untangling.
In Neeldhara Misra and Magnus Wahlström, editors, 18th International Symposium on
Parameterized and Exact Computation, IPEC 2023, September 6-8, 2023, Amsterdam, The
Netherlands, volume 285 of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.IPEC.2023.12.

4 Riccardo Dondi and Alexandru Popa. Timeline cover in temporal graphs: Exact and approxim-
ation algorithms. In Sun-Yuan Hsieh, Ling-Ju Hung, and Chia-Wei Lee, editors, Combinatorial
Algorithms - 34th International Workshop, IWOCA 2023, Tainan, Taiwan, June 7-10, 2023,
Proceedings, volume 13889 of Lecture Notes in Computer Science, pages 173–184. Springer,
2023. doi:10.1007/978-3-031-34347-6_15.

https://doi.org/10.1016/J.IC.2024.105171
https://doi.org/10.1016/J.TCS.2023.114040
https://doi.org/10.4230/LIPIcs.IPEC.2023.12
https://doi.org/10.1007/978-3-031-34347-6_15

R. Dondi, R.-I. Mateiu, and A. Popa 8:13

5 Riccardo Dondi and Alexandru Popa. Exact and approximation algorithms for covering
timeline in temporal graphs. Annals of Operations Research, April 2024. doi:10.1007/s104
79-024-05993-8.

6 Vincent Froese, Pascal Kunz, and Philipp Zschoche. Disentangling the computational complex-
ity of network untangling. CoRR, abs/2204.02668, 2022. doi:10.48550/arXiv.2204.02668.

7 Petter Holme and Jari Saramäki. Temporal networks. CoRR, abs/1108.1780, 2011. arXiv:
1108.1780.

8 Mohammad Mehdi Hosseinzadeh, Mario Cannataro, Pietro Hiram Guzzi, and Riccardo Dondi.
Temporal networks in biology and medicine: a survey on models, algorithms, and tools. Netw.
Model. Anal. Health Informatics Bioinform., 12(1):10, 2023. doi:10.1007/S13721-022-00406
-X.

9 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci., 64(4):820–842, 2002. doi:10.1006/JCSS.2002.1829.

10 Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni, and Italo Zoppis. DLMinTC+: A
deep learning based algorithm for minimum timeline cover on temporal graphs. Algorithms,
18(2):113, 2025.

11 Giorgio Lazzarinetti, Sara Manzoni, Italo Zoppis, and Riccardo Dondi. FastMinTC+: A fast
and effective heuristic for minimum timeline cover on temporal networks. In Pietro Sala,
Michael Sioutis, and Fusheng Wang, editors, 31st International Symposium on Temporal
Representation and Reasoning, TIME 2024, October 28-30, 2024, Montpellier, France, volume
318 of LIPIcs, pages 20:1–20:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPIcs.TIME.2024.20.

12 Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization methods and
applications: A survey. ACM Comput. Surv., 51(3):62:1–62:34, 2018. doi:10.1145/3186727.

13 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Math., 12(4):239–280, 2016. doi:10.1080/15427951.2016.1177801.

14 Polina Rozenshtein, Francesco Bonchi, Aristides Gionis, Mauro Sozio, and Nikolaj Tatti.
Finding events in temporal networks: segmentation meets densest subgraph discovery. Knowl.
Inf. Syst., 62(4):1611–1639, 2020. doi:10.1007/S10115-019-01403-9.

15 Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. The network-untangling problem:
from interactions to activity timelines. Data Min. Knowl. Discov., 35(1):213–247, 2021.
doi:10.1007/S10618-020-00717-5.

16 Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos. Timecrunch:
Interpretable dynamic graph summarization. In Longbing Cao, Chengqi Zhang, Thorsten
Joachims, Geoffrey I. Webb, Dragos D. Margineantu, and Graham Williams, editors, Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Sydney, NSW, Australia, August 10-13, 2015, pages 1055–1064. ACM, 2015.
doi:10.1145/2783258.2783321.

17 John Tang, Mirco Musolesi, Cecilia Mascolo, and Vito Latora. Temporal distance metrics for
social network analysis. In Proceedings of the 2nd ACM workshop on Online social networks,
pages 31–36, 2009.

TIME 2025

https://doi.org/10.1007/s10479-024-05993-8
https://doi.org/10.1007/s10479-024-05993-8
https://doi.org/10.48550/arXiv.2204.02668
https://arxiv.org/abs/1108.1780
https://arxiv.org/abs/1108.1780
https://doi.org/10.1007/S13721-022-00406-X
https://doi.org/10.1007/S13721-022-00406-X
https://doi.org/10.1006/JCSS.2002.1829
https://doi.org/10.4230/LIPIcs.TIME.2024.20
https://doi.org/10.1145/3186727
https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/10.1007/S10115-019-01403-9
https://doi.org/10.1007/S10618-020-00717-5
https://doi.org/10.1145/2783258.2783321

Temporal GraphQL: A Tree Grammar Approach
Curtis E. Dyreson # Ñ

Department of Computer Science, Utah State University, Logan, UT, USA

Bishal Sarkar # Ñ

Department of Computer Science, Utah State University, Logan, UT, USA

Abstract
This paper presents a novel system, called Temporal GraphQL, for supporting temporal data in
web services. A temporal web service is a service that provides a temporal view of data, that is,
a view of the current data as well as past or future states of the data. Capturing the history of
the data is important in data forensics, data auditing, and subscriptions, where an application
continuously reads data. GraphQL is a technology for improving the development and management
of web services. Originally developed by Facebook and widely used in industry, GraphQL is a query
language for web services. This paper introduces Temporal GraphQL. We show how to use tree
grammars to model GraphQL schemas, data, and queries, and propose temporal tree grammars to
model Temporal GraphQL. We extend GraphQL with temporal snapshot, slice, and delta operators.
To the best of our knowledge, this is the first work on Temporal GraphQL and temporal tree
grammars.

2012 ACM Subject Classification Information systems → Temporal data; Information systems →
Service discovery and interfaces; Information systems → Query languages

Keywords and phrases Temporal databases, temporal queries, GraphQL, web services

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.9

1 Introduction

Web applications rely on web services for data management. A web service is a an application
programming interface (API) endpoint that allows a client to interact with a back-end
database over the web. Web services are ubiquitous; when on-line users shop, make dinner
reservations, buy airline tickets, vote, or post social media updates each interaction typically
invokes several web services. Web services read and write data formatted in Javascript
Objection Notation (JSON). JSON is a lightweight, text notation for representing objects.
Though JSON DBMSs are rising in popularity, e.g., MongoDB ranks fifth in a recent ranking
of DBMS popularity [15], JSON is the most widely used data exchange language. JSON is
tightly integrated into many modern programming languages, e.g., Python, Java, Typescript,
all have libraries to quickly convert objects formatted in JSON to objects in the host language
and vice-versa.

GraphQL is a technology for improving the development and management of web ser-
vices [22]. Originally developed by Facebook and widely used in industry, GraphQL is a
query language for a web service, or more generally, an API. GraphQL supports queries that
read data as well as mutations that update data on the types provided by the schema. A
GraphQL query is evaluated to produce JSON data requested by a user.

GraphQL, however, lacks support for temporal data. Temporal data is data annotated
with time metadata. This paper presents a novel system, called Temporal GraphQL, for
supporting temporal data in web services. A temporal web service is a service that provides
a temporal view of data, that is, a view of the current data as well as past or future states of
the data. Capturing the history of the data is important in data forensics, data auditing,
and subscriptions, where an application continuously reads data. For a subscription, instead
of returning all of the data in each snapshot, only the differences between snapshots can be
provided. This “delta” is usually much smaller than the entire dataset.

© Curtis E. Dyreson and Bishal Sarkar;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Curtis.Dyreson@usu.edu
http://cs.usu.edu/people/CurtisDyreson
https://orcid.org/0000-0003-0236-1515
mailto:Bishal.Sarkar@usu.edu
http://cs.usu.edu/people/CurtisDyreson
https://orcid.org/0009-0004-1633-5590
https://doi.org/10.4230/LIPIcs.TIME.2025.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

9:2 Temporal GraphQL

This paper makes the following contributions.
We show how to use tree grammars to model GraphQL schemas, data, and queries,
and propose temporal tree grammars to model temporal GraphQL. To the best of our
knowledge, this is the first work on temporal tree grammars.
We extend GraphQL with temporal snapshot, slice, and delta operators.

This paper is organized as follows. The next section reviews GraphQL. Section 3 introduces
Temporal GraphQL. We then describe tree grammars and how they are used in supporting
Temporal GraphQL in Section 4. The final two sections cover related work and conclusions.

2 Review of GraphQL

In this section we review GraphQL. The starting point for GraphQL is a schema, which
describes the types provided by an API as described in Section 2.1. GraphQL supports
queries and mutations (updates) using the API. For our purposes mutations are a variation
on queries, so this paper focuses exclusively on queries, which are presented in Section 2.2.

2.1 GraphQL Schemas
A GraphQL schema describes the types provided by an API. As an example, consider the
GraphQL schema specification shown in Figure 1. The schema is taken from GraphQL’s
tutorial for learning GraphQL [23] and has three object types: Character, Planet, and
Species. The miniworld for the types is a science fiction world where a character originates
on some planet, is of some species, and has friends who are characters. Each type has one or
more properties. A property represents a key-value pair in JSON. The name of the property
is the key and the schema records type constraints on the value. The Character type has
name, friends, homeworld, and species properties. The Character name is a String type
and must be non-null (indicated by the “!”). The friends property is a list (indicated by
the enclosing brackets “[]”) of references to Characters.

The data is checked during query evaluation to ensure that it conforms to the schema,
if not, an error is generated. As an example Figure 3 shows a fragment of a data instance
that conforms to the schema given in Figure 1. Each JSON object implicitly contains
an id property that uniquely identifies the object within the data collection, not just the
type (collection-wide unique identifiers are used to implement client-side caching of objects).
Sub-objects are represented as references, e.g., the homeworld property in the Character
type is a reference to a Planet object.

2.2 Queries
Queries are at the core of GraphQL. Every GraphQL schema must also support an entry
point for queries, this type is known as the Query type. The Query type specifies the root
entry point(s) for the database. An example is given in Figure 2. The Query type has three
entry points:
1. hero reads a Character,
2. characters yields a list Characters, and
3. planets, which returns a list of Planets.
The entry point is the starting point for the query, more fields can be added to flesh out
objects and sub-objects in a query result. An example is given in Figure 4. In the example,
the hero entry point is expanded to include the name and friends properties. The friends

C. E. Dyreson and B. Sarkar 9:3

type Character {
name: String!
friends: [Character]
homeworld: Planet
species: Species

}

type Planet {
name: String
climate: String

}

type Species {
name: String
lifespan: Int
origin: Planet

}

Figure 1 A GraphQL schema for a
science fiction database.

type Query {
hero: Character
characters: [Character]
planets: [Planet]

}

Figure 2 The Query type in GraphQL
defines query “entry points”.

Character = [
{ "id": "id_r2_d2",

"name": "R2-D2",
"friends": [

"characterId": "id_luke_skywalker",
"characterId": "id_han_solo"

],
"homeworldId": "id_naboo",
"species": "id_droid" },

{ "id": "id_luke_skywalker",
"name": "Luke Skywalker",
... },

...
]
Planet = [

{ "id": "id_naboo",
"name": "Naboo",
"climate": "Temperate" },

...
]
Species = [

{ "id": "id_droid",
"name": "Droid",

... }
...

]

Figure 3 JSON that conforms to the GraphQL
schema in Figure 1 for a science fiction database.

property is a list of Characters, and for each sub-object in the list the name and homeworld
(which is a Planet type object) properties are selected. An example of the result of evaluating
the query is given in Figure 5.

Queries can also include filters, which are predicates to test the data for membership in
the result. For example, suppose that we want to select the character named Luke Skywalker.
Then we could filter the hero entry point in a query as follows:

hero(filter: { name: { eq: "Luke Skywalker" } }) {
name
...

}

Entry points can also be specified to take arguments. For instance, we could modify the
hero entry point to match a specific name as follows.

type Query {
hero(name: String) : Character
...

}

TIME 2025

9:4 Temporal GraphQL

query {
hero {

name
friends {

name
homeworld {

name
climate

}
}

}
}

Figure 4 A query using the hero
entry point.

{ "data": {
"hero": {

"name": "R2-D2",
"friends": [

{ "name": "Luke Skywalker",
"homeworld": {

"name": "Tatooine",
"climate": "Desert"

}
},
....

]
}

}

Figure 5 A fragment of the result of the GraphQL
query in Figure 4.

The query to fetch Luke Skywalker would then be as follows.

hero(name: "Luke Skywalker") {
name
...

}

3 Temporal GraphQL

Science fiction data changes over time as edits to the data are made and new data is inserted.
This section describes how to capture the the changing history. In Temporal GraphQL
the data is assumed to be annotated with time metadata that records the lifetime of the
data in some temporal dimension. Common dimensions are transaction time and valid
time. We first show how to add support for time to a schema type, we then describe several
temporal query operators that let users travel in time and select past versions of data. In
the next section we discuss how to support Temporal GraphQL in a layered approach where
a temporal schema/operator is translated into the corresponding GraphQL schema/operator.
This implementation strategy leverages non-temporal GraphQL to support GraphQL.

3.1 Temporal Types
In a temporal GraphQL schema a type can be made temporal by adding a GraphQL directive
as shown in Figure 6. A GraphQL directive is prefixed with the “@” character. Directives are
essentially decorators in many popular programming languages. Directives can be added to
both schemas and queries. The @temporal directive indicates that the type is now a temporal
type, that is the schema type will represent data annotated with temporal metadata. For
the purposes of this paper we assume a single, transaction-time temporal dimension as it is
common for systems to record the time data is created and deleted. Extensions to valid time,
belief time, or bitemporal times are future work. We will further assume that the transaction
time is recorded as a period or interval timestamp, rather than a temporal element, that

C. E. Dyreson and B. Sarkar 9:5

@temporal directive declaration
directive @temporal() on OBJECT | SCHEMA

Character is a temporal type
type Character @temporal {

name: String
friends: [Character]
homeworld: Planet
species: Species

}
...

Figure 6 A GraphQL schema for a
temporal science fiction database.

query @slice({start: 3, stop: 4}) ({
hero {

name
}

}

Figure 7 An example @slice query.

is as a set of periods, or as an indeterminate time [2, 19]. Extending to handle temporal
elements or temporal indeterminacy are left to future work. The schema can be a mix of
temporal and nontemporal types, though for this running example we will assume that all of
the object types have been similarly annotated.

3.2 Temporal Queries
We assume that an API or web service supplies the temporal data in a temporal GraphQL
instance. Temporal GraphQL supports several kinds of temporal queries. Each kind of query
is specified by a GraphQL query directive that modifies the behavior of the query as described
below.

directive @snapshot(time: Int!) on QUERY - A snapshot query takes as input a time,
t, and returns the non-temporal data as of t.
directive @slice(time: Timestamp!) on QUERY - A slice query takes a Timestamp
object and returns the temporal history as of the given timestamp. The Timestamp type
is defined in Figure 9.
directive @current() on QUERY - The current query returns the snapshot as of the
current time.
directive @delta(time: Timestamp!) on QUERY - The delta query takes a Timestamp
and returns all of the data that changed during the Timestamp.

Figure 7 shows how a slice query would be specified.

4 A Layered Approach to Supporting Temporal GraphQL

In this section we describe a layered approach to mapping a temporal schema (query) into
a representational schema (query). The key to the approach is to model the schema as
a temporal tree grammar. Section 4.1 provides background on tree grammars, which are
extended in Section 4.2 to include support for time. The temporal tree grammar models the
representational schema and data as described in Section 4.2.1.

4.1 A Tree Grammar Approach to Modeling GraphQL Schemas
Introduced in 1969, a tree grammar is a (context-free) grammar for generating (or parsing)
trees [33].

TIME 2025

9:6 Temporal GraphQL

▶ Definition 1 (Simple Unordered Tree Grammar). A simple unordered tree grammar is a
four-tuple (Σ, R, N , ∆) where:

Σ is the alphabet, a finite set of terminals;
N is a finite set of nonterminals;
R ∈ N is a set of root (start) nonterminals, and
∆ is a finite set of productions, with the following properties. Each production is of the
form n → x1[α1]β1 . . . xk[αk]βk where n ∈ N , the body of the production is unordered
(the production represents all possible permutations of the body of the production), and
for all i,

xi ∈ Σ;
αi is a well-formed formula of terminals or nonterminals, square brackets to indicate
tree nesting, and metalanguage symbols from the EBNF (e.g., ∗ represents Kleene
closure);
and βi is the empty string, ? to indicate 0 or 1 occurrences, or ∗ for Kleene closure.

The grammar is for unranked trees [4]. In a ranked tree grammar each terminal or nonterminal
would have a fixed arity or “rank”, but GraphQL trees (and JSON) are best modeled by
unranked tree grammars, so for instance a homeworld node may have between one and two
descendants since name and climate are optional. The grammar is also context-free and
simple because every clause in the body starts with a terminal (the root of a subtree) so a
parser or generator for the grammar can deterministically choose the clause in the body of
the production based on a single lookahead token (the evaluation only has to keep track of
which clause was chosen).

One use of the tree grammar is to ensure that a GraphQL query is valid. Validation
is the first step in query evaluation. Validation consists of checking the query against the
schema to determine if all of the fields correspond to a type property and that the types
are nested correctly. It is straightforward to convert a GraphQL schema to a tree grammar.
The conversion introduces one production for every type (including the Query type). For
example the converted tree grammar for the GraphQL schema of Figure 1 is given below.
Note that a query is agnostic about JSON lists in the result so this distinction is not made
in the grammar to validate a query.

Σ = {id, name, friends, homeworld, species, climate, lifespan, origin, characters,

hero, planets}
R = Q

N = {Q, C, P, S}
∆ contains the following productions (for each x[α]β in the body β is a “?” because the
clause is optional, so for clarity we will omit the “?”).

Q → hero[C] characters[S] planets[P]
C → id[] name[] friends[C] homeworld[P] species[S]
P → id[] name[] climate[]
S → id[] name[] lifespan[] origin[P]

The grammar can be used to determine whether a query, such as that given in Figure 4
is valid. Figure 8 shows the tree representation of the query in Figure 4. The grammar is
used to validate from the root down by first choosing to expand Q (the start nonterminal)
by hero[C] based on the root of the query matching hero. C is then expanded by name[]
and friends[C], and so on.

A GraphQL schema can also be converted to a result grammar that describes the result of
a query. Below is the converted result grammar. Note that lists in the result are represented
in a tree as repeated children (using Kleene closure in the grammar) and that null values
could be present.

C. E. Dyreson and B. Sarkar 9:7

hero

name friends

name homeworld

name climate

Figure 8 The tree corresponding to the query in Figure 4.

Σ = {id, name, friends, homeworld, species, climate, lifespan, origin, String, data,

ID, null}
R = D

N = {D, Q, C, P, S}
∆ contains the following productions (for each xi[αi]βi in the body there is a “?” because
the clause is optional, so for clarity we will omit the “?”).

D → data[Q]
Q → [C | S∗ | P∗]
C → id[ID] name[String | null] friends[C]∗ homeworld[P] species[S]
P → id[ID] name[String | null] climate[String | null]
S → id[ID] name[String | null] lifespan[String | null] origin[P]

The result grammar is used to generate the result shown in Figure 5.

4.2 Temporal Tree Grammar
To support temporal data, we introduce a temporal tree grammar. There are (at least) two
ways in which a grammar can be temporal.
1. The grammar itself evolves - The grammar changes over time as rules are updated, inserted,

and deleted. For Temporal GraphQL this is akin to schema evolution or versioning [32].
2. The data changes over time - The grammar describes a snapshot of the data, but the data

itself is temporal, capturing the entire timeline of its evolution (in some time dimension(s)).
The non-temporal grammar parses each snapshot rather than the entire history of the
data.

We consider evolution of the grammar next, and in Section 4.2.2 representing the data’s
history.

4.2.1 Grammar Evolution
To record the changing history of the schema, each terminal and nonterminal in the body of
a production is annotated with a transaction time lifetime (transaction time since edits to
the schema are transactions). The lifetimes are updated as follows when edits are made to
the productions (to the schema).

Deletion of terminal or nonterminal in the body - When part of a production is deleted
the lifetime of the deleted parts is ended at the time at which it was deleted.
Insertion of a terminal or nonterminal - An insertion creates a new lifetime starting at
the time at which the part of the production was inserted and terminating at time uc
(until changed).

TIME 2025

9:8 Temporal GraphQL

Insertion or deletion of a production - Each terminal or nonterminal in the body is
updated as either inserted (lifetime starts) or deleted (lifetime ends).
Terminal or nonterminal marked as deprecated - GraphQL supports a @deprecated
annotation in the schema. Rather than deleting properties or types, they can be annotated
as deprecated. Since deprecated properties/types are not deleted, their lifetime will
continue (since they contine to be present in the schema). Since deprecated properties
and types are part of the GraphQL standard, Temporal GraphQL will continue to support
such types, so a slice at the current time will include deprecated fields present as of
the time of the slice. However, in Temporal GraphQL fields and properties (including
deprecated fields) can be (logically) deleted since rollback to previous versions of the
schema is supported. So in some sense, Temporal GraphQL “fixes” the need for having a
@deprecated annotation, but for compatibility, it continues to support the annotation.
Change to a production - We model the change to a production as the deletion of the
changed part, followed by an insertion of the new part.

For example, suppose that at time 1 the temporal type given in Figure 6 is inserted in
the schema. Then at time 2 the name field is deleted and at time 3 a moniker field is added.
By time 4 the production for the type in the query grammar would be as shown below, the
temporal annotations are shown as subscripts for each terminal and nonterminal in the body
of the production.

C → id1−uc[] name1−2[] moniker3−uc[] friends1−uc[C] homeworld1−uc[P] species1−uc[S]

The temporal annotations specify the time(s) at which the body of the production is valid.
For instance the rule would be used as follows in validating a query, such as that given in
Figure 4. Initially, the lifetime of the query is 1-uc. But the query contains the Character
name property. So as the query name construct is parsed, the lifetime becomes 1-uc

⋂
1-2 =

1-2, which is the time interval in which the name property existed. If the lifetime becomes
empty, then the parsing fails (at no transaction time is the query valid).

The lifetime computed by the query grammar can be propagated to the task of generating
the result using the result grammar, in particular it constrains the result to only data that
was alive during the computed lifetime as described next

4.2.2 A Representational Model for Data Evolution
A result tree grammar can be converted to a temporal result tree grammar that includes
timestamps in the data and supports multiple versions of a property as follows. First, for
each nonterminal, X, in the grammar corresponding to an @temporal object type we add
add two nonterminals: a version nonterminal, represented as XV , which represents a single
version of the data, and a history nonterminal, represented as XT , which is a list of versions.
Next, we add a production, XT → versionsX[XV ∗], to indicate that a history nonterminal
is a list of versions of type X. We also add a production, XV → timestamp[T] data[X], to
state that a version is the paring of a timestamp (represented by Timestamp type, T) and
the data for that version, which is an instance of X. Finally, in the body of each production
we replace X with XT to indicate that X is temporal.

As an example, the productions in the temporal result tree grammar is given below.
Σ = {id, name, friends,. . . lifespan, origin, String, data, ID, null}
R = Q

N = {Q, C, CT , CV , P, PT , PV , S, ST , SV }
∆ contains the following productions.

C. E. Dyreson and B. Sarkar 9:9

D → data[Q]
Q → [CT | ST ∗ | PT ∗]
CT → versionsCharacter[CV ∗]
CV → timestamp[T] data[C]
C → id[ID] name[String | null] friends[C]∗ homeworld[P] species[S]
PT → versionsPlanet[PV ∗]
PV → timestamp[T] data[P]
P → id[ID] name[String | null] climate[String | null]
ST → versionsSpecies[SV ∗]
SV → timestamp[T] data[S]
S → id[ID] name[String | null] lifespan[String | null] origin[P]
T → start[Int | null] stop[Int | null]

A key feature of the result tree grammar is that it can be expressed with a non-temporal
GraphQL schema, enabling GraphQL itself to support Temporal GrapQL. The representa-
tional schema for the temporal result grammar is given n Figure 9. The representational
schema is a GraphQL schema that represents the data and temporal metadata. In the
representational schema the Character type is converted to a CharacterTemporal type.
The CharacterTemporal type replaces Character everywhere else in the schema. A tem-
poral type is a list of versions. Each version is a Timestamp paired with a snapshot of a
non-temporal Character object. The Timestamp object is simply a transaction time interval,
but in practice could be bitemporal, a temporal element, or indeterminate; the object is
defined to represent the kinds and nature of times that annotate the data.

The temporal result grammar describes the types produced by the API. A fragment of
the representational data is shown in Figure 10. The data represents one change to the
“R2-D2” Character, the homeworld was updated from “Tatooine” to “Naboo”. The change
creates a new version of the Character object.

We note that this representational grammar takes a temporal-centric approach to querying
(described in the next section). In a temporal centric approach filtering is done primarily by
temporal constraints rather than value-specific constraints. There are alternative, potential
representations that we leave to future work that could better support a value-centric
approach. For instance, a Timestamp property could be added to each type in the schema to
record its lifetime. We envision a system in which a designer could choose the representational
schema that best suits their needs or alternatively choose support for more than one kind of
representational schema simultaneously. Note that the schema is not used for storage of the
data, rather it provides a view for query access, so supporting alternative representations
should be possible.

4.2.3 Evaluating Temporal Queries
The temporal result grammar is also used to construct the result of temporal queries. Just as
in the non-temporal case, the grammar is used to generate a result by repeated application of
the productions starting from the start nonterminal. But in the temporal case two additional
features are needed, the timestamps have to be processed and the result can be temporal or
non-temporal (depending on the operation). Let’s consider the @slice operator first.

We introduce the notion of sequenced generation (or parsing) to process @slice. It is
sequenced because for each use of a production in the generation (parse) there is an associated
lifetime that represents when the data is alive. The lifetime is important to track since in the
generated tree a child cannot exist without its parent, so each child’s lifetime is constrained

TIME 2025

9:10 Temporal GraphQL

...

type CharacterTemporal {
versionsCharacter: [CharacterVersion]

}

type CharacterVersion {
timestamp: Timestamp
snapshot: Character

}

type Character {
name: String
friends: [CharacterTemporal]
homeworld: PlanetTemporal
species: SpeciesTemporal

}

...

type Timestamp {
start: String
stop: String

}

Figure 9 A representational GraphQL
schema for the temporal schema of Figure 1.

...
CharacterTemporal = [

{ "id": "id_r2_d2",
"versionsCharacter": ["id_r2_d2_v1",

"id_r2_d2_v2"] },
...

]
CharacterVersion = [

{ "id": "id_r2_d2_v1",
"timestamp": "id_t1",
"snapshot": "id_r2_d2_s1 },

{ "id": "id_r2_d2_v2",
"timestamp": "id_t2",
"snapshot": "id_r2_d2_s2 },

]
Character = [

{ "id": "id_r2_d2_s1",
"name": "R2-D2",
"friends": [

"characterId": "id_luke_skywalker_v1",
"characterId": "id_han_solo_v1"],

"homeworldId": "id_tatooine_v1",
"species": "id_droid_v1" },

{ "id": "id_r2_d2_s2",
"name": "R2-D2",
"friends": [

"characterId": "id_luke_skywalker_v1",
"characterId": "id_han_solo_v1"],

"homeworldId": "id_naboo_v1",
"species": "id_droid_v1" },

...
]
...

Figure 10 JSON that conforms to the GraphQL
schema in Figure 1 for a science fiction database.

by the lifetime of its parent. A slice grabs the part of a history within a time interval specified
by the user. So initially, the lifetime of the root is given in the slice. Moreover, when the
@slice is validated using an evolving grammar, the validation produces a timestamp that
represents the times at which the query is valid (matches the temporal schema grammar).
So the lifetime is the intersection of the time specified in the slice and the time produced by
the validation. If this time is empty, then the @slice generates an error (the schema does
not match the query). As the generation proceeds from the root to each leaf in the result,
the lifetime is maintained along each branch in the tree by taking the intersection of the
branch’s lifetime with the data’s lifetime in any version object.

As an example, consider the @slice query given in Figure 7 using the grammar of
Section 4.2 including the change made to the grammar in Section 4.2.1 on the data of
Figure 10. The query specifies a slice from 3-4 but validation produces a time of 1-2
since name only exists at time 1-2. The intersection is empty, hence an error would be
generated. But suppose the slice was from 1-1. The result depicted in Figure 11 would be
generated. Initially 1-1 would be passed from the root (the hero node) along each branch

C. E. Dyreson and B. Sarkar 9:11

hero[1−1]

versionsCharacter[1−1] ∩ [1−2]=[1−1]

timestamp[1−1]

start

1

stop

2 → 1

data[1−2]

name[1−2]

"R2 D2"

versionsCharacter[1−1]∩[3−4]=∅

timestamp

start

3

stop

4

data∅

moniker

"R2 D2"

Figure 11 The tree corresponding to the query in Figure 4.

(each Character version) in the constructed tree. For each version in the data the intersection
of the version’s time and the branch’s time is computed, which becomes the branch’s time for
descendants along the branch, and the timestamp is updated. If the time is empty then the
branch generation is terminated. As an example, for the first (leftmost) versionsCharacter
node in Figure 11 the stop property in the timestamp is changed from 2 to 1 as indicated in
a red font. For the second versionsCharacter branch the intersection of 1-1 and 3-4 (the
time of the version) is empty, so the framed branch in the tree is not generated in the result.

The evaluation of @delta starts the same as the evaluation of @slice with the initial
computation of the lifetime of the root. But the intersection of times along a branch is not
performed, instead branches are pruned if the version lifetime does not start or end during
the branch’s lifetime. So if we replace @slice with @delta in the query in Figure 7 and
use a start time of 1, then the validation would produce a root timestamp of times 1-2.
When applied to Figure 11 the leftmost branch (without changing the timestamp) would be
selected, but the right child has a time of 3-4, so is outside the interval 1-2 and would not be
included in the result.

Finally, the evaluation of @snapshot (and @current) is similar to that of @slice insofar
as branches are pruned that fall outside of the slice time. But all non-data nodes are removed
from the result. As example using Figure 11 the @snapshot at time 1 would prune the
framed subtree rooted at the rightmost versionsCharacter node (since its lifetime is 3-4),
and also prune from the result the non-data nodes by placing the name node as the only
child of the hero node (removing the nodes in blue font in the leftmost versionsCharacter
subtree).

5 Related Work

To the best of our knowledge there have been no previous papers on Temporal GraphQL or
temporal tree grammars. There has, however, been extensive previous research to supporting
temporal data [3, 20,30]. This research has fallen into two broad categories: versioning and
timestamp-based support. Timestamp-based queries are common in temporal relational
databases. A temporal relational database [25] stores data that is annotated with time
metadata. The time metadata records when the data was alive in some time domain, e.g.,
transaction time [27], valid time [28], or both. Such databases can be queried in various
ways. For instance in TSQL2 [34] a query can be evaluated to retrieve the data’s history
e.g., a timeslice query [26], or retrieve the data as of some time instant, e.g., a snapshot

TIME 2025

9:12 Temporal GraphQL

query [35], or perform a query at every time instant in the data’s history, e.g., a sequenced
query [5]. But TSQL2 does not support queries that ask for versions of data, e.g., get the
second version of an employment record or retrieve the changes to the employment record.
Data versioning is more common in temporal object-oriented databases [13] or temporal
documents where each edit or change creates a new version of an object or document [21].
Users can navigate among the versions and restore old versions if necessary.

Semi-structured data representations such as JSON, XML, and YAML are used to
represent both data and documents and thus need to support both timestamp and version
histories [1, 7–11,16,31,37]. Semi-structured data changes over time, sometimes frequently,
as new data is inserted and existing data is edited and deleted [12, 24, 29]. Previous
research in temporal XML and JSON called elements that maintain their identity over time
items [14, 17, 18, 36]. Items are timestamped with a lifetime and as an element can be moved
within a document. Each change to an item creates a version, which is also timestamped.
Previous research showed how to represent, query, describe with a schema and validate
temporal semi-structured data. Differences in XML and JSON spawned further research in
schema validation and versioning for JSON data [6].

6 Conclusions

GraphQL is a widely used technology for making it easier to develop and maintain web
applications. GraphQL queries and mutations are used to read and write data to a back-end
database through a web services API. But data and schemas change over time and capturing
and querying this history is important in many applications. In this paper we presented
Temporal GraphQL, a technology that adds support for time to GraphQL. We observed that
tree grammars can model GraphQL schemas, data, and queries and we proposed temporal
tree grammars to model temporal GraphQL. And we extended GraphQL with temporal
snapshot, slice, and delta operators. The key advantage of our design is that it leverages
non-temporal GraphQL to support GraphQL.

Our short-term future work is targeted to implementing Temporal GraphQL as a layer
for a GraphQL system. But such a system has to be coupled with techniques for converting
web services to temporal web services, to supply the data for the temporal types in the query,
which in term needs temporal support in a back-end database. We are currently working on a
PostGraphile layer; PostGraphile is a GraphQL system for Postgres databases. We also plan
to specialize the @temporal annotation to support different kinds of time, e.g., @validTime.
And we plan to add temporal elements and support for indeterminacy to the Timestamp type.
Indeterminacy will also require some changes to queries to support indeterminate queries.
Finally, we plan to generalize the support for temporal metadata outlined in this paper to
include other kinds of metadata, such as quality metadata.

References

References
1 Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura. A Data Model for Temporal

XML Documents. In Database and Expert Systems Applications, 11th International Conference,
DEXA 2000, London, UK, September 4-8, 2000, Proceedings, pages 334–344, 2000. doi:
10.1007/3-540-44469-6_31.

2 Luca Anselma, Luca Piovesan, and Paolo Terenziani. Dealing with temporal indeterminacy
in relational databases: An AI methodology. AI Commun., 32(3):207–221, 2019. doi:
10.3233/AIC-190619.

https://doi.org/10.1007/3-540-44469-6_31
https://doi.org/10.1007/3-540-44469-6_31
https://doi.org/10.3233/AIC-190619
https://doi.org/10.3233/AIC-190619

C. E. Dyreson and B. Sarkar 9:13

3 Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter,
and Michael Zakharyaschev. Ontology-mediated query answering over temporal data: A
survey (invited talk). In 24th International Symposium on Temporal Representation and
Reasoning, TIME 2017, October 16-18, 2017, Mons, Belgium, pages 1:1–1:37, 2017. doi:
10.4230/LIPIcs.TIME.2017.1.

4 Michael Benedikt, Leonid Libkin, and Frank Neven. Logical definability and query languages
over ranked and unranked trees. ACM Trans. Comput. Logic, 8(2):11–es, April 2007. doi:
10.1145/1227839.1227843.

5 Michael H. Böhlen and Christian S. Jensen. Sequenced semantics. In Encyclopedia of Database
Systems, Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_1053.

6 Safa Brahmia, Zouhaier Brahmia, Fabio Grandi, and Rafik Bouaziz. τ jschema: A framework for
managing temporal json-based nosql databases. In Database and Expert Systems Applications -
27th International Conference, DEXA 2016, Porto, Portugal, September 5-8, 2016, Proceedings,
Part II, pages 167–181, 2016. doi:10.1007/978-3-319-44406-2_13.

7 Zouhaier Brahmia, Fabio Grandi, Safa Brahmia, and Rafik Bouaziz. A graphical conceptual
model for conventional and time-varying json data. Procedia Computer Science, 184:823–828,
2021. The 12th International Conference on Ambient Systems, Networks and Technologies
(ANT) / The 4th International Conference on Emerging Data and Industry 4.0 (EDI40) /
Affiliated Workshops. doi:10.1016/j.procs.2021.03.102.

8 Zouhaier Brahmia, Fabio Grandi, Safa Brahmia, and Rafik Bouaziz. τ jupdate: An update
language for time-varying JSON data. J. Comput. Lang., 79:101258, 2024. doi:10.1016/J.
COLA.2024.101258.

9 Zouhaier Brahmia, Hind Hamrouni, and Rafik Bouaziz. XML data manipulation in conventional
and temporal XML databases: A survey. Comput. Sci. Rev., 36:100231, 2020. doi:10.1016/
J.COSREV.2020.100231.

10 Sudarshan S. Chawathe, Serge Abiteboul, and Jennifer Widom. Representing and Querying
Changes in Semistructured Data. In Proceedings of the Fourteenth International Conference
on Data Engineering, Orlando, Florida, USA, February 23-27, 1998, pages 4–13, 1998. doi:
10.1109/ICDE.1998.655752.

11 Shu-Yao Chien, Vassilis J. Tsotras, and Carlo Zaniolo. Efficient Schemes for Managing Mul-
tiversion XML Documents. VLDB J., 11(4):332–353, 2002. doi:10.1007/s00778-002-0079-4.

12 Junghoo Cho and Hector Garcia-Molina. The Evolution of the Web and Implications for an
Incremental Crawler. In VLDB, pages 200–209, 2000. URL: http://www.vldb.org/conf/
2000/P200.pdf.

13 Carlo Combi. Temporal object-oriented databases. In Encyclopedia of Database Systems,
Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_404.

14 Faiz Currim, Sabah Currim, Curtis E. Dyreson, Richard T. Snodgrass, Stephen W. Thomas,
and Rui Zhang. Adding Temporal Constraints to XML Schema. IEEE Trans. Knowl. Data
Eng., 24(8):1361–1377, 2012. doi:10.1109/TKDE.2011.74.

15 DB-Engines Ranking. https://db-engines.com/en/ranking. Accessed: 2025-05-10.
16 Curtis E. Dyreson and Fabio Grandi. Temporal XML. In Encyclopedia of Database Systems,

Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_411.
17 Curtis E. Dyreson and Kalyan G. Mekala. Prefix-Based Node Numbering for Temporal

XML. In Web Information System Engineering - WISE 2011 - 12th International Conference,
Sydney, Australia, October 13-14, 2011. Proceedings, pages 172–184, 2011. doi:10.1007/
978-3-642-24434-6_13.

18 Curtis E. Dyreson, Amani M. Shatnawi, Sourav S. Bhowmick, and Vishal Sharma. Temporal
JSON keyword search. Proc. ACM Manag. Data, 2(3):177, 2024. doi:10.1145/3654980.

19 Curtis E. Dyreson and Richard Thomas Snodgrass. Supporting valid-time indeterminacy.
ACM Trans. Database Syst., 23(1):1–57, March 1998. doi:10.1145/288086.288087.

TIME 2025

https://doi.org/10.4230/LIPIcs.TIME.2017.1
https://doi.org/10.4230/LIPIcs.TIME.2017.1
https://doi.org/10.1145/1227839.1227843
https://doi.org/10.1145/1227839.1227843
https://doi.org/10.1007/978-1-4614-8265-9_1053
https://doi.org/10.1007/978-3-319-44406-2_13
https://doi.org/10.1016/j.procs.2021.03.102
https://doi.org/10.1016/J.COLA.2024.101258
https://doi.org/10.1016/J.COLA.2024.101258
https://doi.org/10.1016/J.COSREV.2020.100231
https://doi.org/10.1016/J.COSREV.2020.100231
https://doi.org/10.1109/ICDE.1998.655752
https://doi.org/10.1109/ICDE.1998.655752
https://doi.org/10.1007/s00778-002-0079-4
http://www.vldb.org/conf/2000/P200.pdf
http://www.vldb.org/conf/2000/P200.pdf
https://doi.org/10.1007/978-1-4614-8265-9_404
https://doi.org/10.1109/TKDE.2011.74
https://db-engines.com/en/ranking
https://doi.org/10.1007/978-1-4614-8265-9_411
https://doi.org/10.1007/978-3-642-24434-6_13
https://doi.org/10.1007/978-3-642-24434-6_13
https://doi.org/10.1145/3654980
https://doi.org/10.1145/288086.288087

9:14 Temporal GraphQL

20 Opher Etzion, Sushil Jajodia, and Suryanarayana M. Sripada, editors. Temporal Databases:
Research and Practice. (the book grow out of a Dagstuhl Seminar, June 23-27, 1997), volume
1399 of Lecture Notes in Computer Science. Springer, 1998. doi:10.1007/BFb0053695.

21 Aayush Goyal and Curtis E. Dyreson. Temporal JSON. In 5th IEEE International Conference
on Collaboration and Internet Computing, CIC 2019, Los Angeles, CA, USA, December 12-14,
2019, pages 135–144. IEEE, 2019. doi:10.1109/CIC48465.2019.00025.

22 GraphQL: A Query Language for Your API. https://graphql.org. Accessed: 2025-05-10.
23 Introduction to GraphQL. https://graphql.org/learn. Accessed: 2025-05-10.
24 Panagiotis G. Ipeirotis, Alexandros Ntoulas, Junghoo Cho, and Luis Gravano. Modeling

and Managing Content Changes in Text Databases. In ICDE, pages 606–617, 2005. doi:
10.1109/ICDE.2005.91.

25 Christian S. Jensen and Richard T. Snodgrass. Temporal database. In Encyclopedia of
Database Systems, Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_395.

26 Christian S. Jensen and Richard T. Snodgrass. Timeslice operator. In Encyclopedia of Database
Systems, Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_1426.

27 Christian S. Jensen and Richard T. Snodgrass. Transaction time. In Encyclopedia of Database
Systems, Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_1064.

28 Christian S. Jensen and Richard T. Snodgrass. Valid time. In Encyclopedia of Database
Systems, Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_1066.

29 Venkata N. Padmanabhan and Lili Qiu. The Content and Access Dynamics of a Busy Web Site:
Findings and Implications. In SIGCOMM, pages 111–123, 2000. doi:10.1145/347059.347413.

30 Vangipuram Radhakrishna, P. V. Kumar, and V. Janaki. A survey on temporal databases
and data mining. In Proceedings of the The International Conference on Engineering & MIS
2015, ICEMIS ’15, pages 52:1–52:6, New York, NY, USA, 2015. ACM. doi:10.1145/2832987.
2833064.

31 Flavio Rizzolo and Alejandro A. Vaisman. Temporal XML: Modeling, Indexing, and Query
Processing. VLDB J., 17(5):1179–1212, 2008. doi:10.1007/s00778-007-0058-x.

32 John F. Roddick. A survey of schema versioning issues for database systems. Inf. Softw.
Technol., 37(7):383–393, 1995. doi:10.1016/0950-5849(95)91494-K.

33 William C. Rounds. Context-free grammars on trees. In Proceedings of the 1st Annual ACM
Symposium on Theory of Computing, May 5-7, 1969, Marina del Rey, CA, USA, pages 143–148.
ACM, 1969. doi:10.1145/800169.805428.

34 Richard T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer, 1995.
35 Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen, and Andreas Steiner. Trans-

itioning temporal support in TSQL2 to SQL3. In Temporal Databases: Research and Prac-
tice. (the book grow out of a Dagstuhl Seminar, June 23-27, 1997), pages 150–194, 1997.
doi:10.1007/BFb0053702.

36 Richard T. Snodgrass, Curtis E. Dyreson, Faiz Currim, Sabah Currim, and Shailesh Joshi.
Validating Quicksand: Temporal Schema Versioning in tauXSchema. Data Knowl. Eng.,
65(2):223–242, 2008. doi:10.1016/j.datak.2007.09.003.

37 Fusheng Wang and Carlo Zaniolo. An XML-Based Approach to Publishing and Query-
ing the History of Databases. World Wide Web, 8(3):233–259, 2005. doi:10.1007/
s11280-005-1317-7.

https://doi.org/10.1007/BFb0053695
https://doi.org/10.1109/CIC48465.2019.00025
https://graphql.org
https://graphql.org/learn
https://doi.org/10.1109/ICDE.2005.91
https://doi.org/10.1109/ICDE.2005.91
https://doi.org/10.1007/978-1-4614-8265-9_395
https://doi.org/10.1007/978-1-4614-8265-9_1426
https://doi.org/10.1007/978-1-4614-8265-9_1064
https://doi.org/10.1007/978-1-4614-8265-9_1066
https://doi.org/10.1145/347059.347413
https://doi.org/10.1145/2832987.2833064
https://doi.org/10.1145/2832987.2833064
https://doi.org/10.1007/s00778-007-0058-x
https://doi.org/10.1016/0950-5849(95)91494-K
https://doi.org/10.1145/800169.805428
https://doi.org/10.1007/BFb0053702
https://doi.org/10.1016/j.datak.2007.09.003
https://doi.org/10.1007/s11280-005-1317-7
https://doi.org/10.1007/s11280-005-1317-7

Safety and Liveness on Finite Words
Luca Geatti # Ñ

University of Udine, Italy

Stefano Pessotto #

University of Udine, Italy

Stefano Tonetta # Ñ

Fondazione Bruno Kessler, Italy

Abstract
The study of safety and liveness is crucial in the context of formal languages on infinite words,
providing a fundamental classification of system properties. They have been studied extensively
as fragments for regular languages and Linear Temporal Logic (LTL), both from the theoretical
and practical point of view, especially in the context of model checking. In contrast, despite the
growing interest in Linear Temporal Logic over finite traces (LTLf) as a specification formalism for
finite-length executions, the notions of safety and liveness for finite words have remained largely
unexplored.

In this work, we address this gap by defining the safety and liveness fragments of languages on
finite words, mirroring the definition used for infinite words. We show that safety languages are
exactly those that are prefix-closed, from which a bounded model property for all safety languages
follows. We also provide criteria for determining whether a given language belongs to the safety or
liveness fragment and analyze the computational complexity of this classification problems. Moreover,
we show that certain LTL formulas classified as safety or liveness over infinite words may not preserve
this classification when interpreted over finite words, and vice versa. We further establish that the
safety-liveness decomposition theorem – asserting that every ω-regular language can be expressed as
the intersection of a safety language and a liveness language – also holds in the finite-word setting.
Finally, we examine the implications of these results for the model checking problem in LTLf.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Safety, Liveness, Temporal Logic

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.10

Related Version Extended Version: https://users.dimi.uniud.it/~luca.geatti/data/time-25/
time25.pdf [14]

Funding Luca Geatti acknowledges the support from the project “ENTAIL – intEgrazioNe tra
runTime verification e mAchlne Learning” – funded by the European Union – NextGenerationEU,
under the PNRR- M4C2I1.5, Program “iNEST – interconnected nord-est innovation ecosystem” –
Creazione e rafforzamento di “Ecosistemi dell’Innovazione per la sostenibilità” – ECS_00000043,
CUP G23C22001130006 – R.S. Geatti.

1 Introduction

The concepts of safety and liveness form a fundamental classification of system properties
that describe how systems behave over time. The distinction was first introduced by Leslie
Lamport in his 1977 paper on proving the correctness of concurrent programs [20], where he
informally characterized safety properties as those stipulating that “nothing bad happens”,
and liveness properties as those ensuring that “something good eventually happens”. The
formalization of these concepts was provided by Alpern and Schneider in [1], by defining
safety and liveness properties as ω-regular languages (i.e. sets of infinite words) such that:

© Luca Geatti, Stefano Pessotto, and Stefano Tonetta;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca.geatti@uniud.it
https://users.dimi.uniud.it/~luca.geatti/
https://orcid.org/0000-0002-7125-787X
mailto:pessotto.stefano001@spes.uniud.it
https://orcid.org/0009-0002-4547-1239
mailto:tonettas@fbk.eu
https://fm.fbk.eu/author/stefano-tonetta.html
https://orcid.org/0000-0001-9091-7899
https://doi.org/10.4230/LIPIcs.TIME.2025.10
https://users.dimi.uniud.it/~luca.geatti/data/time-25/time25.pdf
https://users.dimi.uniud.it/~luca.geatti/data/time-25/time25.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

10:2 Safety and Liveness on Finite Words

safety: all violations of the property are irremediable, that is, there exists a finite prefix
of each violation (bad prefix) such that all its extensions violate the property;
liveness: there are no irremediable violations, that is, for any finite prefix, there exists a
continuation that satisfies the property.

They also proved the safety-liveness decomposition theorem for ω-regular languages: every
property on infinite words can be expressed as the intersection of a safety property and a
liveness property. This result has been recently extended also to quantitative properties [16].

The classification of properties into safety and liveness has become fundamental in the
formal verification of reactive systems, particularly within the context of model checking
for Linear Temporal Logic (LTL [23]) properties, that is, the problem of checking whether
all executions of a system satisfy an LTL formula. This distinction enables the application
of specialized verification techniques: once a property is identified as safety or liveness,
efficient algorithms tailored to each class – such as the early proof systems by Manna and
Pnueli [21, 19] or IC3 for safety properties [7, 8] and K-Liveness for liveness properties [11]
– can be employed. Furthermore, the identification of the safety fragment of LTL has
led to syntactic characterizations that capture exactly the safety properties expressible in
LTL [9, 24, 10], thereby allowing one to express safety properties directly, without the need
to verify whether a given formula satisfies the safety condition.

In the last decade, Linear Temporal Logic on finite words (LTLf [13]) has emerged as a
useful formalism for reasoning about systems with inherently finite executions (for example, in
the context of planning). LTLf preserves the syntax of standard LTL but interprets formulae
over finite words. Despite the growing interest in LTLf, the adaptation of safety and liveness
to finite words has received little attention. In [10], a logical characterization of the safety
fragment of LTLf has been proved complete. However, most research questions remain still
open.

This work addresses this gap by studying safety and liveness for languages over finite
words, revisiting classical results from the infinite-word setting – such as the decomposition
theorem – and establishing new results specific to the finite-word case. Our main contributions
are as follows.

First, we examine key properties of the safety fragment over finite words. We show that
safety languages in this setting are precisely the prefix-closed languages; that is, if a word
belongs to the language, then all of its prefixes must also belong to it. This characterization
allows us to establish a bounded model property: a safety language is non-empty if and
only if it contains the empty word. Furthermore, we demonstrate that, analogous to the
infinite-word setting, a regular language over finite words is a safety language if and only if
its closure – defined as the automaton obtained by marking all states as final – is equivalent
to the original automaton. We then study the complexity of deciding whether a regular
language is a safety language. We prove that this problem is PSPACE-complete, both when
the language is given by a Nondeterministic Finite Automaton (NFA) and when it is specified
by an LTLf formula – matching the known complexity for the infinite-word setting [24].

Second, we analyze the liveness fragment of languages over finite words. We prove that,
similarly to the case of ω-regular languages, a regular language is liveness if and only if its
closure recognizes the universal language. This characterization allows us to derive complexity
results for the liveness recognition problem: it is PSPACE-complete when the language is
specified by an NFA, and in EXPSPACE when given by an LTLf formula. Moreover, we
highlight a subtle but important distinction that arises when transitioning between infinite-
word and finite-word semantics in temporal logic. Specifically, we show that certain formulae
classified as safety (resp., liveness) under the infinite-word interpretation (LTL) are not safety
(resp., liveness) under the finite-word interpretation (LTLf), and vice versa.

L. Geatti, S. Pessotto, and S. Tonetta 10:3

Third, we prove that every regular language can be expressed as the intersection of a safety
language and a liveness language, extending the classical Alpern-Schneider decomposition to
the finite-word setting.

Last but not least, we investigate the model checking of LTLf properties over safety
systems – namely, systems represented by NFAs recognizing safety properties. We demonstrate
that, within this context, model checking requires careful consideration. In numerous
instances, formulae that are semantically meaningful and nontrivial in the infinite-word
setting lead to degenerate cases in the finite-word framework. In such cases, we show that
the model checking problem becomes trivial – either invariably false or reducible to a simple
condition, such as verifying whether the empty word ϵ is accepted by the property, or to the
model checking of a substantially simpler formula.

Related Work

In [18], Kupferman and Vardi were the first to show that the problem of determining whether
an LTL formula defines a liveness language is EXPSPACE-complete. The complexity of this
problem – open for over three decades – highlights that recognizing liveness is substantially
more difficult when starting from LTL formulae than from NFAs. This challenge is further
exacerbated by the absence of syntactic characterizations for liveness properties, in contrast
to the case of safety.

In [4], Basin et al. address the problem of deciding whether a formula of Timed Linear
Temporal Logic (TLTL) expresses a safety or a liveness property. They prove that the problem
is EXPSPACE-complete for safety and 2EXPSPACE-complete for liveness, thereby effectively
adding one exponential of complexity compared to the untimed LTL case.

In [3], the model checking problem for LTLf formulae is examined. It is shown that, when
restricting the model checking problem to traces that both start from an initial state and
end in a final state, the problem is PSPACE-complete – matching the complexity of standard
LTL model checking. Conversely, when considering all traces originating from an initial state
– regardless of whether they reach a final state – the problem becomes EXPSPACE-complete.

The work presented in [22] refines the safety-liveness classification of LTL properties by
considering their monitorability. It focuses on runtime verification, thus considering finite
words (sequence of observations) as prefixes of infinite executions. For this reason, the
definitions of safety and liveness are the classical ones based on prefixes of infinite words. In
contrast, our work directly defines and explores safety and liveness fragments for languages
on finite words, and specifically for LTLf. This distinction is crucial as it leads to many
different properties compared to the infinite word setting.

Outline of the paper

Section 2 reviews the necessary background on LTL, LTLf, and automata. Sections 3 and 4
investigate the properties and computational complexity of safety and liveness languages over
finite words, respectively. Section 5 establishes the safety-liveness decomposition theorem
in the finite-word setting. Section 6 examines the implications of our results for the model
checking of LTLf specifications. Section 7 summarizes the achieved results and outlines
directions for future work. Proofs omitted from the main text are provided in Appendix A
or in the extended version of this paper [14].

TIME 2025

10:4 Safety and Liveness on Finite Words

2 Background

In this section, we give the necessary background.
From now on, let Σ = {a, b, c, . . .} be an alphabet, i.e. a finite set of symbols. A finite

word (over Σ) is any finite, possibly empty, sequence of symbols in Σ. An infinite word (over
Σ) is any infinite sequence of symbols in Σ. We denote with Σ∗ (resp., Σω) the set of all
finite and possibly empty (resp., infinite) words over Σ. We denote with ε the empty word.
We define the length of σ as |σ| = 0 if σ = ε, as |σ| = n if σ = ⟨σ0, . . . , σn−1⟩ ∈ Σ∗, and as
|σ| = ω if σ ∈ Σω. A language of finite words L is a subset of Σ∗, while a language of infinite
words L is a subset of Σω. We denote with L the complement of L.

2.1 Linear Temporal Logic
We start by giving the syntax of Linear Temporal Logic on finite words (LTLf [13]) and of
Linear Temporal Logic (LTL [23]), both of which are defined by the same grammar. From
now on, let AP = {p, q, r, . . .} be a set of atomic propositions.

▶ Definition 1. A formula ϕ of LTLf and of LTL over AP is inductively defined as follows:

ϕ := ⊤ | p | ¬ϕ | ϕ1 ∨ ϕ2 | Xϕ | ϕ1 U ϕ2

where p ∈ AP.

The temporal operators X and U are called respectively next and until. We define the
following classic shortcut operators: (i) ⊥ := ¬⊤; (ii) ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2); (iii) X̃ϕ :=
¬X¬ϕ1; (iv) Fϕ := ⊤ U ϕ; (v) Gϕ := ¬F¬ϕ; (vi) ϕ1 R ϕ2 := ¬((¬ϕ1) U (¬ϕ2)). The temporal
operators X̃, F, G, and R are called respectively weak next, eventually, globally, and release.
The size of ϕ is the size of its parse tree.

A notable fragment of LTLf and of LTL is SafetyLTL. Formulae in this fragment restrict
the use of temporal operators to X̃, G and R, and allow negation only in front of atomic
propositions. The syntax of SafetyLTL is presented below.

▶ Definition 2. A formula ϕ of SafetyLTL over AP is inductively defined as follows:

ϕ := ⊤ | ⊥ | p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | X̃ϕ | Gϕ | ϕ1 R ϕ2

where p ∈ AP.

We now define the semantics of LTLf and LTL. Formulae of LTLf (resp., of LTL) are
interpreted over finite (resp., infinite) words. More precisely, LTLf is interpreted over finite
(possibly empty) words in (2AP)∗, while LTL is interpreted over infinite words in (2AP)ω.
The satisfaction of a formula ϕ of LTLf (resp., of LTL) by a finite word (resp., by an infinite
word) σ = ⟨σ0, σ1, . . .⟩ at position i, denoted by σ, i |= ϕ, is inductively defined as follows:

σ, i |= ⊤ is always true;
σ, i |= p iff 0 ≤ i < |σ| and p ∈ σi;
σ, i |= ¬ϕ iff σ, i ̸|= ϕ;
σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
σ, i |= Xϕ iff i+ 1 < |σ| and σ, i+ 1 |= ϕ;
σ, i |= ϕ1 U ϕ2 iff ∃j . i ≤ j < |σ|(σ, j |= ϕ2 ∧ ∀k . i ≤ k < j(σ, k |= ϕ1)).

L. Geatti, S. Pessotto, and S. Tonetta 10:5

We write σ |= ϕ to denote σ, 0 |= ϕ. The language of an LTLf formula ϕ over the set of
atomic propositions AP, denoted as L(ϕ), is defined as the set {σ ∈ (2AP)∗ | σ |= ϕ}.
Similarly, the language of an LTL formula ϕ, denoted with L∞(ϕ), is defined as the set
{σ ∈ (2AP)ω | σ |= ϕ}. We say that ϕ is valid on finite words (resp., on infinite words) if and
only if L(ϕ) = (2AP)∗ (resp., L∞(ϕ) = (2AP)ω).

We highlight an important aspect of the difference between LTLf and LTL, which will be
relevant in the next section. Consider the formula X̃⊥. Under finite words semantics, we can
use X̃⊥ to hook the final position of a word: for all finite words σ, it holds that σ, i |= X̃⊥ if
and only if i = |σ| − 1. This allows us to express formulae like G(q) as q U (X̃⊥ ∧ q), without
the need of the globally operator. However, under infinite words semantics, the formula X̃⊥
is always false, and thus formulae like q U (X̃⊥ ∧ q) are always false as well.

2.2 The safety and the liveness fragments of infinite words
Let Σ be an alphabet. Given an infinite word σ ∈ Σω, we define pref(σ) := {σ′ ∈ Σ∗ | ∃σ′′ ∈
Σω such that σ = σ′ · σ′′}.

The definition of safety language of infinite words is given as follows.

▶ Definition 3. A language L ⊆ Σω is safety if and only if, for all σ ̸∈ L, there exists
σ′ ∈ pref(σ) such that σ′ · σ′′ ̸∈ L, for all σ′′ ∈ Σω. Such prefix σ′ is called a bad prefix
for L.

Given a formula ϕ of LTL over the set of atomic propositions AP, we say that ϕ is a
safety formula iff L∞(ϕ) is a safety language over the alphabet 2AP .

In [9], it is proved that SafetyLTL, when interpreted on infinite words, captures exactly
the set of all safety languages that are definable in LTL.

▶ Proposition 4 ([9]). Let L ⊆ Σω be a language definable in LTL. It holds that L is safety
if and only if L = L∞(ϕ), for some formula ϕ ∈ SafetyLTL.

Liveness languages of infinite words are defined as follows.

▶ Definition 5. A language L ⊆ Σω is liveness if and only if, for all σ ∈ Σ∗, there exists
σ′ ∈ Σω such that σ · σ′ ∈ L.

Given a formula ϕ of LTL over the set of atomic propositions AP, we say that ϕ is a
liveness formula iff L∞(ϕ) is a liveness language over the alphabet 2AP .

2.3 Finite Automata
We define the classic notion of Nondeterministic Finite Automaton.

▶ Definition 6. A Nondeterministic Finite Automaton (NFA) is a tuple A = (Q,Σ, I,∆, F)
such that: (i) Q is a finite set of states; (ii) Σ is a finite alphabet; (iii) I ⊆ Q is the set of
initial states; (iv) ∆ ⊆ Q× Σ ×Q is the transition relation; and (v) F ⊆ Q is the set of final
states.

Given an NFA A = (Q,Σ, I,∆, F), a state q ∈ Q and a finite word σ = ⟨σ0, . . . , σn−1⟩ ∈
Σ∗, we define ∆̂(q, σ) as the set

{q′ ∈ Q | ∃⟨q0, q1, . . . , qn⟩ . q0 = q, qn = q′, (qi, σi, qi+1) ∈ ∆, ∀0 ≤ i < n}.

TIME 2025

10:6 Safety and Liveness on Finite Words

We say that A reaches state q′ reading σ iff q′ ∈
⋃

q0∈I ∆̂(q0, σ), for some q0 ∈ I. A word
σ ∈ Σ∗ is accepted by A if

⋃
q∈I ∆̂(q, σ) ∩ F ̸= ∅. The language of A, denoted with L(A),

is the set of words accepted by A. We say that two NFAs A and A′ are equivalent if
L(A) = L(A′). If a language L is such that L = L(A), for some NFA A, then L is called a
regular language.

Let A = (Q,Σ, I,∆, F) be an NFA. A is called a partial Deterministic Finite Automaton
(DFA) if |I| ≤ 1 and, for all q ∈ Q and for all a ∈ Σ, there exists at most one q′ ∈ Q′ such
that (q, a, q′) ∈ ∆.

The notion of reduced automata [2] is defined as follows.

▶ Definition 7 (Reduced NFA). Let A = (Q,Σ, I,∆, F) be an NFA. We say that A is
reduced if, for all q ∈ Q, there exists σ ∈ Σ∗ such that ∆̂(q, σ) ∩ F ̸= ∅. We denote with
R(A) the NFA obtained from A by removing all states q that do not satisfy the condition
∆̂(q, σ) ∩ F ̸= ∅ for any σ ∈ Σ∗.

Clearly, it always holds that L(A) = L(R(A)). Notice that, if L(A) = ∅, then also all
the initial states (along with all the states reachable from them) are removed from R(A),
leading to a degenerate case of an automaton without initial state (I = ∅). Moreover, it is
worth pointing out that every NFA can be transformed into an equivalent reduced DFA, first
by applying determinization and then by removing all states that do not lead to any final
state. Finally, we define the closure of an NFA [2] as follows.

▶ Definition 8 (Closure automaton). Let A = (Q,Σ, I,∆, F) be an NFA. The closure of
A, denoted with C(A), is the automaton obtained from A by setting all states as final, i.e.
(Q,Σ, I,∆, Q).

The interesting property of closures in NFAs is that they reject words solely by attempting
undefined transitions. This form of rejection is irremediable, as no subsequent extension of
the input word can lead the automaton to accept it.

3 The safety fragment on finite words

In this section, we define the safety fragment of languages of finite words. We then study some
properties of this fragment as well as some complexity-related issues. Finally we compare
safety languages definable in LTLf with those definable in LTL.

3.1 Safety languages of finite words
From now on, let Σ be a finite alphabet. Given a finite word σ ∈ Σ∗, we define pref(σ) :=
{σ′ ∈ Σ∗ | ∃σ′′ ∈ Σ∗ . σ = σ′ · σ′′}. We define safety languages of finite words as follows.

▶ Definition 9 (Safety languages of finite words). A language L ⊆ Σ∗ is safety if and only if,
for all σ ̸∈ L, there exists σ′ ∈ pref(σ) such that σ′ · σ′′ ̸∈ L, for all σ′′ ∈ Σ∗. Such prefix σ′

is called a bad prefix for L.

Given a formula ϕ of LTLf over the set of atomic propositions AP, we say that ϕ is a
safety formula if L(ϕ) is a safety language over the alphabet 2AP .

In contrast with safety languages of infinite words, in this setting we require that all
the finite continuations of a bad prefix do not belong the language. From the definition, it
immediately follows that every safety language L is such that L = K · Σ∗, where K ⊆ Σ∗ is
the set of bad prefixes.

L. Geatti, S. Pessotto, and S. Tonetta 10:7

Examples. Let Σ = {a, b}. The language b∗ is a safety language, because every violation
(i.e. every word not belonging to the language) contains a prefix ending with the symbol a
such that all possible continuations of the prefix are violations. In this case, the set of bad
prefixes is b∗ · a · Σ∗. On the contrary, the language b · b∗ is not of safety, since ε ̸∈ L but it
is not true that ε · σ′ ̸∈ L for all σ′ ∈ Σ∗. The LTLf formula G(p → X̃q) recognizes a safety
language, because any violating trace contains two adjacent positions where p is true in the
first one and q is false in the next one. Any continuation of the trace starting from this point
is a violation of the formula.

3.2 Properties of the safety fragment on finite words
First, we show that the safety condition is not limited to regular languages. In fact, there
exist safety languages over finite words that are not regular.

▶ Proposition 10. Let Σ = {a, b} and let L = {an · bn | n > 0} · Σ∗. It holds that L is safety
and not regular.

Proof. We provide the complete proof in [14]. ◀

Second, we show that safety languages over finite words are precisely those languages
that are prefix-closed, i.e. if a word belongs to the language, then all of its prefixes are also
included. The notion of prefix-closure is formally defined as follows.

▶ Definition 11 (Prefix-closure). Let L ⊆ Σ∗. We say that L is prefix-closed if, for all σ ∈ L,
it holds that pref(σ) ⊆ L.

The following proposition proves that all safety languages of finite words are prefix-
closed and vice versa. Therefore, prefix-closure provides an alternative and equivalent
characterization of safety languages of finite words.

▶ Proposition 12. Let L ⊆ Σ∗. It holds that L is safety if and only if L is prefix-closed.

Proof. We begin proving the left-to-right direction. Let L ⊆ Σ∗ be a safety language.
Suppose by contradiction that L is not prefix-closed, that is, there exists σ ∈ L and a prefix
σ′ ∈ pref(σ) such that σ′ ̸∈ L. Since L is safety, by Definition 9, it holds that there exists
a prefix σ′′ ∈ pref(σ′) of σ′ such that σ′′ · σ′′′ ̸∈ L, for all σ′′′ ∈ Σ∗. In the particular case
in which σ′′′ is the suffix of σ obtained from σ by removing its prefix σ′′, we have that
σ′′ · σ′′′ = σ and σ ̸∈ L, which is a contradiction since we supposed that σ ∈ L. Therefore, it
must be that L is prefix-closed.

We now prove the right-to-left direction. Let L ⊆ Σ∗ be a prefix-closed language. Suppose
by contradiction that L is not safety, that is, there exists σ ̸∈ L such that, for all σ′ ∈ pref(σ),
there exists a σ′′ ∈ Σ∗ such that σ′ · σ′′ ∈ L. In the particular case in which σ′ = σ, we have
that σ · σ′′ ∈ L, for some σ′′ ∈ Σ∗. But, since by hypothesis L is prefix-closed, all prefixes
of σ · σ′′, and in particular σ, must belong to L. However, this is a contradiction since we
supposed that σ ̸∈ L. Therefore, L must be a safety language. ◀

As a corollary of Proposition 12, a bounded model property for safety languages over
finite words follows directly, showing that any nonempty language of this kind necessarily
includes the empty word (its proof is provided in Appendix A).

▶ Corollary 13 (Small and Bounded Model Property for safety languages). Let L ⊆ Σ∗ be a
safety language. It holds that L ≠ ∅ if and only if ε ∈ L.

TIME 2025

10:8 Safety and Liveness on Finite Words

Third, we show an effective way to establish whether the language recognized by a given
NFA is safety. The procedure consists in checking whether the reduced version of the given
NFA and its closure are equivalent.

▶ Proposition 14. Let A be an NFA. L(A) is safety if and only if L(R(A)) = L(C(R(A))).

Proof. We consider first the right-to-left direction. Suppose that L(R(A)) = L(C(R(A)))
and consider the automaton C(R(A)). Since the closure of any automaton, by definition,
is such that all of its states are final, it is straightforward to see that its language is prefix-
closed. Therefore, we have that L(C(R(A))) is prefix-closed, and so is L(R(A)). Then,
by Proposition 12, L(R(A)) is a safety language.

To prove the left-to-right direction, notice that, since C(R(A)) is obtained from A by
setting all its states as final, it holds that L(R(A)) ⊆ L(C(R(A))). Therefore, only the
inclusion L(C(R(A))) ⊆ L(R(A)) has to be proved.

To prove that L(C(R(A))) ⊆ L(R(A)), we divide in cases depending on whether the set I
of initial states of C(R(A)) is empty.

If I = ∅, then L(C(R(A))) = ∅ and clearly L(C(R(A))) ⊆ L(R(A)).
If I ̸= ∅, let q0 be one of the initial states of C(R(A)), let σ ∈ L(C(R(A))), and let q be

one of the final states reached by C(R(A)) after reading σ. Since R(A) shares with its closure
the same set of states and transition relation, q is a state of R(A) and is reached by R(A)
after reading σ. Moreover, since R(A) is reduced, by definition of reduced automaton, there
exists a σ′ ∈ Σ∗ such that ∆̂(q, σ′) ∩ F ≠ ∅, and thus σ · σ′ ∈ L(R(A)). Since by hypothesis
L(R(A)) is safety, it is also prefix-closed (Proposition 12), and thus σ ∈ L(R(A)). ◀

3.3 The complexity of recognizing safety languages of finite words

Now, we investigate the complexity of determining whether a language of finite words is a
safety language, depending on the form in which the language is represented – either by
automata or temporal logic. In both cases, we prove that the problem is PSPACE-complete.
Interestingly, this is the same complexity as for the case of infinite words [25].

▶ Proposition 15. Establishing whether the language accepted by an NFA is safety is PSPACE-
complete.

Proof (sketch). The membership in PSPACE follows from Proposition 14, and from the fact
that the equivalence problem of two NFAs is a PSPACE problem. For the PSPACE-hardness,
we use a reduction from the universality problem for NFAs, which is PSPACE-complete. The
complete proof is provided in Appendix A. ◀

▶ Proposition 16. Establishing whether the language of an LTLf formula is safety is PSPACE-
complete.

Proof (sketch). The PSPACE upper bound follows from the singly exponential construction
of equivalent NFAs starting from LTLf formulas [13] and from the fact that the equivalence
problem of two NFAs is a PSPACE problem. For proving the PSPACE-hardness, we use a
reduction from the LTLf validity problem, which is PSPACE-complete. The complete proof
is provided in Appendix A. ◀

L. Geatti, S. Pessotto, and S. Tonetta 10:9

3.4 Comparison of the safety fragments of LTL and LTLf
In this part, we compare the safety fragments of LTLf and LTL, and observe that certain
formulae in LTLf, when interpreted over infinite words, are no longer safety, and conversely,
some formulae in LTL cease to be safety when interpreted over finite words. This highlights
that, with respect to the safety fragment, transitioning between LTLf and LTL must be done
with care.

▶ Proposition 17. It holds that:
there exists an LTL formula ϕ such that L∞(ϕ) is safety but L(ϕ) is not safety; and
there exists an LTL formula ϕ such that L(ϕ) is safety but L∞(ϕ) is not safety.

Proof. To prove the first point, we take ϕ := G(p → Xq). When interpreted over finite words,
the language of ϕ is not safety. In fact, consider the word σ := ⟨{p}⟩ of length 1. It holds
that σ ̸∈ L(ϕ) because there is an occurrence of p that is not followed by any q. But none of
its prefixes σ′ ∈ pref(σ) is such that σ′ · σ′′ ̸∈ L(ϕ), for all σ′′ ∈ (2AP)∗. In fact, if σ′ = ε

then σ′ · {p} · {q} ∈ L(ϕ), while if σ′ = ⟨{p}⟩ then σ′ · {q} ∈ L(ϕ). It follows that L(ϕ) is
not a safety language. However, it is worth pointing out that, when interpreted over infinite
words, the language of ϕ is safety. In fact, ϕ belongs to the syntactic safety fragment of LTL,
i.e. SafetyLTL, and, by Proposition 4, L∞(ϕ) is a safety language of infinite words.

To prove the second point, consider the following formula: ϕ := G(qU(p∧q)∨qU(X̃⊥∧q)).
Under the interpretation over finite words, ϕ is equivalent to G(q U (p ∧ q) ∨ Gq), which in
turn is equivalent to G(p R q). To prove that L(G(p R q)) is a safety language, observe that,
for all σ ∈ (2AP)∗, σ ̸|= G(p R q) if and only if σ |= F(¬p U ¬q). Now, for each of these
words σ, there exists a prefix σ′ ∈ pref(σ) which does not contain a q in its last position and
thus it is irremediable, that is, σ′ · σ′′ |= F(¬p U ¬q), for all σ′′ ∈ (2AP)∗. Therefore, L(ϕ)
is a safety language. However, under the interpretation over infinite words, ϕ is equivalent
to G(q U (p ∧ q)), whose language is not safety: the infinite word {q}ω does not satisfy
G(q U (p ∧ q)) because p is never true, but each of its prefixes ⟨{q}, . . . , {q}⟩ can be extended
to an infinite word satisfying the formula, for example, by concatenating {p, q}ω. ◀

4 The liveness fragment on finite words

In this section, we define the liveness fragment of languages of finite words. We then show
an effective way to recognize whether a language is liveness and we study the complexity of
the problem. Finally, we compare liveness languages definable in LTLf with those definable
in LTL.

4.1 Liveness languages of finite words
We define the liveness condition for languages of finite words as follows.

▶ Definition 18. A language L ⊆ Σ∗ is liveness if and only if, for all σ ∈ Σ∗, there exists
σ′ ∈ Σ∗ such that σ · σ′ ∈ L.

Given a formula ϕ of LTLf over the set of atomic propositions AP, we say that ϕ is a
liveness formula if L(ϕ) is a liveness language over the alphabet 2AP .

Examples. The LTLf formula F(p) over AP = {p} recognizes a liveness language, because
any finite word σ ∈ (2AP)∗ can be extended to a trace in the language of F(p) by concatenating
⟨{p}⟩. The same holds for the formula GF(p) and for all formulae of type F(ψ), where ψ

TIME 2025

10:10 Safety and Liveness on Finite Words

q0 q1

∅, {q}, {p, q}
{p}

∅, {p}

{q}, {p, q}

q0 q1

∅, {q}, {p, q}
{p}

∅, {p}

{q}, {p, q}

Figure 1 On the left, an automaton recognizing the LTLf formula G(p → Fq). On the right, its
closure, which accepts every finite word. By Proposition 19, the language of G(p → Fq) fulfills the
liveness condition.

is an LTLf formula. Conversely, the formula G(¬p) does not recognize a liveness language,
because the word ⟨{p}⟩ cannot be extended to a trace in the language of G(¬p). Consider
now the LTLf formula F(p ∧ X̃⊥) over AP = {p}, stating that p holds in the final position
of a word. Under finite word interpretation, we have L(ϕ) = (2AP)∗ · {p}. Clearly, L(ϕ) is
a liveness language. Under infinite word interpretation, instead, we have that L∞(ϕ) = ∅,
because there exists no word containing a position whose successor satisfies the formula ⊥.
It follows that L∞(ϕ) is not a liveness language of infinite words.

4.2 Recognizing liveness languages of finite words
In this section, we present an effective method for determining whether a language of finite
words satisfies the liveness property. We subsequently analyze the computational complexity
of this decision problem in two scenarios: when the language is represented by an NFA and
when it is specified using an LTLf formula.

▶ Proposition 19. Let A be an NFA over the alphabet Σ. L(A) is liveness if and only if
L(C(R(A))) = Σ∗.

Proof. We start proving the left-to-right direction. Suppose that L(A) is liveness. Clearly,
it always holds that L(C(R(A))) ⊆ Σ∗, thus we need only to prove that Σ∗ ⊆ L(C(R(A))).
Let σ ∈ Σ∗ be a finite word. Since L(A) is a liveness language and since L(A) = L(R(A)),
by Definition 18, there there exists σ′ ∈ Σ∗ such that σ · σ′ ∈ L(R(A)), i.e. σ is the prefix of
a word accepted by L(R(A)). Therefore, there exists a state q of R(A) reached by R(A)
after reading σ. By definition of closure automaton, state q is final in C(R(A)) and is reached
by C(R(A)) after reading σ. It follows that σ ∈ L(C(R(A))).

We now prove the right-to-left direction. Suppose that L(C(R(A))) = Σ∗. We prove that
the condition of liveness is satisfied by L(A). Let σ ∈ Σ∗. Since L(C(R(A))) = Σ∗, it follows
that there exists a state q reached by C(R(A)) after reading σ. Since, C(R(A)) and R(A)
share the same set of states and the same transition relation, q is also a state of R(A) and is
reached by R(A) after reading σ. Since R(A) is reduced, a final state of R(A) is reachable
from state q, impling that there exists a word σ′ ∈ Σ∗ such that σ · σ′ ∈ L(R(A)), proving
that the liveness condition holds for L(R(A)). Since the NFAs R(A) and A are equivalent,
this means that also L(A) is a liveness language. ◀

As an example of application of Proposition 19, we consider the LTLf formula ϕ := G(p →
Fq) over the set of atomic propositions AP := {p, q}. The automaton Aϕ, which is equal to
its reduced version R(Aϕ), recognizing L(ϕ) is depicted in Figure 1 (left). The right side
of Figure 1 displays its closure C(R(Aϕ)). Since L(C(R(Aϕ))) = (2AP)∗, by Proposition 19,
the language of G(p → Fq) is a liveness language.

L. Geatti, S. Pessotto, and S. Tonetta 10:11

We now investigate the computational complexity of deciding whether a language satisfies
the liveness condition, in the cases where the language is given by an NFA and by an LTLf
formula. In the former case, the problem is PSPACE-complete, as stated by the following
proposition.

▶ Proposition 20. Establishing whether the language accepted by an NFA is liveness is
PSPACE-complete.

Proof (sketch). Both the membership in PSPACE (cf. Proposition 19) and the PSPACE-
hardness follows from the universality problem of NFAs, which is PSPACE-complete. The
complete proof is provided in [14]. ◀

Interestingly, the best algorithm we have devised so far for deciding whether an LTLf
formula is liveness requires exponential space. This is due to the fact that, given an
LTLf formula ϕ, the algorithm first constructs the NFA corresponding to ϕ, which requires
exponential space in |ϕ|, and then checks the universality of its closure (cf. Proposition 19),
a step that requires polynomial space in the size of the automaton. Overall, the algorithm
operates in exponential space with respect to |ϕ|. Whether this algorithm is optimal (i.e.
EXPSPACE-hard), or whether a more efficient solution exists, remains an open problem –
even in the case of infinite words.

▶ Proposition 21. Establishing whether the language of an LTLf formula is liveness is in
EXPSPACE.

Proof. Let ϕ be an LTLf formula of size n over AP. The algorithm to check whether ϕ is
liveness proceeds as follows. First, it builds the NFA Aϕ equivalent to ϕ, which is of size
2O(n) [13]. Then, it constructs C(R(Aϕ)) and checks whether L(C(R(Aϕ))) = (2AP)∗, in
space polynomial in the size of Aϕ, that is, 2O(n). If this is the case, then ϕ is liveness,
otherwise ϕ is not liveness. Overall, the algorithm requires space exponential in n, and thus
the problem is in EXPSPACE. ◀

4.3 Comparison of the liveness fragments of LTL and LTLf
In the proposition below, we show that, as in the case of the safety fragment, there exist
liveness formulae of LTLf that, when interpreted over infinite words, no longer accept liveness
languages. Conversely, there also exist liveness formulae of LTL that, when interpreted over
finite words, do not define a liveness language.

▶ Proposition 22. It holds that:
there exists an LTL formula ϕ such that L(ϕ) is liveness but L∞(ϕ) is not liveness; and
there exists an LTL formula ϕ such that L∞(ϕ) is liveness but L(ϕ) is not liveness.

Proof. To prove the first point, it suffices to take the formula F(p∧ X̃⊥). As we shown above,
when interpreted over finite words, the formula recognize a liveness language, while over
infinite words it recognizes a language which is not liveness.

To prove the second point, consider the following formula: ϕ := G((X̃⊥∧q) → F(X̃⊥∧¬q)).
Over finite words, it holds that L(ϕ) = ∅, because the formula forces the final time point of
any word to satisfy both q and ¬q. It follows that L(ϕ) is not a liveness language. However,
over the infinite word interpretation, we have that L∞(ϕ) = (2AP)ω, because the antecedent
of the implication is always false. Therefore, L∞(ϕ) is liveness. ◀

TIME 2025

10:12 Safety and Liveness on Finite Words

5 Decomposition of regular languages

In this section, we present a decomposition result for regular languages that leverages the
characterization of the safety and liveness fragments. Specifically, we show that for any
regular language L, one can construct a safety language and a liveness language whose
intersection is precisely L.

From this point onward, we restrict our attention to DFAs. This assumption simplifies
certain proofs, most notably that of Proposition 25. This restriction comes with no loss of
generality, as every regular language L admits an equivalent DFA.

As a first step, we give the following definitions.

▶ Definition 23 (The Safe and the Live versions of a DFA). Let A = (Q,Σ, I,∆, F) be a DFA.
We define Safe(A) as C(R(A)). We define Live(A) as the automaton R(A) augmented
with a new final state qf ̸∈ Q, and the following transitions: (i) (qf , a, qf), for all a ∈ Σ;
(ii) (q, a, qf), for all q ∈ Q and for all a ∈ Σ such that ∆(q, a) = ∅.

The proposition below states that, for any DFA A, the automata Safe(A) and Live(A)
recognize a safety and a liveness language, respectively. We provide the proof in Appendix A.

▶ Proposition 24. Let A be a DFA. It holds that L(Safe(A)) (resp., L(Live(A))) is a safety
language (resp., a liveness language).

The final step before presenting the decomposition algorithm is to show that, for any
DFA A, the automaton Live(A) recognizes exactly the set of words that are either accepted
by A or not accepted by Safe(A). This property is essential to ensure that the intersection
of Safe(A) and Live(A) recognizes precisely the language L(A).

▶ Proposition 25. Let A be a DFA. Live(A) recognizes the language L(A)∪(Σ∗\L(Safe(A))).

Proof. We provide the proof in [14]. ◀

The following theorem states and proves the decomposition theorem for regular languages,
establishing that every regular language over an alphabet Σ is expressible as an intersection
of a safety language over Σ and a liveness language over Σ.

▶ Theorem 26. Let L ⊆ Σ∗ be a regular language. There exist two regular languages
Lsafe ⊆ Σ∗ and Llive ⊆ Σ∗ such that: (i) Lsafe is a safety language; (ii) Llive is a liveness
language; (iii) L = Lsafe ∩ Llive.

Proof. Since L is a regular language, there exists a DFA A such that L(A) = L. Let
Lsafe = L(Safe(A)) and Llive = L(Live(A)).

By Proposition 24, Lsafe and Llive are a safety language and a liveness language, respect-
ively. Moreover, by Proposition 25, it holds that:

Lsafe ∩ Llive = L(Safe(A)) ∩ L(Live(A)) = L(Safe(A)) ∩ (L(A) ∪ (Σ∗ \ L(Safe(A))))
= L(Safe(A)) ∩ L(A) = L(A)

Therefore, L = Lsafe ∩ Llive. ◀

L. Geatti, S. Pessotto, and S. Tonetta 10:13

6 Implications on LTLf Model Checking

In this section, we examine certain implications of the safety and liveness fragments on
the model checking problem [12] over finite words. Specifically, we address the problem of
verifying whether an NFA M satisfies an LTLf formula ϕ, i.e. whether L(M) ⊆ L(ϕ), denoted
as M |= ϕ.

The identification of safety and liveness fragments within both LTLf and the class of
regular languages over finite words opens avenues for designing specialized model checking
procedures and conducting a more granular complexity analysis – paralleling existing results
in the setting of infinite words [19, 11].

However, we show that when L(M) is assumed to be a nonempty safety language – a
common scenario in practice, particularly in invariant checking benchmarks [5] – the model
checking problem for LTLf formulae often becomes uninformative. In many such cases,
formulae that are semantically meaningful and nontrivial in the infinite-word setting give rise
to degenerate instances in the finite-word setting, where the model checking task becomes
trivial: either always false, or reducible to a simple condition such as whether the empty
word ε belongs to L(M) or the model checking of a much simpler formula.

6.1 The cosafety case
We begin by analyzing the case where L(ϕ) is a cosafety language – that is, the complement
of a safety language. Consider, for instance, the formula ϕ := Fp. Since L(M) is assumed
to be a safety language and thus is prefix-closed (cf. Definition 11 and Proposition 12), it
necessarily contains the empty word ε. However, since ϕ is a cosafety formula, L(ϕ) is a
safety language, and it holds that ε ∈ L(ϕ), that is, ε ̸∈ L(ϕ). Consequently, L(M) ̸⊆ L(ϕ),
i.e. M ̸|= ϕ. More generally, there does not exist an NFA M such that L(M) is a safety,
nonempty language and M |= ϕ, with ϕ := Fp. It is worth noting that this conclusion remains
valid even if one were to disregard ε from the language, in which case the model checking
task reduces to a trivial condition: verifying whether the initial state satisfies p.

This reasoning extends to arbitrary cosafety properties. Let ϕ be a cosafety LTLf formula
and let M be an NFA such that L(M) is safety and nonempty. One has that M |= ϕ if and
only if L(M) ∩ L(ϕ) = ∅. Since L(M) is safety and thus prefix-closed, by Corollary 13 we
have that ε ∈ L(M), and thus:
1. if ε ̸|= ϕ (that is, ε ∈ L(ϕ)), then L(M) ∩ L(ϕ) ̸= ∅, and thus M ̸|= ϕ;
2. if ε |= ϕ (that is, ε ∈ L(ϕ)), then ε ̸∈ L(ϕ); but since L(ϕ) is a safety language,

by Corollary 13 it holds that L(ϕ) = ∅, implying that L(M) ∩ L(ϕ) = ∅ and M |= ϕ.
Therefore, checking whether M |= ϕ is equivalent to checking whether ε ̸|= ϕ, for all cosafety
formulas ϕ and for all safety, nonempty NFAs M .

6.2 The general case
We now establish that for any LTLf formula ϕ and any NFA M such that L(M) is a safety
language, the model checking problem M |= ϕ reduces to verifying whether L(M) is contained
within a substantially simpler language than L(ϕ). Specifically, it suffices to check inclusion
in the language recognized by the automaton corresponding to ϕ after removing all non-final
states. As an example, suppose that ϕ := GFp. For any finite word σ, we have that σ |= GFp
if and only if σ satisfies p in the last position. Moreover, since L(M) is prefix-closed, it means
that, for every σ ∈ L(M), proposition p holds in every position of σ. Therefore, M |= GFp is
equivalent to M |= Gp.

TIME 2025

10:14 Safety and Liveness on Finite Words

We define the subclosure of an NFA as the automaton resulting from the removal of all
non-final states along with their associated incoming and outgoing transitions.

▶ Definition 27 (Subclosure automaton). Let A = (Q,Σ, I,∆, F) be an NFA. The subclosure
of A, denoted with S(A), is the automaton obtained from A by removing non-final states, i.e.
(Q ∩ F,Σ, I ∩ F,∆ ∩ (F × Σ × F), F).

The following proposition establishes that, for any NFA M such that L(M) is safety
and any LTLf formula ϕ, the model checking problem M |= ϕ is equivalent to checking the
language inclusion L(M) ⊆ L(S(Aϕ)), where Aϕ is the DFA corresponding to ϕ.

▶ Proposition 28. Let ϕ be an LTLf formula over AP and let Aϕ be its equivalent DFA. Let
M be an NFA such that L(M) ⊆ (2AP)∗ is a safety language. It holds that M |= ϕ if and
only if L(M) ⊆ L(S(Aϕ)).

Proof. The right-to-left direction is trivial since L(S(Aϕ)) ⊆ L(Aϕ) and thus, if L(M) ⊆
L(S(Aϕ)), then L(M) ⊆ L(Aϕ), that is M |= ϕ.

To prove the left-to-right direction, assume that M |= ϕ, that is L(M) ⊆ L(Aϕ), and let
σ ∈ L(M). We prove that σ ∈ L(S(Aϕ)) by induction on the length of σ.

Let |σ| = 0. Thus σ = ε. Since σ belongs also to L(Aϕ), there exists an initial state
of Aϕ that is final. By Definition 27, such state is also initial and final in S(Aϕ). Thus,
ε ∈ L(S(Aϕ)).

Let |σ| = n > 0. Since σ ∈ L(Aϕ), there exists a path ⟨q0, q1, . . . , qn⟩ accepting σ. Since
L(M) is safety and thus prefix-closed, also the prefix σ′ of size n− 1 is in L(Aϕ). Moreover,
since Aϕ is a DFA, ⟨q0, q1, . . . , qn−1⟩ must be accepting, having that σ′ belongs to L(Aϕ).
By inductive hypothesis, σ′ ∈ L(S(Aϕ)). Since both qn and qn−1 are final states in Aϕ, by
the definition of S there is a transition from qn−1 to qn, having that ⟨q0, q1, . . . , qn⟩ must be
a sequence of S(Aϕ) accepting σ. Therefore, σ ∈ L(S(Aϕ)). ◀

It is important to note that Proposition 28 remains valid regardless of whether the empty
word ε is included in the semantics. In particular, if the model checking problem M |= φ is
to be interpreted with the exclusion of ε, one can equivalently verify M |= (ϕ ∨ G⊥), since
L(G⊥) = {ε}.

Some important consequences of Proposition 28 are highlighted by the following repres-
entative examples, which hold for any NFA M such that L(M) is safety and nonempty:

if ϕ = Fp, then L(S(Aϕ)) = ∅ and therefore it never holds that M |= ϕ;
if ϕ = Fp∨G⊥, then L(S(Aϕ)) = {ε}∪{p} ·Σ∗ and, since ε ∈ L(M), it holds that M |= ϕ

iff M |= p;
if ϕ = GFp, then L(S(Aϕ)) = L(Gp) and M |= ϕ iff M |= Gp;
if ϕ = FGp, then L(S(Aϕ)) = ∅ and thus it never holds that M |= ϕ;
if ϕ = FGp ∨ G⊥, then L(S(Aϕ)) = L(Gp), and thus M |= ϕ iff M |= Gp;

7 Conclusions

In this work, we investigated the notions of safety and liveness languages over finite words.
We established several fundamental properties of these classes, including the prefix-closed
nature of safety languages. Furthermore, we presented effective procedures to determine
whether the language recognized by an NFA or specified by an LTLf formula is safety or
liveness. We also discussed key distinctions between the finite-word and infinite-word settings.
In addition, we proved that, analogously to the infinite-word case, every regular language can

L. Geatti, S. Pessotto, and S. Tonetta 10:15

be represented as the intersection of a safety language and a liveness language. We further
examined implications for model checking of LTLf formulae, particularly when the program
under verification recognizes a safety regular language.

As a direction for future work, we conjecture that the problem of deciding whether the
language defined by an LTLf formula is a liveness language is EXPSPACE-complete, a result
that remains open in this paper. Furthermore, a natural extension of our results involves
the study of relative safety and relative liveness, as introduced by T. Henzinger in [15] and
studied further in [6], that refine the classical definitions by characterizing safety and liveness
properties with respect to a given environmental assumption. Investigating these refined
notions in the finite-word setting represents an interesting direction for future research.

References
1 Bowen Alpern and Fred B Schneider. Defining liveness. Information processing letters,

21(4):181–185, 1985. doi:10.1016/0020-0190(85)90056-0.
2 Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Comput.,

2(3):117–126, 1987. doi:10.1007/BF01782772.
3 Suguman Bansal, Yong Li, Lucas M. Tabajara, Moshe Y. Vardi, and Andrew M. Wells. Model

checking strategies from synthesis over finite traces. In Étienne André and Jun Sun, editors,
Automated Technology for Verification and Analysis - 21st International Symposium, ATVA
2023, Singapore, October 24-27, 2023, Proceedings, Part I, volume 14215 of Lecture Notes in
Computer Science, pages 227–247. Springer, 2023. doi:10.1007/978-3-031-45329-8_11.

4 David A. Basin, Carlos Cotrini Jiménez, Felix Klaedtke, and Eugen Zalinescu. Deciding safety
and liveness in TPTL. Inf. Process. Lett., 114(12):680–688, 2014. doi:10.1016/J.IPL.2014.
06.005.

5 Armin Biere, Nils Froleyks, and Mathias Preiner. Hardware model checking competition
2024. In Nina Narodytska and Philipp Rümmer, editors, Formal Methods in Computer-Aided
Design, FMCAD 2024, Prague, Czech Republic, October 15-18, 2024, page 1. IEEE, 2024.
doi:10.34727/2024/ISBN.978-3-85448-065-5_6.

6 Alberto Bombardelli, Alessandro Cimatti, Stefano Tonetta, and Marco Zamboni. Symbolic
Model Checking of Relative Safety LTL Properties. In iFM, volume 14300 of Lecture Notes in
Computer Science, pages 302–320. Springer, 2023. doi:10.1007/978-3-031-47705-8_16.

7 Aaron R Bradley. SAT-based model checking without unrolling. In International Workshop
on Verification, Model Checking, and Abstract Interpretation, pages 70–87. Springer, 2011.
doi:10.1007/978-3-642-18275-4_7.

8 Aaron R Bradley. Understanding IC3. In International Conference on Theory and Applications
of Satisfiability Testing, pages 1–14. Springer, 2012. doi:10.1007/978-3-642-31612-8_1.

9 Edward Y. Chang, Zohar Manna, and Amir Pnueli. Characterization of temporal property
classes. In Werner Kuich, editor, Proceedings of the 19th International Colloquium on Automata,
Languages and Programming, volume 623 of Lecture Notes in Computer Science, pages 474–486.
Springer, 1992. doi:10.1007/3-540-55719-9_97.

10 Alessandro Cimatti, Luca Geatti, Nicola Gigante, Angelo Montanari, and Stefano Tonetta. A
first-order logic characterisation of safety and co-safety languages. In Patricia Bouyer and
Lutz Schröder, editors, Foundations of Software Science and Computation Structures - 25th
International Conference, FOSSACS 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, volume 13242 of Lecture Notes in Computer Science, pages 244–263. Springer,
2022. doi:10.1007/978-3-030-99253-8_13.

11 Koen Claessen and Niklas Sörensson. A liveness checking algorithm that counts. In 2012
Formal Methods in Computer-Aided Design (FMCAD), pages 52–59. IEEE, 2012. URL:
https://ieeexplore.ieee.org/document/6462555/.

TIME 2025

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1016/J.IPL.2014.06.005
https://doi.org/10.1016/J.IPL.2014.06.005
https://doi.org/10.34727/2024/ISBN.978-3-85448-065-5_6
https://doi.org/10.1007/978-3-031-47705-8_16
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/3-540-55719-9_97
https://doi.org/10.1007/978-3-030-99253-8_13
https://ieeexplore.ieee.org/document/6462555/

10:16 Safety and Liveness on Finite Words

12 Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick Bloem. Handbook of
model checking, volume 10. Springer, 2018. doi:10.1007/978-3-319-10575-8.

13 Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic logic
on finite traces. In IJCAI’13, pages 854–860, 2013. URL: http://www.aaai.org/ocs/index.
php/IJCAI/IJCAI13/paper/view/6997.

14 Luca Geatti, Stefano Pessotto, and Stefano Tonetta. Safety and liveness on finite words (ex-
tended version). https://users.dimi.uniud.it/~luca.geatti/data/time-25/time25.pdf,
2025. Extended version of the paper.

15 Thomas A. Henzinger. Sooner is safer than later. Inf. Process. Lett., 43(3):135–141, 1992.
doi:10.1016/0020-0190(92)90005-G.

16 Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Quantitative Safety and Liveness.
In FoSSaCS, volume 13992 of Lecture Notes in Computer Science, pages 349–370. Springer,
2023. doi:10.1007/978-3-031-30829-1_17.

17 John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory,
languages, and computation. Acm Sigact News, 32(1):60–65, 2001. doi:10.1145/568438.
568455.

18 Orna Kupferman and Gal Vardi. On relative and probabilistic finite counterability. Formal
Methods Syst. Des., 52(2):117–146, 2018. doi:10.1007/S10703-017-0277-8.

19 Orna Kupferman and Moshe Y Vardi. Model checking of safety properties. Formal Methods
in System Design, 19(3):291–314, 2001. doi:10.1023/A:1011254632723.

20 Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering, SE-3(2):125–143, 1977. doi:10.1109/TSE.1977.229904.

21 Zohar Manna and Amir Pnueli. Temporal verification of reactive systems - safety. Springer,
1995.

22 Doron Peled and Klaus Havelund. Refining the Safety-Liveness Classification of Temporal
Properties According to Monitorability. In Models, Mindsets, Meta, volume 11200 of Lecture
Notes in Computer Science, pages 218–234. Springer, 2018. doi:10.1007/978-3-030-22348-9_
14.

23 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57. IEEE, 1977. doi:10.1109/SFCS.1977.32.

24 A Prasad Sistla. On characterization of safety and liveness properties in temporal logic. In
Proceedings of the fourth annual ACM symposium on Principles of distributed computing,
pages 39–48, 1985. doi:10.1145/323596.323600.

25 A Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of Computing,
6(5):495–511, 1994. doi:10.1007/BF01211865.

A Omitted proofs

▶ Corollary 13 (Small and Bounded Model Property for safety languages). Let L ⊆ Σ∗ be a
safety language. It holds that L ≠ ∅ if and only if ε ∈ L.

Proof. The right-to-left direction is trivial. To prove the left-to-right direction, suppose that
L is not empty and let σ ∈ L. Since by hypothesis L is safety, by Proposition 12 we have
that L is prefix-closed. Since σ ∈ L and since ε is a prefix of σ, by Definition 11 we have
that ε ∈ L. ◀

▶ Proposition 15. Establishing whether the language accepted by an NFA is safety is PSPACE-
complete.

Proof. For the membership in PSPACE, we show the following procedure to check whether
the language of a given reduced NFA is equal to the language of its closure (Proposition 14).
Let A be an NFA of size n. By means of a sequence of reachability checks, in nondeterministic

https://doi.org/10.1007/978-3-319-10575-8
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://users.dimi.uniud.it/~luca.geatti/data/time-25/time25.pdf
https://doi.org/10.1016/0020-0190(92)90005-G
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1145/568438.568455
https://doi.org/10.1145/568438.568455
https://doi.org/10.1007/S10703-017-0277-8
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/323596.323600
https://doi.org/10.1007/BF01211865

L. Geatti, S. Pessotto, and S. Tonetta 10:17

logarithmic space, we can turn A into an equivalent reduced NFA R(A) of size O(n). The pro-
cedure checks whether L(R(A)) = L(C(R(A))). Notice that, since L(R(A)) ⊆ L(C(R(A))),
only the opposite inclusion needs to be checked. Checking whether L(C(R(A))) ⊆ L(R(A))
is equivalent to check whether:

L(C(R(A))) ∩ L(R(A)) = ∅

Building an automaton for L(R(A)) requires 2O(n) space [17], computing the intersection
between two automata requires polynomial space with respect to the size of the two automata,
and checking the emptiness can be performed on-the-fly in nondeterminstic logarithmic space.
The total complexity is thus nondeterministic polynomial space, and thus the problem is in
PSPACE.

For proving the PSPACE-hardness, we consider the universality problem for NFAs, i.e. the
problem of checking whether the language of a given NFA over the alphabet Σ is Σ∗, which
is known to be PSPACE-complete.

Let A = (Q,Σ, I,∆, F) be an NFA. We define the automaton B as the NFA
(Q′,Σ′, I ′,∆′, F ′) such that:

Q′ := Q ∪ {qsink, qloop};
Σ′ := Σ ∪ {f}, where f ̸∈ Σ;
I ′ := I;
∆′ := ∆ ∪ {(q, f, qloop) | q ∈ Q′} ∪
{(q, a, qsink) | q ∈ Q, a ∈ Σ, ∆(q, a) = ∅} ∪
{(q, a, q) | a ∈ Σ, q ∈ {qsink, qloop}};
F ′ := F ∪ {qloop}.

Automaton B has two crucial properties: (i) it has no undefined transitions; (ii) L(B) =
L(A) ∪ (Σ′)∗ · f · (Σ′)∗; note that this implies that L(B) ∩ (Σ)∗ = L(A).

We prove that L(A) = Σ∗ if and only if L(B) is safety.
Suppose that L(A) = Σ∗ and let σ be any word in (Σ′)∗. We divide in cases, depending

on whether σ contains at least one f .
Case 1. If σ does not contain any f , then σ ∈ Σ∗ and thus σ ∈ L(A). Since by construction

L(B) = L(A) ∪ (Σ′)∗ · f · (Σ′)∗, we have that σ ∈ L(B).
Case 2. If σ contains at least one f , then σ ∈ (Σ′)∗ · f · (Σ′)∗, and thus, also in this case,

σ ∈ L(B).
Therefore L(B) = (Σ′)∗ and, clearly, L(B) is a safety language over the alphabet Σ′.

Suppose that L(B) is a safety language. We first prove that L(B) = (Σ′)∗. Suppose by
contradiction that this is not case and let σ ̸∈ L(B). Since L(B) is a safety language, there
exists a σ′ ∈ pref(σ) such that σ′ · σ′′ ̸∈ L(B), for all σ′′ ∈ (Σ′)∗. Now, let q be any state
reached by B after reading σ′ (notice that, since B does not contain undefined transitions,
state q always exists). By construction of B, reading the symbol f , B transitions from state
q to state qloop. Since qloop is a final state, this means that σ′ · f ∈ L(B). But this is a
contradiction with the fact that σ′ · σ′′ ̸∈ L(B), for all σ′′ ∈ (Σ′)∗. Therefore, L(B) = (Σ′)∗.

As observed above, by construction, L(B)∩(Σ)∗ = L(A). Thus, the fact that L(B) = (Σ′)∗

implies that L(A) = Σ∗. ◀

▶ Proposition 16. Establishing whether the language of an LTLf formula is safety is PSPACE-
complete.

Proof. We follow the same approach as Sistla [25] for proving that the problem of establishing
whether the language recognized by an LTL formula is safety is PSPACE-complete.

TIME 2025

10:18 Safety and Liveness on Finite Words

As for the membership in PSPACE, we follow this procedure. Given an LTLf formula ϕ of
size n over the atomic propositions AP, the procedure builds two NFAs over the alphabet
2AP , both of size 2O(n) [13]: the automaton Aϕ equivalent to the formula ϕ, and the
automaton A¬ϕ equivalent to the formula ¬ϕ. To check whether L(ϕ) is a safety language, it
suffices to check whether L(R(Aϕ)) = L(C(R(Aϕ))) (Proposition 14), which is equivalent to
check whether L(C(R(Aϕ))) ∩ L(R(A¬ϕ)) = ∅. This check can be done in nondeterministic
logarithmic space, on-the-fly while building the two automata. Therefore, the problem is in
PSPACE.

To prove the PSPACE-hardness, we use the validity problem for LTLf formulae, i.e. checking
whether the language of a given LTLf formula over the set of atomic propositions AP is
(2AP)∗. Let ϕ be an LTLf formula over AP . We prove that ϕ is valid (i.e. L(ϕ) = (2AP)∗) if
and only if L(ϕ ∨ Fp) is safety, where p ̸∈ AP.

Proving that if L(ϕ) = (2AP)∗ then L(ϕ ∨ Fp) is safety is straightforward. Since
L(ϕ) = (2AP)∗ and p does not appear in ϕ, it also holds that L(ϕ ∨ Fp) = (2AP∪{p})∗,
and thus L(ϕ ∨ Fp) is safety.

We now prove the opposite direction. Suppose that L(ϕ ∨ Fp) is safety. Suppose by
contradiction that ϕ∨ Fp is not valid and let σ ∈ (2AP∪{p})∗ be a word such that σ ̸|= ϕ∨ Fp.
Since by hypothesis the language of ϕ ∨ Fp is safety, there exists a σ′ ∈ pref(σ) such that
σ′ · σ′′ ̸|= ϕ ∨ Fp, for all σ′′ ∈ (2AP∪{p})∗. However, this is a contradition because the
σ′ · {p} |= ϕ∨ Fp. Therefore, ϕ∨ Fp is valid, i.e. L(ϕ∨ Fp) = (2AP∪{p})∗. Since p ̸∈ AP , this
means that L(ϕ) = (2AP)∗. ◀

▶ Proposition 24. Let A be a DFA. It holds that L(Safe(A)) (resp., L(Live(A))) is a safety
language (resp., a liveness language).

Proof. We first prove the case for Safe(A). Since, by Definition 23, Safe(A) is defined
as C(R(A)), it holds that C(R(Safe(A))) is exactly Safe(A). In particular L(Safe(A)) =
L(C(R(Safe(A)))). By Proposition 14, we have that L(Safe(A)) is a safety language.

We now prove the case for Live(A). The definition of Live(A) states that all undefined
transitions of R(A) are replaced with a transition into a new, final state (to which the
automaton is forced to remain reading any symbol). This means that the transition relation
of Live(A) is complete: ∆(q, a) ̸= ∅, for all states q of Live(A) and for all symbols a ∈ Σ.
Since all the states in C(R(Live(A))) are set to final, it follows that L(C(R(Live(A)))) = Σ∗.
By Proposition 19, it means that L(Live(A)) is a liveness language. ◀

A Better Algorithm for Converting an STNU into
Minimal Dispatchable Form
Luke Hunsberger # Ñ

Vassar College, Poughkeepsie, NY, USA

Roberto Posenato # Ñ

University of Verona, Italy

Abstract
A Simple Temporal Network with Uncertainty (STNU) is a data structure for representing and
reasoning about temporal constraints on activities, including those with uncertain durations. An
STNU is dispatchable if it can be flexibly and efficiently executed in real time while guaranteeing
that all relevant constraints are satisfied. Typically, dispatchability requires inserting conditional
wait constraints, thereby forming an Extended STNU (ESTNU). The number of edges in an ESTNU
affects the computational work that must be done during real-time execution. The MinDispESTNU
problem is that of finding an equivalent dispatchable ESTNU having a minimal number of edges.
Recent work presented an O(kn3)-time algorithm for solving the MinDispESTNU problem, where n

is the number of timepoints and k is the number of actions with uncertain durations. A subsequent
paper presented a faster O(n3)-time algorithm, but it has been shown to be incomplete. This paper
presents a new O(mn + n2k + n2 log n)-time algorithm for solving the MinDispESTNU problem,
where m is the number of constraints in the network. The correctness of the algorithm is based
on a novel theory of the canonical form of nested diamond structures. An empirical evaluation
demonstrates the order-of-magnitude improvement in performance.

2012 ACM Subject Classification Computing methodologies → Temporal reasoning; Theory of
computation → Dynamic graph algorithms

Keywords and phrases Temporal constraint networks, dispatchable networks

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.11

1 Background

Temporal constraint networks facilitate representing and reasoning about temporal constraints
on activities. Simple Temporal Networks with Uncertainty (STNUs) allow the explicit
representation of actions with uncertain durations [13]. An STNU is dispatchable if it can be
executed by a flexible and efficient real-time execution algorithm while guaranteeing that all
of its constraints will be satisfied. This paper modifies an existing algorithm for converting a
dispatchable network into an equivalent dispatchable network having a minimal number of
edges, making it an order of magnitude faster, as demonstrated by an empirical evaluation.

Simple Temporal Networks. A Simple Temporal Network (STN) is a pair (T , C) where T is
a set of real-valued variables called timepoints; and C is a set of ordinary constraints, each of
the form (Y − X ≤ δ) for X, Y ∈ T and δ ∈ R [3]. An STN is consistent if it has a solution
as a constraint satisfaction problem (CSP). Each STN has a corresponding graph where
the timepoints serve as nodes and the constraints correspond to labeled, directed edges. In
particular, each constraint (Y − X ≤ δ) corresponds to an edge X δ Y in the graph. Such
edges may be notated as (X, δ, Y) or, if context permits, simply XY . A path from X to Y

may be notated by listing its timepoints (e.g., XUVWY) or, if the context permits, just XY .

© Luke Hunsberger and Roberto Posenato;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hunsberger@vassar.edu
https://www.cs.vassar.edu/~hunsberg
https://orcid.org/0009-0005-8603-4803
mailto:roberto.posenato@univr.it
https://www.di.univr.it/?ent=persona&id=102
https://orcid.org/0000-0003-0944-0419
https://doi.org/10.4230/LIPIcs.TIME.2025.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

11:2 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

A flexible and efficient real-time execution (RTE) algorithm has been defined for STNs
that maintains a time window for each timepoint X and, as each X is executed, propagates
constraints only locally, to X’s neighbors in the graph [19, 15]. An STN is dispatchable if
that RTE algorithm is guaranteed to satisfy all of the STN’s constraints no matter how
the flexibility afforded by the algorithm is exploited during execution. A consistent STN
is dispatchable if and only if each pair of timepoints connected by a path in the graph are
connected by a shortest vee-path (i.e., a shortest path comprising zero or more negative
edges followed by zero or more non-negative edges) [12]. Efficient algorithms for generating
equivalent dispatchable STNs having a minimal number of edges have been presented [19, 15].
Having fewer edges is important since it lessens real-time computations done during execution.

Simple Temporal Networks with Uncertainty. A Simple Temporal Network with Uncertainty
(STNU) augments an STN to include contingent links that represent actions with uncertain,
but bounded durations [13]. An STNU is a triple (T , C, L) where (T , C) is an STN, and L is
a set of contingent links, each of the form (A, x, y, C), where A, C ∈ T and 0 < x < y < ∞.
The semantics of STNU execution ensures that regardless of when the activation timepoint A

is executed, the contingent timepoint C will occur such that C − A ∈ [x, y]. Each STNU
S = (T , C, L) has a corresponding graph G = (T , Eo, Elc, Euc), where (T , Eo) is the graph for
the STN (T , C), and Elc and Euc are sets of labeled edges corresponding to the contingent
durations in L. In particular, each contingent link (A, x, y, C) in L has a lower-case (LC)
edge A c:x C in Elc that represents the uncontrollable possibility that the duration might take
on its minimum value x; and an upper-case (UC) edge C C:−y A in Euc that represents the
possibility that it might take on its maximum value y. For convenience, edges such as A c:x C

and C C:−y A may be notated as (A, c:x, C) and (C, C:−y, A), respectively.
An STNU is dynamically controllable (DC) if there exists a dynamic, real-time execution

strategy that guarantees that all constraints in C will be satisfied no matter how the contingent
durations turn out [13, 4]. A dynamic strategy is one whose execution decisions can react to
observations of contingent executions, but without advance knowledge of future events. Many
polynomial-time DC-checking algorithms have been presented [11, 1, 5], the fastest having a
worst-case time-complexity of O(mn + k2n + kn log n), where n, m and k are the numbers
of timepoints, ordinary constraints, and contingent links. Many DC-checking algorithms
generate a kind of conditional constraint called a wait [14, 10, 5]. Although not necessary
for DC-checking [1], wait constraints are needed for STNU dispatchability, as follows.

An STNU augmented with a set of waits, Ew, is called an Extended STNU (ESTNU) [11].
A real-time execution algorithm for ESTNUs, called RTE∗, has been defined that provides
maximum flexibility while requiring minimal real-time computation [11, 7]. An ESTNU is
dispatchable if every run of the RTE∗ algorithm is guaranteed to satisfy all of its constraints
no matter how the contingent durations turn out. Equivalently, an ESTNU is dispatchable if
and only if all of its STN projections are dispatchable (as STNs) [11]. (A projection of an
ESTNU is the STN that results from fixing the durations of its contingent links.) The fastest
algorithm for generating equivalent dispatchable ESTNUs is the O(mn + kn2 + n2 log n)-time
FDSTNU algorithm [6], but it provides no guarantee about the number of edges in its output.

The MinDispESTNU problem. For any given dispatchable ESTNU G, find an equivalent
dispatchable ESTNU G′ having a minimal number of edges. The minDispESTNU algorithm [7]
solves the MinDispESTNU problem in O(kn3) time. A faster O(n3)-time algorithm, called
fastMinDispESTNU [8], was later found to be incomplete.

L. Hunsberger and R. Posenato 11:3

A CV C:−6
c:1

C:−10

−1 10

−1

A CV C:−v

c:x
C:−y

−x y

−x

Figure 1 Stand-in edges entailed by labeled edges associated with contingent links.

This paper. Section 2 summarizes the minDispESTNU and fastMinDispESTNU algorithms. Sec-
tion 3 then presents a new algorithm, betterMinDispESTNU, that solves the MinDispESTNU
problem in O(mn + n2k + n2 log n) time. It employs a novel approach to generating so-called
stand-in edges. The correctness of the algorithm is based on a new theory of the canoni-
cal form of nested diamond structures, which is detailed in Hunsberger and Posenato [9].
Section 4 presents an empirical evaluation that demonstrates that betterMinDispESTNU
achieves an order-of-magnitude speedup over minDispESTNU in practice.

2 Overview of Existing Algorithms

The minDispESTNU algorithm [7] takes a dispatchable ESTNU E = (T , Eo, Elc, Euc, Ew) as its
only input and generates as its output an equivalent dispatchable ESTNU having a minimal
number of edges. It has four steps: (1) compute the set of so-called stand-in edges (i.e.,
ordinary edges that are entailed by various combinations of ESTNU edges) and insert them
into the graph; (2) apply an STN-dispatchability algorithm to the resulting set of ordinary
edges, thereby generating a dispatchable STN subgraph; (3) remove any remaining stand-in
edges; and (4) remove any wait edges that are not needed for dispatchability. The O(kn3)
worst-case time complexity of the minDispESTNU algorithm is dominated by Step 1. Therefore,
our new, faster algorithm modifies only that step, achieving an order-of-magnitude reduction
in the overall worst-case time complexity. The following paragraphs summarize Step 1 of the
minDispESTNU algorithm, as implemented by its genStandIns helper algorithm.

Generating Stand-in Edges

Following Morris [11], an ESTNU is dispatchable if all of its STN projections are dispatchable
(as STNs). Equivalently, in each STN projection, each pair of timepoints V and W that are
connected by a path must be connected by a shortest vee-path (SVP) (i.e., a shortest path
comprising zero or more negative edges followed by zero or more non-negative edges) [12]. A
key insight behind the minDispESTNU algorithm is that in different projections, the shortest
vee-paths from V to W may take different routes, employ different labeled edges, and have
different lengths. The longest SVP from V to W across all projections determines an ordinary
constraint, represented by a stand-in edge, that must be satisfied by every valid execution
strategy. The minDispESTNU algorithm generates stand-in edges in two phases: (1) those
entailed by individual labeled edges; and (2) those entailed by VACW diamond structures.

Stand-in edges entailed by individual labeled edges. Each LC, UC or wait edge entails
a (weaker) ordinary edge. For example, consider the labeled edges associated with the
contingent link (A, 1, 10, C) in Figure 1. The LC edge (A, c:1, 10) represents the possibility
that the duration C − A might take on its minimum value 1. Its stand-in edge (A, 10, C)
represents the (modeled) certainty that C − A will be at most 10. Similarly, the UC edge
(C, C:−10, A) represents the possibility that C − A might take on its maximum value 10,
while its stand-in edge (C, −1, A) represents the certainty that C − A will be at least 1.

TIME 2025

11:4 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

V

C A

W

C
:−

6

c:1

C:−10
8

13

(a) ESTNU edges.
V

C A

W

−
1

1

−1

8

13

0

(b) If C − A = 1.
V

C A

W

−
6

10

−10

8
13

4

(c) If C − A = 10.
V

C A

W

C
:−

6

c:1

C:−10

8

13

8

4

(d) Stand-in edges.
V

C A

W

C
:−

v

c:x
C:−y

γ δ

θ
=

m
ax

{δ
−

v
,
γ

}

y
−

v

(e) General case.

Figure 2 (Dashed) stand-in edges entailed by a VACW diamond structure.

Finally, the wait edge (V, C:−6, A) represents the conditional constraint that, as long as C

remains unexecuted, V must wait until 6 after A. Its stand-in edge (V, −1, A) represents
that V must unconditionally wait at least 1 after A, since C cannot execute before then.

More generally, for any contingent link (A, x, y, C), the LC edge (A, c:x, C) entails the
stand-in edge (A, y, C); the UC edge (C, C:−y, A) entails the stand-in edge (C, −x, A); and
any wait edge (V, C:−v, A) entails the stand-in edge (V, −x, A), as seen in Figure 1.

Stand-in edges entailed by VACW diamond structures. The minDispESTNU algorithm
uses its genStandIns helper algorithm to compute stand-in edges arising from diamond
structures. Figure 2a shows a typical VACW diamond, which involves the LC and UC edges
associated with a contingent link (A, 1, 10, C), a wait edge (V, C:−6, A), and some ordinary
edges aimed at a timepoint W . Figure 2b shows that in the projection where C − A = 1, the
shortest path from V to W has length 8, and the shortest path from V to C has length 0.
Figure 2c shows that in the projection where C − A = 10, the shortest path from V to W

has length 7, and the shortest path from V to C has length 4. Figure 2d introduces (dashed)
stand-in edges to reflect that, across all projections, where C − A ∈ [1, 10], the shortest
path from V to W has length at most 8, while the shortest path from V to C has length at
most 4. These stand-in edges represent ordinary constraints that must be satisfied by any
valid dynamic execution strategy. Figure 2e shows the general case where the stand-in edge
from V to W has length θ = max{δ − v, γ}, and the stand-in edge from V to C has length
y − v, the latter being termed an application of the VAC rule [9].

Stand-in edges entailed by nested diamonds. The main focus of genStandIns is on
computing stand-in edges entailed by individual VACW diamond structures. But diamond
structures can also be nested. In particular, in any VACW diamond, the subpath from A

to W may contain a stand-in edge derived from a nested diamond. However, because the
activation timepoints appearing in a nested diamond structure are subject to a strict order (as
shown elsewhere [9]), diamonds can only be nested to a maximum depth of k. For this reason,
the genStandIns algorithm does up to k iterations, each addressing one level of potential
nesting. Each iteration of genStandIns involves two steps: (1) exploring O(kn2) individual
VACW diamonds (k choices for the contingent link, and n choices for both V and W); and
then (2) calling Johnson’s algorithm [2] to update the APSP distance matrix to accommodate
stand-in edges generated by the first step. Figure 3 shows how genStandIns deals with
a sample quadruply nested diamond structure. The innermost diamond, V0 A0 C0 W , is
explored during the first iteration, yielding the blue, dashed stand-in edge (V0, 37, W), shown

L. Hunsberger and R. Posenato 11:5

W

A0C0

V0

40

35

C
0 :−

3

c0:1
C0:−10

A1C1

V1

−2
33

C
1 :−

3

c1:1
C1:−10

A2C2

V2

−225

C
2 :−

3

c2:1
C2:−10

A3C3

V3

U

24

−2

−2

C
3 :−

3

c3:1
C3:−10

(a) Initial.

W

V0

A1C1

V1

−2
33

C
1 :−

3

c1:1
C1:−10

A2C2

V2

−225

C
2 :−

3

c2:1
C2:−10

A3C3

V3

U

24

−2

−2

C
3 :−

3

c3:1
C3:−10

37

35

(b) Iteration 1.

W

V1

A2C2

V2

−225

C
2 :−

3

c2:1
C2:−10

A3C3

V3

U

24

−2

−2
C

3 :−
3

c3:1
C3:−10

33

31

(c) Iteration 2.

W

V2

A3C3

V3

U

24

−2

−2

C
3 :−

3

c3:1
C3:−10

28

26

(d) Iteration 3.

W

V3

U

24

22

−2

(e) Iteration 4.

Figure 3 How genStandIns processes nested diamonds, where stand-in edges derived from
individual VACW structures are shown in blue, and those computed by Johnson’s algorithm in red.

in Figure 3b, where θ0 = max{40 − 3, 35} = 37.1 Johnson’s algorithm then updates the
APSP distance matrix, setting d(A1, W) = 35, indicated by the red, dotted line in Figure 3b.
The next iteration considers V1 A1 C1 W , which uses the new subpath from A1 to W of
length 35 to generate the blue, dashed stand-in edge (V1, 33, W), shown in Figure 3c, where
θ1 = max{35 − 3, 33} = 33. Johnson’s algorithm then updates d(A2, W) to 31, indicated by
the red, dotted line in Figure 3c. The third iteration generates the blue, dashed stand-in edge
(V2, 28, W), since θ2 = max{31−3, 25} = 28; and the red, dotted line from A3 to W indicates
the subsequent update d(A3, W) = 26. Finally, as shown in Figure 3d, the last iteration
generates the blue, dashed stand-in edge (V3, 24, W), since θ3 = max{26 − 3, 24} = 24; while
the red, dotted line from U to W indicates the update d(U, W) = 22.

The complexity of minDispESTNU is driven by the O(kn3)-time complexity of genStandIns,
which derives from its up to k calls of Johnson’s algorithm on up to O(n2) edges.

2.1 Canonical Form of Nested Diamond Structures
The authors presented a novel, rigorous theory of the canonical form of nested diamond
structures [9] that provides a foundation for understanding the dispatchability of ESTNUs
and formally proving the correctness of the minDispESTNU algorithm. It also highlights features
of such structures that suggest new approaches to solving the MinDispESTNU problem.

1 As seen in Figure 1, each labeled edge itself entails a corresponding stand-in edge, not shown in Figure 3.
Those stand-in edges ensure that there are ordinary subpaths from each Ai to W , and from each Ci

to W , which implies that all of the VACW diamonds in Figure 3 would be processed during each
iteration of genStandIns. However, the stand-in edges shown in Figure 3 are the strongest ones.

TIME 2025

11:6 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

U Aj Aj−1 Aj−2 Ah+1 AhVj Vj−1 Vj−2 Vh

Cj Cj−1 Cj−2 Ch+1 Ch W

Figure 4 Canonical form of a nested diamond structure Suw (contingent links in brown, waits in
green, negative edges in red, non-negative edges in blue, and an ordinary vee-path in black).

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W1 W2 W3

C
i
:−

8
C

i
:−

5 C
i :−

2

101 6 52 3

2

−1

3

−3

2

−3

|P1|ωci
= |UV1Ai|ωci

= −3 + max{−8, −ωci
}

|P2|ωci
= |UV2Ai|ωci

= −5 + max{−5, −ωci
}

|P3|ωci
= |UV3Ai|ωci

= −6 + max{−2, −ωci
}

min{|P1|ωci
, |P2|ωci

, |P3|ωci
}

0 1 2 3 4 5 6 7 8 9 10 11
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

ωci

Figure 5 Three negOrdWait paths from U to Ai (in purple, green and blue) that determine the
values of d∗(U, W1), d∗(U, W2) and d∗(U, W3), indicated by red dotted arrows. Stand-in edges are
dashed. Other stand-in edges (e.g., from V1 to W2) are not shown.

Central to any such algorithm is computing, for each pair of timepoints U and W , the
strongest ordinary constraint entailed by ESTNU paths from U to W , notated as d∗(U, W).
For the ESTNU in Figure 3, d∗(U, W) = 22 (cf. the red dotted line in Figure 3e). The
theory confirms that each value d∗(U, W) that derives from nested diamonds must have an
associated structure, notated as Suw, whose form is illustrated in Figure 4. In particular,
Suw comprises a sequence of contingent links, shown in brown, connected by different kinds
of paths. From each contingent timepoint Ci, there is a path of non-negative ordinary edges
from Ci to W , shown in blue. Between consecutive pairs of activation timepoints Af and Ag

there is a negOrdWait path (i.e., a path comprising zero or more negative ordinary edges,
shown in red, followed by a single wait edge, shown in green). There is also a negOrdWait
path from U to the leftmost activation timepoint Aj . Finally, the path from the rightmost
activation timepoint Ah to W is an ordinary path, shown in black, that is a shortest vee-path
(SVP). The path from U to W that passes through all of the activation timepoints is called
the spine of the structure. For this paper, the following properties are particularly important:

In the situation/projection where each contingent duration along the spine satisfies
Ci − Ai = δi − γi = d∗(Ai, W) − d(Ci, W), the length of the spine is d∗(U, W).
The negOrdWait paths between consecutive pairs of activation timepoints, across all
canonical structures, puts the entire set of activation timepoints into a strict partial order.

2.2 Error in the fastMinDispESTNU Algorithm
Recent work [8] presented an algorithm, called fastMinDispESTNU, that aimed to take ad-
vantage of certain features of nested diamonds. In particular, it exploited the fact that
activation timepoints participating in nested diamonds fall into a strict partial order. That
enabled processing them in a single iteration, instead of the k iterations in the minDispESTNU

algorithm. Unfortunately, that work made an incorrect assumption. Although it is true that
for any given canonical structure it suffices to include only one wait edge terminating at each
activation timepoint along the spine, it is not the case that all of the canonical structures

L. Hunsberger and R. Posenato 11:7

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W1

101

C
i
:−

8
C

i
:−

5 C
i :−

2

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W1

ωci = 9

101

−
8

−
5 −

2−1

2 5 8

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W2

62

C
i
:−

8
C

i
:−

5 C
i :−

2

Ai

V1 V2 V3

Ci

U

Ci:−10

ci:1

−3 −
5 −6

W2

ωci = 4

62

−
4

−
4 −

2

−3

2

2 4

Figure 6 Computing d∗(U, W1) (left) and d∗(U, W2) (right) by back-propagation in the OW-
graph.

that include some activation timepoint Ai necessarily employ the same wait edge terminating
at Ai. Instead, as illustrated in Figure 5, different wait edges terminating at Ai may be
needed in different canonical structures. In the figure, there are three overlapping canonical
structures that each use the contingent link (Ai, 1, 10, Ci): one from U to W1 (in purple),
one from U to W2 (in green), and one from U to W3 (in blue). For d∗(U, W1), the projection
where Ci − Ai = d∗(Ai, Wi) − d(Ci, W1) = 10 − 1 = 9 is determinative; and in that projection
the shortest path from U to W1 is through V1 with length d∗(U, W1) = −1, indicated by the
red dotted arrow. The dashed, purple stand-in edge (V1, 2, W1) has length 2, since the wait
edge (V1, Ci:−8, Ai) has length −8 in that projection. For d∗(U, W2), the projection where
Ci − Ai = 6 − 2 = 4 is determinative; and in that projection, the shortest path from U to W2
is through V2 with length d∗(U, W2) = −3. The green, dashed stand-in edge (V2, 2, W2) has
length 2, since the wait edge (V2, Ci:−5, Ai) has length -4 in that projection. For d∗(U, W3),
the projection where Ci − Ai = 5 − 3 = 2 is determinative; and in that projection, the
shortest path from U to W3 is through V3 with length d∗(U, W3) = −3. The blue, dashed
stand-in edge (V3, 3, W3) has length 3, since the wait edge (V3, Ci:−2, Ai) has length −2 in
that projection. The righthand side of Figure 5 plots the lengths of the three paths from U

to Ai as functions of the contingent duration ωci
= Ci − Ai. It confirms that for different

values of ωci , different paths are shortest between U and Ai. As a result, each d∗(U, Wf)
value is based on a different path from U to Ai.

In general, for each terminus Wf , the value d∗(U, Wf) is determined by the projection
where Ci − Ai = d∗(Ai, Wf) − d(Ci, Wf). Since these durations/projections may be different
for different Wf , the wait edges terminating at Ai may provide different shortest vee-paths
in different projections. Although this example shows that the fastMinDispESTNU algorithm
does not necessarily solve the MinDispESTNU problem, it also suggests an alternative way
to approach the computation of d∗(U, Wf) values that results in a more efficient (and correct)
algorithm for solving the MinDispESTNU problem, which is the subject of the next section.

3 A New Approach to Generating Stand-in Edges

Figure 6 illustrates our new approach to efficiently generating stand-in edges derived from
nested diamond structures. It uses the following feature of the canonical form of nested dia-
monds: in the situation where the duration of each participating contingent link (Ai, xi, yi, Ci)
is given by Ci − Ai = δi − γi = d∗(Ai, W) − d(Ci, W), the length of the path from U to W

along the spine of the canonical structure equals d∗(U, W). Crucially, these durations are
fixed for a given W . Therefore, the problem of activation timepoints, Aj and Ai, that are
consecutive in multiple overlapping canonical structures employing different wait edges in

TIME 2025

11:8 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

different structures, can effectively be sidestepped by computing all of the d∗(U, W) values
for a fixed W . To do so, our new algorithm backtracks from W along shortest paths in the
OW-graph (i.e., the graph comprising the ordinary and wait edges from the ESTNU) where
wait edges, as they are encountered, are projected using the above-mentioned durations.

On the left of the figure, backtracking from W1 encounters the activation timepoint
Ai, where d∗(Ai, W1) = 10 and d(Ci, W1) = 1, where the determinative duration is ωci =
10 − 1 = 9. In this situation, the wait edges terminating at Ai project onto the red edges
shown in the middle-left of the figure. In this projection, the path UV1AiW1 is shortest, with
a length of −3−8+10 = −1, indicated by the red, dotted arrow. The corresponding stand-in
edge from V1 to W1 is shown as dashed and purple. The dashed stand-in edges emanating
from V2 (green) and V3 (blue) are also generated, but do not contribute to d∗(U, W1).

On the righthand side of the figure, backtracking from W2 encounters Ai and yields the
duration ωci

= 6 − 2 = 4. In this situation, the wait edges project to the red edges shown on
the far right. Although each wait edge generates a stand-in edge, the one from V2 to W2
provides the shortest path (dotted, red) from U to W2, which determines d∗(U, W2) = −3.

Pseudocode for our new algorithm for generating stand-in edges entailed by nested
diamond structures is given as Algorithm 1. (Appendix A provides pseudocode for all
minDispESTNU procedures updated to use Algorithm 1.) Algorithm 1 works as follows.

Initialization (Lines 1–3). The getInitStandins algorithm (a helper for minDispESTNU)
is called to generate stand-in edges entailed by individual labeled edges (cf. Figure 1) or
from applications of the VAC rule (cf. Figure 2e). Next, the Bellman-Ford algorithm [2]
is called to compute a solution to the STN, Gow, that comprises the ordinary and wait
edges from G, ignoring any alphabetic labels. That solution, f , is then used as a potential
function to re-weight the edges in Gow to have non-negative values, thereby enabling the
use of Dijkstra’s algorithm [2] to guide the subsequent back-tracking from each W . Finally,
Johnson’s algorithm [2] is used to compute the initial distance matrix for ordinary paths.

Main foreach Loop (Lines 4–30). Each iteration of the main foreach loop processes a
single timepoint W . It uses a modified version of Dijkstra’s algorithm to back-propagate
from W through the edges in the Gow graph, aiming to update the distance function d so
that by the end of the iteration, for each timepoint T , d(T, W) = d∗(T, W), and all needed
stand-in edges terminating at W have been generated.
Iteration initialization (Lines 5–8). First, a minimum priority queue, Q, is initialized. For

each timepoint T in the queue, its priority is the current estimate of d∗(T, W), re-weighted
by the potential function f . In particular, the priority of T is given by: f(T)+δtw −f(W).
Initially, the queue contains only W , with a priority of 0. The n-vector, priority enables
anytime access to the priorities of timepoints in the queue.
Next, a set needStandIn2W is initialized. It is used to keep track of timepoints T for
which a stand-in edge from T to W will need to be generated. If the current estimate of
d∗(T, W) derives from a path (1) that forms the spine of a canonical diamond structure;
and (2) whose first edge is a wait edge, then T is added to needStandIn2W , at Line 26.
However, should subsequent propagation discover a shortest path from T to W for which
no stand-in edge is needed, then T is removed from needStandIn2W , at Line 16. Since
the status of a given timepoint T may change during the algorithm, stand-in edges are
not actually accumulated until the end of the iteration, at Lines 28–30.

Iteration Body (Lines 9–30). The body of each iteration is a while loop that carries out
the back-propagation from W . At Line 10, a timepoint T is extracted from the queue,
along with its priority δ∗

tw. At Line 11, the value of d∗(T, W) is extracted from δ∗
tw by

L. Hunsberger and R. Posenato 11:9

Algorithm 1 betterGenStandIns: Better Algorithm for Generating Stand-in Edges Entailed
by Nested Diamonds.

Input: G = (T , Eo ∪ Elc ∪ Euc ∪ Ew), a dispatchable ESTNU graph
Output: (Esi , d), where Esi is a set of stand-in edges; and d is the updated distance matrix

1 Esi ··= getInitStandins(G) //Stand-in edges entailed by individual labeled edges and VAC rule
2 f ··= bellmanFord(Gow) //Potential function for OW-graph, Gow = (T , Eo ∪ Esi ∪ Ew)
3 d ··= johnson((T , Eo ∪ Esi)) //Compute the APSP distance matrix for (T , Eo ∪ Esi)
4 foreach W ∈ T do

//Init min priority queue, where priority(T) = current estimate of d∗(T, W) re-weighted by f

5 Q ··= new min priority queue
6 priority ··= (∞, . . . , ∞) //For tracking priority of timepoints in the queue
7 Q.insert(W, 0); priority[W] ··= 0
8 needStandIn2W ··= ∅ // T ∈ needStandIn2W means “need stand-in edge from T to W ”
9 while ¬Q.empty() do

10 (T, δ∗
tw) ··= Q.extractMin() //δ∗

tw = d∗(T, W) reweighted by potential function f

11 δtw ··= −f(T) + δ∗
tw + f(W) //δtw = d∗(T, W) (un-reweighted)

12 d(T, W) ··= δtw //Update distance matrix
13 foreach (R, δrt , T) ∈ (Eo ∪ Esi) do //Back-propagate along ordinary edges
14 δ∗

rw ··= (f(R) + δrt − f(T)) + δ∗
tw //Possible new estimate of d∗(R, W) (re-weighted)

15 if δ∗
rw < priority[R] then //New estimate of d∗(R, W) shorter

16 needStandIn2W ··= needStandIn2W \ {R} //No stand-in edge RW needed
17 Q.insertOrDecreaseKey(R, δ∗

rw); priority[R] ··= δ∗
rw

18 if T = A is an activation timepoint for a contingent link (A, x, y, C) then
19 ωc ··= d(A, W) − d(C, W) //ωc = contingent duration that determines d∗ values
20 if ωc ∈ (x, y] then //Condition for generating a non-redundant stand-in edge
21 foreach (V, C:−v, A) ∈ Ew do //Back-propagate along incoming wait edges
22 vωc

··= max{−ωc, −v} //Length of wait edge in projection ωc

23 v∗
ωc

··= f(V) + vωc − f(A) //Re-weighted length in projection ωc

24 δ∗
vw ··= v∗

ωc
+ priority[A] //δ∗

vw = possible new estimate of d∗(V, W)
25 if δ∗

vw ≤ priority[V] then
26 needStandIn2W ··= needStandIn2W ∪ {V } //Need stand-in edge V W

27 Q.insertOrDecreaseKey(V, δ∗
vw); priority[V] ··= δ∗

vw

28 foreach T ∈ needStandIn2W do
29 δtw ··= −f(T) + priority[T] + f(W) //Actual value of d∗(T, W)
30 Esi ··= Esi ∪ {(T, δtw, W)} //Accumulate stand-in edge

31 return (Esi , d)

undoing the re-weighting using the potential function f . (The next section proves the
invariant that when a timepoint T is popped from the queue, its priority equals d∗(T, W),
re-weighted by the potential function f .) That value is then used to update the distance
function d, at Line 12.
Next, Lines 13–17 back-propagate along each incoming ordinary edge (R, δrt , T). First, at
Line 14, a possible new estimate of d∗(R, W) using a path from R to T to W , re-weighted
using the potential function f , is computed and stored in δ∗

rw. (Note that f(R)+δrt −f(T)
is the re-weighted length of the incoming edge from R to T .) If that estimate is less than
the current priority of R (cf. Line15), then R is removed from needStandIn2W to reflect
that this newly found shortest path from R to W does not begin with a wait edge and,
hence, does not require a stand-in edge (cf. Line 16). At Line 17, R is inserted into the
queue and its priority is updated.

TIME 2025

11:10 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

Lines 18–27 carry out the back-propagation along any incoming wait edges, which can only
happen if W = A is an activation timepoint for a contingent link (A, x, y, C). Line 19
computes the value of the contingent duration ωc = C − A = δ − γ = d∗(A, W) − d(C, W)
that determines whether any stand-in edges terminating at W can use this contingent link
(cf. Figures 2e and 6). Note that the algorithm relies on the fact that d(A, W) = d∗(A, W)
at this point. Line 20 checks whether ωc ∈ (x, y], since otherwise, as shown in Claim 10 of
Hunsberger and Posenato [9], it is not necessary to back-propagate along any wait edge
coming in to A (i.e., ordinary edges suffice). Line 22 computes the projection of the wait
edge in the situation where C − A = ωc. Line 23 re-weights the projected length using
the potential function. Line 24 computes the length of the path from V to T to W in the
re-weighted graph. If that length less than or equal to the current key of V in the queue
(Line 25), then V is added to needStandIn2W (at Line 26) to reflect that a stand-in edge
should be generated; and the key for V is updated in the priority queue (at Line 27).

Finally, at the end of the iteration, stand-in edges for all of the flagged timepoints are
generated at Lines 28–30.

Correctness of the betterMinDispESTNU Algorithm

The correctness of betterMinDispESTNU relies on the following properties of the canonical
form of nested diamond structures that we have rigorously presented elsewhere [9]. (The
claims mentioned below are from that work.) First, for each pair of timepoints U and W , there
is a canonical form Suw that determines the value d∗(U, W). Furthermore, d∗(U, W) equals the
length of the spine of that structure in the situation where each Ci−Ai = d∗(Ai, W)−d(Ci, W).
(See the proof of Claim 8.) Second, using the same techniques as in the proof of Claim 7,
we get that for a fixed W , there is a single situation ω that is simultaneously maximal
for all d∗(U, W) values (i.e., in the projection determined by ω, the length of the spine of
each structure Suw equals d∗(U, W)). For each contingent link (A, x, y, C) appearing in any
canonical structure Suw from any U to the fixed timepoint W , ω specifies the duration,
ωc = C − A = d∗(A, W) − d(C, W). Therefore, the betterGenStandIns algorithm, as it
backtracks from W , can be understood as incrementally computing the durations, ωc = C −A,
for each activation timepoint A that it encounters, based on the accumulated values, d∗(A, W)
and d(C, W). It then computes the length of each incoming wait edge (V, C:−v, A) in that
projection (i.e., max{−v, −ωc}), which is its length in the spine of any structure that uses it.

Worst-Case Time Complexity of the betterMinDispESTNU Algorithm

First, let m = |Eo|, k = |Elc| = |Euc| and r = |Ew| ≤ nk be the numbers of ordinary, lower-case,
upper-case, and wait edges, respectively, in the input ESTNU. Generating stand-in edges for
individual labeled edges along with those derived from the VAC rule add 2k+2r more ordinary
edges. Afterward, betterMinDispESTNU is applied to the OW-graph which has m + 2k + 3r

edges. For each timepoint W , betterMinDispESTNU uses a Dijkstra-like back-propagation
that runs in O((m + 2k + 3r + nk) + n log n) time. (At most nk additional stand-in edges
can be added during the course of the algorithm.) Therefore, its n iterations can be done
in O((m + 2k + 3r + nk)n + n2 log n) time, which reduces to O(mn + n2k + n2 log n). For
dense graphs, where m = O(n2), this reduces to O(n3), but for sparse graphs, for example,
where m = O(n log n) and k = O(log n), it reduces to O(n2 log n).

L. Hunsberger and R. Posenato 11:11

4 Empirical Evaluations

We implemented the betterMinDispESTNU algorithm containing the procedure Algorithm 1
in Java – publicly available as part of the CSTNU Tool framework [18] – and evaluated
its performance using the STNU benchmark published by Posenato [17]. This benchmark
was created using the STNU random generator of the CSTNU Tool framework. The public
benchmark comprises 1000 instances, all having the same topology, the worker-lanes topology,
which simulates the worker lanes of business process modeling [16]. In this topology, the set
of contingent links is divided into five lanes, with each lane representing a sequence of tasks
that must be executed by an agent. The contingent links within each lane are interspersed
with ordinary constraints that specify delays between the end of one task and the start of the
next. Additionally, there are extra constraints between nodes in different lanes to represent
temporal-coordination constraints among tasks executed by different agents.

For each possible number of nodes n ∈ {500, 1000, 1500, 2000, 2500}, the benchmark
contains 200 DC instances and 200 non-DC instances, each having k = n/10 contingent links
and, on average, 6.56n − 2.56k − 10 edges (i.e., O(n) edges). We considered the first 30
instances for each value of n in the benchmark.

All of the experiments were executed on an OpenJDK JVM 21 configured with 16 GB of
heap memory (parameters -Xmx16G and -Xms16G), on a Linux computer equipped with two
AMD Opteron™ 4334 processors running at 3.1 GHz (6200 BogoMIPS) and 64 GB RAM.

Each DC STNU G was first pre-processed by the FDSTNU dispatchability algorithm to
generate an equivalent dispatchable ESTNU, Gfd. Then, the dispatchable ESTNU, Gfd, was
fed as input to minDispESTNU and betterMinDispESTNU to generate equivalent dispatchable
ESTNUs having minimal numbers of edges (called µESTNUs) to: (1) confirm that the output
µESTNUs were identical; and (2) compare the average execution times.

Surprisingly, during the execution of minDispESTNU, we observed that no instances from
the considered benchmarks contain any nested diamond structures. Consequently, there were
no opportunities for the betterMinDispESTNU algorithm to outperform minDispESTNU.

Figure 7a shows the average numbers of edges in the input STNUs (black), the dispatchable
ESTNUs generated FDSTNU (teal), and the minimal dispatchable ESTNUs produced by
minDispESTNU (dotted red) and betterMinDispESTNU (dashed blue). (The dotted red and
dashed blue lines in the figure are completely overlapping and, hence, difficult to distinguish.)
The error bars denote 95% confidence intervals, which are scarcely visible due to the
minimal standard deviations. The findings reveal that the average numbers of edges in the
minimized networks are approximately one order of magnitude smaller than in the ESTNUs
generated by FDSTNU. Since the numbers of edges in dispatchable networks directly impact the
performance of real-time execution algorithms, these results demonstrate that minDispESTNU

and betterMinDispESTNU generate dispatchable networks that can be more efficiently executed.
We also confirmed that they output the same minimal networks.

Figure 7b plots the computational cost associated with generating µESTNUs. The lower
teal line shows the average execution times for FDSTNU to generate equivalent dispatchable
networks that are typically not µESTNUs. The upper two (red and blue) lines show the
average execution times for generating equivalent dispatchable networks having minimal
numbers of edges, obtained by applying minDispESTNU or betterMinDispESTNU to Gfd. As
expected, if there are no nested diamond structures, then both algorithms will have essentially
equivalent performance since they both end up doing two calls to Johnson’s algorithm (or a
Johnson-like algorithm).

TIME 2025

11:12 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

500 1,000 1,500 2,000103

104

105

Number of nodes, n

N
um

be
r

of
ed

ge
s,

m

FDSTNU
minDispESTNU

betterMinDispESTNU

Input STNU

(a) Number of edges in the ESTNUs generated by
FDSTNU, minDispESTNU and betterMinDispESTNU .

500 1,000 1,500 2,000
0.6s

8s
15s

50s
90s
3m

10m

30m

Number of nodes, n

Av
er

ag
e

ex
ec

ut
io

n
tim

e

minDispESTNU(FDSTNU)
betterMinDispESTNU(FDSTNU)
FDSTNU (not minimal disp.)

(b) minDispESTNU and betterMinDispESTNU perfor-
mance versus network size.

500 1,000 1,500 2,000

0.6s

10s

30s

90s

5m

10m
15m

30m

Number of nodes, n

Av
er

ag
e

ex
ec

ut
io

n
tim

e

minDispESTNU(FDSTNU)
betterMinDispESTNU(FDSTNU)
FDSTNU (not minimal disp.)

(c) minDispESTNU and betterMinDispESTNU perfor-
mance versus network size for instances containing
a depth-4 nested diamond structure (cf. Figure 3a).

500 1,000 1,500 2,000
0.6s

10s

30s

90s

5m
10m
15m
30m

Number of nodes, n

Av
er

ag
e

ex
ec

ut
io

n
tim

e

minDispESTNU(FDSTNU)
betterMinDispESTNU(FDSTNU)
FDSTNU (not minimal disp.)

(d) minDispESTNU and betterMinDispESTNU perfor-
mance versus network size for instances containing
a depth-6 nested diamond structure.

Figure 7 Results of the empirical evaluation of the betterMinDispESTNU algorithm.

To assess the impact of nested diamond structures on the performance of the two
algorithms, we created two new benchmarks, one comprising random STNU instances that
each contain one copy of the depth-4 nested diamond structure depicted in Figure 3a, the
other similar to the first, but where the diamond structure has depth 6.

The presence of the depth-4 nested diamond structure in each instance requires the
genStandIns helper algorithm used by minDispESTNU to perform up to five iterations, each
taking O(mn + n2 log n) time, to generate the appropriate stand-in edges. In contrast,
betterMinDispESTNU replaces genStandIns with Algorithm 1 (betterGenStandIns) whose
worst-case time complexity is only O(mn+n2k+n2 log n), regardless of how deeply nested the
diamond structure may be. We therefore expected to see an especially pronounced difference
in average execution times for instances having the depth-6 nested diamond structure.

The results are presented in Figures 7c and 7d. The execution time of betterMinDispESTNU

(FDSTNU) (in blue) is significantly less than that of minDispESTNU (FDSTNU) (in red) across all
instances. In addition, for instances having 2000 nodes, the execution time of minDispESTNU

(FDSTNU) exceeded the 30-minute timeout. Such results confirm that the betterMinDispESTNU

algorithm is significantly more efficient than the minDispESTNU algorithm when the input
instances contain nested diamond structures, even when the number of nested diamonds is
small. Regarding the depth-6 nested diamond structure, we discovered that, on average, the

L. Hunsberger and R. Posenato 11:13

presence of random constraints among nodes in different lanes and those in the diamond
structure sometimes entailed stronger constraints than the stand-in edges associated with
the diamond structure and, therefore, the genStandIns helper for minDispESTNU performs
on average five internal iterations, the same as for instances having the quadruply-nested
diamond structure.

5 Conclusions

Generating an equivalent dispatchable ESTNU having a minimal number of edges is an
important problem for applications involving actions with uncertain, but bounded durations.
The number of edges in the dispatchable network is important because it directly impacts the
real-time computations required during execution. Therefore, for time-sensitive applications
it is important to generate an equivalent dispatchable ESTNU having a minimal number
of edges, which we call a µESTNU. This paper modified the only existing algorithm for
generating µESTNUs, making it an order-of-magnitude faster. It also showed that a second
previously presented algorithm does not in fact solve the MinDispESTNU problem. The new
algorithm, betterMinDispESTNU, reduced the worst-case time-complexity from O(kn3) to
O(mn + n2k + n2 log n) which, for sparse networks, reduces to O(n2 log n).

References

1 Massimo Cairo, Luke Hunsberger, and Romeo Rizzi. Faster Dynamic Controllablity Checking
for Simple Temporal Networks with Uncertainty. In 25th International Symposium on Temporal
Representation and Reasoning (TIME-2018), volume 120 of LIPIcs, pages 8:1–8:16, 2018.
doi:10.4230/LIPIcs.TIME.2018.8.

2 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, 4th Edition. MIT Press, 2022. URL: https://mitpress.mit.edu/9780262046305/
introduction-to-algorithms.

3 Rina Dechter, Itay Meiri, and J. Pearl. Temporal Constraint Networks. Artificial Intelligence,
49(1-3):61–95, 1991. doi:10.1016/0004-3702(91)90006-6.

4 Luke Hunsberger. Fixing the semantics for dynamic controllability and providing a more
practical characterization of dynamic execution strategies. In 16th International Symposium
on Temporal Representation and Reasoning (TIME-2009), pages 155–162, 2009. doi:10.1109/
TIME.2009.25.

5 Luke Hunsberger and Roberto Posenato. Speeding up the RUL− Dynamic-Controllability-
Checking Algorithm for Simple Temporal Networks with Uncertainty. In 36th AAAI Conference
on Artificial Intelligence (AAAI-22), volume 36-9, pages 9776–9785. AAAI Pres, 2022. doi:
10.1609/aaai.v36i9.21213.

6 Luke Hunsberger and Roberto Posenato. A Faster Algorithm for Converting Simple Tem-
poral Networks with Uncertainty into Dispatchable Form. Information and Computation,
293(105063):1–21, 2023. doi:10.1016/j.ic.2023.105063.

7 Luke Hunsberger and Roberto Posenato. Converting Simple Temporal Networks with Un-
certainty into Minimal Equivalent Dispatchable Form. In Proceedings of the Thirty-Fourth
International Conference on Automated Planning and Scheduling (ICAPS 2024), volume 34,
pages 290–300, 2024. doi:10.1609/icaps.v34i1.31487.

8 Luke Hunsberger and Roberto Posenato. Faster Algorithm for Converting an STNU into
Minimal Dispatchable Form. In 31st International Symposium on Temporal Representation
and Reasoning (TIME 2024), volume 318 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 11:1–11:14, 2024. doi:10.4230/LIPIcs.TIME.2024.11.

TIME 2025

https://doi.org/10.4230/LIPIcs.TIME.2018.8
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms
https://mitpress.mit.edu/9780262046305/introduction-to-algorithms
https://doi.org/10.1016/0004-3702(91)90006-6
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.1109/TIME.2009.25
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1609/aaai.v36i9.21213
https://doi.org/10.1016/j.ic.2023.105063
https://doi.org/10.1609/icaps.v34i1.31487
https://doi.org/10.4230/LIPIcs.TIME.2024.11

11:14 A Better Algorithm for Converting an STNU into Minimal Dispatchable Form

9 Luke Hunsberger and Roberto Posenato. Canonical Form of Nested Diamond Structures.
Technical Report 111/2025, Dipartimento di Informatica - Università degli Studi di Verona,
May 2025. URL: https://iris.univr.it/handle/11562/1163111.

10 Paul Morris. A Structural Characterization of Temporal Dynamic Controllability. In Principles
and Practice of Constraint Programming (CP-2006), volume 4204, pages 375–389, 2006.
doi:10.1007/11889205_28.

11 Paul Morris. Dynamic controllability and dispatchability relationships. In Int. Conf.
on the Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search (CPAIOR-2014), volume 8451 of LNCS, pages 464–479. Springer, 2014. doi:
10.1007/978-3-319-07046-9_33.

12 Paul Morris. The Mathematics of Dispatchability Revisited. In 26th International Conference
on Automated Planning and Scheduling (ICAPS-2016), pages 244–252, 2016. doi:10.1609/
icaps.v26i1.13739.

13 Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with temporal
uncertainty. In 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-2001), volume 1, pages
494–499, 2001. URL: https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf.

14 Paul H. Morris and Nicola Muscettola. Temporal dynamic controllability revisited. In 20th
National Conference on Artificial Intelligence (AAAI-2005), pages 1193–1198, 2005. URL:
https://www.aaai.org/Papers/AAAI/2005/AAAI05-189.pdf.

15 Nicola Muscettola, Paul H. Morris, and Ioannis Tsamardinos. Reformulating temporal plans
for efficient execution. In Proceedings of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning, KR’98, pages 444–452, 1998.

16 Object Management Group (OMG). Business process definition metamodel (bpdm), Beta 1.
http://www.omg.org, 2007.

17 Roberto Posenato. STNU Benchmark version 2020, 2020. URL: https://profs.scienze.
univr.it/~posenato/software/cstnu/benchmarkWrapper.

18 Roberto Posenato. CSTNU Tool: A Java library for checking temporal networks. SoftwareX,
17:100905, 2022. doi:10.1016/j.softx.2021.100905.

19 Ioannis Tsamardinos, Nicola Muscettola, and Paul Morris. Fast Transformation of Temporal
Plans for Efficient Execution. In 15th National Conf. on Artificial Intelligence (AAAI-1998),
pages 254–261, 1998. URL: https://cdn.aaai.org/AAAI/1998/AAAI98-035.pdf.

A Pseudocode

Algorithm 2 betterMinDispESTNU: Solving the MinDispESTNU problem.

Input: G = (T , Eo ∪ Elc ∪ Euc ∪ Eucg), dispatchable ESTNU
Output: A µESTNU for G
//Compute the set of (ordinary) stand-in edges

1 (Esi
o , d) ··= betterGenStandIns(T , Eo ∪ Elc ∪ Euc ∪ Eucg)

//STN dispatchability on ordinary edges, reorienting labeled edges
2 (T , E∗

o , Êl, Êu, Êucg) ··= dispSTN(T , Eo ∪ Esi
o , Elc, Euc, Eucg)

3 Ê∗
o ··= E∗

o \Esi
o //Remove any remaining stand-in edges from E∗

o

4 Êucg ··= Êucg\ markWaits(Tc, Êucg, d) //Remove dominated waits
5 return G = (T , Ê∗

o ∪ Êl ∪ Êu ∪ Êucg)

https://iris.univr.it/handle/11562/1163111
https://doi.org/10.1007/11889205_28
https://doi.org/10.1007/978-3-319-07046-9_33
https://doi.org/10.1007/978-3-319-07046-9_33
https://doi.org/10.1609/icaps.v26i1.13739
https://doi.org/10.1609/icaps.v26i1.13739
https://www.ijcai.org/Proceedings/01/IJCAI-2001-e.pdf
https://www.aaai.org/Papers/AAAI/2005/AAAI05-189.pdf
https://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper
https://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper
https://doi.org/10.1016/j.softx.2021.100905
https://cdn.aaai.org/AAAI/1998/AAAI98-035.pdf

L. Hunsberger and R. Posenato 11:15

Algorithm 3 getInitStandins: Generate stand-in edges entailed by individual labeled edges.

Input: G = (Tx ∪ Tc, Eo ∪ Elc ∪ Euc ∪ Eucg), a dispatchable ESTNU
Output: The set Esi

o of ordinary stand-in edges for the individual labeled edges in G
Side Effect : Modifies G by fixing any weak or misleading wait edges

1 Esi
o ··= ∅

2 foreach (A, x, y, C) ∈ L do //Collect stand-in edges for LC, UC and wait edges
3 Esi

o ··= Esi
o ∪ {(A, y, C), (C, −x, A)} //Collect stand-in edges for LC and UC edges

4 foreach (V, C:−v, A) ∈ Eucg do
5 if −v ≥ −x then //Replace weak wait edge by an ordinary edge
6 Eucg ··= Eucg\{(V, C:−v, A)}; Eo ··= Eo ∪ {(V, −v, A)}
7 else
8 if −v < −y then //Fix misleading wait by adjusting its wait time
9 Eucg ··= Eucg \ {(V, C:−v, A)} ∪ {V, C:−y, A)}

//Add stand-in edges for wait edge and from the VAC rule
10 Esi

o ··= Esi
o ∪ {(V, −x, A), (V, max{y − v, 0}, C)}

11 return Esi
o

Algorithm 4 markWaits: Mark wait edges for removal.

Input: Tc, contingent TPs; Êucg, wait edges; d, distance fn.
Output: A set Em

w ⊆ Êucg of wait edges marked for removal
1 Em

w ··= ∅
2 foreach (V, C:−v, A) ∈ Êucg do //Collect waits dominated by ordinary paths, UC edges, or

other waits
3 if d(V, A) ≤ −v or d(V, C) < 0 then
4 Em

w ··= Em
w ∪ {(V, C:−v, A)} //Dominated by an ordinary path or the UC edge

5 else
6 foreach U ∈ T | ∃(U, C:−u, A) ∈ Êucg do
7 if d(V, U) < 0 and d(V, U) − u ≤ −v then
8 Em

w ··= Em
w ∪ {(V, C:−v, A)} //Dominated by another wait

9 return Em
w

TIME 2025

On the Complexity of the Realisability Problem for
Visit Events in Trajectory Sample Databases
Arthur Jansen1 #

Hasselt University, Databases and Theoretical Computer Science Group and
Data Science Institute (DSI), Agoralaan, Building D, 3590 Diepenbeek, Belgium

Bart Kuijpers #

Hasselt University, Databases and Theoretical Computer Science Group and
Data Science Institute (DSI), Agoralaan, Building D, 3590 Diepenbeek, Belgium

Abstract
Trajectory sample databases store finite sequences of measured space-time locations of moving
objects, along with a speed bound for each object. These databases can be seen as uncertain
databases. We propose a language that allows the formulation of queries about the uncertainty
in trajectory sample databases. As part of that language, we introduce the notion of visit events,
which are used to describe certain constraints on the movement of an object. In our language, an
atomic query asks whether a moving object can, given its limitations, realise such an event. We give
complexity results for this realisability problem, in various settings.

2012 ACM Subject Classification Information systems → Spatial-temporal systems; Information
systems → Query languages

Keywords and phrases Trajectory sample databases, uncertain databases, query languages, com-
plexity

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.12

Funding Arthur Jansen: Bijzonder Onderzoeksfonds (BOF22OWB06) from UHasselt

1 Introduction

Due to the proliferation of location-aware devices (such as GPS receivers) in the past two
decades, one of the use-cases of moving object databases [8] is the storage of time-stamped
measured locations of moving objects [7]. Such a sequence of spatio-temporal measurements of
a single moving object is called a trajectory sample. Given this type of partial information on
a moving object, we do not know the precise space-time path (or trajectory) which the object
has followed, but we do know that the trajectory must have passed these measured spatio-
temporal locations. However, without making further assumptions, there are no theoretical
limits to the movement of the object in between two measurements. An assumption that
originates from the area of time geography, where the moving object’s accessibility to an
environment is studied, is that we know a bound on the speed of the moving object [5, 9, 13].
Therefore, it is common to associate a maximal speed to each moving object, alongside a
trajectory sample. With this additional knowledge, the actual trajectory of a moving object
is guaranteed to be contained in a spatio-temporal region known as a “lifeline necklace” in
spatio-temporal and moving object databases [6, 10, 18], or simply as a “chain of space-
time prisms” in the fields of time geography [9] and Geographical Information Systems
(GIS) [15, 12, 14].

1 Corresponding author

© Arthur Jansen and Bart Kuijpers;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arthur.jansen@uhasselt.be
https://orcid.org/0000-0002-4970-803X
mailto:bart.kuijpers@uhasselt.be
https://orcid.org/0000-0001-5774-0948
https://doi.org/10.4230/LIPIcs.TIME.2025.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

12:2 On the Complexity of the Realisability Problem for Visit Events

We refer to a moving object database with the specific purpose of storing trajectory
samples and speed bounds as a trajectory sample database. A trajectory sample database can
be seen as an uncertain (or incomplete) database [1, 11]. In general, an uncertain database
represents a set of “possible worlds”, where each possible world is a concrete instantiation
of the data. In our setting, a possible world corresponds to an assignment of a trajectory
to every object, satisfying the known limitations of that object. In this paper, we propose
a query language for trajectory sample databases that is based on events that are possibly
semantically interesting for some application and that may occur during a trajectory of
a moving object. We introduce visit events as part of our language, which are used to
describe constraints on trajectories. The most basic visit event expresses that a trajectory
visits a particular region during a particular period of time. To allow for composition, the
class of visit events is closed under Boolean combinations (using negation, conjunction and
disjunction). For example, we could express the complex event that states that an object has
visited a museum in the morning, some restaurant at lunch and has not been in a particular
church in the afternoon. For a dataset of tourists visiting some city, this event may have
occurred during the movement of some of the tourists. This example shows that our proposed
query language is related to the field of semantic trajectories and places of interest (POIs)
in such trajectories and could be used to match trajectories with event patterns [4, 17, 21].
The queries appearing in [20], where a cylinder model of uncertainty is used, are similar to
what our languages can express.

The atomic query in our language asks whether a given visit event is realisable by the
trajectory of some moving object, that is, whether there exists a trajectory that satisfies
the constraints described by that event. We call the evaluation of this atomic query the
realisability problem. To allow for composition on the query level, the query expressions are
also closed under Boolean combinations. An important detail is that our query language is
defined relative to two parameters: R, denoting the class of spatial regions that can occur in
visit events, and T , denoting the periods of time that can occur in visit events. We study the
complexity of the realisability problem for different choices of R and T . For R, we consider
the class of singleton points (Point) and of semi-algebraic sets (SemiAlg). For T , on the other
hand, we consider the class of singleton moments (Moment) and intervals of time (Interval).
Because the realisability problem already becomes NP-hard for very restrictive classes of
events, and because we believe it is of interest to measure the influence that the size of
the database has on the complexity of query evaluation, we distinguish between combined
complexity, data complexity and query complexity [1]. A summary of our complexity results
is displayed in Table 1.

Table 1 A summary of the complexity results: data, query, and combined complexity.

Class of events Data Query Combined
(Point, Moment)-event in DNF linear polynomial polynomial
Positive (Point, Moment)-events linear NP-hard NP-hard
(SemiAlg, Moment)-events linear NP-hard NP-hard
Conjunctive (Point, Interval)-events polynomial NP-hard NP-hard
Positive (SemiAlg, Interval)-events polynomial NP-hard NP-hard

The paper is organised as follows. In Section 2, we give the definitions that are necessary
to formalize the notion of a trajectory sample database. In Section 3, we define the syntax
and the semantics of our query languages. In Section 4, we study the complexity of the
realisability problem in different settings. Finally, we conclude the paper with Section 5.

A. Jansen and B. Kuijpers 12:3

2 Definitions and preliminaries on trajectory sample databases

In this section, we give definitions of the concepts needed to introduce the notion of a
trajectory sample database.

We consider the space in which objects move to be the plane R2, and we use the letters
p, q, . . . (with or without indices) to denote locations in space. Time is modelled as the real
line R, and we use t (with or without indices) to refer to the temporal points (or moments).
We also use x and y to refer to the real coordinates of spatial locations. A spatio-temporal
point (p, t) is then an element of R2 × R and if p = (x, y), we also write (x, y, t) for the
spatio-temporal point (p, t). Furthermore, we use d to denote the Euclidean distance in R2.

The movement of an object is captured by the notion of “trajectory” and it corresponds
to a function mapping (all possible) moments in time to locations in space, as is expressed
by the following definition.

▶ Definition 1. A trajectory is a continuous function from R to R2.

We use the Greek letter γ (with or without indices) to refer to trajectories. In practice
trajectories are only observed or measured at discrete moments in time and we call these
partial views on trajectories “trajectory samples”.

▶ Definition 2. A trajectory sample (or sample, for short) is a finite sequence of space-time
points ⟨(p1, t1), . . . , (pn, tn)⟩ that is ordered by the temporal component (that is, t1 < · · · < tn).

We use the letter S (with or without indices) to refer to trajectory samples. The following
definition captures the notion of trajectories matching trajectory samples.

▶ Definition 3. We say a trajectory γ visits a space-time point (p, t) when γ(t) = p and we
say that a trajectory γ visits a subset of space-time if γ visits one of its elements.

A trajectory sample ⟨(p1, t1), . . . , (pn, tn)⟩ matches the trajectory γ if γ visits all the
space-time points (pi, ti), for i = 1, . . . , n.

Trajectory sample databases do not only store a trajectory sample for each moving
object, but also a maximal speed for each moving object. Because we assume that every
moving object has such speed bound, these bounds further restrict trajectories (as trajectory
samples do). This is capured in the following definition.

▶ Definition 4. A trajectory γ is called vmax-bounded when for all t, t′ ∈ R we have
d(γ(t), γ(t′)) ≤ vmax · |t− t′|.

We use Γ(S,vmax) to denote the set of all vmax-bounded trajectories matching the sample S.
Obviously, some trajectory samples have no vmax-bounded trajectories that match them.
The consistency of a sample with a speed bound vmax is expressed in the following definition.

▶ Definition 5. A trajectory sample ⟨(p1, t1), . . . , (pn, tn)⟩ is called vmax-consistent when
d(pi, pi+1) ≤ vmax · (ti+1 − ti), for i = 1, . . . , n− 1.

In the remainder of this paper, we assume, when given a trajectory sample S and a speed
bound vmax, that S is vmax-consistent.

▶ Definition 6. The linear interpolation trajectory of a trajectory sample S = ⟨(p1, t1), . . . ,
(pn, tn)⟩, denoted by LIT(S), is defined as the trajectory γ, with

γ(t) =


p1 if t ≤ t1
ti+1−t
ti+1−ti

· pi + t−ti

ti+1−ti
· pi+1 if ti < t ≤ ti+1 (for 1 ≤ i < n)

pn if tn < t.

TIME 2025

12:4 On the Complexity of the Realisability Problem for Visit Events

We note that if S is vmax-consistent, then LIT(S) is a vmax-bounded trajectory.
In trajectory sample databases, we use natural numbers as identifiers for moving objects.

Therefore, such database is defined relative to a finite subset Obj of N, called the object
identifiers.

▶ Definition 7. A trajectory sample database D over object identifiers Obj ⊂ N is a function
mapping each identifier i ∈ Obj to a pair D(i) = (SD(i), vD(i)), where SD(i) is a trajectory
sample and vD(i) is a speed bound.

This means that, given a database D, the set ΓD(i) = Γ(SD(i),vD(i)) contains all trajectories
that the object with identifier i may have followed (given the sample and the speed bound).

3 Syntax, semantics and evaluation of (R, T)-queries

In this section, we describe a family of query languages for trajectory sample databases.
Our languages consists of two “tiers”: in the inner tier, we have the events, which are used
as subexpressions in the outer tier, where we have the query expressions. We define the
language relative to two parameters, R and T , where R is a collection of spatial regions (or
subsets of R2), and T is a collection of temporal periods (or subsets of R).

In the following subsections, we define the syntax of the query languages, their semantics,
and we end with a remark on the evaluation of query expressions.

3.1 The syntax of (R, T)-queries
We start by defining the inner tier of our language, which is a calculus of events. These
events occur as subexpressions in the query expressions defined later on. Events express
visits that may occur during the movement of an object.

▶ Definition 8. We define the (R, T)-events as follows:
1. visits(R, T), with R ∈ R and T ∈ T , is an atomic (R, T)-event;
2. If e, e1 and e2 are (R, T)-events, then so are (¬e), (e1 ∧ e2) and (e1 ∨ e2).

In other words, (R, T)-events can be considered as propositional formulas over the pro-
positional symbols visits(R, T), for every R ∈ R and T ∈ T . Now, we are ready to define
(R, T)-queries. Their expression is given in the following definition.

▶ Definition 9. Let Var be a set of object identifier variables (or variables, for short). The
(R, T)-query expressions are defined as follows:
1. If e is an (R, T)-event, i a natural number and x ∈ Var, then realisable(i, e) and

realisable(x, e) are atomic (R, T)-query expressions;
2. If q, q1 and q2 are (R, T)-query expression, then so are (¬q), (q1 ∧ q2) and (q1 ∨ q2).

3.2 The semantics of (R, T)-queries
To define the semantics of query expressions, we first define what it means for an event to be
realised by a trajectory.

▶ Definition 10. Let e be an (R, T)-event and let γ be a trajectory.
1. If e is the atomic event visits(R, T), then e is realised by γ if γ(t) ∈ R for some t ∈ T

(that is, γ visits R× T).
2. If e is of the form (¬e1), then e is realised by γ when e1 is not realised by γ.
3. If e is of the form (e1 ∧ e2), then e is realised by γ when e1 and e2 are realised by γ.
4. If e is of the form (e1 ∨ e2), then e is realised by γ when e1 or e2 is realised by γ.

A. Jansen and B. Kuijpers 12:5

In our definition of the semantics of (R, T)-queries, we distinguish between Boolean and
non-Boolean queries. The first type of queries contain no variables and they evaluate to true
or false. The second type of queries contain variables and they define a relations over Obj.

▶ Definition 11. Let D be a trajectory sample database over object identifiers Obj. We write
D |= q to express that a variable-free (R, T)-query expression q evaluates to true on D. This
relation is defined as follows:
1. D |= realisable(i, e) if i ∈ Obj and there exists a trajectory in ΓD(i) that realises e.
2. D |= ¬q if D |= q does not hold.
3. D |= q1 ∧ q2 if D |= q1 and D |= q2.
4. D |= q1 ∨ q2 if D |= q1 or D |= q2.

▶ Definition 12. Let D be a trajectory sample database over object identifiers Obj. If q is an
(R, T)-query expression containing variables x1, . . . , xk ∈ Var, then the result of q evaluated
in D is

q(D) =
{

(i1, . . . , ik) ∈ ObjkD | D |= q[i1/x1, . . . , ik/xk]
}
,

where q[i1/x1, . . . , ik/xk] is obtained from q by instantiating the variable xj in q by ij, for
j = 1, ..., k.

3.3 Evaluation of (R, T)-queries
Having defined the semantics of our (R, T)-query languages, there is a “standard” way of
evaluating query expressions with variables: given a query expression with k variables, we
enumerate all k-tuples of object identifiers, consider all the instantiations associated with
them and then evaluate the variable-free expression obtained by substituting the variable
occurrences by the concrete object identifiers from this tuple.

However, it is not immediately clear from the definition of the semantics how an atomic
query of the form realisable(i, e) can be evaluated. In what follows, we restrict our attention
to this decision problem.

▶ Definition 13. We define the (R, T)-realisability problem to be the following decision
problem: given (R, T)-event e, sample S and speed bound v, does there exist a trajectory in
Γ(S,v) that realises e?

From now on, we use the notation (S, v) |= e to express that there exists a trajectory in
Γ(S,v) that realises the event e.

4 The complexity of the (R, T)-realisability problem

In this section, we give a number of complexity results on the above realisability problem.
We recall that the input to this problem is a trajectory sample, a speed bound and an
(R, T)-event. In order for the realisability problem to be a proper computational decision
problem, these inputs must have finite representations. This means, for example, that
we cannot take arbitrary real numbers as input and that we need to assume some finite
encoding of our inputs. Here, we assume that the spatio-temporal points occurring in the
trajectory sample have rational coordinates, and that the speed bound is rational. As for the
(R, T)-event, its representation depends on the choice for R and T and the representation of
their elements. The choices for R that we consider are Point, the collection of all singletons
in Q2; and SemiAlg, the collection of all semi-algebraic sets in the plane. A semi-algebraic set

TIME 2025

12:6 On the Complexity of the Realisability Problem for Visit Events

in the plane is a subset of R2 that can be defined using a Boolean combination of polynomial
(in)equalities over two real variables (where the polynomials have integer coefficients) [3].
Elements of Point are simply represented by the coordinates of the point in question, while
an element of SemiAlg is represented by some encoding of its defining formula. The choices
for T we consider are Moment, containing all singletons in Q, and Interval, containing all
closed intervals of R with rational endpoints.

For notational convenience, the atomic (Point, T)-event visits({p}, T) will be written
as visits(p, T). And similarly, we will write visits(R, t) for the atomic (R,Moment)-event
visits(R, {t}).

As we show below, the realisability problem is already NP-hard for quite restricted classes
of events. Similar to the evaluation of queries in relational databases, the hardness of the
realisability problem is caused by the size of the event, and not by the size of the trajectory
sample. Therefore, we study the complexity of the realisability problem in three different
settings [1], being:

the data complexity, where we measure the complexity in terms of the size of the sample,
and consider the event to be fixed,
the query complexity, where we measure the complexity in terms of the size of event, and
consider the sample to be fixed, and
the combined complexity, where we measure the complexity in terms of both the size of
the sample, and the size of the event.

We also consider several restrictions to the class of input events, such as positive events,
containing no negations, conjunctive events, being conjunctions of atoms (or, not containing
disjunctions and negations), and events in disjunctive normal form (DNF).

In the remainder of this section, we give various results on the complexity of the (R, T)-
realisability problem, for different choices of R and T and in the three different settings.

For the complexity results mentioned below, we use a computational model in which
operations (addition, multiplication, ...) and comparison relations (=, <, ...) on rational
numbers are assumed to take unit time. That is, we measure the time complexity in terms
of the number of spatio-temporal points in a trajectory sample and in terms of number of
atoms (and their length) in an event-expression.

4.1 The query complexity of the (R, T)-realisability problem
Our first result shows that the realisability problem is already NP-hard for a relatively
restricted class of events, namely the positive (Point,Moment)-events.

▶ Theorem 14. In terms of query complexity, the (Point,Moment)-realisability problem for
positive events is NP-hard.

Proof. To prove NP-hardness, we describe a reduction from SAT, the satisfiability problem
of propositional formulas. Because the statement concerns query complexity, we reduce SAT
to the (Point,Moment)-realisability problem with fixed sample and speed bound. In this
case, we choose the sample S = ⟨((0, 0), 0), ((0, 0), 1)⟩ and the speed bound v = 1. The input
of the reduction is a propositional formula ϕ. We can assume that ϕ is in negation normal
form2, because the satisfiability problem remains NP-hard under this restriction. The output
is a positive (Point,Moment)-event eϕ such that the formula ϕ is satisfiable iff there exists a
trajectory γ in Γ(S,v) that realises the event eϕ.

2 A formula is said to be in negation normal form if negation operators are only applied to atoms.

A. Jansen and B. Kuijpers 12:7

Let P1, . . . Pk be the propositional symbols occuring in ϕ. For 1 ≤ i ≤ k, we define
ti = i+1

k+2 , pi = (1
2(k+2) , 0) and p′

i = (− 1
2(k+2) , 0). Now, we take eϕ to be the result

of substituting occurences of ¬Pi by visits(p′
i, ti) and non-negated occurrences of Pi by

visits(pi, ti) in ϕ. Clearly, eϕ is a (Point,Moment)-event, not containing negations.
Finally, we show that ϕ is satisfiable if and only if there exists a γ in Γ(S,v) that realises eϕ.

The “if”-direction is straightforward. If there is some γ that realises eϕ, then ϕ must certainly
be satisfiable. To be precise, the assignment that assigns Pi to true if and only if γ(ti) = pi

satisfies ϕ. For the “only if”-direction, assume that ϕ is satisfiable. Then there exists a truth
assignment α that makes ϕ true. Now, we extend the sample S to a sample S′ such that
it contains (pi, ti) if Pi is assigned true by α, and otherwise contains (p′

i, ti). It is easily
verified that S′ is v-consistent, which means LIT(S′) is a v-bounded trajectory. Now, we
have that LIT(S′) realises visits(pi, ti) if Pi is true under α, and realises visits(p′

i, ti) if ¬Pi is
true under α. It follows from the way we constructed the event, that LIT(S′) realises eϕ. ◀

While the above result shows that the (Point,Moment)-realisability problem is NP-hard
for positive events (not containing negations), the problem for (Point, Interval)-events already
becomes NP-hard for conjunctions of atoms, as shown below.

▶ Theorem 15. In terms of query complexity, the (Point, Interval)-realisability problem for
conjunctive events is NP-hard.

Proof. We give a reduction from the Euclidean travelling saleman problem (E-TSP for short),
shown to be NP-hard in [16] (the problem we refer to here is called the Euclidean tour-TSP
there). The Euclidean travelling saleman problem asks, given a finite set of locations P ⊆ Q2

and a positive number ℓ ∈ Q, whether there is a cycle through all locations of P whose
length is at most ℓ. Formally, this means there is a permutation p1, . . . , pn of the locations
in P such that

∑n−1
i=1 d(pi, pi+1) + d(pn, p1) ≤ ℓ. Without loss of generality, we assume that

P always contains the origin (0, 0).
Again, we work with a fixed sample S = ⟨((0, 0), 0)⟩ and speed bound v = 1. From

an instance P, ℓ of E-TSP, we give a conjunction of (Point, Interval)-atoms C, such that
(S, v) |= C if and only if there is cycle through P of length at most ℓ. We define C as

visits((0, 0), [ℓ, ℓ]) ∧
∧

p∈P \{(0,0)}

visits(p, [0, ℓ]).

To prove that this reduction is correct, we first show that if (S, v) |= C, then there is
cycle through P of length at most ℓ. Let γ be a v-bounded trajectory matching S and
realising C. Because γ matches S, we have γ(0) = (0, 0). And, because γ realises C, it
reaches every location in P at some moment in [0, ℓ], and γ(ℓ) = (0, 0). This induces an
order p1, . . . , pn of the locations in P , where γ first reaches p1, then p2, and so on (we
note that p1 is always (0, 0)). Thus, if we let ti be the first moment where γ(ti) = pi for
i = 1, . . . , n, then 0 = t1 < · · · < tn ≤ ℓ. We claim the cycle p1, . . . , pn, p1 has length at most
ℓ. The length of this cycle is

∑n−1
i=1 d(pi, pi+1) + d(pn, p1). For every i, γ visits (pi, ti), and

because γ is v-bounded, we have d(pi, pi+1) ≤ v · |ti − ti+1| = ti+1 − ti. Similarly, γ visits
(pn, tn) and (p1, ℓ), thus d(pn, p1) ≤ ℓ− tn. It follows that the length of the cycle is at most∑n−1

i=1 (ti+1 − ti) + ℓ− tn = tn − t1 + ℓ− tn = ℓ.
Finally, we show that if there is cycle through P of length at most ℓ, then (S, v) |= C.

Let p1, . . . , pn, p1 be such cycle, where we choose p1 to be (0, 0). Now, let t1 = 0 and for
i = 2, . . . , n, take ti = ti−1 + d(pi−1, pi). Then, tn =

∑n−1
i=1 d(pi, pi+1), which, by assumption,

is at most ℓ− d(pn, p1). Define the trajectory sample S′ = ⟨(p1, t1), . . . , (pn, tn), (p1, ℓ)⟩. It
is clear from the definition of ti that the part of S′ excluding (p1, ℓ) is v-consistent. We have
seen that tn ≤ ℓ−d(pn, p1), and thus d(pn, p1) ≤ ℓ− tn, which implies that S′ is v-consistent.
From this follows that LIT(S′) is v-bounded, and it clearly matches S and realises C. ◀

TIME 2025

12:8 On the Complexity of the Realisability Problem for Visit Events

4.2 The data complexity of the (R, T)-realisability problem
In this section, we show that the (SemiAlg,Moment)-realisability problem has linear-time
data complexity, and the (SemiAlg, Interval)-realisability problem has polynomial-time data
complexity

We start with the result on (SemiAlg,Moment)-queries, but first we introduce some
notation and we give two lemmas. Every region in SemiAlg is of the form {(x, y) ∈ R2 |
φ(x, y)}, where φ = φ(x, y) is a quantifier-free formula over the vocabulary (+,×, <, 0, 1),
with x and y as free variables. The set {(x, y) ∈ R2 | φ(x, y)} is called the region defined
by φ, and we denote it by R(φ).

▶ Definition 16. If C = visits(R1, t1) ∧ · · · ∧ visits(Rk, tk) is a conjunction of atomic
(R,Moment)-events, and I ⊆ R is an interval, the formula CI is the conjunction of those
visits(Ri, ti), with 1 ≤ i ≤ k, for which ti ∈ I.

▶ Lemma 17. Let C be a conjunction of atomic (R,Moment)-events, let S be a trajectory
sample ⟨(p1, t1), . . . , (pn, tn)⟩ and let v be a speed bound. Then, (S, v) |= C if and only if all
of the following are true:
(1) (⟨(p1, t1)⟩, v) |= C(−∞,t1],
(2) for i = 1, . . . , n− 1, we have (⟨(pi, ti), (pi+1, ti+1)⟩, v) |= C[ti,ti+1], and
(3) (⟨(pn, tn)⟩, v) |= C[tn,+∞).

Proof. The “only if”-direction is obvious. We prove the “if”-direction. Assume (1), (2)
and (3) are true. By (1), there exists a v-bounded trajectory γ0 matching ⟨(p1, t1)⟩ that
realises C(−∞,t1]. By (2), for i = 1, . . . , n−1, there exists a v-bounded trajectory γi matching
⟨(pi, ti), (pi+1, ti+1)⟩ that realises C[ti,ti+1]. And by (3), there exists a v-bounded trajectory
γn matching ⟨(pn, tn)⟩ that realises C[tn,+∞). We define the trajectory γ as follows:

γ(t) =


γ0(t) if t ∈ (−∞, t1],
γi(t) if t ∈ [ti, ti+1] and
γn(t) if t ∈ [tn,+∞).

We note that the intervals [ti−1, ti] and [ti, ti+1] both contain ti. However, this does not
pose a problem for the definition of γ, because both γi−1 and γi visit (pi, ti), which means
γi−1(ti) = γi(ti) = pi. It only requires a simple application of the triangle inequality (of
Euclidean distance) to show that γ is a v-bounded trajectory. For i = 1, . . . , n, we have
γ(ti) = pi, thus γ matches S. The only thing left to prove is that γ realises C. Let
A = visits(R, t) be an arbitrary conjunct of C. Depending on t, there are three cases to be
considered. First, if t ∈ (−∞, t1], then A is a conjunct of C(−∞,t1]. This implies γ0 realises A,
so γ(t) = γ0(t) ∈ R, which means γ realises A. The other two cases, when t is contained in
[ti, ti+1] or in [tn,+∞), are similar. Because γ realises all the conjuncts of C, it also realises
C itself. ◀

▶ Lemma 18. If C = visits(R1, t1)∧· · ·∧visits(Rk, tk) is a conjunction of atomic (R,Moment)-
events, S is a trajectory sample and v a speed bound, then (S, v) |= C if and only if there
exist k spatial locations p1, . . . , pk such that
(1) for i = 1, . . . , k we have pi ∈ Ri, and
(2) the sample containing the points (p1, t1), . . . , (pk, tk), as well as the ones in S, is v-

consistent.

A. Jansen and B. Kuijpers 12:9

We remark that we consider condition (2) from the lemma to be false when some space-
time point among (p1, t1), . . . (pk, tk) shares its temporal component with a point in S, while
their spatial component differs.

Proof. The “only if”-direction is obvious. We prove the “if”-direction. Assume there are
locations p1, . . . , pk satisfying (1) and (2). Now take the trajectory γ to be the linear
interpolation trajectory of the sample containing the points (p1, t1), . . . , (pk, tk), as well as
the ones in S. It is clear that γ matches S and assumption (2) implies it is a v-bounded
trajectory. Finally, assumption (1) implies that γ realises C. ◀

▶ Definition 19. We say two (R, T)-events A and B are equivalent if for every sample S
and speed bound v, we have (S, v) |= A if and only if (S, v) |= B.

The following proposition follows directly from the fact that, for p ∈ R2, we have p /∈ R(φ)
if and only if p ∈ R(¬φ).

▶ Proposition 20. A (SemiAlg,Moment)-event of the form ¬visits(R(φ), t) is equivalent to
the event visits(R(¬φ), t).

Given an arbitrary (SemiAlg,Moment)-event, we can convert it into negation normal form
and use Proposition 20 to remove all negations. The result of this process is a positive
(SemiAlg,Moment)-event that is equivalent to the original. Because this process can be
performed in linear time (with respect to the length of the event), we can assume that any
given (SemiAlg,Moment)-event is positive, without loss of generality.

▶ Theorem 21. In terms of data complexity, the (SemiAlg,Moment)-realisability problem is
decidable in linear time.

Proof. We describe an algorithm to decide the realisability problem of a (SemiAlg,Moment)-
event e for input sample S = ⟨(p1, t1), . . . , (pn, tn)⟩, where pi = (xi, yi), and speed bound v.
Noting the remark made above, we assume that e is positive. The first step is to convert e
into its disjunctive normal form ē. Since we are dealing with data complexity, the possibly
increased size of ē, compared to e, has no impact on the running time of our method. In fact,
because the number of disjuncts of ē is constant, it is sufficient to show that the realisability
problem for a single disjunct can be decided in linear time.

Consider a disjunct C of ē. Because ē is positive and in DNF, the event C must be a
conjunction of atomic events. This means we can apply Lemma 17, and we can determine
whether (S, v) |= C by testing whether each of the following conditions are met:
(1) (⟨(p1, t1)⟩, v) |= C(−∞,t1],
(2) for i = 1, . . . , n− 1, we have (⟨(pi, ti), (pi+1, ti+1)⟩, v) |= C[ti,ti+1], and
(3) (⟨(pn, tn)⟩, v) |= C[tn,+∞).
We focus our attention to condition (2). For every value of i, we want to decide whether
C[ti,ti+1] is realisable for sample ⟨(pi, ti), (pi+1, ti+1)⟩ and speed bound v. Let us write the
conjunction C[ti,ti+1] as visits(R(φ1), t′1) ∧ · · · ∧ visits(R(φk), t′k), with t′1 ≤ · · · ≤ t′k. We
remark that this implies ti ≤ t′1 ≤ · · · ≤ t′k ≤ ti+1. From Lemma 18, we know that
(⟨(pi, ti), (pi+1, ti+1)⟩, v) |= C[ti,ti+1] if and only if there exist locations q1, . . . , qk ∈ R2, with
qi = (x′

i, y
′
i), such that

(a) for j = 1, . . . , k we have qj ∈ R(φj), and
(b) the sample ⟨(pi, ti), (q1, t

′
1), . . . , (qk, t

′
k), (pi+1, ti+1)⟩ is v-consistent.

TIME 2025

12:10 On the Complexity of the Realisability Problem for Visit Events

In other words, we have (⟨(pi, ti), (pi+1, ti+1)⟩, v) |= C[ti,ti+1] if and only if the formula
ψ = ∃x′

1∃y′
1∃ . . . ∃x′

k∃y′
k(ψa ∧ψb) is true, where ψa is φ1(x′

1, y
′
1) ∧ · · · ∧φk(x′

k, y
′
k), expressing

condition (a), and to express condition (b), we take ψb to be the conjunction of k+ 1 distance
inequalities.

Because ψ is a first-order logic sentence over the ordered field of real numbers, its truth
can be determined by a decision procedure for the theory of real closed fields (first described
by Tarski [19], we refer to Basu et al. [2] for a modern exposition). We note that the size
of ψ is independent of n, and thus has constant size in the data complexity setting (k is
bounded by the length of C). The time needed to determine the truth of ψ is thus also
constant. To test for condition (2), we have to perform the above steps for n− 1 values of i.
Conditions (1) and (3) can both be tested in constant time, in a manner similar to the above,
the only difference is that the constructed sentence requires one less inequality for expressing
v-consistency. We have thus shown that the realisability problem for a single disjunct of ē
can be answered in O(n) time. This concludes the proof. ◀

Our next result concerns the data complexity of the (SemiAlg, Interval)-realisability prob-
lem for positive events.

▶ Lemma 22. If e is a positive (R, Interval)-event containing k distinct atoms A1, . . . , Ak,
where Ai = visits(Ri, Ti), then (S, v) |= e if and only if there exist k space-time points
(p1, t1), . . . , (pk, tk) such that
(1) the sample containing the points (p1, t1), . . . , (pk, tk), as well as the ones in S, is v-

consistent, and
(2) the Boolean expression obtained by replacing Ai in e by true if (pi, ti) ∈ Ri × Ti, and by

false otherwise, evaluates to true.

Proof. We first prove the “if”-direction. Assume that there exist (p1, t1), . . . , (pk, tk) satisfy-
ing (1) and (2). Let S′ be the sample containing the points (p1, t1), . . . , (pk, tk), as well as
the ones in S. Assumption (1) says S′ is v-consistent, which means LIT(S′) is v-bounded.
Because S′ is an extension of S, and γ matches S′, it must also match S. The trajectory
LIT(S′) realises all the atoms Ai for which (pi, ti) ∈ Ri × Ti, and potentially others. Because
of assumption (2) and the fact that e is positive, LIT(S′) realises e, and thus (S, v) |= e.

For the “only if”-direction, we assume that (S, v) |= e. That means that there exists
a v-bounded γ realising e and matching S. We choose (p1, t1), . . . , (pk, tk) as follows. For
every atom Ai which γ realises, we know that γ visits some point in Ri × Ti, and take (pi, ti)
to be such point. For an atom Ai not realised by γ, we take (quite arbitrarily) (pi, ti) to
be the first anchor point of S. Then, (pi, ti) /∈ Ri × Ti, since otherwise γ would realise Ai.
All points of (p1, t1), . . . , (pk, tk) and S are visited by γ, so the sample containing all those
points must be v-consistent, satisfying condition (1). Because γ realises Ai if and only if
(pi, ti) ∈ Ri × Ti and γ realises e, condition (2) is also satisfied. ◀

The following proposition follows directly from the definition of v-consistency and the
fact that the distance function d obeys the triangle inequality.

▶ Proposition 23. If M is an (unordered) finite set of space-time points, then the sample
containing all points in M is v-consistent if and only if for every pair of points (p1, t1) and
(p2, t2) from M , we have d(p1, p2) ≤ v · |t1 − t2|.

It will be of interest later that the condition d(p1, p2) ≤ v · |t1 − t2| from the above
proposition is equivalent to d(p1, p2)2 ≤ v2 ·(t1 −t2)2, which, if p1 = (x1, y1) and p2 = (x2, y2),
is a polynomial inequality with variables x1, y1, t1, x2, y2, , t2, v.

A. Jansen and B. Kuijpers 12:11

▶ Theorem 24. In terms of data complexity, the (SemiAlg, Interval)-realisability problem for
positive events can be decided in polynomial time.

Proof. We describe an algorithm to decide the realisability of a positive (SemiAlg, Interval)-
event e for input sample S, of length n, and speed bound v. Lemma 22 gives a condition
equivalent to (S, v) |= e. We can express this condition using a first-order logic sentence over
the ordered field of real numbers ψ = ∃x1∃y1∃t1 . . . ∃xk∃yk∃tk(ψ1 ∧ ψ2), where ψ1 expresses
part (1) of Lemma 22, and ψ2 expresses part (2). To express part (1), stating that the sample
containing (x1, y1, t1), . . . , (xk, yk, tk) as well as the points from S is v-consistent, we can take
ψ1 to be a conjunction of (n+ k)2 distance inequalities, as per Proposition 23. To express
the second part, we construct ψ2 by taking e and replacing every atom visits(R(φi), [t−i , t

+
i])

by the formula φi(xi, yi) ∧ t−i ≤ ti ∧ ti ≤ t+i .
We have now constructed a formula ψ which is true if and only if (S, v) |= e. Thus, if there

is a method to determine the truth ψ, we can decide the realisability problem for positive
(SemiAlg, Interval)-events. Because ψ is an existantial sentence, we can apply known decision
procedures for the existential theory of the reals. Of course, the time complexity required to
decide the realisability of positive (SemiAlg, Interval)-events in the described manner, depends
on the time complexity of the existential theory of the reals. In [2] (see theorem 13.14), an
upper bound of sm+1dO(m) is given, where s is the number of polynomials occuring in the
formula, m the number of variables, and d the maximum degree of the polynomials. Because
we are considering data complexity, the number of polynomials in the φi’s, as well as their
maximum degree, is constant, and so is k. This implies that ψ contains O(n2) polynomials
of constant degree, and 3k variables. Thus, by Theorem 13.14 from [2], the truth of ψ can
be decided in O((n2)3k+1) = O(n6k+2) time, which is polynomial in n. It is also clear that ψ
can be constructed in polynomial time. ◀

4.3 A class of events for which the realisability problem has polynomial
time combined complexity

Until now, we have only seen hardness results in the query (and thus, combined) complexity
setting. In this section, we give an example of a class of events for which the realisability
problem has polynomial-time combined complexity.

An (R, T)-literal is either an atomic (R, T)-event, or the negation of an atomic (R, T)-
event. Conjunctions of (Point,Moment)-literals provide a class of events for which the
realisability problem has an efficient solution in terms of combined complexity. Before giving
our result, we first prove a lemma.

▶ Lemma 25. If S1 and S2 are trajectory samples, then there exists a v-bounded trajectory
matching S1 and not visiting any point in S2 if and only if
(1) S1 does not contain a point in S2,
(2) S1 is v-consistent, and
(3) if LIT(S1) visits a point from S2, on the line segment between points (pi, ti) and (pi+1, ti+1)

from S1, then d(pi, pi+1) < v · (ti+1 − ti).

Proof. It is obvious that the conditions (1), (2) and (3) are necessary for the existence of a
v-bounded trajectory matching S1 and not visiting points in S2. To show that they are also
sufficient, we assume that all three conditions are met. Consider the trajectory LIT(S1). By
condition (2), it is v-bounded. In case LIT(S1) visits one or more points from S2, we show
that we can extend (by adding points) S1 to a sample S∗, such that LIT(S∗) is v-bounded,
matches S1 and does not visit points from S2. Because S∗ is obtained by adding points to S1,

TIME 2025

12:12 On the Complexity of the Realisability Problem for Visit Events

it is obvious that LIT(S∗) matches S1. Let us say that LIT(S1) visits a point (q, t) from S2
on the line segment between (pi, ti) and (pi+1, ti+1). From (1) we know that ti < t < ti+1,
and from (3) we have d(pi, pi+1) < v · (ti+1 − ti). Together, these observations imply there
must be a small disk around q, such that for every p in this disk, the extension of S1 with
the point (p, t) remains v-consistent. Informally, this means we can deviate LIT(S1) slightly
between ti and ti+1, while the trajectory remains v-bounded. Now, for every point (q′, t′) of
S2 with ti < t′ < ti+1, there is at most one choice for p inside the disk that makes the linear
interpolation trajectory of the extended sample visit (q′, t′). Because there are infinitely
many points in the disks, we can choose p such that, between ti and ti+1, none of the points
from S2 are visited. We can repeat this process for each line segment of LIT(S1) that visits a
point from S2. The linear interpolation trajectory of the resulting sample S∗ then matches
S1, is v-bounded and does not visit points from S2, as desired. ◀

▶ Theorem 26. In terms of combined complexity, the (Point,Moment)-realisability problem
for a conjunction of k literals and a trajectory sample of length n is decidable in O(n+k log k)
time.

Proof. We assume that we are given a conjunction C of k (Point,Moment)-literals, a sample S
of length n and a speed bound v as input. Let P1, . . . , Pm be the positive atoms occuring
in C and let N1, . . . , Nℓ be the atoms occuring negated in C. First we compute the sample
S1 = ⟨(p1, t1), . . . (pn+m, tn+m)⟩, containing both the points in S and the ones occuring
in the atoms P1, . . . , Pm. Computing this sample requires ordering the points occuring in
P1, . . . , Pm by time, and merging these with those from S (which are already ordered by
time). This can be done in O(n+ k log k) time. We also compute a sample S2, containing
the points from N1, . . . , Nℓ, in O(k log k) time. Now we have (S, v) |= C if and only if
there exists a v-bounded trajectory matching S1 and not visiting any point in S2. This
can be determined by testing for the conditions of Lemma 25 in O(|S1| + |S2|) time, where
|S1| + |S2| = n+m+ ℓ = n+ k. Thus, the total time required by the described procedure is
O(n+ k log k). ◀

▶ Corollary 27. In terms of combined complexity, the (Point,Moment)-realisability problem
for an event in disjunctive normal form, of length k, and a trajectory sample of length n is
decidable in O(kn+ k log k) time.

Proof. We assume that we are given a (Point,Moment)-event e in disjunctive normal form,
of length k, a sample S of length n and a speed bound v as input. Then, e is of the form
C1 ∨ · · · ∨ Cℓ, where every disjunct Ci is a conjunction of literals. Let us say that the event
Ci contains ki literals. Because e is realisable if and only if one of the Ci’s is realisable, we
can use Theorem 26 to determine the realisability of e, by determining it for each of the
disjuncts. This takes

∑ℓ
i=1 O(n+ ki log ki) time, which is O(kn+ k log k). ◀

5 Conclusion

We have proposed a family of query languages for trajectory sample databases. Query
expressions in these languages contain events, which are used to describe constraints on
trajectories. When performing query evaluation, an essential problem required to be solved
is that of the realisability of an event. We studied the complexity of this realisability
problem in terms of data, query and combined complexity. These results are summarised in
Table 1. These complexity results are given in a computational model wherein (arithmetic
and comparison) operations on rational numbers take unit time. It is not clear whether our

A. Jansen and B. Kuijpers 12:13

results remain true in a model in which we measure the cost of these operations in terms of
the length of the bit-representation of rational numbers. Also, we did not give much attention
to the evaluation of query expressions outside of the realisability problem. We assumed that
query expressions are evaluated in some standard way, but more efficient strategies might
exist.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry. Algorithms and

Computation in Mathematics 10. Springer, Berlin, 2003.
3 Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real Algebraic Geometry, volume 36

of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1998.
4 Vania Bogorny, Bart Kuijpers, and Luis Otávio Alvares. ST-DMQL: A semantic trajectory

data mining query language. Int. J. Geogr. Inf. Sci., 23(10):1245–1276, 2009. URL: http://
www.informaworld.com/smpp/content%7Edb=all%7Econtent=a915093101%7Efrm=abslink.

5 L. Burns. Transportation, Temporal, and Spatial Components of Accessibility. Lexington
Books, Lexington, MA, 1979.

6 Max J. Egenhofer. Approximation of geospatial lifelines. In Elisa Bertino and Leila De Floriani,
editors, SpadaGIS, Workshop on Spatial Data and Geographic Information Systems. University
of Genova, 2003.

7 Fosca Giannotti and Dino Pedreschi, editors. Mobility, Data Mining and Privacy - Geographic
Knowledge Discovery. Springer, 2008. doi:10.1007/978-3-540-75177-9.

8 R. Güting and M. Schneider. Moving Object Databases. Morgan Kaufmann, 2005.
9 T. Hägerstrand. What about people in regional science? Papers of the Regional Science

Association, 24:7–21, 1970.
10 Kathleen Hornsby and Max J. Egenhofer. Modeling moving objects over multiple granularities.

Ann. Math. Artif. Intell., 36(1-2):177–194, 2002. doi:10.1023/A:1015812206586.
11 Tomasz Imieliński and Witold Lipski. Incomplete information in relational databases. J. ACM,

31(4):761–791, September 1984. doi:10.1145/1634.1886.
12 Donald Janelle and Michael Goodchild. Diurnal patterns of social group distributions in

a canadian city. Economic Geography, 59(4):403–425, 1983. URL: http://www.jstor.org/
stable/144166.

13 B. Lenntorp. Paths in Space-Time Environments: A Time-Geographic Study of the Movement
Possibilities of Individuals. Number 44 in Series B. Lund Studies in Geography, 1976.

14 H.J. Miller. Modeling accessibility using space-time prism concepts within geographical
information systems. International Journal of Geographical Information Systems, 5:287–301,
1991. doi:10.1080/02693799108927856.

15 H.J. Miller. A measurement theory for time geography. Geographical Analysis, 2005. doi:
10.1111/j.1538-4632.2005.00575.x.

16 Christos H. Papadimitriou. The Euclidean travelling salesman problem is NP-complete.
Theoretical Computer Science, 4(3):237–244, 1977. doi:10.1016/0304-3975(77)90012-3.

17 Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady L. Andrienko, Natalia V. An-
drienko, Vania Bogorny, Maria Luisa Damiani, Aris Gkoulalas-Divanis, José Antônio Fernandes
de Macêdo, Nikos Pelekis, Yannis Theodoridis, and Zhixian Yan. Semantic trajectories modeling
and analysis. ACM Comput. Surv., 45(4):42:1–42:32, 2013. doi:10.1145/2501654.2501656.

18 Dieter Pfoser and Christian S. Jensen. Capturing the uncertainty of moving-object rep-
resentations. In Ralf Hartmut Güting, Dimitris Papadias, and Frederick H. Lochovsky,
editors, Advances in Spatial Databases, 6th International Symposium, SSD’99, Proceed-
ings, volume 1651 of Lecture Notes in Computer Science, pages 111–132. Springer, 1999.
doi:10.1007/3-540-48482-5_9.

TIME 2025

http://webdam.inria.fr/Alice/
http://www.informaworld.com/smpp/content%7Edb=all%7Econtent=a915093101%7Efrm=abslink
http://www.informaworld.com/smpp/content%7Edb=all%7Econtent=a915093101%7Efrm=abslink
https://doi.org/10.1007/978-3-540-75177-9
https://doi.org/10.1023/A:1015812206586
https://doi.org/10.1145/1634.1886
http://www.jstor.org/stable/144166
http://www.jstor.org/stable/144166
https://doi.org/10.1080/02693799108927856
https://doi.org/10.1111/j.1538-4632.2005.00575.x
https://doi.org/10.1111/j.1538-4632.2005.00575.x
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1145/2501654.2501656
https://doi.org/10.1007/3-540-48482-5_9

12:14 On the Complexity of the Realisability Problem for Visit Events

19 Alfred Tarski and J. C. C. McKinsey. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1951.

20 G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Managing uncertainty in moving
objects databases. ACM Trans. Database Syst., 29(3):463–507, 2004. doi:10.1145/1016028.
1016030.

21 Zhixian Yan, Dipanjan Chakraborty, Christine Parent, Stefano Spaccapietra, and Karl Aberer.
Semantic trajectories: Mobility data computation and annotation. ACM Trans. Intell. Syst.
Technol., 4(3):49:1–49:38, 2013. doi:10.1145/2483669.2483682.

https://doi.org/10.1145/1016028.1016030
https://doi.org/10.1145/1016028.1016030
https://doi.org/10.1145/2483669.2483682

Temporal Ensemble Logic for Integrative
Representation of the Entirety of Clinical Trials
Xiaojin Li #

The University of Texas Health Science Center
at Houston, TX, USA

Yan Huang #

The University of Texas Health Science Center
at Houston, TX, USA

Rashmie Abeysinghe #

The University of Texas Health Science Center
at Houston, TX, USA

Zenan Sun #

The University of Texas Health Science Center
at Houston, TX, USA

Hongyu Chen #

University of Florida, Gainesville, FL, USA
Pengze Li #

Mayo Clinic in Florida, Jacksonville, FL, USA

Xing He #

Indiana University Bloomington,
Bloomington, IN, USA

Shiqiang Tao #

The University of Texas Health Science Center
at Houston, TX, USA

Cui Tao #

Mayo Clinic in Florida, Jacksonville, FL, USA
Jiang Bian #

Indiana University Bloomington,
Bloomington, IN, USA

Licong Cui #

The University of Texas Health Science Center
at Houston, TX, USA

Guo-Qiang Zhang1 #

The University of Texas Health Science Center
at Houston, TX, USA

Abstract
Clinical trials are typically specified with protocols that define eligibility criteria, treatment regimens,
follow-up schedules, and outcome assessments. Temporality is a hallmark of all clinical trials,
reflected within and across trial components, with complex dependencies unfolding across multiple
time points. Despite their importance, clinical trial protocols are described in free-text format,
limiting their semantic precision and the ability to support automated reasoning, leverage data across
studies and sites, or simulate trial execution under varying assumptions using Real-World Data. This
paper introduces a formalized representation of clinical trials using Temporal Ensemble Logic (TEL).
TEL incorporates metricized modal operators, such as “always until t” (□t) and “possibly until
t” (♢t), where t is a time-length parameter, to offer a logical framework for capturing phenotypes
in biomedicine. TEL is more expressive in syntax than classical linear temporal logic (LTL) while
maintaining the simplicity of semantic structures. The attributes of TEL are exploited in this paper
to formally represent not only individual clinical trial components, but also the timing and sequential
dependencies of these components as a whole. Modeling strategies and demonstration case studies
are provided to show that TEL can represent the entirety of clinical trials, whereby providing a
formal logical framework that can be used to represent the intricate temporal dependencies in trial
structure specification. Since clinical trials are a cornerstone of evidence-based medicine, serving as
the scientific basis for evaluating the safety, efficacy, and comparative effectiveness of therapeutic
interventions, results reported here can serve as a stepping stone that leads to scalable, consistent,
and reproducible representation and simulation of clinical trials across all disease domains.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains

Keywords and phrases Temporal ensemble logic, Clinical trials, Logic-based modeling

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.13

1 Corresponding author

© Xiaojin Li, Yan Huang, Rashmie Abeysinghe, Zenan Sun, Hongyu Chen, Pengze Li, Xing He,
Shiqiang Tao, Cui Tao, Jiang Bian, Licong Cui, and Guo-Qiang Zhang;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xiaojin.li@uth.tmc.edu
mailto:yan.huang@uth.tmc.edu
mailto:rashmie.abeysinghe@uth.tmc.edu
mailto:zenan.sun@uth.tmc.edu
mailto:hongyuchen1@ufl.edu
mailto:Li.Pengze@mayo.edu
mailto:hexing@iu.edu
mailto:shiqiang.tao@uth.tmc.edu
mailto:Tao.Cui@mayo.edu
mailto:bianji@iu.edu
mailto:licong.cui@uth.tmc.edu
mailto:guo-qiang.zhang@uth.tmc.edu
https://doi.org/10.4230/LIPIcs.TIME.2025.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

13:2 TEL on Clinical Trials

Funding This work was supported in part by the National Science Foundation Award IIS2500624
and the National Institutes of Health grants R01AG084236, of the United States. The views of the
paper are those of the authors and do not reflect those of the funding agencies.

1 Introduction

Clinical trials are a cornerstone of biomedical research, providing rigorous evidence for the
safety, efficacy, and comparative effectiveness of therapeutic interventions [32]. These studies
follow structured protocols that define eligibility criteria, intervention timing, follow-up
assessments, and outcome measures. Each of these components is inherently temporal,
unfolding across defined intervals and often involving complex interdependencies. As trial
designs evolve to include adaptive structures, multiple treatment arms, and longitudinal
assessments, there is an increasing demand for formal methods that can represent the full
temporal structure of clinical trial execution [5].

One of the challenges in clinical trial informatics is the lack of a formal representation
framework for trial protocol specifications. Basic protocol components such as treatment
windows, observation periods, washout phases, and outcome evaluations are usually described
informally or in free-text, making them difficult to reuse and interpret computationally. This
limitation impairs the ability to simulate trials, align patient trajectories, validate protocol
logic, or integrate information across studies [34].

Temporal logic provides a formal framework for reasoning about time, enabling the
representation of temporal facts and relationships such as event ordering and interval
duration [48]. Foundational work like Allen’s interval-based temporal logic has shaped this
field by formalizing temporal relations between intervals, laying the groundwork for advanced
temporal inference [40]. The expressive power of temporal logic is particularly valuable in
clinical contexts, where complex temporal dependencies must be modeled to simulate trial
scenarios and interpret patient narratives [18, 48]. In clinical trials, temporal reasoning
is pivotal for structuring protocol logic, modeling event sequences, and enforcing timing
constraints [39, 30]. These capabilities support key tasks such as cohort modeling, protocol
validation, eligibility screening, and outcome prediction across the trial lifecycle. Recent
advances have also integrated temporal logic into clinical natural language processing (NLP),
improving the extraction and prediction of temporally grounded events [41]. By incorporating
temporal entailment between patient states, these methods enable longitudinal reasoning
essential for assessing treatment efficacy and guiding patient care [1, 41].

Despite such developments and potentials, there is a lack of logical-framework with
demonstrated capability and translatability in representing clinical trial protocols with
temporal and semantic precision and the ability to support automated reasoning, leverage
data across studies and sites, or simulate trial execution under varying assumptions using
Real-World Data [22, 35, 49]. This paper introduces a framework for formalized representation
of clinical trials using Temporal Ensemble Logic (TEL [48]). TEL incorporates metricized
modal operators, such as “always until t” (□t) and “possibly until t” (♢t), where t is a
time-length parameter, to offer a logical framework for capturing phenotypes in biomedicine.
TEL is more expressive in syntax than classical linear temporal logic (LTL) while maintaining
the simplicity of semantic structures.

The attributes of TEL are exploited in this paper to formally represent not only individual
clinical trial components, but also the timing and sequential dependencies of these components
as a whole. We demonstrate that TEL can facilitate formal modeling of key elements including
eligibility criteria, baseline visits, interventions, follow-up visits, and outcome assessments. It

X. Li et al. 13:3

supports both individual-level and cohort-level reasoning, making it well-suited for clinical
trial simulation. Our modeling strategy uses atomic propositions formulated from a domain-
specific ontology constructed from standardized biomedical vocabularies such as SNOMED
CT [10], ICD-9/10-CM [16], CPT [12], RxNorm [28], and LOINC [25]. Trial participants’
electronic medical records serve as models, over the domain of positive integers N+ which
represent days (typically the finest granularity in clinical trial protocols), weeks, or months.

The main contributions of this study are as follows: 1) we introduce a modeling strategy
to capture clinical trial protocol components using TEL, providing a logical specification of
temporal dependencies in clinical trial protocols; 2) we develop the AD Clinical Trial Ontology
(ADCTO), a lightweight, domain-specific ontology aligned with biomedical standards to
codify semantic entities used in TEL for this purpose, and 3) we prototype a simulation
system with interfaces that represent trial specifications as TEL formulas and executes them
against Real-World Data (RWD) to support protocol validation and virtual execution using
the model-checking paradigm.

The remainder of this paper is organized as follows: Section 2 introduces the formal
foundation of TEL. Section 3 describes two major categories of trial simulations. Section 4
presents our modeling of clinical trials. Section 5 details the TEL-based logical formalization
of clinical trial components. Section 6 reports on the implementation, ontology development,
and simulation system.

2 Preliminaries

2.1 Temporal Ensemble Logic
In modeling clinical trials, we consider the time domain of positive integers N+, which
represent days lapsed from the start of a clinical trial.

The basic construct of TEL [48] includes two types of terms: integer terms over N+,
and logical formulas. Integer terms s, t, u, v, . . . consist of constants a, b, c, . . ., variables
x, y, z, . . . (from a set Var), and the addition of these terms (s + t). We write Term for
the set of all such integer terms. Logical formulas φ consist of primitive propositions p,
indexed formulas φt, Boolean connectors (∧, ¬), time-indexed modalities □tφ and ♢tφ, and
first-order quantification over variables in Var.

In Backus–Naur form (BNF) notation, we have s, t ::= a | x | (s+ t), where a is an integer
constant, x ∈ Var, and (s+ t) represent the addition of two integer terms.

For TEL formula, we have, with t for integer term and x for variable over N+:

φ,ψ ::= p | φt | ¬φ | φ ∧ ψ | φ ∨ ψ | □tφ | ♢tφ | ∀xφ | ∃xφ.

Atomic propositions p come from a pre-defined set Prop, a set of clinical codes and ontological
terms according to the conceptual correspondence provided in Table 1.

To specify the semantics of the above formulas, we define an interpretation as a function
α : N+ → 2Prop, which determines, at each time-point i ∈ N+, a subset of atomic propositions
that are assigned true. We can use the notation of formal languages to describe such
interpretations. The alphabet is Σ (= 2Prop), to account for all possible truth-status of each
proposition in Prop at a given time. Following standard formal language convention, Σ∗

represents the set of all finite words over Σ, Σ+ represents the set of all no-empty finite
words over Σ, and Σω represents all ω-words over Σ. Therefore, we can write α in the form
of an ω-word σ[1]σ[2] · · · , with σ[i] ∈ Σ being the ith letter of α for all i ≥ 1.

TIME 2025

13:4 TEL on Clinical Trials

▶ Definition 1. We define, given an ω-word α = σ[1]σ[2] · · · over Σ and any i ≥ 1,

(α, i) |= p if p ∈ σ[i];
(α, i) |= φt if (α, i+ t) |= φ;
(α, i) |= ¬φ if (α, i) ̸|= φ;
(α, i) |= ϕ ∧ ψ if (α, i) |= φ and (α, i) |= ψ;
(α, i) |= ϕ ∨ ψ if (α, i) |= φ or (α, i) |= ψ;
(α, i) |= □tφ if (α, j) |= φ for all j with i ≤ j < i+ t;
(α, i) |= ♢tφ if (α, j) |= φ for some j with i ≤ j < i+ t;
(α, i) |= ∀xφ if for all k ≥ 1, (α, i) |= φ[x := k].
(α, i) |= ∃xφ if there exists k ≥ 1, (α, i) |= φ[x := k],

where φ[x := k] is the standard syntactic convention for the formula obtained by replacing
all free occurrences of variable x in φ by constant k.

2.2 Conceptual Correspondence for Trial Modeling

Clinical trials involve complex temporal dependencies between interventions, patient responses,
and outcomes, requiring a formal approach to temporal reasoning. Existing logical frameworks
in computer science and biomedicine either lack expressiveness for capturing trial dynamics
or impose syntactic constraints that limit their applicability to real-world trial scenarios.

Table 1 Correspondence Between Clinical Trial Components and TEL Elements.

Clinical Trial Entities Logical Constructs Logical Forms
Controlled vocabularies, ontology terms Atomic propositions Prop
Temporal relationships Modal and logical operators □t,♢t, ∧, ∃
Electronic medical records Semantic models σ[1]σ[2] · · ·
Start Event, Index Event, Inclusion Cri-
teria, Exclusion Criteria, Observation
Window, Baseline Visit, Intervention
Phase, Follow-Up Visits, Outcome Assess-
ment, Base Criteria, Case Criteria, Con-
trol Criteria

TEL formulas
S, I, IC, EC, W , B,
T , F , O, Base, Case,
Control

Trial execution Model-checking (α, i) |= φ

To make the technical motivations and design decisions more intuitive, we begin with an
illustrative example. This example is intended to highlight the practical needs and conceptual
foundations for combining first-order and modal logic primitives in the representation of
biological phenotypes. By grounding the discussion in concrete use cases, we aim to clarify
the expressive requirements that drive our modeling strategy.

▶ Example 2. For an Alzheimer’s Disease (AD) clinical trial of demonstrating the efficacy
of at least one dose of a medicine (H3 receptor antagonist) in comparison to placebo on
cognitive performance in patients with mild to moderate AD [44], TEL provides a formal
structure for representing its constraints and event relationships. The key components of the
protocol can be expressed as follows:

∃x∃i
[
Sx ∧ Ix+i ∧ (♢4wB)(x+i) ∧ (□24wT)x+i+4w ∧ (♢10wF)x+i+28w ∧ (♢1wO)x+i+38w

]

X. Li et al. 13:5

where the start date x corresponds to the date of informed consent (S). The index event (I)
is defined as the cognitive evaluations and biomarker analyses i days after consent. Baseline
visit (B) is conducted within four weeks (4w) prior to intervention. The intervention phase (T)
involves the administration of a medicine or placebo over 24 weeks (24w). Follow-up visits (F)
are scheduled to monitor safety and efficacy parameters for up to 10 weeks (10w). The
outcome assessment (O) occurs at week 38 (38w), evaluating changes in cognitive function
from baseline.

2.3 Related Work: Temporal Logics for Clinical Trials
Many existing temporal logics have been developed to express different types of temporal
relationships, each with its own strengths and trade-offs. LTL [33] captures linear sequences
of states to express event orders. Based on LTL, Metric Temporal Logic (MTL) [29] adds
explicit timing bounds to temporal operators. Interval Temporal Logic (ITL) [9, 14] focuses
on intervals rather than points, capturing relationships. Despite the extensive development
of temporal logic frameworks, their practical application in clinical trial specification remains
limited. Giordano et al. modeled stroke guidelines as concurrent processes in LTL and
verified them with SPIN [13], while Sanati et al. introduced a MTL-based Description Logics
for formulating eligibility criteria for clinical trials [2]. Shankar et al. [39] developed a formal
ontology to encode temporal constraints in clinical trials, allowing precise specification of
timeline requirements (e.g., “lab test 2 must occur within 7 days after dose 1”) using ITL.
CNTRO [42, 43] encodes logical and temporal constraints directly within the structure of
the Web Ontology Language (OWL). The Time Event Ontology (TEO) proposed by Li et
al. [21] extends CNTRO by harmonizing Allen’s interval algebra with a suite of basic time
relations, although it lacks a language of logic for modeling trials.

Table 2 Logic-based Modeling for Clinical Trials.

Logic Constructs Expressiveness Clinical Trial
Application

Modeled
Component

LTL Point-based
Decidable

Limited [13] Entire trial

MTL Point-based
Decidable (restricted
cases)

Limited [2] Eligibility criteria

ITL
Interval-based
Decidable (restricted
cases)

Lack point-based references [21, 39, 42] Entire trial

TEL
Point-based, limited
First-order
Decidability for used
fragment open

Good fit for purpose (in-
tegrative, interval and
point, first-order)

This study Entire trial

LTL can express sequential temporal dependencies and comes with mature automated
tools, but it has limited expressiveness. It cannot capture complex interval constraints such
as “observe within a specified time window”. MTL can express time-bounded constraints
such as visit windows or dosing intervals, but cannot directly relate distinct times or intervals.
It lacks the ability to express dependencies such as “dose two administered exactly 14 days
after dose one, followed by a visit 7 days later.” ITL can model observation windows and
treatments with interval-based semantics (e.g., “treatment continues during observation
window”) but it becomes overly complex and lacks cross-timeline reference capability without
additional constructs. Table 2 summarizes these observations.

TIME 2025

13:6 TEL on Clinical Trials

The use of TEL for trial modeling brings the following advantages. TEL has already
been demonstrated as a natural but minimalistic logical framework with potential as an
attractive approach to formalizing phenotypes in biomedicine [48]. Using the model-checking
paradigm, TEL can support both point-based and interval-based temporal constructs. TEL
is highly expressive in modeling temporal properties, but restricted in aspects not essential
to targeted applications. The scope of first-order quantifiers for TEL is limited to unary
predicates derived from an existing formula, rather than over independently given predicates.
As can be seen in subsequent developments, the specific fragment of TEL used for this study
does not involve the ∀ quantifier. Although it is beyond the scope of the current paper
to address theoretical developments in decidability and algorithmic complexity results for
specific fragments of TEL (given its general undecidability [48]), our experimental results
show practical feasibility in reasonable settings.

3 Clinical Trial Simulation (CTS)

Clinical trials serve as the cornerstone of medical research, providing rigorous assessments of
the safety and efficacy of novel interventions. However, traditional clinical trial methodologies
have several challenges, including ethical considerations, patient recruitment difficulties, and
potential confounding variables. Advanced simulation-based approaches have been developed
to address these limitations, leveraging real-world data and computational modeling to
enhance trial design and execution [4]. This paper examines two key types of clinical trial
simulations [19]: Self-Controlled Case Series [31] and Eligibility Cohort Building [11].

3.1 Self-Controlled Case Series (SCCS)
The Self-Controlled Case Series (SCCS) method is a widely used design for evaluating the
association between medical interventions and adverse events. By treating individuals as their
own controls, SCCS effectively mitigates confounding from fixed patient-level characteristics
such as genetics and lifestyle [46]. In this simulation-based framework, longitudinal health
records are used to construct individual timelines of intervention exposure and subsequent
adverse events. A predefined risk window is specified following the intervention, and the
frequency of events during this period is compared to baseline periods within the same
individual using statistical modeling.

For example, a recent study investigating thrombosis risk after COVID-19 vaccination
applied SCCS by extracting temporal sequences of vaccination dates and thrombotic events
from electronic health records [17]. By comparing the incidence of events before and after
vaccination within each individual, the study reduced between-subject variability and provided
robust evidence of causal relationships.

3.2 Eligibility Cohort Specification
Patient recruitment is a persistent bottleneck in clinical trial implementation. Eligibility
Cohort Building Simulations offer a data-driven strategy to improve recruitment efficiency
by leveraging EHR data to model real-world patient populations [36]. In this approach,
researchers first define trial eligibility criteria such as age range, treatment history, and
comorbidities, and apply them to EHR datasets to construct a virtual cohort. Computational
models estimate the number of patients who meet the criteria and allow iterative refinement
by adjusting thresholds or conditions to assess their impact on cohort size and diversity [20].
This simulation process enables the design of recruitment strategies that are both scientifically
rigorous and operationally feasible.

X. Li et al. 13:7

For example, a Phase III clinical trial investigating a novel therapeutic for hormone
receptor-positive breast cancer used this method to address recruitment delays. By simulating
eligibility criteria including age between 30 and 75 years, prior chemotherapy, and absence of
major cardiovascular conditions on a real-world breast cancer dataset, investigators identified
constraints that limited enrollment. Adjusting these parameters, such as slightly expanding
the age range, helped increase the candidate pool while preserving trial integrity [26].

4 Structure of Clinical Trial Specification

4.1 Individual Timeline-Based Structure of CTS
Start Event (Initialization). The start event denotes the earliest temporal reference point
preceding trial enrollment. It may represent initial patient contact, the commencement of
a data collection window, or the initiation of eligibility surveillance. Although not part of
the trial intervention itself, this event serves as a critical anchor for modeling retrospective
observation periods, washout phases, or baseline covariate collection from real-world data
sources such as electronic health records (EHRs) or insurance claims.

Index Event (Trial Anchor Point). The index event marks the initiation of the trial
timeline for each participant. Defined via clinical markers or diagnostic confirmation, this
event anchors the temporal alignment of all subsequent protocol components. It facilitates
consistent modeling of participant trajectories across eligibility evaluation, randomization,
and treatment administration phases.

Observation Window (Pre-Index Interval). The interval between the start and index events
constitutes the observation window, during which baseline covariates, prior exposures, or
exclusionary conditions are assessed. This period may include look-back or washout durations
essential for contextualizing eligibility and anchoring the index event.

Eligibility Criteria (Inclusion and Exclusion). Eligibility is determined based on defined
inclusion and exclusion criteria. Inclusion criteria specify characteristics that must be present
(e.g., age range, disease severity), while exclusion criteria identify disqualifying conditions
(e.g., contraindications, comorbidities). These filters are applied either before or at the index
to ensure clinical appropriateness and cohort homogeneity.

Baseline Visit (Pre-Intervention Assessments). Participants meeting eligibility require-
ments undergo a baseline visit for comprehensive pre-intervention evaluation. This includes
the collection of demographic data, clinical measurements, and relevant biomarkers, which
serve as reference points for outcome comparison and guide treatment group allocation.

Intervention Phase (Treatment Administration). The intervention phase involves the
administration of assigned treatments such as experimental therapies, standard care, or
placebos, initiated after the index event. This phase captures the protocol-defined exposure
period and may incorporate adherence, dose variability, or pharmacokinetic modeling.

Follow-Up Visits (Post-Treatment Monitoring). Follow-up visits are conducted at sched-
uled intervals following the intervention phase to monitor clinical outcomes, detect adverse
events, and track longitudinal changes in patient status. This component accounts for
dropout risk, adherence behavior, and the timing of outcome manifestation.

TIME 2025

13:8 TEL on Clinical Trials

Outcome Assessment (End Event). The final phase of the trial involves assessing predefined
primary and secondary endpoints, including clinical efficacy, safety profiles, or composite
outcomes. Outcome evaluation is conducted after the full observation period has elapsed or
upon reaching specific clinical milestones, enabling rigorous analysis of treatment effects.

4.2 Cohort-Based Structure of CTS

The Individual Timeline-Based CTS captures the temporal dynamics of clinical events at the
patient level, supporting analyses of time-dependent phenomena such as treatment onset and
disease progression. While effective for intra-individual variability and temporal causality, it
is less suited for between-group comparisons. In contrast, the Cohort-Based CTS organizes
participants into predefined groups based on treatment or baseline characteristics, simulating
longitudinal outcomes to assess efficacy, safety, event incidence, and dropout rates. This
structure, aligned with parallel-arm trial designs, aids trial feasibility, sample size estimation,
and recruitment planning. Cohorts are defined by Base Criteria (shared attributes), Case
Criteria (presence of key exposures), and Control Criteria (absence of exposures), enabling
robust comparative analyses and accounting for real-world complexities such as time-to-event
variability, adherence, and attrition.

5 Logical Representation of CTS using Temporal Ensemble Logic

5.1 TEL-Based Formalization of Timeline-based CTS

This section formalizes a timeline-based CTS using the TEL framework. The model is
anchored by a start event (S) and an index event (I), such as a diagnosis or lab finding,
which serves as the temporal reference for aligning all other trial components. Between these
events lies the observation window (W), used to assess baseline covariates and eligibility
status. Eligibility criteria (E) may span both pre- and post-index periods. The baseline
visit (B) captures pre-intervention assessments. The intervention phase (T) begins after
the index event, followed by post-treatment follow-up visits (F) to monitor outcomes and
safety. Outcome assessment (O) occurs within a bounded period at the end of the trial. TEL
constraints are defined with modal operators to precisely capture temporal relationships.

Start Event: The TEL expression for the start event occurring at time x is: ∃x (Sx).
Index Event: The TEL expression for the index event occurring at time x+ i is given
by: ∃x∃i (Sx ∧ Ix+i). The x+ i subscript ensures that Index event can occur only after
the Start Event. This represents the key modeling strategy of using distinct terms to
represent time dependencies, rather than using explicit comparison such as x < y in other
approaches.
Observation Window: The observation window defines the time interval between
the start event and the index event, within which prior clinical events must occur.The
corresponding TEL expression is given by: ∃x∃i

[
Sx ∧ Ix+i ∧ (♢iW)x

]
.

Baseline Visit: The TEL expression for the baseline visit B occurs within b units after
the index event is given by: ∃x∃i∃b

[
Sx ∧ Ix+i ∧ (♢iW)x ∧ (♢bB)x+i

]
.

Intervention Phase: The TEL expression for the intervention phase T occurring within
t units post-baseline is given by:

∃x∃i∃b∃t
[
Sx ∧ Ix+i ∧ (♢iW)x ∧ (♢bB)x+i ∧ (♢tT)x+i+b

]
.

X. Li et al. 13:9

Follow-up visits: The TEL expression for the follow-up visit F occurring within f units
after the intervention phase is given by:

∃x∃i∃b∃t∃f
[
Sx ∧ Ix+i ∧ (♢iW)x ∧ (♢bB)x+i ∧ (♢tT)x+i+b ∧ (♢fF)x+i+b+t

]
.

Outcome Assessment: The TEL expression for the outcome assessment O occurring
within o units after the follow-up visit is given by:

∃x∃i∃b∃t∃f∃o
[
Sx∧Ix+i∧(♢iW)x∧(♢bB)x+i∧(♢tT)x+i+b∧(♢fF)x+i+b+t∧(♢oO)x+i+b+t+f

]
.

Eligibility Criteria: Eligibility Criteria define the conditions under which a participant
is deemed suitable for enrollment in the clinical trial.

Inclusion Criteria (IC): which specify characteristics that must be present for a
participant to qualify. The TEL expression is given by:

∃x∃i∃c1∃c2

[
Sx ∧ Ix+i ∧ (♢c1IC)x ∨ (♢c2IC)x+i

]
.

Exclusion Criteria (EX), which specify conditions that, if present, disqualify a
participant from participation. The TEL expression is given by:

∃x∃i∃e1∃e2

[
Sx ∧ Ix+i ∧ (□e1¬EX)x ∧ (□e2¬EX)x+i

]
.

The full TEL expression representing the clinical trial structure temporally anchored on
the start event and index event, and encoding the logical and temporal constraints across
eligibility, baseline, treatment, follow-up, and outcome phases, is defined as follows:

∃x∃i∃b∃t∃f∃o∃f∃c1∃c2∃e1∃e2

[
Sx ∧ Ix+i ∧ (♢iW)x ∧ (♢bB)x+i ∧ (♢tT)x+i+b ∧ (♢f F)x+i+b+t ∧

(♢oO)x+i+b+t+f ∧
(
(♢c1 IC)x ∨ (♢c2 IC)x+i

)
∧

(
(□e1 ¬EX)x ∧ (□e2 ¬EX)x+i

)]
.

5.2 TEL-Based Formalization of Cohort-based CTS
The Cohort-Based CTS models trial participants as belonging to logically distinct subpopu-
lations, defined through a combination of base eligibility and group-specific cohort criteria.
Each individual in the simulation is first evaluated against the Base Criteria to determine in-
clusion in the eligible study population. Then, individuals are assigned to mutually exclusive
groups according to whether they satisfy the Case Criteria or Control Criteria.

Base Criteria: All individuals must meet the base criteria within a defined observation
window starting at the reference time t0. These criteria typically include basic demographic
filters, the length of the observation period, and the exclusion of confounders. The TEL
expression is: ∃t0 (Baset0).
Case Criteria: Individuals who meet the case criteria are assigned to the case cohort.
These criteria usually capture exposure to an intervention, diagnosis of a condition, or
other qualifying events. The case criteria must be met after satisfying the base criteria.
The TEL expression is: ∃t0∃t1

[
Baset0 ∧ (♢t1Case)t0

]
.

Control Criteria: Individuals who meet the control criteria are assigned to the control
cohort. These criteria typically indicate the absence of the exposure or condition that
defines the case group. The assignment of control also follows the base criterion. The
TEL expression is: ∃t0∃t2

[
Baset0 ∧ (♢t2Control)t0

]
.

TIME 2025

13:10 TEL on Clinical Trials

5.3 Model-Checking of Clinical Trial Specifications

Formally, the model-checking [6, 45] process seeks to determine whether a patient record α

satisfies a given clinical trial specification φ, as defined in TEL. That is, we aim to verify
whether there exists a time point i ≥ 1 such that (α, i) |= φ, under the TEL semantics.
This generalizes beyond traditional initial-time evaluation by enabling satisfaction to be
checked at any point along a patient’s longitudinal record, allowing for alignment of protocol
logic with varying index events. The language defined by a TEL formula, denoted L(φ),
consists of all ω-words (i.e., patient records) that satisfy the formula at some valid time
index. This capability supports temporal abstraction and flexible anchoring of eligibility and
trial components in real-world datasets. TEL-based model-checking provides a scalable and
precise method for aligning structured clinical data with complex temporal protocol logic,
improving the interpretability, consistency, and reproducibility of virtual clinical trials.

6 Case Study

To evaluate and demonstrate the practical utility of our TEL-based formalization framework,
we applied it to the domain of AD clinical trials. AD trials present complex temporal
structures and heterogeneous eligibility criteria, making them a representative use case for
formal modeling. We developed two resources: (1) the AD Clinical Trial Ontology (ADCTO),
a lightweight ontology that captures core concepts from AD-related trial protocols, and (2) a
logic-based clinical trial simulation system that operationalizes TEL for temporally-aware
trial design and execution. These tools enable precise specification, validation, and simulation
of AD clinical trials grounded in real-world data.

6.1 AD Clinical Trial Ontology

We developed the AD Clinical Trial Ontology (ADCTO) to represent key elements frequently
encountered in the eligibility criteria of Alzheimer’s disease (AD) clinical trials, using data from
ClinicalTrials.gov. The ontology encompasses a comprehensive range of categories, including
Disease, Medication, Diagnostic Test, Procedure, Rating Criteria, Social Determinants of
Health, and Fertility. Each concept was mapped to the Unified Medical Language System
(UMLS) with assigned Concept Unique Identifiers (CUIs) and annotated with Observational
Health Data Sciences and Informatics (OHDSI) Athena identifiers. We enriched ADCTO
with annotations from resources such as the National Library of Medicine (NLM) Value Set
Authority Center, the National Drug Code (NDC) directory, UMLS Terminology Services,
Codify by the American Academy of Professional Coders (AAPC), and the Phenotype
KnowledgeBase (PheKB). To construct a coherent hierarchy, we integrated established
biomedical ontologies and classification systems, including the Disease Ontology for disease
concepts and DrugBank and the Anatomical Therapeutic Chemical (ATC) classification
system for medications, with refinements informed by domain experts to ensure semantic
precision and relevance.

Compared to existing ontologies, ADCTO maintains a lightweight structure, with 274
classes, 278 logical axioms, and 284 declaration axioms. To evaluate its adequacy, we achieved
a recall of 0.63 (the proportion of ontology-mapped elements relative to all extracted eligibility
elements) and an average term frequency–inverse document frequency (TF-IDF) score of
3.91, indicating ADCTO’s effectiveness in capturing the essential elements of AD eligibility
criteria in a compact and computationally efficient structure.

X. Li et al. 13:11

6.2 AD Clinical Trial Simulation System

We developed the AD Clinical Trial Simulation System, a logic-based platform for designing
and evaluating virtual clinical trials using real-world data. Built on the ADCTO, the system
provides a formally defined and semantically consistent vocabulary to represent key trial
components, including event types, eligibility criteria, interventions, outcomes, and their
temporal dependencies. Users interact with a web-based interface that offers ontology-aligned
dropdown menus, enabling the configuration of trial components without the need for manual
coding. These selections are automatically compiled into formal representations, allowing for
precise and interpretable modeling of trial logic. The simulation engine leverages TEL to
capture and enforce time-dependent relationships among clinical events. All components are
temporally anchored to a defined index event, enabling precise sequencing of trial activities.
The system supports fixed and flexible timelines and allows retrospective simulations using
observational data. It is designed to bridge the gap between descriptions of natural language
protocols and formal computational models. The user interface reflects the core vision of the
system, which is to democratize formal trial design by making logical and ontological structures
accessible to clinical researchers without requiring expertise in logic or programming.

A. Trial
Components

B.2 Timeline visualization & configuration

B. Trial builder

B.1 General trial information

C. AD ontology navigation

E. Criteria builder

Click to save

F. Trial management

E.1. Dropdown menu
of AD ontology terms

D. Temporal
constraints

(a)

(b)

Figure 1 The interface of the AD clinical trial simulation system.

TIME 2025

13:12 TEL on Clinical Trials

Figure 1 illustrates the user interface of our system. Figure 1.(a).A shows the components
of a clinical trial and allows users to click on each element to begin configuring it. Fig-
ure 1.(a).B showcases the trial builder, with subpanels B.1 and B.2 displaying interfaces
for entering trial information and configuring timeline parameters. Figure 1(b) illustrates
the configuration interface for specifying Inclusion Criteria, which serves as a representative
example; similar interfaces are employed across other trial components to ensure consistency
and usability. Figure 1.(b).C presents the ontology navigation interface, enabling users to
explore standardized ADCTO terms. Figure 1.(b).D and E highlight the specification of
temporal constraints and eligibility criteria, with E.1 featuring a dropdown menu populated
by ontology-aligned terms. Finally, Figure 1.(b).F depicts the trial management interface,
where users can review and save configured trials. Configured trials are automatically trans-
lated into formal TEL expressions and executed against real-world EHR datasets to simulate
trial behavior and validate protocol feasibility. This enables researchers to assess cohort
sizes, timing constraints, and outcome trajectories in silico. The system was implemented
using Ruby on Rails [15] with a Model-View-Controller (MVC) architecture and used Mon-
goDB [3] as the backend database to support scalable, document-based storage of evolving
trial representations and large-scale simulations.

The interface serves as an authoring tool and compilation engine, generating formal TEL
models from high-level trial designs. Each session outputs a reusable TEL expression anchored
by start and index events, enriched with modal and quantified constraints. These specifications
support downstream tasks such as simulation, model-checking, and validation against EHR
or registry data. The platform enforces an ontology-driven workflow that enhances semantic
clarity, reduces variability, and promotes reuse across studies. Aligned with standardized
vocabularies, it enables integration with external data models and supports automated
reasoning. Designed for longitudinal datasets, the system facilitates rapid prototyping,
cohort selection, and eligibility screening. Each simulation is saved as a machine-readable
specification that adheres to FAIR (Findable, Accessible, Interoperable, Reusable) data
principles, supporting reproducibility, version control, and collaboration across institutions.

7 Discussion

The simulation system implements a formal, TEL-based approach for specifying and simu-
lating clinical trials, supporting ontology-driven configuration and automatic translation of
protocol elements into logical expressions. The system represents an early-stage prototype
designed to establish the feasibility of logic-based trial modeling and virtual execution.
Development priorities include extending the reasoning engine, improving user interface inter-
activity, supporting integration with large-scale observational data platforms, and enabling
export of TEL specifications in interoperable formats aligned with common data models.
These enhancements will allow the platform to support complex protocol designs and to
enable real-time simulation of cohort definitions and outcome trajectories. The current
system implements a pipeline that maps user interface inputs directly to TEL formulas.
Trial designers specify protocol elements using dropdown menus populated from ADCTO,
including time constraints and event types. These inputs are compiled into formal TEL ex-
pressions through structured templates that preserve both syntactic correctness and semantic
alignment. Patient medical records are represented as temporally indexed sequences of coded
events, enabling the TEL engine to evaluate whether a given specification is satisfied at any
admissible index point in the record.

X. Li et al. 13:13

TEL is undecidable in its general form [48]; however, the fragment used in this study avoids
intractable features such as unrestricted quantifier alternation and deeply nested temporal
operators. It relies on existential quantification and time-bounded modal constructs, allowing
finite evaluation over RWD. We have developed and preliminarily validated algorithms for
this purpose, with several manuscripts in preparation detailing their design, implementation,
and performance benchmarking. These works will also introduce interval-based extensions
to model durations between temporally disjoint events. Formal characterization of the
fragment’s decidability and complexity remains a key direction for ensuring scalability.

In its current form, TEL supports point-based reasoning with relative offsets and can
explicitly model upper bounds on absolute time intervals between events. Using the modal
operators ♢t (diamond) and □t (box) with time parameters, TEL can precisely define both
lower and upper bounds for the occurrence of events. For example, □tφ ensures that a
condition φ holds continuously for a duration of t time units, while ♢tφ guarantees that
φ becomes true at some point within t units. These constructs provide direct control over
temporal constraints, which is critical in clinical trial protocols where the timing of events,
such as symptom onset, dosing intervals, or outcome assessments, is clinically significant.
This expressiveness allows TEL to model temporally bounded windows of clinical relevance
and supports fine-grained specification of interval-based requirements.

TEL has focused on clinical trial modeling, but there is a range of related efforts that
address temporal representations in healthcare processes, such as clinical guidelines, care
pathways, and decision-intensive workflows. Relevant work includes temporal workflow models
for clinical pathways [7], decision modeling frameworks for chronic care management [8], and
Business Process Model and Notation (BPMN)-based systems [24] for perioperative processes.
Other studies have explored mobile delivery of guideline-based decision support [38], ontology-
based search and reasoning over clinical protocols [27], and logic-based eligibility verification
for trials [23]. Metric and interval temporal logic approaches have been applied to model
timing constraints in clinical practice guidelines [37, 47]. Our approach complements these
efforts by offering a logic tailored for patient-level temporal event alignment with computable
representations integrated into simulation engines and ontology-driven user interfaces.

Finally, TEL captures temporal and structural dependencies, but clinical trials often
involve normative constraints. Deontic logic provides a formal foundation for representing
requirements such as obligations, prohibitions, and permissions. Integrating deontic logic
into the TEL framework may enable richer modeling of regulatory rules, protocol compliance,
and adaptive trial conditions. This direction will enhance the system’s ability to represent
real-world clinical scenarios that involve both temporal precision and rule-governed behaviors.

8 Conclusion

This study presents a TEL-based framework for modeling clinical trials through precise,
formal logic representations of temporal relationships among clinical events. It addresses
key limitations in current trial design, including the lack of formal temporal reasoning and
unstructured protocol specifications. We developed a logic-based simulation system and the
ADCT Ontology to standardize trial components and support formal reasoning. The system
includes an ontology-driven user interface that enables domain experts to configure trials
without coding, facilitating reproducible virtual trial design, feasibility analysis, and cohort
simulation. The methodology generalizes to other domains requiring semantically rigorous
and temporally aligned trial models. TEL has limited direct support from widely available
verification or modeling platforms, and future work will focus on developing dedicated
implementations to enhance its adoption and usability.

TIME 2025

13:14 TEL on Clinical Trials

References
1 Klaus-Peter Adlassnig, Carlo Combi, Amar K Das, Elpida T Keravnou, and Giuseppe Pozzi.

Temporal representation and reasoning in medicine: Research directions and challenges.
Artificial intelligence in medicine, 38(2):101–113, 2006. doi:10.1016/J.ARTMED.2006.10.001.

2 Franz Baader, Stefan Borgwardt, Patrick Koopmann, Ana Ozaki, and Veronika Thost. Metric
temporal description logics with interval-rigid names. ACM Transactions on Computational
Logic (TOCL), 21(4):1–46, 2020. doi:10.1145/3399443.

3 Shannon Bradshaw, Eoin Brazil, and Kristina Chodorow. MongoDB: the definitive guide:
powerful and scalable data storage. O’Reilly Media, Inc., 2019.

4 Zhaoyi Chen, Hansi Zhang, Yi Guo, Thomas J George, Mattia Prosperi, William R Hogan,
Zhe He, Elizabeth A Shenkman, Fei Wang, and Jiang Bian. Exploring the feasibility of
using real-world data from a large clinical data research network to simulate clinical trials of
alzheimer’s disease. NPJ digital medicine, 4(1):84, 2021. doi:10.1038/S41746-021-00452-1.

5 Shein-Chung Chow and Mark Chang. Adaptive design methods in clinical trials–a review.
Orphanet journal of rare diseases, 3:1–13, 2008.

6 Edmund M Clarke. Model checking. In Foundations of Software Technology and Theoretical
Computer Science: 17th Conference Kharagpur, India, December 18–20, 1997 Proceedings 17,
pages 54–56. Springer, 1997.

7 Carlo Combi, Mauro Gambini, Sara Migliorini, and Roberto Posenato. Representing business
processes through a temporal data-centric workflow modeling language: An application to
the management of clinical pathways. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 44(9):1182–1203, 2014. doi:10.1109/TSMC.2014.2300055.

8 Carlo Combi, Barbara Oliboni, Alessandro Zardini, and Francesca Zerbato. A methodological
framework for the integrated design of decision-intensive care pathways—an application to the
management of copd patients. Journal of Healthcare Informatics Research, 1(2):157–217, 2017.
doi:10.1007/S41666-017-0007-4.

9 Dario Della Monica, Valentin Goranko, Angelo Montanari, Guido Sciavicco, et al. Interval
temporal logics: a journey. Bulletin of EATCS, 3(105), 2013.

10 Kevin Donnelly et al. Snomed-ct: The advanced terminology and coding system for ehealth.
Studies in health technology and informatics, 121:279, 2006.

11 Scott R Evans, Dianne Paraoan, Jane Perlmutter, Sudha R Raman, John J Sheehan, and
Zachary P Hallinan. Real-world data for planning eligibility criteria and enhancing recruitment:
recommendations from the clinical trials transformation initiative. Therapeutic Innovation &
Regulatory Science, 55(3):545–552, 2021.

12 Tom Faciszewski, Ron Jensen, and Richard L Berg. Procedural coding of spinal surgeries (cpt-4
versus icd-9-cm) and decisions regarding standards: a multicenter study. Spine, 28(5):502–507,
2003.

13 Laura Giordano, Paolo Terenziani, Alessio Bottrighi, Stefania Montani, and Loredana Donzella.
Model checking for clinical guidelines: an agent-based approach. In Amia annual symposium
proceedings, volume 2006, page 289, 2006.

14 Valentin Goranko and Antje Rumberg. Temporal logic. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, summer
2020 edition, 2020. URL: https://plato.stanford.edu/entries/logic-temporal/.

15 Michael Hartl. Ruby on rails tutorial: learn Web development with rails. Pearson Education,
2013.

16 JA Hirsch, G Nicola, G McGinty, RW Liu, RM Barr, MD Chittle, and L Manchikanti. Icd-10:
history and context. American Journal of Neuroradiology, 37(4):596–599, 2016.

17 Yan Huang, Xiaojin Li, Deepa Dongarwar, Hulin Wu, and Guo-Qiang Zhang. Data mining
pipeline for covid-19 vaccine safety analysis using a large electronic health record. AMIA
Summits on Translational Science Proceedings, 2023:271, 2023.

18 JM Juarez, M Campos, A Morales, J Palma, and R Marin. Applications of temporal reasoning
to intensive care units. Journal of Healthcare Engineering, 1(4):615–636, 2010.

https://doi.org/10.1016/J.ARTMED.2006.10.001
https://doi.org/10.1145/3399443
https://doi.org/10.1038/S41746-021-00452-1
https://doi.org/10.1109/TSMC.2014.2300055
https://doi.org/10.1007/S41666-017-0007-4
https://plato.stanford.edu/entries/logic-temporal/

X. Li et al. 13:15

19 Hui C Kimko and Stephen B Duffull. Simulation for designing clinical trials. Marcel Dekker
Incorporated, 2002.

20 K Lee, Y Mai, Z Liu, K Raja, T Jun, M Ma, T Wang, L Ai, E Calay, W Oh, et al.
Criteriamapper: establishing the automatic identification of clinical trial cohorts from electronic
health records by matching normalized eligibility criteria and patient clinical characteristics.
Scientific Reports, 14(1):25387, 2024.

21 Fang Li, Jingcheng Du, Yongqun He, Hsing-Yi Song, Mohcine Madkour, Guozheng Rao, Yang
Xiang, Yi Luo, Henry W Chen, Sijia Liu, et al. Time event ontology (teo): to support semantic
representation and reasoning of complex temporal relations of clinical events. Journal of
the American Medical Informatics Association, 27(7):1046–1056, 2020. doi:10.1093/JAMIA/
OCAA058.

22 Xiaojin Li, Shiqiang Tao, Samden D Lhatoo, Licong Cui, Yan Huang, Johnson P Hampson,
and Guo-Qiang Zhang. A multimodal clinical data resource for personalized risk assessment
of sudden unexpected death in epilepsy. Frontiers in big Data, 5:965715, 2022. doi:10.3389/
FDATA.2022.965715.

23 Deryle W Lonsdale, Clint Tustison, Craig G Parker, and David W Embley. Assessing clinical
trial eligibility with logic expression queries. Data & Knowledge Engineering, 66(1):3–17, 2008.
doi:10.1016/J.DATAK.2007.07.005.

24 Matteo Mantovani, Andrea Caravati, Giuseppe Pozzi, Carlo Combi, and Roberto Salvia. A
bpmn-based framework to manage eras-inspired pathway for patients undergoing pancreatic
surgery. In 2023 IEEE 11th International Conference on Healthcare Informatics (ICHI), pages
21–31. IEEE, 2023. doi:10.1109/ICHI57859.2023.00015.

25 Clement J McDonald, Stanley M Huff, Jeffrey G Suico, Gilbert Hill, Dennis Leavelle, Raymond
Aller, Arden Forrey, Kathy Mercer, Georges DeMoor, John Hook, et al. Loinc, a universal
standard for identifying laboratory observations: a 5-year update. Clinical chemistry, 49(4):624–
633, 2003.

26 Julia E McGuinness, Gauri Bhatkhande, Jacquelyn Amenta, Thomas Silverman, Jennie Mata,
Ashlee Guzman, Ting He, Jill Dimond, Tarsha Jones, Rita Kukafka, et al. Strategies to
identify and recruit women at high risk for breast cancer to a randomized controlled trial of
web-based decision support tools. Cancer Prevention Research, 15(6):399–406, 2022.

27 Robert Moskovitch and Yuval Shahar. Vaidurya: a multiple-ontology, concept-based, context-
sensitive clinical-guideline search engine. Journal of Biomedical Informatics, 42(1):11–21, 2009.
doi:10.1016/J.JBI.2008.07.003.

28 Stuart J Nelson, Kelly Zeng, John Kilbourne, Tammy Powell, and Robin Moore. Normalized
names for clinical drugs: Rxnorm at 6 years. Journal of the American Medical Informatics
Association, 18(4):441–448, 2011. doi:10.1136/AMIAJNL-2011-000116.

29 Joël Ouaknine and James Worrell. Safety metric temporal logic is fully decidable. In
International conference on tools and algorithms for the construction and analysis of systems,
pages 411–425. Springer, 2006. doi:10.1007/11691372_27.

30 Martin J O’Connor, Ravi D Shankar, David B Parrish, and Amar K Das. Knowledge-data
integration for temporal reasoning in a clinical trial system. International journal of medical
informatics, 78:S77–S85, 2009. doi:10.1016/J.IJMEDINF.2008.07.013.

31 Irene Petersen, Ian Douglas, and Heather Whitaker. Self controlled case series methods: an
alternative to standard epidemiological study designs. bmj, 354, 2016.

32 Steven Piantadosi. Clinical trials: a methodologic perspective. John Wiley & Sons, 2024.
33 Amir Pnueli. The temporal logic of programs. In 18th annual symposium on foundations of

computer science (sfcs 1977), pages 46–57. ieee, 1977. doi:10.1109/SFCS.1977.32.
34 Rachel L Richesson, James E Andrews, and Kate Fultz Hollis. Clinical research informatics.

Springer, 2012.
35 James R Rogers, Junghwan Lee, Ziheng Zhou, Ying Kuen Cheung, George Hripcsak, and

Chunhua Weng. Contemporary use of real-world data for clinical trial conduct in the united
states: a scoping review. Journal of the American Medical Informatics Association, 28(1):144–
154, 2021. doi:10.1093/JAMIA/OCAA224.

TIME 2025

https://doi.org/10.1093/JAMIA/OCAA058
https://doi.org/10.1093/JAMIA/OCAA058
https://doi.org/10.3389/FDATA.2022.965715
https://doi.org/10.3389/FDATA.2022.965715
https://doi.org/10.1016/J.DATAK.2007.07.005
https://doi.org/10.1109/ICHI57859.2023.00015
https://doi.org/10.1016/J.JBI.2008.07.003
https://doi.org/10.1136/AMIAJNL-2011-000116
https://doi.org/10.1007/11691372_27
https://doi.org/10.1016/J.IJMEDINF.2008.07.013
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1093/JAMIA/OCAA224

13:16 TEL on Clinical Trials

36 James R Rogers, Jovana Pavisic, Casey N Ta, Cong Liu, Ali Soroush, Ying Kuen Cheung,
George Hripcsak, and Chunhua Weng. Leveraging electronic health record data for clinical
trial planning by assessing eligibility criteria’s impact on patient count and safety. Journal of
biomedical informatics, 127:104032, 2022. doi:10.1016/J.JBI.2022.104032.

37 Guido Sciavicco, Jose M Juarez, and Manuel Campos. Quality checking of medical guidelines
using interval temporal logics: A case-study. In International Work-Conference on the Interplay
Between Natural and Artificial Computation, pages 158–167. Springer, 2009.

38 Erez Shalom, Ayelet Goldstein, Elior Ariel, Moshe Sheinberger, Valerie Jones, Boris
Van Schooten, and Yuval Shahar. Distributed application of guideline-based decision support
through mobile devices: Implementation and evaluation. Artificial Intelligence in Medicine,
129:102324, 2022. doi:10.1016/J.ARTMED.2022.102324.

39 Ravi D Shankar, Susana B Martins, Martin J O’Connor, David B Parrish, and Amar K
Das. Representing and reasoning with temporal constraints in clinical trials using semantic
technologies. In Biomedical Engineering Systems and Technologies: International Joint
Conference, BIOSTEC 2008 Funchal, Madeira, Portugal, January 28-31, 2008 Revised Selected
Papers 1, pages 520–530. Springer, 2009. doi:10.1007/978-3-540-92219-3_39.

40 Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. Temporal reasoning over clinical text: the
state of the art. Journal of the American Medical Informatics Association, 20(5):814–819,
2013. doi:10.1136/AMIAJNL-2013-001760.

41 Tatsunori Tanaka, Fi Zheng, Kai Sato, Zhifeng Li, Yuanyun Zhang, and Shi Li. Temporal entail-
ment pretraining for clinical language models over ehr data. arXiv preprint arXiv:2504.18128,
2025. doi:10.48550/arXiv.2504.18128.

42 Cui Tao, Harold R Solbrig, and Christopher G Chute. Cntro 2.0: a harmonized semantic
web ontology for temporal relation inferencing in clinical narratives. AMIA summits on
translational science proceedings, 2011:64, 2011.

43 Cui Tao, Wei-Qi Wei, Harold R Solbrig, Guergana Savova, and Christopher G Chute. Cntro:
a semantic web ontology for temporal relation inferencing in clinical narratives. In AMIA
annual symposium proceedings, volume 2010, page 787, 2010.

44 U.S. National Library of Medicine. Effect of Different Doses of SAR110894 on Cognition in
Patients With Mild to Moderate Alzheimer’s Disease on Donepezil. https://clinicaltrials.
gov/study/NCT01266525, 2011. ClinicalTrials.gov Identifier: NCT01266525.

45 Moshe Y Vardi. Model checking for database theoreticians. In International Conference on
Database Theory, pages 1–16. Springer, 2005. doi:10.1007/978-3-540-30570-5_1.

46 Heather J Whitaker and Yonas Ghebremichael-Weldeselassie. Self-controlled case series
methodology. Annual review of statistics and its application, 6(1):241–261, 2019.

47 Morteza Yousef Sanati, Wendy MacCaull, and Thomas SE Maibaum. Analyzing clinical
practice guidelines using a decidable metric interval-based temporal logic. In International
Symposium on Formal Methods, pages 611–626. Springer, 2014.

48 Guo-Qiang Zhang. Temporal ensemble logic. arXiv preprint arXiv:2408.14443, 2024. doi:
10.48550/arXiv.2408.14443.

49 Guo-Qiang Zhang, Licong Cui, Remo Mueller, Shiqiang Tao, Matthew Kim, Michael Ruesch-
man, Sara Mariani, Daniel Mobley, and Susan Redline. The national sleep research resource:
towards a sleep data commons. Journal of the American Medical Informatics Association,
25(10):1351–1358, 2018. doi:10.1093/JAMIA/OCY064.

https://doi.org/10.1016/J.JBI.2022.104032
https://doi.org/10.1016/J.ARTMED.2022.102324
https://doi.org/10.1007/978-3-540-92219-3_39
https://doi.org/10.1136/AMIAJNL-2013-001760
https://doi.org/10.48550/arXiv.2504.18128
https://clinicaltrials.gov/study/NCT01266525
https://clinicaltrials.gov/study/NCT01266525
https://doi.org/10.1007/978-3-540-30570-5_1
https://doi.org/10.48550/arXiv.2408.14443
https://doi.org/10.48550/arXiv.2408.14443
https://doi.org/10.1093/JAMIA/OCY064

QualiNet: Acquiring Bird’s Eye View Qualitative
Spatial Representation from 2D Images in
Automated Vehicle Perception
Nassim Belmecheri #

Simula Research Laboratory, Oslo, Norway

Abstract
We present QualiNet, an end-to-end deep learning framework that acquires Bird’s Eye View (BEV)
qualitative spatial relations directly from 2D images, eliminating the need for depth sensors. The
system combines 2D object detection, masking, and classification to infer Rectangle Algebra (RA)
and Qualitative Distance Calculus (QDC) relations. Evaluated on NuScenes and PandaSet datasets,
QualiNet achieves 91% accuracy for RA, 80% for QDC, and 99% top-2 accuracy, demonstrating
robust performance for automated vehicle perception.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Computing
methodologies → Spatial and physical reasoning; Computing methodologies → Scene understanding

Keywords and phrases Qualitative Spatial Representation, Deep Learning, Computer vision, Qualit-
ative Scene Understanding, Spatio-temporal representation and reasoning models (including moving
objects tracking)

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.14

Category Short Paper

Supplementary Material Software (Source code): https://github.com/nassimbel/QualiNet.git [3]
archived at swh:1:dir:a4900663aeb84632699b0217f7a7f98014466c00

Funding This work is funded by the European Commission through the AI4CCAM project (Trust-
worthy AI for Connected, Cooperative Automated Mobility) under grant agreement No 101076911.

Acknowledgements I would like to thank my colleagues Arnaud Gotlieb, Nadjib Lazaar and Helge
Spieker for the fruitful discussions and continuous support.

1 Introduction

Automated vehicle perception traditionally relies on quantitative methods that struggle with
complex real-world scenarios [1]. Qualitative representations offer a promising alternative
by capturing relative spatial relationships through calculi like Rectangle Algebra (RA)
and Qualitative Distance Calculus (QDC) [15]. These methods simplify complex spatial
information while aligning with human reasoning patterns [16, 2].

Current approaches for building qualitative representations [8, 4] typically require expens-
ive sensors (LiDAR, depth cameras) and significant computational resources. We present
QualiNet, an end-to-end deep learning framework that acquires Bird’s Eye View (BEV)
qualitative representations directly from 2D images using object detection and classification.
Our method is validated on NuScenes [6] and PandaSet [18] datasets.

2 Related Work

Recent advances have demonstrated the effectiveness of qualitative representations across
multiple domains. In action recognition, qualitative state transitions [19, 14] and relation
chains [12] have proven valuable for capturing action semantics. For autonomous driving,

© Nassim Belmecheri;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 14; pp. 14:1–14:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nassim@simula.no
https://orcid.org/0000-0003-3436-0154
https://doi.org/10.4230/LIPIcs.TIME.2025.14
https://github.com/nassimbel/QualiNet.git
https://archive.softwareheritage.org/swh:1:dir:a4900663aeb84632699b0217f7a7f98014466c00;origin=https://github.com/nassimbel/QualiNet;visit=swh:1:snp:425d9e3015b7c13a2d10dfb966d88146d85121d7;anchor=swh:1:rev:95ded8256592cacf31eeca422dd61aa8515f74ad
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

14:2 QualiNet: BEV Qualitative Spatial Representation of Automated Driving Perception

neuro-symbolic integration [17] and BEV qualitative representations [2] enhance both scene
understanding and system explainability. Spatial knowledge acquisition methods show
particular diversity, ranging from implicit templates [9] to force histograms [5] and hybrid
symbolic-neural approaches [10]. While current methods typically depend on 3D sensors [13],
our QualiNet system uniquely acquires BEV spatial relations directly from 2D images,
eliminating the need for specialized depth sensing hardware.

Background

Perception in Automated Vehicles
Perception is crucial for automated vehicles to understand and interact with their environment.
This involves processing data from various sensors like LiDAR, radar, and cameras [1].

2D perception, primarily using cameras, analyzes images to identify objects but lacks
depth information, making distance and size estimation challenging [11].

3D perception overcomes this limitation by incorporating depth information from stereo
cameras or LiDAR. This enables accurate spatial understanding and object localization, vital
for safe and reliable autonomous navigation [7].

Qualitative Spatial Calculus
A qualitative calculus operates over domain D (e.g., R2) with binary relations Γ =
{r1, . . . , rm} that are jointly exhaustive and pairwise disjoint. We employ:

QDC [15]: Distance relations (very close, close, normal, far)
RA [15]: Rectangle relations from Allen’s Interval Algebra (before, meets, overlaps, etc.)
on x/y axes

A scene S = (V, O, R) consists of frames V , objects O, and their relations R.

Transforming Images into BEV Qualitative Constraint Networks
We represent detected objects and their spatial relations as a qualitative graph G = (O,R),
where O is the set of objects and R their qualitative relations from language Γ. Each object
belongs to a single category (e.g., car, pedestrian).

Using the ego vehicle as reference object o0, we construct a star graph G∗ = (O,R∗)
with relations between o0 and other objects. The complete graph G is built through relation
composition: Rij = R0i ◦R0j ∀(oi, oj) ∈ O2, i ̸= j using path consistency enforcement [15]
until convergence.

Image to Relation Data Construction
We denote by D = {(Ii,R∗

i , o0)}N
i=1 a dataset of tuples consisting of 2D images Ii, qualitative

relations R∗
i between BEV detected objects and the reference object o0 (ego vehicle). This

dataset serves as the training data for QualiNet, enabling the model to learn the mapping
between visual information and qualitative spatial relations.

Consider I2BEVQR as a function that maps a 2D image I to the set of qualitative
relations R∗ between the detected objects and the reference object o0. I2BEVQR takes a 2D
image I as input and outputs the set of qualitative relations R∗ between the detected objects
and the reference object o0. R∗ represents the labels for I. For each image, the function
extracts the objects with their categories and bounding boxes, including the ego-vehicle. It

N. Belmecheri 14:3

then constructs a star graph with the ego-vehicle as the central node and other objects as
peripheral nodes. Using the QXG-builder tool [4, 2] and the specified algebra, it determines
the qualitative spatial relations between the ego-vehicle and each object. These relations,
along with the image and the ego-vehicle information, are added to the dataset.

Learning to Acquire Qualitative Relations
We defineM as a function that takes a 2D image I and returns a binary mask M indicating
the presence of detected objects: M : I → M where M is a binary matrix of dimensions
H ×W such that:

M(i, j) =
{

1 if pixel (i, j) belongs to a detected object
0 otherwise

This masking process helps to focus the attention of the deep learning model on the
relevant regions of the image, improving the accuracy and efficiency of spatial relation
extraction.

The QualiNet (Algorithm 1) takes as input the training dataset, learning rate, number
of epochs, and predefined architectures for the CNN and the MLPclassifier. It outputs a
trained QualiNet model.

Algorithm 1 QualiNet Training Algorithm.

Input: Dataset D = {(Ii,R∗
i , o0i)}N

i=1, Epochs E, CNN architecture, MLPClassifier
architecture

Output: Trained QualiNet model FQualiNet
Initialize CNN with a predefined architecture
Initialize Classifier with a predefined architecture
for epoch← 1 to E do

for (I,R∗, o0) ∈ D do
for oj ∈ O \ {o0} do

M ←M(I, oj)
Fj ← CNN(M)
R̂0j ← MLPClassifier(Fj)
L← Loss(R̂0j ,R∗

j)
Update parameters of CNN and Classifier using gradient descent

return FQualiNet

3 Experiments

This section outlines the experimental setup and results for evaluating QualiNet’s performance.
Since our approach is novel, there are no direct baselines for comparison. Instead, we focus
on showcasing QualiNet’s capabilities and analyzing its behavior. Our evaluation aims to
investigate how accurate is QualiNet’s top predictions (Top 1 and Top 2 accuracy)?

We used the NuScenes [6] dataset for evaluation. NuScenes includes diverse urban scenes
captured from multiple sensors. We utilized both the full dataset (NuScenes-Large) and a
smaller subset (NuScenes-mini).

TIME 2025

14:4 QualiNet: BEV Qualitative Spatial Representation of Automated Driving Perception

QualiNet is implemented in PyTorch using a ResNet-152 CNN for feature extraction and
an MLP for classification. The model is trained with SGD and a learning rate scheduler.
Data is split 70:30 for training and validation, and performance is evaluated over five runs
using Top 1 and Top 2 accuracy.

The original dataset exhibited severe imbalance: QDC “far” (42% samples) vs “very close”
(3%). After augmentation, all relations have 500±20 samples.

We assess QualiNet’s performance using the following metrics:
Accuracy (Top 1): Percentage of correct top predictions. Accuracy (Top 2): Per-

centage of cases where the correct relation is among the top two predictions.
All datasets were transformed using the I2BEV function to generate the training and

testing data. During data construction, impossible RA relations for each camera were
removed to ensure the training data accurately reflects observable spatial relationships.

The code for QualiNet and the experiments presented in this paper is available at:
https://drive.google.com/drive/folders/1K9ViuyM4s_IwkcaCd3b1KYAhh0P3j1BH?usp=sharing

3.1 Results

The results presented in this section are averaged over all the datasets test sets used in the
evaluation.

Table 1 Top-1 and Top-2 Accuracy by camera: CF (Front), CFL (Front-Left), CFR (Front-Right),
CB (Back), CBL (Back-Left), CBR (Back-Right).

SensorRelationTop-1 AccuracyTop-2 Accuracy
CF RA 0.93 0.98

CFL RA 0.92 0.96
CFR RA 0.92 0.96
CB RA 0.94 0.99

CBL RA 0.88 0.93
CBR RA 0.89 0.96
CF QDC 0.78 0.94

CFL QDC 0.78 0.93
CFR QDC 0.77 0.93
CB QDC 0.77 0.94

CBL QDC 0.78 0.94
CBR QDC 0.78 0.93

Table 1 presents the Top-1 and Top-2 accuracy of QualiNet for different camera sensors
and relation types. As shown, the Top-1 accuracy ranges from 76% to 94%. However, the
Top-2 accuracy is consistently higher, ranging from 90% to 99%. This indicates that even
when QualiNet’s top prediction is not the exact ground truth relation, it often includes the
true relation within its top two guesses. This observation answers RQ1 by demonstrating
that QualiNet exhibits high accuracy in predicting spatial relations, particularly when
considering the Top-2 accuracy, which is important for building satisfiable qualitative graphs.
The model has some limitation that will be addressed in future works. The limitations
include: Small/Distant Objects: Performance degrades for objects <50px in size (15%
accuracy drop) due to limited visual information. Detection Sensitivity: Sensitive to
object detection errors (10% error propagation to relation classification).

https://drive.google.com/drive/folders/1K9ViuyM4s_IwkcaCd3b1KYAhh0P3j1BH?usp=sharing

N. Belmecheri 14:5

4 Conclusion

We presented QualiNet, a novel framework for acquiring BEV qualitative spatial relations
directly from 2D images, eliminating the need for expensive depth sensors. Experimental
results demonstrated high accuracy (>90% Top-2) across multiple relation types and camera
views, with 92% of predicted graphs being fully consistent. Future work will extend QualiNet
to dynamic scenes and enhanced occlusion handling.

References
1 C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi, L. Jesus,

R. Berriel, T. M. Paixão, F. Mutz, et al. Self-driving cars: A survey. Expert Systems with
Applications, 165:113816, 2021. doi:10.1016/J.ESWA.2020.113816.

2 N. Belmecheri, A. Gotlieb, N. Lazaar, and H. Spieker. Toward trustworthy automated driving
through qualitative scene understanding and explanations. SAE Int. J. CAV, 8(1), 2024.
doi:10.4271/12-08-01-0003.

3 Nassim Belmecheri. QualiNet. Software, swhId: swh:1:dir:a4900663aeb84632699b0217f7a7f98014466c00
(visited on 2025-09-18). URL: https://github.com/nassimbel/QualiNet.git,
doi:10.4230/artifacts.24755.

4 Nassim Belmecheri, Arnaud Gotlieb, Nadjib Lazaar, and Helge Spieker. Acquiring qualitative
explainable graphs for automated driving scene interpretation. arXiv, August 2023. arXiv:
2308.12755.

5 Rajkumar Bondugula, Pascal Matsakis, and James M Keller. Force histograms and neural net-
works for human-based spatial relationship generalization. In Proceedings of the International
Conference on Neural Networks and Computational Intelligence, pages 185–190, 2004.

6 Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. arXiv, 2019. arXiv:1903.11027.

7 Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection
network for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1907–1915, 2017.

8 AG Cohn, C Burbridge, DC Hogg, M Alomari, N Hawes, P Duckworth, P Lightbody, Y Gat-
soulis, Christian Dondrup, and Marc Hanheide. Qsrlib: a software library for online acquisition
of qualitative spatial relations from video. In 29th International Workshop on Qualitative
Reasoning (QR’16). New York City, 2016.

9 Guillem Collell, Luc Van Gool, and Marie-Francine Moens. Acquiring common sense spatial
knowledge through implicit spatial templates. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32(1), 2018.

10 Ivan Donadello, Luciano Serafini, and Artur S d’Avila Garcez. Logic tensor networks for
semantic image interpretation. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence, pages 1596–1602, 2017. doi:10.24963/IJCAI.2017/221.

11 Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3354–3361. IEEE, 2012. doi:10.1109/CVPR.2012.6248074.

12 Hua Hua, Dongxu Li, Ruiqi Li, Peng Zhang, Jochen Renz, and Anthony Cohn. Towards
explainable action recognition by salient qualitative spatial object relation chains. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI-22), 2022. doi:10.1609/aaai.v36i5.
20513.

13 Sang Uk Lee, Sungkweon Hong, Andreas Hofmann, and Brian Williams. Qsrnet: Estimating
qualitative spatial representations from rgb-d images. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 8057–8064, 2020. doi:10.1109/
IROS45743.2020.9341452.

TIME 2025

https://doi.org/10.1016/J.ESWA.2020.113816
https://doi.org/10.4271/12-08-01-0003
https://archive.softwareheritage.org/swh:1:dir:a4900663aeb84632699b0217f7a7f98014466c00;origin=https://github.com/nassimbel/QualiNet;visit=swh:1:snp:425d9e3015b7c13a2d10dfb966d88146d85121d7;anchor=swh:1:rev:95ded8256592cacf31eeca422dd61aa8515f74ad
https://github.com/nassimbel/QualiNet.git
https://doi.org/10.4230/artifacts.24755
https://arxiv.org/abs/2308.12755
https://arxiv.org/abs/2308.12755
https://arxiv.org/abs/1903.11027
https://doi.org/10.24963/IJCAI.2017/221
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1609/aaai.v36i5.20513
https://doi.org/10.1609/aaai.v36i5.20513
https://doi.org/10.1109/IROS45743.2020.9341452
https://doi.org/10.1109/IROS45743.2020.9341452

14:6 QualiNet: BEV Qualitative Spatial Representation of Automated Driving Perception

14 Dongxu Li, Enrico Scala, Patrik Haslum, and Sergiy Bogomolov. Effect-abstraction based
relaxation for linear numeric planning. In IJCAI, pages 4787–4793, 2018. doi:10.24963/
IJCAI.2018/665.

15 Jochen Renz and Bernhard Nebel. Qualitative Spatial Reasoning Using Constraint Calculi. In
Handbook of Spatial Logics, pages 161–215. Springer, 2007. doi:10.1007/978-1-4020-5587-4_
4.

16 Jakob Suchan, Mehul Bhatt, and Srikrishna Varadarajan. Commonsense visual sensemaking
for autonomous driving – on generalised neurosymbolic online abduction integrating vision and
semantics. Artificial Intelligence, 299:103522, 2021. doi:10.1016/j.artint.2021.103522.

17 Jakob Suchan, Mehul Bhatt, and Srikrishna Varadarajan. Commonsense visual sensemaking
for autonomous driving – on generalised neurosymbolic online abduction integrating vision
and semantics. Artificial Intelligence, 295:103458, 2021.

18 Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang, Xiaolin Chai, Judy Jiao, Zesong Li,
Jian Wu, Kai Sun, Kun Jiang, et al. Pandaset: Advanced sensor suite dataset for autonomous
driving. In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC),
pages 3095–3101. IEEE, 2021.

19 Tao Zhuo, Zhiyong Cheng, Peng Zhang, Yongkang Wong, and Mohan Kankanhalli. Explainable
video action reasoning via prior knowledge and state transitions. In Proceedings of the 27th acm
international conference on multimedia, pages 521–529, 2019. doi:10.1145/3343031.3351040.

https://doi.org/10.24963/IJCAI.2018/665
https://doi.org/10.24963/IJCAI.2018/665
https://doi.org/10.1007/978-1-4020-5587-4_4
https://doi.org/10.1007/978-1-4020-5587-4_4
https://doi.org/10.1016/j.artint.2021.103522
https://doi.org/10.1145/3343031.3351040

The Temporal Vadalog System
Luigi Bellomarini #

Bank of Italy, Rome, Italy

Livia Blasi #

TU Wien, Vienna, Austria
Bank of Italy, Rome, Italy

Markus Nissl #

TU Wien, Vienna, Austria

Emanuel Sallinger #

TU Wien, Vienna, Austria
University of Oxford, Oxford, UK

Abstract
The recent resurgence of the Datalog language in the Knowledge Representation and Reasoning
community has paved the way for a very promising proposal for temporal extension. DatalogMTL
(Datalog with Metric Temporal Operators) is a language that offers a good trade-off between
computational complexity and expressive power. However, existing implementations are still
preliminary or prototypical. In this extended abstract, we give a brief overview of Temporal Vadalog,
a system supporting reasoning over DatalogMTL programs built upon an engineered architecture
and adopted in production scenarios in the financial setting.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Information
systems → Database management system engines

Keywords and phrases temporal reasoning, Datalog, DatalogMTL

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.15

Category Short Paper

Related Version This is an extended abstract of a paper previously published on Theory and Practice
of Logic Programming.
Full Version: https://doi.org/10.1017/S1471068425000018 [4]

Funding This work has been supported by the Vienna Science and Technology Fund (WWTF)
[10.47379/ICT2201, 10.47379/VRG18013, 10.47379/NXT22018]; and by the Austrian Science Fund
(FWF) 10.55776/COE12.

1 Introduction

The adoption of Datalog-based systems for Knowledge Representation and Reasoning (KRR)
and their growing application in production settings such as the financial space [1] are going
hand in hand with a wave of research into extensions to Datalog, known as the Datalog±

family [10]. The aim is to strike a good balance between computational complexity and high
expressivity, that is, to incorporate the features needed for real-world applications. In this
context, a key requirement in KRR is native support for time through the reasoning process.

The recent introduction of the extension of Datalog with metric temporal operators, named
DatalogMTL [8], along with the good computational characteristics of its fragments [16, 17, 18],
brought the potential of temporal reasoning to real-world applications, from transport
and robotics, from healthcare to finance. However, the integration of such capabilities
into a production-ready system requires functional and architectural characteristics that

© Luigi Bellomarini, Livia Blasi, Markus Nissl, and Emanuel Sallinger;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 15; pp. 15:1–15:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luigi.bellomarini@bancaditalia.it
https://orcid.org/0000-0001-6863-0162
mailto:livia.blasi@bancaditalia.it
https://orcid.org/0000-0003-0701-1688
mailto:nissl@dbai.tuwien.ac.at
https://orcid.org/0000-0001-8196-5688
mailto:sallinger@dbai.tuwien.ac.at
https://orcid.org/0000-0001-7441-129X
https://doi.org/10.4230/LIPIcs.TIME.2025.15
https://doi.org/10.1017/S1471068425000018
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

15:2 The Temporal Vadalog System

ensure rigorous and efficient implementation of the language in computation and memory
footprints. To our knowledge, all currently existing DatalogMTL implementations remain at
a prototypical stage or are designed primarily for exploratory research [7, 19].

Contribution. Motivated by the need to adopt temporal reasoning in high-stake financial
settings for the Central Bank of Italy, in this extended abstract [4], we introduce the
Temporal Vadalog System, the temporal extension to the Vadalog System, a state-of-the-art
Datalog-based reasoner [2].

Overview. Due to space constraints, the remainder of the paper provides an example-based
glimpse into the functional and non-functional approaches to implementing DatalogMTL in
Vadalog, specifically in Section 2, focussing on joins, and in Section 3, which describes the
architecture. Some preliminaries about DatalogMTL can be found in Appendix A. For a
complete overview, the reader is referred to the full paper [4].

2 Time-Aware Joins and Time Series Operators by Example

To briefly illustrate the capabilities of the system, we proceed by example with a realistic –
albeit simplified – case from the financial domain.

▶ Example 1. A Financial Intelligence Unit (FIU) is an agency responsible for collecting
information about suspicious financial activity to support investigations into money laundering
or terrorism financing. They aim to identify companies with abnormal spending behavior and
investigate the corporate networks they belong to. We describe the scenario by a database D
of temporally annotated facts and the following set Π of DatalogMTL rules.

⊟[0,3]suspiciousActivity(C),¬ [0,7]markedAsSafe(C)→ directSuspicious(C) (1)
directSuspicious(C)→ suspicious(C) (2)

suspicious(C), linked(C , O)→ suspicious(O) (3)

We assume that the reader is familiar with the logic-based formulation of Datalog
syntax, with the body of a rule (left-hand side) being the implication premise, a logical
conjunction of predicate over terms (i.e., constants or variables), while the head (right-
hand side) is the implication conclusion. Ignoring the temporal angle, Rule 1 describes the
conditions (company C involved in suspiciousActivity while not being markedAsSafe) under
which a company C is marked as directSuspicious, while Rules 2-3 recursively mark every
directSuspicious company C as suspicious (Rule 2) and then proceed to mark every other
company o that is linked to suspicious company C as suspicious as well (Rule 3). Coming
back to Rule 1, we see how the temporal aspect is essential: a company that is markedAsSafe
in a distant past is not thereby exempt from having its current suspiciousActivity scrutinized.
Metric temporal operators are helpful here: assuming day granularity, when prefixed with
⊟[0,3], the atom suspiciousActivity only holds if the atom itself has continuously held in
the interval [t − 0, t − 3] if evaluated at t – the suspiciousActivity continuously held for
the previous 3 days – while with [0,7], markedAsSafe only holds if the clearance occurred
sometime between [t− 0, t− 7]. Let us consider database D:

D =
{suspiciousActivity(A)@[May− 01, May− 04], markedAsSafe(A)@[Apr− 30, Apr− 30],
suspiciousActivity(B)@[May− 02, May− 05], markedAsSafe(B)@[Apr− 21, Apr− 21]}

L. Bellomarini, L. Blasi, M. Nissl, and E. Sallinger 15:3

CLOVER

ROSE

JONQUIL

A0 A1

BEGONIA

ROSE

JONQUIL

MATCH

IRIS @ϱ1

IRIS @ϱ2 ϱ = ϱ1 ∩ ϱ2
MISS

Inner fact
full scanOuter fact Inner fact

dynamic index
Interval
intersection

ϱif not empty
return true

Figure 1 Illustration of an example of a temporal join al-
gorithm execution; atoms with predicates A0 and A1 are joined
on a PlantNameTerm.

Program: EMA

Dataset Vadalog InfluxDB

NQ1 0.0953 13.989
NQ10 4.8127 34.57
NQ50 74.1943 591.554
NQ100 306.6180 820.992

Figure 2 Experiment results,
expressed in seconds, for the Ex-
ponential Moving Average in Vada-
log and in the TSDB InfluxDB in
the full paper [4]

By applying Rule 1, we see that only company B would be marked as directSuspicious
as it was not markedAsSafe in the 7 days prior to the suspiciousActivity. However, to
compute the conjunction between these two temporal atoms – ⊟[0,3]suspiciousActivity and

[0,7]markedAsSafe – one would need a time-aware join, able to join facts and their temporal
intervals at the same time, while also handling stratified negation.

Temporal Join Algorithm

In Temporal Vadalog, the join algorithm is a temporal interval extension of the slot machine
join of the Vadalog system [2], which is based on the index nested loop join [11]. In particular,
during the first full scan of the inner relation, an in-memory index is constructed, unlike in
the usual algorithms, where a precomputed index is typically present in materialized form.

The algorithm, fully reported in Algorithm 1, intuitively works as follows. Assume we
have two predicates to be joined A0 and A1; first, we use the A1 index to retrieve the next
already-scanned fact that matches the join term(s) from A0 (Line 8). If the index does not
contain such a fact, we pursue the full scan until either a matching fact is found or all facts
have been examined (Lines 10-14). If no further fact is found (Lines 15-22), we continue
the scan with the next A0 (if it exists and if A1 is not negated). In case a fact is found,
independently of whether it is from the index or the full scan, we produce the valid interval
of the joined fact using the join logic (Line 23): difference for a negated literal, intersection
for a positive interval, or a blend of interval operations and set operations for temporal
operators like S (since) and U (Until). In the end, we check whether the resulting interval
is valid, and if not, if A1 is negated, we continue the scan with the next A0 (if it exists)
(Lines 25-29), otherwise we proceed with the loop; if the interval is non-empty and Ak is not
negated, we return true as we have found a valid joined fact (Lines 31-32); otherwise, we
continue retrieving the next “negated” fact. A visual representation of the execution of a
temporal join is shown in Figure 1.

Time Series Operators

In Example 1, we assumed that the suspiciousActivity facts were provided by D. Now we
want to consider the predicate as a result of a different reasoning task.

▶ Example 2. Understanding whether a spending activity is suspicious implies detecting
anomalous patterns, a task extremely relevant for financial authorities. A form of behavioural
analysis is adopted here: if the number of flagged transactions is greater than the company
average for a given period, then the spending activity is suspicious.

flagTransactions(C, AMT), sma(C, AVG), AMT > AVG → suspiciousActivity(C) (4)

TIME 2025

15:4 The Temporal Vadalog System

Algorithm 1 Temporal Join between two predicates.
Input: predicates A0 and A1 to be joined, with A0 not negated

1: I0 ← A0.iterator()
2: I1 ← A1.iterator()
3: (a0, ϱ0)← I0.getNext()
4: function Next
5: interval← ϱ0
6: while true do
7: X ← a0.joinTerm

8: (a1, ϱ1)← A1.index.get(X)
9: if a1 is null then ▷ Continue full scan, if index miss

10: while I1.next() do
11: (a1, ϱ1)← I1.getNext()
12: A1.index.put(a1) ▷ Update the index map for A1
13: if a1.joinTerm == a0.joinTerm then
14: break ▷ Exit the inner loop if matching fact is found
15: end if
16: end while
17: end if
18: if a1 is null then ▷ No further matching fact A1 found
19: if A1 is negated then
20: return true
21: end if
22: if I0.next() is false then
23: return false
24: end if
25: (a0, ϱ0)← I0.getNext() ▷ Repeat loop for next a0
26: interval← ϱ0
27: continue
28: end if
29: interval← resultingIntervalFromJoinLogic(ϱ1, interval)
30: if interval is empty then
31: if A1 is negated then
32: if I0.next() is false then
33: return false
34: end if
35: (a0, ϱ0)← I0.getNext() ▷ Repeat loop for next a0
36: interval← ϱ0
37: end if
38: continue
39: end if
40: if A1 is not negated then
41: return true
42: end if
43: end while
44: end function

L. Bellomarini, L. Blasi, M. Nissl, and E. Sallinger 15:5

The average value is given by the sma predicate (simple moving average), which encapsulates
a time series operator that performs a moving average calculation to smooth the signal and
filter out noise and transient variations. While time series analysis typically adopts ad-hoc
software libraries, Temporal Vadalog intrinsically offers such statistics:

[0,n)timeSeries(X, Value)→ extended(X, Value) (5)
timeSeries(X, Value), extended(X, Roll)→ rolling(X, Roll) (6)

rolling(X, Roll), Avg = avg(Roll)→ sma(X, Avg) (7)

We use to extend the validity of the window over n days (Rule 5), and we join it with
the original time series to pin it to the correct starting date (Rule 6). As in SMA all data
points have equal weight, Rule 7 computes the mathematical average over every window.
Performance has been evaluated against a time series database (TSDB) in the full paper [4],
in this case with the exponential moving average (EMA), on the NASDAQ Composite Index
time series [14]. Results are shown in Figure 2.

3 The Temporal Vadalog Architecture

The temporal join is only one component of the system, and several others are required in
order to support query answering over a set of rules like that of Examples 1-2, among which the
transformations from the temporal operators and termination of recursive rules. Looking at
the larger picture, the Temporal Vadalog architecture extends the volcano iterator model [13]
of the Vadalog system [6] with time-awareness. A DatalogMTL program Π is transformed into
an execution pipeline that reads data from sources, applies the transformations (both algebraic
and time-related ones) and returns the intended output as a result. The process consists of
two stages: in the first, the pipeline is built through a sequence of compilers and optimizers
that gradually transforms the set of rules into a reasoning query plan. Taking inspiration from
the pipe and filters architecture [9], each required transformation is represented by a filter,
while dependencies between rules are represented by pipes. The second stage is at runtime,
where a pull-based approach is used. Starting from the output filter, next() calls propagate
through filter chains to source filters. Each filter applies the requested transformation based
on the rule it represents. As long as data are available in the filter cascade, next() succeeds.

A number of time-relevant operations are tackled along the way: (a) the transformation
of time intervals through the application of temporal operators; (b) the implementation
of merging operations for intervals through various strategies to ensure correctness and
efficiency [3]; (c) the temporal joins in the presence of stratified negation; (d) detection of
repeating temporal patterns through the so-called termination strategies, i.e. techniques
to guaranteee termination; (e) temporal aggregations [5]; and (f) the possibility to switch
between temporal and to non-temporal reasoning, to activate non-temporal features, essential
in some reasoning settings, such as existential quantification.

Summary. In this work, we showed the Temporal Vadalog system by first describing
temporal joins and operators applied to an example, and concluded by briefly discussing the
“big picture” of its architecture. The interested reader is referred to the full paper.

References
1 Teodoro Baldazzi, Luigi Bellomarini, and Emanuel Sallinger. Reasoning over financial scenarios

with the Vadalog system. In EDBT, pages 782–791. OpenProceedings.org, 2023. doi:
10.48786/edbt.2023.66.

TIME 2025

https://doi.org/10.48786/edbt.2023.66
https://doi.org/10.48786/edbt.2023.66

15:6 The Temporal Vadalog System

2 Luigi Bellomarini, Davide Benedetto, Georg Gottlob, and Emanuel Sallinger. Vadalog: A
modern architecture for automated reasoning with large knowledge graphs. IS, 105:101528,
2022. doi:10.1016/j.is.2020.101528.

3 Luigi Bellomarini, Livia Blasi, Markus Nissl, and Emanuel Sallinger. The Temporal Vadalog
system. In RuleML+RR, volume 13752, pages 130–145. Springer, 2022. doi:10.1007/
978-3-031-21541-4_9.

4 Luigi Bellomarini, Livia Blasi, Markus Nissl, and Emanuel Sallinger. The Temporal Vadalog
system: Temporal Datalog-based reasoning. Theory and Practice of Logic Programming, pages
1–29, 2025. doi:10.1017/S1471068425000018.

5 Luigi Bellomarini, Markus Nissl, and Emanuel Sallinger. Monotonic Aggregation for Temporal
Datalog. In Proceedings of the 15th International Rule Challenge, volume 2956, 2021. URL:
https://ceur-ws.org/Vol-2956/paper30.pdf.

6 Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. The Vadalog System: Datalog-
based reasoning for knowledge graphs. PVLDB, 11(9):975–987, 2018. doi:10.14778/3213880.
3213888.

7 Sebastian Brandt, Elem Güzel Kalayci, Roman Kontchakov, Vladislav Ryzhikov, Guohui Xiao,
and Michael Zakharyaschev. Ontology-based data access with a Horn fragment of metric
temporal logic. In AAAI, pages 1070–76. AAAI Press, 2017. doi:10.1609/aaai.v31i1.10696.

8 Sebastian Brandt, Elem Güzel Kalayci, Vladislav Ryzhikov, Guohui Xiao, and Michael
Zakharyaschev. Querying log data with metric temporal logic. J. Artif. Intell. Res., 62:829–
877, 2018. doi:10.1613/jair.1.11229.

9 Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-oriented software
architecture, 4th Edition. Wiley, 2007. URL: https://www.worldcat.org/oclc/314792015.

10 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general Datalog-based framework
for tractable query answering over ontologies. J. Web Semant., 14:57–83, 2012. doi:10.1016/
j.websem.2012.03.001.

11 Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database systems - the
complete book (2. ed.). Pearson Education, 2009.

12 Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for
general logic programs. J. ACM, 38(3):620–650, 1991. doi:10.1145/116825.116838.

13 Goetz Graefe and William J. McKenna. The volcano optimizer generator: Extensibility and
efficient search. In ICDE, pages 209–218, 1993. doi:10.1109/ICDE.1993.344061.

14 NASDAQ OMX Group. NASDAQ composite index. http://tinyurl.com/frednq, 2023. FRED,
Federal Reserve Bank of St. Louis, Accessed: 2023-03-22.

15 David J. Tena Cucala, Przemyslaw Andrzej Walega, Bernardo Cuenca Grau, and Egor V.
Kostylev. Stratified negation in Datalog with metric temporal operators. In AAAI, pages
6488–6495, 2021. doi:10.1609/aaai.v35i7.16804.

16 Przemyslaw Andrzej Walega, Bernardo Cuenca Grau, Mark Kaminski, and Egor V. Kostylev.
DatalogMTL: Computational complexity and expressive power. In IJCAI, pages 1886–1892,
2019. doi:10.24963/ijcai.2019/261.

17 Przemyslaw Andrzej Walega, Bernardo Cuenca Grau, Mark Kaminski, and Egor V. Kostylev.
DatalogMTL over the integer timeline. In KR, pages 768–77, 2020. doi:10.24963/kr.2020/79.

18 Przemyslaw Andrzej Walega, Bernardo Cuenca Grau, Mark Kaminski, and Egor V. Kostylev.
Tractable fragments of Datalog with metric temporal operators. In IJCAI, pages 1919–1925,
2020. doi:10.24963/ijcai.2020/266.

19 Dingmin Wang, Pan Hu, Przemyslaw Andrzej Walega, and Bernardo Cuenca Grau. MeTeoR:
Practical reasoning in Datalog with metric temporal operators. In AAAI, pages 5906–5913,
2022. doi:10.1609/aaai.v36i5.20535.

https://doi.org/10.1016/j.is.2020.101528
https://doi.org/10.1007/978-3-031-21541-4_9
https://doi.org/10.1007/978-3-031-21541-4_9
https://doi.org/10.1017/S1471068425000018
https://ceur-ws.org/Vol-2956/paper30.pdf
https://doi.org/10.14778/3213880.3213888
https://doi.org/10.14778/3213880.3213888
https://doi.org/10.1609/aaai.v31i1.10696
https://doi.org/10.1613/jair.1.11229
https://www.worldcat.org/oclc/314792015
https://doi.org/10.1016/j.websem.2012.03.001
https://doi.org/10.1016/j.websem.2012.03.001
https://doi.org/10.1145/116825.116838
https://doi.org/10.1109/ICDE.1993.344061
https://doi.org/10.1609/aaai.v35i7.16804
https://doi.org/10.24963/ijcai.2019/261
https://doi.org/10.24963/kr.2020/79
https://doi.org/10.24963/ijcai.2020/266
https://doi.org/10.1609/aaai.v36i5.20535

L. Bellomarini, L. Blasi, M. Nissl, and E. Sallinger 15:7

The appendix includes excerpts from the full version of the paper [4] to cover the more
technical parts of this extended abstract. In particular, Appendix A provides the background
of DatalogMTL.

A DatalogMTL

DatalogMTL is Datalog extended with operators from the metric temporal logic. We provide
a summary of DatalogMTL with stratified negation under continuous semantics. DatalogMTL
is defined over the rational timeline, i.e., an ordered set of rational numbers Q. An interval
ϱ = ⟨ϱ−, ϱ+⟩ is a non-empty subset of Q such that for each t ∈ Q where ϱ− < t < ϱ+, t ∈ ϱ,
and the endpoints ϱ−, ϱ+ ∈ Q ∪ {−∞,∞}. The brackets denote whether the interval is
closed (“[]”), half-open (“[)”,“(]”) or open (“()”), whereas angle brackets (“⟨⟩”) are used when
unspecified. An interval is punctual if it is of the form [t, t], positive if ϱ− ≥ 0, and bounded
if ϱ−, ϱ+ ∈ Q.

DatalogMTL extends the syntax of Datalog with negation with temporal operators [15].
For the following definitions, we consider a function-free first-order signature. An atom is
of the form P (τ), where P is a n-ary predicate and τ is a n-ary tuple of terms, where a
term is either a constant or a variable. An atom is ground if it contains no variables. A fact
is an expression P (τ)@ϱ, where ϱ is an interval and P (τ) a ground atom and a database
is a set of facts. A literal is an expression given by the following grammar, where ϱ is a
positive interval: A ::= ⊤ | ⊥ | P (τ) | ⊟ϱA | ⊞ϱA | ϱA | ϱA | A Sϱ A | A Uϱ A. A rule is
an expression given by the following grammar, where i, j ≥ 0, each Ak (k ≥ 0) is a literal
and B is an atom: A1 ∧ · · · ∧Ai ∧ not Ai+1 ∧ · · · ∧ not Ai+j → B. The conjunction of literals
Ak is the rule body, where A1 ∧ · · · ∧Ai denote positive literals and Ai+1 ∧ · · · ∧Ai+j denote
negated (i.e., prefixed with not) literals. The atom B is the rule head. A rule is safe if each
variable occurs in at least one positive body literal, positive if it has no negated body literals
(i.e., j = 0), and ground if it contains no variables. A program Π is a set of safe rules and is
stratifiable if there exists a stratification of a program Π. A stratification of Π is defined as a
function σ that maps each predicate P in Π to a positive integer (stratum) s.t. for each rule,
where P h denotes a predicate of the head, and P + (resp. P −) a positive (negative) body
predicate, σ(P h) ≥ σ(P +) and σ(P h) > σ(P −). The semantics of DatalogMTL is given by
an interpretation M that specifies for each time point t ∈ Q and each ground atom P (τ),
whether P (τ) is satisfied at t, in which case we write M, t |= P (τ). This satisfiability notion
extends to ground literals as follows:

M, t |= ⊤ for each t

M, t |= ⊥ for no t

M, t |= ⊟ϱA iff M, s |= A for all s with t− s ∈ ϱ

M, t |= ⊞ϱA iff M, s |= A for all s with s− t ∈ ϱ

M, t |= A Sϱ A′ iff M, s |= A′ for some s with t− s ∈ ϱ ∧ M, r |= A for all r ∈ (s, t)
M, t |= A Uϱ A′ iff M, s |= A′ for some s with s− t ∈ ϱ ∧ M, r |= A for all r ∈ (t, s)
M, t |= ϱA iff M, s |= A for some s with t− s ∈ ϱ

M, t |= ϱA iff M, s |= A for some s with s− t ∈ ϱ

An interpretation M satisfies not A (M, t |= not A), if M, t ̸|= A, a fact P (τ)@ϱ, if
M, t |= P (τ) for all t ∈ ϱ, and a set of facts D if it is a model of each fact in D. Furthermore,
M satisfies a ground rule r if M, t |= Ak for 0 ≤ k ≤ i and M, t |= not Ak for i+1 ≤ k ≤ i+j

for every t; for every t, if the literals in the body are satisfied, so is the head M, t |= B; M

TIME 2025

15:8 The Temporal Vadalog System

satisfies a rule when it satisfies every possible grounding of the rule. Moreover, M is a model
of a program if it satisfies every rule in the program and the program has a stratification,
i.e., it is stratifiable. Given a stratifiable program Π and a set of facts D, we call CΠ,D
the canonical model of Π and D [8], and define it as the minimum model of Π and D,
i.e., CΠ,D is the minimum model for all the facts of D and the rules of Π. In this context,
“minimum” means that the set of positive literals in M is minimized or, equivalently, that
the positive literals of this model are contained in every other model. Since Π is stratifiable,
this minimum model exists and is unique [12]. According to Tena Cucala’s notation [15],
we say that a stratifiable program Π and a set of facts D entail a fact P (τ)@ϱ, written as
(Π,D) |= P (τ)@ϱ, if CΠ,D |= P (τ)@ϱ. In the remainder of the paper, we will assume the
stratification of programs (or set of rules) as implicit.

In this context, the query answering or reasoning task is defined as follows: given the pair
Q = (Π, Ans), where Π is a set of rules, Ans is an n-ary predicate, and the query Q is evaluated
over D, then Q(D) is defined as Q(D) = {(t̄, ϱ) ∈ dom(D)n × time(D) | (Π,D) |= Ans(t̄)@ϱ},
where t̄ is a tuple of terms, the domain of D, denoted dom(D), is the set of all constants that
appear in the facts of D, and the set of all the time intervals in D is denoted as time(D).
As we shall see in practical cases, the Ans predicate of Π will be sometimes called “query
predicate” and provided to the reasoning system with specific conventions, which we omit
for space reasons, but will render in textual explanations.

Solutions to the Generalised Alibi Query in Moving
Object Databases
Arthur Jansen1 #

Hasselt University, Databases and Theoretical Computer Science Group and
Data Science Institute (DSI), Agoralaan, Building D, 3590 Diepenbeek, Belgium

Bart Kuijpers #

Hasselt University, Databases and Theoretical Computer Science Group and
Data Science Institute (DSI), Agoralaan, Building D, 3590 Diepenbeek, Belgium

Abstract
Space-time prisms provide a framework to model the uncertainty on the space-time points that a
moving object may have visited between measured space-time locations, provided that a bound on
the speed of the moving object is given. In this model, the alibi query asks whether two moving
objects, given by their respective measured space-time locations and speed bound, may have met.
An analytical solution to this problem was first given by Othman [5]. In this paper, we address
the generalised alibi query that asks the same question for an arbitrary number n ≥ 2 of moving
objects. We provide several solutions (mainly via the spatial and temporal projection) to this query
with varying time complexities. These algorithmic solutions rely on techniques from convex and
semi-algebraic geometry. We also address variants of the generalised alibi query where the question
is asked for a given spatial location or a given moment in time.

2012 ACM Subject Classification Information systems → Spatial-temporal systems; Information
systems → Query languages

Keywords and phrases Convex geometry, Semi-algebraic geometry, Space-time prism, Geographic
information systems, Quantifier elimination

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.16

Category Short Paper

Related Version The paper is an extended abstract of [4].
Full Version: https://doi.org/10.1016/j.comgeo.2024.102159

Funding Arthur Jansen: Bijzonder Onderzoeksfonds (BOF22OWB06) from UHasselt

1 Introduction

In Moving Object Databases (MODs), various data models and query languages have been
proposed to deal with moving objects whose position is recorded by location-aware devices
(such as GPS), at not always regular moments in time [2]. The movement data of an object
is therefore discrete in nature and can be seen as a sequence ⟨(x1, y1, t1), . . . , (xn, yn, tn)⟩ of
measured space-time locations, which we call a trajectory sample. Between measured space-
time points, the trajectory of a moving object is unspecified and unknown and several models
have been proposed to deal with this uncertainty. Based on the assumption that moving
objects have some physically determined or law imposed speed bounds, the space-time prism
model delimits the region in space-time which a moving object may have visited between two
sampled points. This model, originating from the field of “time geography” in the 1970s, has

1 Corresponding author

© Arthur Jansen and Bart Kuijpers;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 16; pp. 16:1–16:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arthur.jansen@uhasselt.be
https://orcid.org/0000-0002-4970-803X
mailto:bart.kuijpers@uhasselt.be
https://orcid.org/0000-0001-5774-0948
https://doi.org/10.4230/LIPIcs.TIME.2025.16
https://doi.org/10.1016/j.comgeo.2024.102159
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

16:2 Solutions to the Generalised Alibi Query in Moving Object Databases

found its way into MOD research. The uncertainty on the movement of an object associated
with a trajectory sample, is then modeled by a chain of space-time prisms. An illustration of
two chains is shown in Figure 1.

Figure 1 An illustration of two intersecting chains of space-time prisms (one chain in yellow and
the other in blue).

One query of particular interest in this context is the alibi query, which asks whether
two moving objects may have met, given their trajectory samples and speed bounds. The
difficulty of answering this query can be reduced to deciding whether two space-time prisms
intersect. Using a geometric argument, a solution to this problem was given by Othman et
al. [5]. We address the generalised alibi query, which asks the same question, but for any
(finite) number of moving objects. Because a space-time prism can be described by a system
of polynomial inequalities, the generalised alibi query can be expressed as an existential
first-order logic formula over the ordered field of real numbers. While there are algorithms for
deciding the truth of such sentences [1], existing implementations cannot solve the query in
practice (that is, within an acceptable amount of time). We provide several solutions (mainly
via the spatial and temporal projection) to this query with varying time complexities. These
algorithmic solutions rely on techniques from convex and semi-algebraic geometry, because
space-time prisms are both convex and semi-algebraic sets. We also address variants of the
generalised alibi query where the question is asked for a given spatial location or a given
moment in time. Additionally, some of our methods are capable of producing a sample point,
which is a point in the intersection of the n space-time prisms, if it exists. Finally, we give a
quantifier-free description of the spatial projection of the intersection of n space-time prisms,
which is exactly the region in space where the objects may have met (between two measured
points), and allows answering the spatial variant of the generalised alibi query in linear time.

Our main contributions are summarised in Tables 1 and 2, which give an overview of the
proposed methods or problems, their time complexity and their ability to produce sample
points. For clarity, the complexity results in this table refer to deciding the emptiness of the
intersection of n prisms. When the n moving objects are given by chains of prisms then the
time complexity results in the table need to be multiplied by L − n + 2, where L is the total
number of prisms in the n chains.

We give a brief summary of the workings of each of the proposed methods in the next
sections.

A. Jansen and B. Kuijpers 16:3

Table 1 Time complexity (in terms of the number of prisms n) and sample points of the proposed
methods for the generalised alibi query.

method time complexity sample points

via spatial projection O(n5) yes
via spatial projection with Helly O(n4) no

via temporal projection O(n3) yes

Table 2 Time complexity (in terms of the number of prisms n) and sample points of the variants
for the generalised alibi query.

variants of generalised alibi query time complexity sample points

at a fixed location O(n) yes
at a fixed moment O(n3) yes

2 Deciding the generalised alibi query via the spatial projection

The essence of this method is to test whether the spatial projection of the intersection of the
n space-time prisms is empty. Because this projection is precisely the region in space where
the n objects could theoretically have met, we call it the meeting region. We show, using
Fourier-Motzkin elimination, that the meeting region can be characterised as the intersection
of regions enclosed by curves called “Cartesian ovals”, which are generalisations of ellipses.
An illustration of the meeting period as the intersection of such regions is shown in part (b)
of Figure 2. This characterisation has two uses. On one hand, it provides a linear-time
solution to the generalised alibi query at a fixed location, which includes the production of
sample points. On the other hand, we can use it to test the emptiness of the meeting region,
providing an answer to the generalised alibi query. To do this, we make use of the algebraic
nature of Cartesian ovals, which allows us to compute a (finite) set of “candidate points”,
with the property that the meeting region is not empty if and only if it contains one of those
candidate points. This method requires O(n5) time and also produces sample points.

(a) (b)

<latexit sha1_base64="4qYClxm8BQYzZ+8f9nuTaXhUgvo=">AAACyHicjVHNSsNAGJzGvxr/qh69BBvBU0lF1ItY9CKeKpi2oEWSdFuXpklINkopXnwBr3r2YXyE4hvoW/jtNgW1iG5IMjvfzOx+u27k80RY1ltOm5qemZ3Lz+sLi0vLK4XVtVoSprHHbC/0w7jhOgnzecBswYXPGlHMnJ7rs7rbPZH1+i2LEx4GF6IfsWbP6QS8zT1HEGWbpjDN60LRKllqGJOgnIHi0at+GL0M9WpYGOIKLYTwkKIHhgCCsA8HCT2XKMNCRFwTA+JiQlzVGe6hkzclFSOFQ2yXvh2aXWZsQHOZmSi3R6v49MbkNLBFnpB0MWG5mqHqqUqW7G/ZA5Up99anv5tl9YgVuCH2L99Y+V+f7EWgjQPVA6eeIsXI7rwsJVWnIndufOlKUEJEnMQtqseEPeUcn7OhPInqXZ6to+rvSilZOfcybYoPuUu64PLP65wEtZ1Sea+0e24VK8cYjTw2sIltus99VHCKKmzK5njEE561My3S7rT+SKrlMs86vg3t4RN/TJN3</latexit>

t

<latexit sha1_base64="/FkQb7sy6ifZUmR8IWjxldKbVUM=">AAACyHicjVHLSsNAFD2Nr1pf9bFzE2wEVyURUXcWXCiuKtgH1CJJOq1D0yQkE6UWN/6AW/0JV/6LuHSnf+GdaQpqEZ2Q5My555yZO+OEHo+Fab5mtInJqemZ7Gxubn5hcSm/vFKNgyRyWcUNvCCqO3bMPO6ziuDCY/UwYnbP8VjN6R7Keu2KRTEP/DPRD1mzZ3d83uauLYiqGIZpGBf5glk01dDHgZWCwsHzzdvR09qgHORfcI4WArhI0AODD0HYg42YngYsmAiJa2JAXESIqzrDLXLkTUjFSGET26Vvh2aNlPVpLjNj5XZpFY/eiJw6NskTkC4iLFfTVT1RyZL9LXugMuXe+vR30qwesQKXxP7lGyn/65O9CLSxr3rg1FOoGNmdm6Yk6lTkzvUvXQlKCImTuEX1iLCrnKNz1pUnVr3Ls7VV/V0pJSvnbqpN8CF3SRds/bzOcVDdLlq7xZ1Ts1AyMRxZrGMDW3SfeyjhGGVUKJvjHg941E60ULvW+kOplkk9q/g2tLtPGNCTsg==</latexit>

0

<latexit sha1_base64="e6PZnkOISGuDLwGowS796vNc2i8=">AAACyHicjVHLSsNAFD2Nr1pf9bFzE2wFVyUVXzsLLhRXFUxb0CJJOq1D8yKZKLW48Qfc6k+48l/EpTv9C+9MU1CL6IQkZ84958zcGTt0eSwM4zWjjY1PTE5lp3Mzs3PzC/nFpVocJJHDTCdwg6hhWzFzuc9MwYXLGmHELM92Wd3uHsh6/YpFMQ/8U9ELWdOzOj5vc8cSRJnF4naxeJEvGCVDDX0UlFNQ2H++eTt8WulXg/wLztFCAAcJPDD4EIRdWIjpOUMZBkLimugTFxHiqs5wixx5E1IxUljEdunbodlZyvo0l5mxcju0iktvRE4d6+QJSBcRlqvpqp6oZMn+lt1XmXJvPfrbaZZHrMAlsX/5hsr/+mQvAm3sqR449RQqRnbnpCmJOhW5c/1LV4ISQuIkblE9Iuwo5/CcdeWJVe/ybC1Vf1dKycq5k2oTfMhd0gWXf17nKKhtlso7pa0To1AxMBhZrGING3Sfu6jgCFWYlM1xjwc8asdaqF1rvYFUy6SeZXwb2t0nJLqTtw==</latexit>

5

<latexit sha1_base64="AC4P9hKp1Mmr2DocBqwldzI6QYA=">AAACyXicjVHLSsNAFD2Nr1pf9bFzE2wEVyURUXcWXCi4qWAfUEWSdFpj8zKZiG1x5Q+41Y9w5b+IS3f6F96ZpqAW0QlJzpx7zpm5M1boOjHX9deMMjY+MTmVnc7NzM7NL+QXl6pxkEQ2q9iBG0R1y4yZ6/iswh3usnoYMdOzXFazOvuiXrtmUewE/gnvhuzMM9u+03JskxNV1TRD17TzfEEv6nKoo8BIQWHvufd28LTSLwf5F5yiiQA2Enhg8MEJuzAR09OAAR0hcWfoExcRcmSd4RY58iakYqQwie3Qt02zRsr6NBeZsXTbtIpLb0ROFevkCUgXERarqbKeyGTB/pbdl5lib136W2mWRyzHBbF/+YbK//pELxwt7MoeHOoplIzozk5TEnkqYufql644JYTECdykekTYls7hOavSE8vexdmasv4ulYIVczvVJvgQu6QLNn5e5yiobhaN7eLWsV4o6RiMLFaxhg26zx2UcIgyKpR9iXs84FE5Uq6UG6U3kCqZ1LOMb0O5+wSz05Pt</latexit>

10

(c)

Figure 2 An illustration of (a) two intersecting prisms; (b) regions enclosed by Cartesian ovals
whose intersection (in black) is the meeting region of the two prisms; and (c) the meeting period (in
red) of the two prisms, shown as the intersection of four projections of intersections of three cones.

TIME 2025

16:4 Solutions to the Generalised Alibi Query in Moving Object Databases

Due to Helly’s theorem [3], which gives an equivalent condition for the non-emptiness of
the intersection of convex sets, we can also solve the generalised alibi query by applying the
above method to every combination of 4 of the n space-time prisms. The result of this is a
method that only requires O(n4) time. However, the disadvantage of that method is that it
cannot produce sample points.

3 Deciding the generalised alibi query via the temporal projection

The method described here works by testing the emptiness of the temporal projection of
the intersection of the space-time prisms. This temporal projection is called the meeting
period, as it is precisely the period of time during which the n moving objects could have met.
Because space-time prisms are closed and convex sets, the meeting period is a closed interval.
In fact, not only can we test its emptiness, we can explicitly compute the meeting period, that
is, compute its minimum and maximum. To do this, we give a new characterisation of the
meeting period, based on Helly’s theorem. This characterisation tells us that the computation
of the meeting period can be reduced to the computation of the temporal projection of the
intersection of three cones. An illustration of this characterisation of the meeting period is
shown in part (c) of Figure 2. We have to compute such projection for every combination of
three out of a set of 2n cones. Because computing the temporal projection of three cones
obviously takes constant time, the meeting period can be computed in O(n3) time.

To compute the temporal projection of the intersection of three cones, we show that the
minimum and maximum of such interval are contained in a finite set of “candidate moments”.
Then, we only have to test which of the candidate moments are contained in the temporal
projection, which is straightforward.

Finally we use a general property about the intersection of convex sets to show that,
given a moment in the meeting period, we can find a sample point in the intersection of the
space-time prisms, also in O(n3) time.

References
1 S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry. Algorithms and

Computation in Mathematics 10. Springer, Berlin, 2003.
2 R. Güting and M. Schneider. Moving Object Databases. Morgan Kaufmann, 2005.
3 E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jber. Deutsch.

Math. Vereinig., 32:175–176, 1923.
4 A. Jansen and B. Kuijpers. Geometric and algorithmic solutions to the generalised alibi query.

Comput. Geom., 127:102159, 2025. doi:10.1016/J.COMGEO.2024.102159.
5 Bart Kuijpers, Rafael Grimson, and Walied Othman. An analytic solution to the alibi query

in the space-time prisms model for moving object data. International Journal of Geographical
Information Science, 25(2):293–322, February 2011. doi:10.1080/13658810902967397.

https://doi.org/10.1016/J.COMGEO.2024.102159
https://doi.org/10.1080/13658810902967397

Visit Probability in Space-Time Prisms for Moving
Object Data
Arthur Jansen1 #

Hasselt University, Databases and Theoretical Computer Science Group and
Data Science Institute (DSI), Agoralaan, Building D, 3590 Diepenbeek, Belgium

Bart Kuijpers #

Hasselt University, Databases and Theoretical Computer Science Group and
Data Science Institute (DSI), Agoralaan, Building D, 3590 Diepenbeek, Belgium

Abstract
Space-time prisms have been extensively studied as a model to describe the uncertainty of the
spatio-temporal location of a moving object in between measured space-time locations. In many
applications, the desire has been expressed to provide an internal structure to these prisms, that
includes what has been called “visit probability”. Although several proposals have been studied in
the past decades, a precise definition of this concept has been missing. The contribution of this
paper is to provide such a specification by means of a formal framework for visit probability. Once
this concept is established, we are able to derive on which parts of a prism, visit probability can be
seen to give rise to a probability space.

2012 ACM Subject Classification Information systems → Spatial-temporal systems; Mathematics
of computing → Probability and statistics

Keywords and phrases Spatio-temporal databases, moving object databases, space-time prisms,
probability spaces

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.17

Category Short Paper

Funding Arthur Jansen: Bijzonder Onderzoeksfonds (BOF22OWB06) from UHasselt

1 Introduction

In a wide range of applications that deal with moving objects (such as people, animals
or vehicles), time-stamped location data are collected using location-aware devices (such
as GPS) and these data are stored and managed in moving object databases (MODs) [3].
The actual space-time trajectories of the moving object may be reconstructed or estimated
from these measured space-time locations (called anchor points) using, for example, linear
interpolation [11]. Space-time prisms, originating from the field of time geography [1, 4, 7],
are used in Geographical Information Systems (GIS) [9] and MODs [2, 5] to model the
movement uncertainty of a moving object between anchor points, based on a known speed
bound on the object’s movement. For spatio-temporal anchor points (p−, t−) and (p+, t+),
with t− < t+, and a speed bound vmax, the prism with these and anchors and speed bound
is denoted P(p−, t−, p+, t+, vmax). Figure 1 depicts space-time prisms for movement in a
two- and a one-dimensional space, respectively. As shown in the figure, prisms can be seen
there to be the intersection of a future and past cone. The spatial projection of the prism,
also called the potential path area, is an envelope of the spatial whereabouts of the moving
object between the measured spatial locations.

1 Corresponding author

© Arthur Jansen and Bart Kuijpers;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 17; pp. 17:1–17:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arthur.jansen@uhasselt.be
https://orcid.org/0000-0002-4970-803X
mailto:bart.kuijpers@uhasselt.be
https://orcid.org/0000-0001-5774-0948
https://doi.org/10.4230/LIPIcs.TIME.2025.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

17:2 Visit Probability in Space-Time Prisms for Moving Object Data

t

x

y

t

x

(a) (b)

<latexit sha1_base64="x438pRRN5+GlIgSpxIlmetEwGoo=">AAAB+nicbVDLSgNBEJyNrxijbvQoyGBWiJCEXRH1GPDiMQHzgGQTZieTZMjsg5lZdVnzDd4FLx4U0aNf4s2fESePgyYWNBRV3XR3OQGjQprml5ZYWl5ZXUuupzbSm1vbemanJvyQY1LFPvN5w0GCMOqRqqSSkUbACXIdRurO8GLs168JF9T3rmQUENtFfY/2KEZSSR09Yxi523YhH6mS7cKRYXT0rFk0J4CLxJqRbCl9X3l/+N4vd/TPVtfHoUs8iRkSommZgbRjxCXFjIxSrVCQAOEh6pOmoh5yibDjyekjeKiULuz5XJUn4UT9PREjV4jIdVSni+RAzHtj8T+vGcreuR1TLwgl8fB0US9kUPpwnAPsUk6wZJEiCHOqboV4gDjCUqWVUiFY8y8vktpx0TotnlRUGnkwRRLsgQOQAxY4AyVwCcqgCjC4AY/gGbxod9qT9qq9TVsT2mxmF/yB9vEDTC2VEQ==</latexit>

(x�, y�, t�)

<latexit sha1_base64="zPzqZFMBchjZPdOYeXbGTB7IIm8=">AAAB+nicbVDLSgNBEJyNrxijbvQoyGBWiCSEXRH1GPDiMQHzgGQTZieTZMjsg5lZdVnzDd4FLx4U0aNf4s2fESePgyYWNBRV3XR3OQGjQprml5ZYWl5ZXUuupzbSm1vbemanJvyQY1LFPvN5w0GCMOqRqqSSkUbACXIdRurO8GLs168JF9T3rmQUENtFfY/2KEZSSR09Yxi523a+EKmS7fyRYXT0rFk0J4CLxJqRbCl9X3l/+N4vd/TPVtfHoUs8iRkSommZgbRjxCXFjIxSrVCQAOEh6pOmoh5yibDjyekjeKiULuz5XJUn4UT9PREjV4jIdVSni+RAzHtj8T+vGcreuR1TLwgl8fB0US9kUPpwnAPsUk6wZJEiCHOqboV4gDjCUqWVUiFY8y8vktpx0TotnlRUGgUwRRLsgQOQAxY4AyVwCcqgCjC4AY/gGbxod9qT9qq9TVsT2mxmF/yB9vEDQuuVCw==</latexit>

(x+, y+, t+)

<latexit sha1_base64="7M0GP1IBhEhL4nX4C87Qbh6VvOs=">AAAC1XicjVHLSsNAFD2N7/qKunQTbAU3lkkptV0puHFZwT7AF0mctsG8SCYFKd2JW9eKW/0Hv0T8A/0L70xT0IXoDUnOnHvPmblz7chzE8HYe06bmp6ZnZtfyC8uLa+s6mvrrSRMY4c3ndAL445tJdxzA94UrvB4J4q55dseb9vXhzLfHvA4ccPgRNxE/Ny3eoHbdR1LEHWp68XimW+JftIdHo4udovFS73ASoyiWjUkMGvMJFCv18rlumGqFGOF/dcHGY+NUH/DGa4QwkEKHxwBBGEPFhJ6TmGCISLuHEPiYkKuynOMkCdtSlWcKixir+nbo9Vpxga0lp6JUju0i0dvTEoD26QJqS4mLHczVD5VzpL9zXuoPOXZbuhvZ14+sQJ9Yv/STSr/q5O9CHRRUz241FOkGNmdk7mk6lbkyY1vXQlyiIiT+IryMWFHKSf3bChNonqXd2up/IeqlKxcO1ltik95ShrwZIrG76BVLpnVUuWYFQ4qGMc8NrGFHZrnHg5whAaa5D3AE57xorW1kXar3Y1LtVym2cCP0O6/ADThmcQ=</latexit>

C�

<latexit sha1_base64="MIVy8G7GYZBD8+PldvFoS5cNYWE=">AAAC1XicjVHLSsNAFD2N73fUpZtgKwhCmcba6krBjUsFa4W2SpJONZgXyaRQSnfi1rXiVv/BLxH/QP/CO9MUdCF6Q5Iz595zZu5cO/LcRDD2ntPGxicmp6ZnZufmFxaX9OWVsyRMY4fXnNAL43PbSrjnBrwmXOHx8yjmlm97vG7fHMp8vcvjxA2DU9GLeMu3rgK34zqWIOpS1wuFpm+J66TTPxxcbBUKl3qeFfd2K+aOabAiY1VzuyKBWS2b20aJGBn5/dcHGY/Hof6GJtoI4SCFD44AgrAHCwk9DZTAEBHXQp+4mJCr8hwDzJI2pSpOFRaxN/S9olUjYwNaS89EqR3axaM3JqWBDdKEVBcTlrsZKp8qZ8n+5t1XnvJsPfrbmZdPrMA1sX/pRpX/1cleBDrYVT241FOkGNmdk7mk6lbkyY1vXQlyiIiTuE35mLCjlKN7NpQmUb3Lu7VU/kNVSlaunaw2xac8JQ14NEXjd3BmFkuVYvmE5Q/KGMY01rCOTZpnFQc4wjFq5N3FE57xotW1gXar3Q1LtVymWcWP0O6/AEHFmck=</latexit>

C+

<latexit sha1_base64="zPzqZFMBchjZPdOYeXbGTB7IIm8=">AAAB+nicbVDLSgNBEJyNrxijbvQoyGBWiCSEXRH1GPDiMQHzgGQTZieTZMjsg5lZdVnzDd4FLx4U0aNf4s2fESePgyYWNBRV3XR3OQGjQprml5ZYWl5ZXUuupzbSm1vbemanJvyQY1LFPvN5w0GCMOqRqqSSkUbACXIdRurO8GLs168JF9T3rmQUENtFfY/2KEZSSR09Yxi523a+EKmS7fyRYXT0rFk0J4CLxJqRbCl9X3l/+N4vd/TPVtfHoUs8iRkSommZgbRjxCXFjIxSrVCQAOEh6pOmoh5yibDjyekjeKiULuz5XJUn4UT9PREjV4jIdVSni+RAzHtj8T+vGcreuR1TLwgl8fB0US9kUPpwnAPsUk6wZJEiCHOqboV4gDjCUqWVUiFY8y8vktpx0TotnlRUGgUwRRLsgQOQAxY4AyVwCcqgCjC4AY/gGbxod9qT9qq9TVsT2mxmF/yB9vEDQuuVCw==</latexit>

(x+, y+, t+)

<latexit sha1_base64="x438pRRN5+GlIgSpxIlmetEwGoo=">AAAB+nicbVDLSgNBEJyNrxijbvQoyGBWiJCEXRH1GPDiMQHzgGQTZieTZMjsg5lZdVnzDd4FLx4U0aNf4s2fESePgyYWNBRV3XR3OQGjQprml5ZYWl5ZXUuupzbSm1vbemanJvyQY1LFPvN5w0GCMOqRqqSSkUbACXIdRurO8GLs168JF9T3rmQUENtFfY/2KEZSSR09Yxi523YhH6mS7cKRYXT0rFk0J4CLxJqRbCl9X3l/+N4vd/TPVtfHoUs8iRkSommZgbRjxCXFjIxSrVCQAOEh6pOmoh5yibDjyekjeKiULuz5XJUn4UT9PREjV4jIdVSni+RAzHtj8T+vGcreuR1TLwgl8fB0US9kUPpwnAPsUk6wZJEiCHOqboV4gDjCUqWVUiFY8y8vktpx0TotnlRUGnkwRRLsgQOQAxY4AyVwCcqgCjC4AY/gGbxod9qT9qq9TVsT2mxmF/yB9vEDTC2VEQ==</latexit>

(x�, y�, t�)

<latexit sha1_base64="EmWqlPkN6YTGcxOx/uW8YcQiaEU=">AAAB7nicbZC7SgNBFIbPxluMt6ilIINZwULDrojaGbCxTMBcIFnD7GQ2DpmdXWZmxRBS+gA2ForY2tr5HHY+gz6Ek0uhiT8MfPz/Ocw5x485U9pxPq3UzOzc/EJ6MbO0vLK6ll3fqKgokYSWScQjWfOxopwJWtZMc1qLJcWhz2nV75wP8uoNlYpF4lJ3Y+qFuC1YwAjWxqra9u3VgW03szkn7wyFpsEdQ+7s7etu+730XWxmPxqtiCQhFZpwrFTddWLt9bDUjHDazzQSRWNMOrhN6wYFDqnyesNx+2jXOC0URNI8odHQ/d3Rw6FS3dA3lSHW12oyG5j/ZfVEB6dej4k40VSQ0UdBwpGO0GB31GKSEs27BjCRzMyKyDWWmGhzoYw5gju58jRUDvPucf6o5OQK+zBSGrZgB/bAhRMowAUUoQwEOnAPj/BkxdaD9Wy9jEpT1rhnE/7Iev0BbQqStQ==</latexit>

x�
<latexit sha1_base64="AyIxNX8B2/oPJB/vwYnXX7YYwdc=">AAAB7nicbZDLSgMxFIbP1Futt6pLQYIdQVDKjIi6s+DGZQv2Au1YMmmmhmYyQ5IRS+nSB3DjQhG3bt35HO58Bn0I08tCW38IfPz/OeSc48ecKe04n1ZqZnZufiG9mFlaXlldy65vVFSUSELLJOKRrPlYUc4ELWumOa3FkuLQ57Tqd84HefWGSsUicam7MfVC3BYsYARrY1Vt+/Zq37ab2ZyTd4ZC0+COIXf29nW3/V76LjazH41WRJKQCk04VqruOrH2elhqRjjtZxqJojEmHdymdYMCh1R5veG4fbRrnBYKImme0Gjo/u7o4VCpbuibyhDrazWZDcz/snqig1Ovx0ScaCrI6KMg4UhHaLA7ajFJieZdA5hIZmZF5BpLTLS5UMYcwZ1ceRoqh3n3OH9UcnKFAxgpDVuwA3vgwgkU4AKKUAYCHbiHR3iyYuvBerZeRqUpa9yzCX9kvf4Aaf6Ssw==</latexit>

x+

<latexit sha1_base64="IJvARC2Hxmv8Im5tn8KhQH53CBs=">AAAB73icbZC7SgNBFIZn4y3GW9RSkMGsYKFhV0TtDNhYJmAukKxhdjIbh8zOrjNnhRBS+gI2ForYWtr5HHY+gz6Ek0uhiT8MfPz/Ocw5x48F1+A4n1ZqZnZufiG9mFlaXlldy65vVHSUKMrKNBKRqvlEM8ElKwMHwWqxYiT0Bav6nfNBXr1lSvNIXkI3Zl5I2pIHnBIwVs22MVwd2HYzm3PyzlB4Gtwx5M7evu6230vfxWb2o9GKaBIyCVQQreuuE4PXIwo4FayfaSSaxYR2SJvVDUoSMu31hvP28a5xWjiIlHkS8ND93dEjodbd0DeVIYFrPZkNzP+yegLBqdfjMk6ASTr6KEgEhggPlsctrhgF0TVAqOJmVkyviSIUzIky5gju5MrTUDnMu8f5o5KTK+yjkdJoC+2gPeSiE1RAF6iIyogige7RI3qybqwH69l6GZWmrHHPJvoj6/UHvUKS2w==</latexit>

t�

<latexit sha1_base64="eJRpmP0IQqKX6BkB+OjAW44TTjo=">AAAB73icbZDLSgMxFIYz9VbrrepSkGBHEJQyI6LuLLhx2YK9QDuWTJqpoZnMmJwRSunSF3DjQhG3Lt35HO58Bn0I08tCW38IfPz/OeSc48eCa3CcTys1Mzs3v5BezCwtr6yuZdc3KjpKFGVlGolI1XyimeCSlYGDYLVYMRL6glX9zvkgr94ypXkkL6EbMy8kbckDTgkYq2bbGK72bbuZzTl5Zyg8De4YcmdvX3fb76XvYjP70WhFNAmZBCqI1nXXicHrEQWcCtbPNBLNYkI7pM3qBiUJmfZ6w3n7eNc4LRxEyjwJeOj+7uiRUOtu6JvKkMC1nswG5n9ZPYHg1OtxGSfAJB19FCQCQ4QHy+MWV4yC6BogVHEzK6bXRBEK5kQZcwR3cuVpqBzm3eP8UcnJFQ7QSGm0hXbQHnLRCSqgC1REZUSRQPfoET1ZN9aD9Wy9jEpT1rhnE/2R9foDujaS2Q==</latexit>

t+

Figure 1 Part (a) of the figure shows the space-time prism (in green) for movement in the plane
as the intersection of the past cone C+ (in red) and the future cone C− (in blue). Part (b) of the
figure shows a prism for movement in a one-dimensional space.

In its basic form, a space-time prism lacks any internal structure and can be seen as a
homogeneous geometric object, meaning that no two space-time points can be distinguished
as more or less likely to have been visited. Conceptually, an infinite number of velocity-bound
trajectories can be imagined within a prism and each point inside a prism is visited by
infinitely many of them (except for some boundary points). This means that there is no
a-priori reason to distinguish between space-time points inside the prism. Still, in many
applications, such as animal or human movement [8], it is plausible that certain points in a
prism, such as those on a linear interpolation path, should be considered more likely than
other space-time points that are more towards the boundary of the prism (since they require
a considerable detour). The notion of probability distributions in space-time prisms has
become known as visit probability and has been studied extensively in the past decades (see
e.g., [10, 12]). Several proposals have been made to assign probability values to space-time
points or regions within a prism, thus providing the prism with an internal structure that
expresses the unequal movement opportunities within the prism. Many of these proposals
take an, often ad-hoc, approach towards the problem of establishing a visit probability for
a particular application and each approach necessarily depends on a series of assumptions,
which often remain obscure to a certain extend and the resulting visit probability therefore
directly reflects these assumptions (in the best case, in a transparent way).

In this paper, we develop a general framework (or theory) of visit probability in the
context of space-time prisms. In this approach, we start from the clear understanding
that any definition of visit probability assumes a probability distribution on the possible
velocity-bound trajectories within a prism. Once a probability space is defined on the set
of trajectories (including a σ-algebra and a probability function), we can clearly determine
for which parts of a space-time prims a visit probability can be derived. We also specify
which conditions the σ-algebra on the set of trajectories must satisfy in order to be able to
speak about a visit probability of certain classes of subsets of interest in the prism. Next,
we address the question that asks on which subsets of a prism on which the derived visit
probability is really a probability. We give a characterization of exactly those subsets of
a prism for which this is the case. These sets are what we call “singleton-separators” and
they are a wider class of subsets than just time slices of prisms. In the above mentioned
literature, it is often the case that some notion of visit probability that has been defined is
only considered on time slices of a prism. Our result shows that in fact it can be considered
a probability on a wider class of subsets.

A. Jansen and B. Kuijpers 17:3

2 Towards a definition of visit probability in space-time prisms

In this section, we investigate how we can define the notion of “visit probability” on space-time
prisms, thus providing some internal structure to an otherwise homogeneous prisms. Let
P = P(p−, t−, p+, t+, vmax) be a space-time prism with anchors (p−, t−), (p+, t+) and speed
bound vmax ≥ 0. A vmax-trajectory in the prism P is a (differentiable) mapping γ from the
time interval [t−, t+] to space, that connects the anchor points and whose velocity vector is
bounded in size by vmax at all time. The set of vmax-trajectories in the prism P is denoted
by ΓP . Space-time prisms are homogeneous in the sense that a-priori no higher likelihood can
be assigned to a point (p, t) in a space-time prism P = P(p−, t−, p+, t+, vmax) as compared
to another point (p′, t′) in P. In general, the sets of vmax-trajectories passing through these
points have the same cardinality (only points on the “rim” of a prism are exceptions [6]).
Only by assigning a probability (or probability distribution) to the set of vmax-trajectories
ΓP , we are be able to indicate certain points or parts of a prism as more likely than others.
To obtain such a probability space on ΓP , we need to specify a σ-algebra G of subsets of ΓP
and to define a probability function P on this σ-algebra.

Once such a probability space (ΓP , G, P) has been specified, we can start working towards
specifying a “visit probability”: for a subset A of P , for which ΓP(A), which is the subset of
vmax-trajectories that intersect A, belongs to G, we define the visit probability of A (relative
to the given probability P on ΓP) as P (ΓP(A)) and we denote it by vpP (A).

However, the fact that ΓP(A) belongs to the σ-algebra G is not guaranteed. Indeed, a
σ-algebra G on P can range from very “poor” (or G = {∅, ΓP}) to very “rich” (or G = 2P). In
the former case, we can derive the visit probability of very few subsets of the prism, whereas
in the latter case, we can derive it for all subsets. When we are interested in knowing the
visit probability of a certain class F of subsets of the prism P, we can only obtain this visit
probability when for F ∈ F , we have that ΓP(F) belongs to the σ-algebra G.

We turn to a visit probability for parts of the potential path area (PPA) of a prism.
The following definition of visit probability of a part A of the the PPA reflects the idea
that a moving object has visited A if at some point in time it has visited A. For a subset
A of the PPA, we denote the cylindrical subset (A × R) ∩ P of P by CylP(A) and when
ΓP(CylP(A)) ∈ G, we can define the probability of visiting the part A of the the PPA as
vpP (CylP(A)).

3 When is visit probability a probability?

In this section, we determine in which circumstances the definition of visit probability on a
prism, as given above, gives rise to a probability space within the prism. When we have a
prism P = P(p−, t−, p+, t+, vmax) and consider the time slices Pt1 and Pt2 at two different
moments t− ≤ t1 < t2 ≤ t+, then we clearly have vpP (Pt1) = 1 and vpP (Pt2) = 1, since
every vmax-trajectory must intersect a time slice (that is ΓP(Pt1) = ΓP(Pt2) = ΓP). Since t1
and t2 are different, we have that the time slices Pt1 and Pt2 are disjoint subsets of P. For
disjoint unions, we would expect vpP (Pt1 ∪ Pt2) to be vpP (Pt1) + vpP (Pt2), but since this is
1 + 1 = 2, that cannot be the case. This simple example shows that vpP is not a probability
on the complete prism P. This raises the question: are there subsets of a prism on which
the visit probability of Section 2 is a probability? The main contribution of this paper is a
characterisation exactly those subsets of a prism for which this is the case. These subsets
are “singleton-separators” in a prims, which are illustrated in Figure 2 for one-dimensional
movement. A subset S of P is called a singleton-separator, if for any vmax-trajectory γ̂ ∈ ΓP ,
we have that the cardinality of γ̂ ∩ S equals one.

TIME 2025

17:4 Visit Probability in Space-Time Prisms for Moving Object Data

<latexit sha1_base64="AyIxNX8B2/oPJB/vwYnXX7YYwdc=">AAAB7nicbZDLSgMxFIbP1Futt6pLQYIdQVDKjIi6s+DGZQv2Au1YMmmmhmYyQ5IRS+nSB3DjQhG3bt35HO58Bn0I08tCW38IfPz/OeSc48ecKe04n1ZqZnZufiG9mFlaXlldy65vVFSUSELLJOKRrPlYUc4ELWumOa3FkuLQ57Tqd84HefWGSsUicam7MfVC3BYsYARrY1Vt+/Zq37ab2ZyTd4ZC0+COIXf29nW3/V76LjazH41WRJKQCk04VqruOrH2elhqRjjtZxqJojEmHdymdYMCh1R5veG4fbRrnBYKImme0Gjo/u7o4VCpbuibyhDrazWZDcz/snqig1Ovx0ScaCrI6KMg4UhHaLA7ajFJieZdA5hIZmZF5BpLTLS5UMYcwZ1ceRoqh3n3OH9UcnKFAxgpDVuwA3vgwgkU4AKKUAYCHbiHR3iyYuvBerZeRqUpa9yzCX9kvf4Aaf6Ssw==</latexit>

x+<latexit sha1_base64="EmWqlPkN6YTGcxOx/uW8YcQiaEU=">AAAB7nicbZC7SgNBFIbPxluMt6ilIINZwULDrojaGbCxTMBcIFnD7GQ2DpmdXWZmxRBS+gA2ForY2tr5HHY+gz6Ek0uhiT8MfPz/Ocw5x485U9pxPq3UzOzc/EJ6MbO0vLK6ll3fqKgokYSWScQjWfOxopwJWtZMc1qLJcWhz2nV75wP8uoNlYpF4lJ3Y+qFuC1YwAjWxqra9u3VgW03szkn7wyFpsEdQ+7s7etu+730XWxmPxqtiCQhFZpwrFTddWLt9bDUjHDazzQSRWNMOrhN6wYFDqnyesNx+2jXOC0URNI8odHQ/d3Rw6FS3dA3lSHW12oyG5j/ZfVEB6dej4k40VSQ0UdBwpGO0GB31GKSEs27BjCRzMyKyDWWmGhzoYw5gju58jRUDvPucf6o5OQK+zBSGrZgB/bAhRMowAUUoQwEOnAPj/BkxdaD9Wy9jEpT1rhnE/7Iev0BbQqStQ==</latexit>

x�

t

x

<latexit sha1_base64="IJvARC2Hxmv8Im5tn8KhQH53CBs=">AAAB73icbZC7SgNBFIZn4y3GW9RSkMGsYKFhV0TtDNhYJmAukKxhdjIbh8zOrjNnhRBS+gI2ForYWtr5HHY+gz6Ek0uhiT8MfPz/Ocw5x48F1+A4n1ZqZnZufiG9mFlaXlldy65vVHSUKMrKNBKRqvlEM8ElKwMHwWqxYiT0Bav6nfNBXr1lSvNIXkI3Zl5I2pIHnBIwVs22MVwd2HYzm3PyzlB4Gtwx5M7evu6230vfxWb2o9GKaBIyCVQQreuuE4PXIwo4FayfaSSaxYR2SJvVDUoSMu31hvP28a5xWjiIlHkS8ND93dEjodbd0DeVIYFrPZkNzP+yegLBqdfjMk6ASTr6KEgEhggPlsctrhgF0TVAqOJmVkyviSIUzIky5gju5MrTUDnMu8f5o5KTK+yjkdJoC+2gPeSiE1RAF6iIyogige7RI3qybqwH69l6GZWmrHHPJvoj6/UHvUKS2w==</latexit>

t�

<latexit sha1_base64="eJRpmP0IQqKX6BkB+OjAW44TTjo=">AAAB73icbZDLSgMxFIYz9VbrrepSkGBHEJQyI6LuLLhx2YK9QDuWTJqpoZnMmJwRSunSF3DjQhG3Lt35HO58Bn0I08tCW38IfPz/OeSc48eCa3CcTys1Mzs3v5BezCwtr6yuZdc3KjpKFGVlGolI1XyimeCSlYGDYLVYMRL6glX9zvkgr94ypXkkL6EbMy8kbckDTgkYq2bbGK72bbuZzTl5Zyg8De4YcmdvX3fb76XvYjP70WhFNAmZBCqI1nXXicHrEQWcCtbPNBLNYkI7pM3qBiUJmfZ6w3n7eNc4LRxEyjwJeOj+7uiRUOtu6JvKkMC1nswG5n9ZPYHg1OtxGSfAJB19FCQCQ4QHy+MWV4yC6BogVHEzK6bXRBEK5kQZcwR3cuVpqBzm3eP8UcnJFQ7QSGm0hXbQHnLRCSqgC1REZUSRQPfoET1ZN9aD9Wy9jEpT1rhnE/2R9foDujaS2Q==</latexit>

t+

<latexit sha1_base64="1AJm5F4CH307/gtWkyjj0u51XbY=">AAAB7nicdVDLTsJAFJ3iC/GFuHQzgZq4atqCgDsSXbjEKGACDZkOA0yYTpuZqQlp+Ag3LjTGnfEn/ANX7vwbp6CJGj3JTU7OuTf33uNHjEpl2+9GZml5ZXUtu57b2Nza3snvFtoyjAUmLRyyUFz5SBJGOWkpqhi5igRBgc9Ix5+cpH7nmghJQ36pphHxAjTidEgxUlrqmOZF3zHNfr5kW8f1qnvkQtuy7ZpbrqbErVXcMnS0kqLUyL6+FE6fis1+/q03CHEcEK4wQ1J2HTtSXoKEopiRWa4XSxIhPEEj0tWUo4BIL5mfO4MHWhnAYSh0cQXn6veJBAVSTgNfdwZIjeVvLxX/8rqxGta9hPIoVoTjxaJhzKAKYfo7HFBBsGJTTRAWVN8K8RgJhJVOKKdD+PoU/k/aruVUrcq5TqMCFsiCfVAEh8ABNdAAZ6AJWgCDCbgBd+DeiIxb48F4XLRmjM+ZPfADxvMHl/+RXQ==</latexit>

S1

<latexit sha1_base64="8GQlu6zjDHdzSQ0sFhL9BAuKGbE=">AAACynicjVHLTsJAFD3UF+ILcemmAUxckVIQcEeiCxcuMMojQWPaOmpDaZvp1IQQd/6AW937F/6Be+Mf6F94ZyiJLohO0/bOueecmXuvHXpuJAzjI6XNzS8sLqWXMyura+sb2c1cJwpi7rC2E3gB79lWxDzXZ23hCo/1Qs6soe2xrj04kPnuHeORG/hnYhSyi6F147vXrmMJgrrF4ullpVi8zBaM0n6jZu6ZulEyjLpZqcnArFfNil4mRK5CM/32mjt8ybeC7DvOcYUADmIMweBDUOzBQkRPH2UYCAm7wJgwTpGr8gz3yJA2JhYjhkXogL43tOsnqE976RkptUOnePRyUurYIU1APE6xPE1X+Vg5S3SW91h5yruN6G8nXkNCBW4J/Us3Zf5XJ2sRuEZD1eBSTaFCZHVO4hKrrsib6z+qEuQQEibjK8pzih2lnPZZV5pI1S57a6n8p2JKVO6dhBvjS96SBjydoj476Jilcq1UPaFJVzFZaWwjj12aZx1NHKGFtqryEU941o41ro208YSqpRLNFn4t7eEbvoOT4A==</latexit>

S3

<latexit sha1_base64="AyIxNX8B2/oPJB/vwYnXX7YYwdc=">AAAB7nicbZDLSgMxFIbP1Futt6pLQYIdQVDKjIi6s+DGZQv2Au1YMmmmhmYyQ5IRS+nSB3DjQhG3bt35HO58Bn0I08tCW38IfPz/OeSc48ecKe04n1ZqZnZufiG9mFlaXlldy65vVFSUSELLJOKRrPlYUc4ELWumOa3FkuLQ57Tqd84HefWGSsUicam7MfVC3BYsYARrY1Vt+/Zq37ab2ZyTd4ZC0+COIXf29nW3/V76LjazH41WRJKQCk04VqruOrH2elhqRjjtZxqJojEmHdymdYMCh1R5veG4fbRrnBYKImme0Gjo/u7o4VCpbuibyhDrazWZDcz/snqig1Ovx0ScaCrI6KMg4UhHaLA7ajFJieZdA5hIZmZF5BpLTLS5UMYcwZ1ceRoqh3n3OH9UcnKFAxgpDVuwA3vgwgkU4AKKUAYCHbiHR3iyYuvBerZeRqUpa9yzCX9kvf4Aaf6Ssw==</latexit>

x+<latexit sha1_base64="EmWqlPkN6YTGcxOx/uW8YcQiaEU=">AAAB7nicbZC7SgNBFIbPxluMt6ilIINZwULDrojaGbCxTMBcIFnD7GQ2DpmdXWZmxRBS+gA2ForY2tr5HHY+gz6Ek0uhiT8MfPz/Ocw5x485U9pxPq3UzOzc/EJ6MbO0vLK6ll3fqKgokYSWScQjWfOxopwJWtZMc1qLJcWhz2nV75wP8uoNlYpF4lJ3Y+qFuC1YwAjWxqra9u3VgW03szkn7wyFpsEdQ+7s7etu+730XWxmPxqtiCQhFZpwrFTddWLt9bDUjHDazzQSRWNMOrhN6wYFDqnyesNx+2jXOC0URNI8odHQ/d3Rw6FS3dA3lSHW12oyG5j/ZfVEB6dej4k40VSQ0UdBwpGO0GB31GKSEs27BjCRzMyKyDWWmGhzoYw5gju58jRUDvPucf6o5OQK+zBSGrZgB/bAhRMowAUUoQwEOnAPj/BkxdaD9Wy9jEpT1rhnE/7Iev0BbQqStQ==</latexit>

x�

t

x

<latexit sha1_base64="IJvARC2Hxmv8Im5tn8KhQH53CBs=">AAAB73icbZC7SgNBFIZn4y3GW9RSkMGsYKFhV0TtDNhYJmAukKxhdjIbh8zOrjNnhRBS+gI2ForYWtr5HHY+gz6Ek0uhiT8MfPz/Ocw5x48F1+A4n1ZqZnZufiG9mFlaXlldy65vVHSUKMrKNBKRqvlEM8ElKwMHwWqxYiT0Bav6nfNBXr1lSvNIXkI3Zl5I2pIHnBIwVs22MVwd2HYzm3PyzlB4Gtwx5M7evu6230vfxWb2o9GKaBIyCVQQreuuE4PXIwo4FayfaSSaxYR2SJvVDUoSMu31hvP28a5xWjiIlHkS8ND93dEjodbd0DeVIYFrPZkNzP+yegLBqdfjMk6ASTr6KEgEhggPlsctrhgF0TVAqOJmVkyviSIUzIky5gju5MrTUDnMu8f5o5KTK+yjkdJoC+2gPeSiE1RAF6iIyogige7RI3qybqwH69l6GZWmrHHPJvoj6/UHvUKS2w==</latexit>

t�

<latexit sha1_base64="eJRpmP0IQqKX6BkB+OjAW44TTjo=">AAAB73icbZDLSgMxFIYz9VbrrepSkGBHEJQyI6LuLLhx2YK9QDuWTJqpoZnMmJwRSunSF3DjQhG3Lt35HO58Bn0I08tCW38IfPz/OeSc48eCa3CcTys1Mzs3v5BezCwtr6yuZdc3KjpKFGVlGolI1XyimeCSlYGDYLVYMRL6glX9zvkgr94ypXkkL6EbMy8kbckDTgkYq2bbGK72bbuZzTl5Zyg8De4YcmdvX3fb76XvYjP70WhFNAmZBCqI1nXXicHrEQWcCtbPNBLNYkI7pM3qBiUJmfZ6w3n7eNc4LRxEyjwJeOj+7uiRUOtu6JvKkMC1nswG5n9ZPYHg1OtxGSfAJB19FCQCQ4QHy+MWV4yC6BogVHEzK6bXRBEK5kQZcwR3cuVpqBzm3eP8UcnJFQ7QSGm0hXbQHnLRCSqgC1REZUSRQPfoET1ZN9aD9Wy9jEpT1rhnE/2R9foDujaS2Q==</latexit>

t+

<latexit sha1_base64="AyIxNX8B2/oPJB/vwYnXX7YYwdc=">AAAB7nicbZDLSgMxFIbP1Futt6pLQYIdQVDKjIi6s+DGZQv2Au1YMmmmhmYyQ5IRS+nSB3DjQhG3bt35HO58Bn0I08tCW38IfPz/OeSc48ecKe04n1ZqZnZufiG9mFlaXlldy65vVFSUSELLJOKRrPlYUc4ELWumOa3FkuLQ57Tqd84HefWGSsUicam7MfVC3BYsYARrY1Vt+/Zq37ab2ZyTd4ZC0+COIXf29nW3/V76LjazH41WRJKQCk04VqruOrH2elhqRjjtZxqJojEmHdymdYMCh1R5veG4fbRrnBYKImme0Gjo/u7o4VCpbuibyhDrazWZDcz/snqig1Ovx0ScaCrI6KMg4UhHaLA7ajFJieZdA5hIZmZF5BpLTLS5UMYcwZ1ceRoqh3n3OH9UcnKFAxgpDVuwA3vgwgkU4AKKUAYCHbiHR3iyYuvBerZeRqUpa9yzCX9kvf4Aaf6Ssw==</latexit>

x+<latexit sha1_base64="EmWqlPkN6YTGcxOx/uW8YcQiaEU=">AAAB7nicbZC7SgNBFIbPxluMt6ilIINZwULDrojaGbCxTMBcIFnD7GQ2DpmdXWZmxRBS+gA2ForY2tr5HHY+gz6Ek0uhiT8MfPz/Ocw5x485U9pxPq3UzOzc/EJ6MbO0vLK6ll3fqKgokYSWScQjWfOxopwJWtZMc1qLJcWhz2nV75wP8uoNlYpF4lJ3Y+qFuC1YwAjWxqra9u3VgW03szkn7wyFpsEdQ+7s7etu+730XWxmPxqtiCQhFZpwrFTddWLt9bDUjHDazzQSRWNMOrhN6wYFDqnyesNx+2jXOC0URNI8odHQ/d3Rw6FS3dA3lSHW12oyG5j/ZfVEB6dej4k40VSQ0UdBwpGO0GB31GKSEs27BjCRzMyKyDWWmGhzoYw5gju58jRUDvPucf6o5OQK+zBSGrZgB/bAhRMowAUUoQwEOnAPj/BkxdaD9Wy9jEpT1rhnE/7Iev0BbQqStQ==</latexit>

x�

t

x

<latexit sha1_base64="IJvARC2Hxmv8Im5tn8KhQH53CBs=">AAAB73icbZC7SgNBFIZn4y3GW9RSkMGsYKFhV0TtDNhYJmAukKxhdjIbh8zOrjNnhRBS+gI2ForYWtr5HHY+gz6Ek0uhiT8MfPz/Ocw5x48F1+A4n1ZqZnZufiG9mFlaXlldy65vVHSUKMrKNBKRqvlEM8ElKwMHwWqxYiT0Bav6nfNBXr1lSvNIXkI3Zl5I2pIHnBIwVs22MVwd2HYzm3PyzlB4Gtwx5M7evu6230vfxWb2o9GKaBIyCVQQreuuE4PXIwo4FayfaSSaxYR2SJvVDUoSMu31hvP28a5xWjiIlHkS8ND93dEjodbd0DeVIYFrPZkNzP+yegLBqdfjMk6ASTr6KEgEhggPlsctrhgF0TVAqOJmVkyviSIUzIky5gju5MrTUDnMu8f5o5KTK+yjkdJoC+2gPeSiE1RAF6iIyogige7RI3qybqwH69l6GZWmrHHPJvoj6/UHvUKS2w==</latexit>

t�

<latexit sha1_base64="eJRpmP0IQqKX6BkB+OjAW44TTjo=">AAAB73icbZDLSgMxFIYz9VbrrepSkGBHEJQyI6LuLLhx2YK9QDuWTJqpoZnMmJwRSunSF3DjQhG3Lt35HO58Bn0I08tCW38IfPz/OeSc48eCa3CcTys1Mzs3v5BezCwtr6yuZdc3KjpKFGVlGolI1XyimeCSlYGDYLVYMRL6glX9zvkgr94ypXkkL6EbMy8kbckDTgkYq2bbGK72bbuZzTl5Zyg8De4YcmdvX3fb76XvYjP70WhFNAmZBCqI1nXXicHrEQWcCtbPNBLNYkI7pM3qBiUJmfZ6w3n7eNc4LRxEyjwJeOj+7uiRUOtu6JvKkMC1nswG5n9ZPYHg1OtxGSfAJB19FCQCQ4QHy+MWV4yC6BogVHEzK6bXRBEK5kQZcwR3cuVpqBzm3eP8UcnJFQ7QSGm0hXbQHnLRCSqgC1REZUSRQPfoET1ZN9aD9Wy9jEpT1rhnE/2R9foDujaS2Q==</latexit>

t+

<latexit sha1_base64="Ar4MPEJwWzU/banGhhIul/9yAxA=">AAACynicjVG7TsNAEBzMK4RXCCWNFYxEFTlOSEIXCQoKChCEIIUoss0BVvzS+YwURXT8AC30/AV/QI/4A/gL9g5HgiKCs2zvzc7M3e46se8lwjTfp7Tpmdm5+dxCfnFpeWW1sFY8S6KUu6ztRn7Ezx07Yb4XsrbwhM/OY87swPFZxxnsyXznlvHEi8JTMYxZL7CvQ+/Kc21BUMcwTvqWYfQLm2Z5t1m3dizdLJtmw6rWZWA1alZVrxAi12Yr9/pS3H8uHUWFN1zgEhFcpAjAEEJQ7MNGQk8XFZiICethRBinyFN5hjvkSZsSixHDJnRA32vadTM0pL30TJTapVN8ejkpdWyRJiIep1iepqt8qpwlOsl7pDzl3Yb0dzKvgFCBG0L/0o2Z/9XJWgSu0FQ1eFRTrBBZnZu5pKor8ub6j6oEOcSEyfiS8pxiVynHfdaVJlG1y97aKv+hmBKVezfjpviUt6QBj6eoTw7OrHKlXq4d06Rr+F45bKCEbZpnAy0c4AhtVeUDHvGkHWpcG2qjb6o2lWnW8Wtp91+8IZPf</latexit>

S2

Figure 2 The subsets S1 and S2 are examples of singleton-separators, S3 is not.

For a subset S of P, we define MG(S) := {A ⊆ S | ΓP(A) ∈ G} and we have as a first
result that S is a singleton-separator if and only if for every σ-algebra G on ΓP we have that
MG(S) is a σ-algebra on S.

This means that the only subsets of a prism for which we can hope to obtain a probability
space are the singleton-separators. The following theorem states how this probability space
looks like.

▶ Theorem 1. Let P = P(p−, t−, p+, t+, vmax) be a space-time prism and let S be a singleton-
separator in P. Then a probability space (ΓP , G, P) on the set of all vmax-trajectories induces a
probability space (S, MG(S), vpP) on S, when vpP (A) is defined as P (ΓP(A)) for A ∈ MG(S).

References
1 L. Burns. Transportation, Temporal, and Spatial Components of Accessibility. Lexington

Books, Lexington, MA, 1979.
2 Max J. Egenhofer. Approximation of geospatial lifelines. In Elisa Bertino and Leila De Floriani,

editors, SpadaGIS, Workshop on Spatial Data and Geographic Information Systems. University
of Genova, 2003.

3 R. Güting and M. Schneider. Moving Object Databases. Morgan Kaufmann, 2005.
4 T. Hägerstrand. What about people in regional science? Papers of the Regional Science

Association, 24:7–21, 1970.
5 Kathleen Hornsby and Max J. Egenhofer. Modeling moving objects over multiple granularities.

Ann. Math. Artif. Intell., 36(1-2):177–194, 2002. doi:10.1023/A:1015812206586.
6 Bart Kuijpers and Walied Othman. Trajectory databases: data models, uncertainty and

complete query languages. J. Comput. Syst. Sci., 76(7):538–560, 2010. doi:10.1016/j.jcss.
2009.10.002.

7 B. Lenntorp. Paths in Space-Time Environments: A Time-Geographic Study of the Movement
Possibilities of Individuals. Number 44 in Series B. Lund Studies in Geography, 1976.

8 Jed A. Long. Modeling movement probabilities within heterogeneous spatial fields. Journal of
Spatial Information Science, 16:85–116, 2018. doi:10.5311/JOSIS.2018.16.372.

9 H.J. Miller. A measurement theory for time geography. Geographical Analysis, 2005. doi:
10.1111/j.1538-4632.2005.00575.x.

10 Ying Song and Harvey J. Miller. Simulating visit probability distributions within planar
space-time prisms. International Journal of Geographical Information Science, 28(1):104–125,
January 2014. doi:10.1080/13658816.2013.830308.

11 G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Managing uncertainty in moving
objects databases. ACM Trans. Database Syst., 29(3):463–507, 2004. doi:10.1145/1016028.
1016030.

12 Stephan Winter and Zhang Cai Yin. Directed movements in probabilistic time geography.
International Journal of Geographical Information Science, 2010.

https://doi.org/10.1023/A:1015812206586
https://doi.org/10.1016/j.jcss.2009.10.002
https://doi.org/10.1016/j.jcss.2009.10.002
https://doi.org/10.5311/JOSIS.2018.16.372
https://doi.org/10.1111/j.1538-4632.2005.00575.x
https://doi.org/10.1111/j.1538-4632.2005.00575.x
https://doi.org/10.1080/13658816.2013.830308
https://doi.org/10.1145/1016028.1016030
https://doi.org/10.1145/1016028.1016030

Prompting LLMs for the Run-Time Event Calculus
Andreas Kouvaras #

University of Piraeus, Greece

Periklis Mantenoglou #

Örebro University, Sweden

Alexander Artikis #

University of Piraeus, Greece
NCSR “Demokritos”, Athens, Greece

Abstract
Composite activity recognition systems analyse streams of low-level, symbolic events to identify
instances of complex activities based on their formal definitions. Crafting these definitions is a
challenging task, as it often requires specifying intricate spatio-temporal constraints, and acquiring
labeled data for automated learning is difficult. To address this challenge, we introduce a method
that leverages pre-trained Large Language Models (LLMs) to generate composite activity definitions,
in the language of the Run-Time Event Calculus, from natural language descriptions.

2012 ACM Subject Classification Computing methodologies → Temporal reasoning

Keywords and phrases Event Calculus, temporal pattern matching, composite event recognition

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.18

Category Short Paper

Supplementary Material Software: https://github.com/aartikis/rtec

Acknowledgements This work was supported partly by the EU-funded project ENEXA (101070305),
and partly by the Wallenberg AI, Autonomous Systems and Software Program funded by the Knut
and Alice Wallenberg Foundation.

1 Introduction

Composite event recognition (CER) systems process streams of symbolic, time-stamped events,
in order to detect instances of composite activities of interest via temporal pattern matching
over these input event streams [17, 7, 8, 1]. In Maritime Situational Awareness (MSA)
e.g. the task is to monitor vessel position streams for detecting composite activities such as
loitering and violations of the regulations concerning sailing in protected areas [3]. Composite
activities are defined in a rigorous manner, by means of a formal pattern specification
language. Consider, e.g., CER for city transport management (CTM), where we need
to detect composite activities relating to the quality of public transportation based on
symbolic event streams that stem from sensor data and contextual information, like an
abrupt acceleration or a significant increase in passenger density within a bus. Towards
safe public transportation, we would like to detect unsafe driving behaviours. To do this,
we may employ a pattern stating that a bus is driven unsafely if it is making sharp turns,
or it is accelerating or decelerating abruptly. A sharp turn may be defined as another
composite activity, composed of consecutive “change in direction” events, while deriving
abrupt acceleration and deceleration events may require background knowledge concerning
the type of bus being used, complicating the formal definition of unsafe driving. As a result,
constructing a pattern for a composite activity may become quite involved.

© Andreas Kouvaras, Periklis Mantenoglou, and Alexander Artikis;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 18; pp. 18:1–18:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.kouvaras@unipi.gr
https://orcid.org/0009-0000-6741-5532
mailto:periklis.mantenoglou@oru.se
https://orcid.org/0009-0002-3275-1522
mailto:a.artikis@unipi.gr
https://orcid.org/0000-0001-6899-4599
https://doi.org/10.4230/LIPIcs.TIME.2025.18
https://github.com/aartikis/rtec
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

18:2 Prompting LLMs for the Run-Time Event Calculus

Hand-crafting composite activity definitions requires knowledge of formal languages –
domain experts, such as transport engineers, cannot be expected to have such knowledge.
Moreover, automatically constructing composite activity patterns via specialised machine
learning techniques often requires large training datasets with labels for composite activity
instances [6, 9, 15]. Unfortunately, the use of such techniques is commonly prohibited due to
the scarcity of labels for the inherently infrequent composite activities.

To address these issues, we propose a method that constructs composite activity patterns
from natural language descriptions using pre-trained Large Language Models (LLMs). We
prompt LLMs to transform composite activity definitions expressed in natural language into
logic programming definitions in the language of the “Run-Time Event Calculus” (RTEC)
[14, 11, 12]. RTEC is an implementation of the Event Calculus, i.e., a formalism for
representing events and reasoning about their effects over time [10, 5, 4]. RTEC is optimised
by means of windowing and caching algorithms, demonstrating scalability in challenging
domains, such as MSA and CTM, outperforming state-of-the-art CER systems [14, 13]. A
key feature of our prompting method is that it is not custom to a single domain, but may be
re-used, in a zero-shot manner, for the generation of composite activity definitions in any
CER domain.

2 Background: RTEC

RTEC is a formal, logic programming framework that extends the Event Calculus [10] with
optimisation techniques for CER [2, 14, 12]. The language of RTEC includes sorts for
representing time, events and fluents, i.e., properties whose values may change over time.
RTEC employs a linear time-line with non-negative integer time-points. A fluent-value pair
(FVP) F=V denotes that fluent F has value V . happensAt(E , T) signifies that event E occurs
at time-point T . initiatedAt(F = V , T) (resp. terminatedAt(F = V , T)) expresses that a time
period during which a fluent F has the value V continuously is initiated (terminated) at T .
holdsAt(F = V , T) states that F has value V at T , while holdsFor(F = V , I) expresses that
F=V holds continuously in the maximal intervals of list I .

A formalisation of composite activity definitions in RTEC is called event description. An
event description may contain rules defining two types of FVPs: “simple” and “statically
determined”. A simple FVP is defined using a set of initiatedAt and terminatedAt rules, and is
subject to the commonsense law of inertia, i.e., an FVP F=V holds at a time-point T , if
F=V has been “initiated” by an event at a time-point earlier than T , and not “terminated”
by another event in the meantime.

▶ Example 1 (Within area). In the maritime domain, vessel activity may be disallowed in
certain areas, e.g., fisheries restricted areas. Thus, it is desirable to compute the maximal
intervals during which a vessel is in such an area. See the definition of a simple FVP below:

initiatedAt(withinArea(Vessel, AreaType) = true, T)←
happensAt(entersArea(Vessel, AreaID), T), areaType(AreaID, AreaType). (1)

terminatedAt(withinArea(Vessel, AreaType) = true, T)←
happensAt(leavesArea(Vessel, AreaID), T), areaType(AreaID, AreaType). (2)

terminatedAt(withinArea(Vessel, AreaType) = true, T)←
happensAt(gapStart(Vessel), T). (3)

withinArea(Vessel, AreaType) is a Boolean fluent denoting that a Vessel is in an
area of type AreaType, while entersArea(Vessel, AreaID), leavesArea(Vessel, AreaID) and
gapStart(Vessel) are input events, derived by the online processing of vessel position signals,

A. Kouvaras, P. Mantenoglou, and A. Artikis 18:3

and their spatial relations with areas of interest [16]. areaType(AreaID, AreaType) is an
atemporal predicate storing background knowledge regarding the types of areas in a dataset.
Rules (1) and (2) state that withinArea(Vessel, AreaType) is initiated (resp. terminated) as
soon as a Vessel enters (leaves) an area AreaID, whose type is AreaType. Rule (3) expresses
that withinArea(Vesel, AreaType) is terminated when there is a communication gap, i.e., when
the Vessel stops transmitting its position, and we become uncertain of its whereabouts. ⌟

A statically determined FVP F = V is defined via a rule with head holdsFor(F = V , I).
This rule computes the maximal intervals during which F = V holds continuously by applying
a set interval manipulation operations, i.e., union_all, intersect_all and relative_complement_all, on
the maximal intervals of other FVPs.

▶ Example 2 (Anchored and moored vessels). Consider the following definition of a statically
determined FVP:

holdsFor(anchoredOrMoored(Vessel) = true, I)←
holdsFor(stopped(Vessel) = farFromPorts, Isf),
holdsFor(withinArea(Vessel, anchorage) = true, Ia), intersect_all([Isf , Ia], Isfa),
holdsFor(stopped(Vl) = nearPorts, Isn), union_all([Isfa, Isn], I).

(4)

anchoredOrMoored(Vessel) is a Boolean statically determined fluent, defined in terms of three
other FVPs: stopped(Vessel) = farFromPorts, stopped(Vessel) = nearPorts and
withinArea(Vessel, anchorage) = true. The multi-valued fluent stopped(Vessel) expresses the
periods during which a Vessel is idle near some port or far from all ports. Rule (4) derives the
intervals during which a Vessel is both stopped far from all ports and within an anchorage
area, by applying the intersect_all operation on the lists of maximal intervals Isf and Ia. The
output of this operation is list Isfa. Subsequently, list I is derived by applying union_all on
lists Isfa and Isn. This way, list I contains the maximal intervals during which a Vessel has
stopped near some port or within an anchorage area. ⌟

A statically determined FVP holds as long as a Boolean combination of other FVPs is
satisfied. Thus, statically determined FVPs are tailored for modeling composite activities
that may be defined by applying conjunction, disjunction and negation operators on other
activities – see “anchored or moored”. “Inertial” composite activities, i.e., activities that
persist through time and may arise (or conclude) based on the satisfaction of a set of
instantaneous conditions, are expressed using initiatedAt and terminatedAt rules. Typically, a
statically determined FVP representation leads to more efficient reasoning, but not all simple
FVPs are translatable to statically determined ones. A formal analysis, including an account
of the syntax, semantics and reasoning algorithms of RTEC may be found in [14, 12].

3 Prompt Pipeline

Hand-crafting composite activity definitions requires knowledge of the language of RTEC –
maritime experts e.g. cannot be expected to have such knowledge. To address this issue, we
present a prompting approach that leverages the power of LLMs for constructing composite
activity definitions. Figure 1 presents the pipeline for translating natural language descriptions
of composite activities into RTEC rules. First, we introduce to the LLM the core predicates
of RTEC (Prompt R), and provide the syntax for the definitions of simple and statically
determined FVPs (Prompt S). Then, we proceed with each application domain – for each
such domain we present the items of the input stream, i.e. the events and input FVPs
(Prompt E and Prompt F), and the background knowledge predicates (Prompt B) –
recall e.g. areaType in rule-set (1)–(3). Subsequently, Prompt G asks the LLM to translate

TIME 2025

18:4 Prompting LLMs for the Run-Time Event Calculus

Introducing RTEC

RTEC Predicates
(Prompt R)

Syntax of Simple and
Statically Determined

FVP Definitions
(Prompt S)

Application: MSA

Events and FVPs
(Prompt E & F)

Background Knowl-
edge Predicates
(Prompt B)

Rule Generation
(Prompt G)

· · ·

Application: CTM

Events and FVPs
(Prompt E & F)

Background Knowl-
edge Predicates
(Prompt B)

Rule Generation
(Prompt G)

Figure 1 LLM prompting for composite activity definition generation.

a natural language description of each composite activity of the application domain under
consideration into a set of RTEC rules. We may customise and repeat Prompts E, F, B
and G for each subsequent application domain. Prompts R and S are not repeated.

Prompt R introduces the predicates of RTEC. Subsequently, we use Prompt S to
demonstrate to the LLM how to express a composite activity as a simple or a statically
determined FVP. We start with a description of the syntax of the rules expressing simple
FVPs. Then, we employ chain-of-thought prompting, according to which we provide natural
language descriptions of two example composite activities, and show how these activities
may be expressed as simple FVPs. The prompt fragment below illustrates this process; a
fragment illustrating statically determined FVPs, is presented in the Appendix. The chosen
examples concern MSA. Lines 14, 17 and 20 of the prompt below should be replaced with
resp. rules (1), (2), and (3).

Listing 1 Fragment of Prompt S.
1 There are two ways in which a composite activity may be defined in the language

of RTEC. In the first case, a composite activity definition may be specified by
means of rules with ‘initiatedAt(F=V, T)’ or ‘terminatedAt(F=V, T)’ in their head.
This is called a simple fluent definition.

2

3 The first body literal of an ‘initiatedAt(F=V,T)’ rule is a positive ‘happensAt’
predicate; this predicate is followed by a possibly empty set of positive or
negative ‘happensAt’ and ‘holdsAt’ predicates. Negative predicates are prefixed
with ‘not’ which expresses negation-by-failure. In some cases, the body of an ‘
initiatedAt(F=V,T)’ rule may include predicates expressing background knowledge.

4

5 ‘terminatedAt(F=V,T)’ rules are specified in a similar way.
6

7 Below you may find two examples of composite activity definitions, from the
maritime domain, expressed as simple fluents.

8

9 Example 1: Given a composite maritime activity description, provide the rules in
the language of RTEC.

10 Composite Maritime Activity Description: ‘withinArea’. This activity starts when
a vessel enters an area of interest. The activity ends when the vessel leaves the
area that it had entered, or when the vessel stops transmitting its position,

since we can no longer assume that the vessel remains in the same area in the
case of transmission gaps.

11

A. Kouvaras, P. Mantenoglou, and A. Artikis 18:5

12 Answer:
13 The activity ‘withinArea’ is expressed as a Boolean simple fluent with two

arguments, i.e., ‘Vessel’ and ‘AreaType’. This activity starts when a vessel
enters an area of interest. We use an ‘initiatedAt’ rule to express this
initiation condition. The body literals of this rules are an event labelled ‘
entersArea’ with two arguments, ’Vessel’ and ‘Area’, and a background knowledge
predicate named ‘areaType’ with two arguments, ‘Area’ and ‘AreaType’. This rule
in the language of RTEC is the following:

14 <Rule (1)>
15

16 The activity ‘withinArea’ ends when a vessel leaves the area that it had entered.
We use a ‘terminatedAt’ rule to describe this termination condition. This rule

includes an event named ‘leavesArea’ with two arguments, i.e. ‘Vessel’ and ’Area’,
and the background knowledge predicate ‘areaType’. This rule in the language of

RTEC language is:
17 <Rule (2)>
18

19 In addition to the aforementioned conditions, the activity ‘withinArea’ ends when
the vessel stops transmitting its position, i.e. when a communication gap starts.
We use a ‘terminatedAt’ rule to express this termination condition. In this rule,
the second argument of the ‘withinArea’ fluent is a ‘free’ Prolog variable, i.e.
a variable starting with ‘_’. The body of this rule includes a single event

named ‘gap_start’ with one argument, i.e. ‘Vessel’. This rule in the language of
RTEC is:

20 <Rule (3)>
21

22 Example 2: <Description 2>

According to Prompt S, there are two ways in which a natural language description
of a composite activity should be expressed. First, the textual description may indicate
the conditions in which the composite activity is said to start taking place, as well as the
conditions in which the activity is said to stop taking place. This may be achieved with the
use of key phrases such as “the activity starts” and “the activity ends” (see Prompt S above).
Second, we may identify the conditions that must be satisfied so that the composite activity
in question holds at any given time. To achieve this, we may enter in the textual description
of the activity the key phrase “as long as” (see Prompt S – Statically determined FVPs
in the Appendix). The first type of textual description implies a simple FVP representation,
while the second type of description implies a statically determined FVP formulation. In any
case, the compiler of RTEC will choose the most efficient representation [12].

4 Further Work

We aim to evaluate our approach using leading LLMs in diverse domains, such as CER for
Maritime Situational Awareness (MSA) and City Transport Management (CTM). Moreover,
we aim to fine-tune manageable versions of LLMs for avoiding any errors that may occur in
rule generation.

References
1 Elias Alevizos, Alexander Artikis, and Georgios Paliouras. Complex event recognition with

symbolic register transducers. Proc. VLDB Endow., 17(11):3165–3177, 2024. doi:10.14778/
3681954.3681991.

2 Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. An event calculus for event
recognition. IEEE Trans. Knowl. Data Eng., 27(4):895–908, 2015. doi:10.1109/TKDE.2014.
2356476.

TIME 2025

https://doi.org/10.14778/3681954.3681991
https://doi.org/10.14778/3681954.3681991
https://doi.org/10.1109/TKDE.2014.2356476
https://doi.org/10.1109/TKDE.2014.2356476

18:6 Prompting LLMs for the Run-Time Event Calculus

3 Alexander Artikis and Dimitris Zissis, editors. Guide to Maritime Informatics. Springer, 2021.
doi:10.1007/978-3-030-61852-0.

4 Iliano Cervesato and Angelo Montanari. A calculus of macro-events: Progress report. In
TIME, pages 47–58, 2000. doi:10.1109/TIME.2000.856584.

5 Luca Chittaro and Angelo Montanari. Efficient temporal reasoning in the cached event calculus.
Comput. Intell., 12:359–382, 1996. doi:10.1111/J.1467-8640.1996.TB00267.X.

6 Lars George, Bruno Cadonna, and Matthias Weidlich. Il-miner: Instance-level discovery of
complex event patterns. Proc. VLDB Endow., 10(1):25–36, 2016. doi:10.14778/3015270.
3015273.

7 Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and Minos N.
Garofalakis. Complex event recognition in the big data era: a survey. VLDB J., 29(1):313–352,
2020. doi:10.1007/S00778-019-00557-W.

8 Alejandro Grez, Cristian Riveros, Martín Ugarte, and Stijn Vansummeren. A formal framework
for complex event recognition. ACM Trans. Database Syst., 46(4):16:1–16:49, 2021. doi:
10.1145/3485463.

9 Nikos Katzouris, Georgios Paliouras, and Alexander Artikis. Online learning probabilistic event
calculus theories in answer set programming. Theory Pract. Log. Program., 23(2):362–386,
2023. doi:10.1017/S1471068421000107.

10 R. Kowalski and M. Sergot. A logic-based calculus of events. New Gen. Computing, 4(1):67–96,
1986. doi:10.1007/BF03037383.

11 Periklis Mantenoglou and Alexander Artikis. Extending the range of temporal specifications
of the run-time event calculus. In TIME, volume 318, pages 6:1–6:14, 2024. doi:10.4230/
LIPICS.TIME.2024.6.

12 Periklis Mantenoglou and Alexander Artikis. Temporal specification optimisation for the event
calculus. In AAAI-25, pages 15075–15082, 2025. doi:10.1609/AAAI.V39I14.33653.

13 Periklis Mantenoglou, Dimitrios Kelesis, and Alexander Artikis. Complex event recognition
with allen relations. In KR, pages 502–511, 2023. doi:10.24963/KR.2023/49.

14 Periklis Mantenoglou, Manolis Pitsikalis, and Alexander Artikis. Stream reasoning with cycles.
In KR, pages 544–553, 2022.

15 Evangelos Michelioudakis, Alexander Artikis, and Georgios Paliouras. Online semi-supervised
learning of composite event rules by combining structure and mass-based predicate similarity.
Mach. Learn., 113(3):1445–1481, 2024. doi:10.1007/S10994-023-06447-1.

16 Georgios M. Santipantakis, Akrivi Vlachou, Christos Doulkeridis, Alexander Artikis, Ioannis
Kontopoulos, and George A. Vouros. A stream reasoning system for maritime monitoring. In
TIME, volume 120, pages 20:1–20:17, 2018. doi:10.4230/LIPICS.TIME.2018.20.

17 Walker M. White, Mirek Riedewald, Johannes Gehrke, and Alan J. Demers. What is "next" in
event processing? In PODS, pages 263–272, 2007. doi:10.1145/1265530.1265567.

A Prompt S

Below we present a fragment of Prompt S that introduces the syntax and an example of
statically determined FVPs.

Listing 2 Prompt S – Statically determined FVPs.
1 The second way in which a composite activity may be defined in the language of

RTEC concerns statically determined fluents. In this case, a composite activity
definition may be specified by means of a rule with ‘holdsFor(F=V, I)’ in its
head. The body of such a rule may include ‘holdsFor’ conditions for fluents other
than F, as well as some of the interval manipulation constructs of RTEC, i.e. ‘

union_all’, ‘intersect_all’, and ‘relative_complement_all’. In some cases, a ‘
holdsFor(F=V, I)’ rule may include predicates expressing background knowledge. A
rule with ‘holdsFor(F=V, I)’ in the head is called a statically determined fluent
definition. Below you may find two examples of composite maritime activities

expressed as statically determined fluents.

https://doi.org/10.1007/978-3-030-61852-0
https://doi.org/10.1109/TIME.2000.856584
https://doi.org/10.1111/J.1467-8640.1996.TB00267.X
https://doi.org/10.14778/3015270.3015273
https://doi.org/10.14778/3015270.3015273
https://doi.org/10.1007/S00778-019-00557-W
https://doi.org/10.1145/3485463
https://doi.org/10.1145/3485463
https://doi.org/10.1017/S1471068421000107
https://doi.org/10.1007/BF03037383
https://doi.org/10.4230/LIPICS.TIME.2024.6
https://doi.org/10.4230/LIPICS.TIME.2024.6
https://doi.org/10.1609/AAAI.V39I14.33653
https://doi.org/10.24963/KR.2023/49
https://doi.org/10.1007/S10994-023-06447-1
https://doi.org/10.4230/LIPICS.TIME.2018.20
https://doi.org/10.1145/1265530.1265567

A. Kouvaras, P. Mantenoglou, and A. Artikis 18:7

2

3 Example 1: Given a composite maritime activity description, provide the rules in
the language of RTEC.

4 Composite Maritime Activity Description: ‘underWay’. This activity lasts as long
as a vessel is not stopped.

5

6 Answer: The activity ‘underWay’ is expressed as a statically determined fluent.
Rules with ‘holdsFor’ in the head specify the conditions in which a fluent holds.
We use a ‘holdsFor’ rule to describe that the ‘underWay’ activity lasts as long

as a vessel is not stopped. The output is Boolean fluent named ‘underWay’ with
one argument, i.e. ‘Vessel’. We specify ‘underWay’ with the use of the fluent ‘
movingSpeed’. We express ‘underWay’ as the disjunction of the three values of ‘
movingSpeed’, i.e. ‘below’, ‘normal’ and ‘above’. Disjunction in ‘holdsFor’ rules
is expressed by means of ‘union_all’. This rule is expressed in the language of

RTEC as follows:
7

8 holdsFor(underWay(Vessel)=true, I) :-
9 holdsFor(movingSpeed(Vessel)=below, I1),

10 holdsFor(movingSpeed(Vessel)=normal, I2),
11 holdsFor(movingSpeed(Vessel)=above, I3),
12 union_all([I1,I2,I3], I).
13

14 Example 2: <Description 2>

TIME 2025

Temporal Association Rules from Motifs
Mauro Milella #

Department of Mathematics and Computer Science, University of Ferrara, Italy

Giovanni Pagliarini #

Department of Mathematics and Computer Science, University of Ferrara, Italy

Guido Sciavicco #

Department of Mathematics and Computer Science, University of Ferrara, Italy

Ionel Eduard Stan #

Department of Informatics, Systems, and Communications, University of Milano-Bicocca, Italy

Abstract
A motif is defined as a frequently occurring pattern within a (multivariate) time series. In recent
years, various techniques have been developed to mine time series data. However, only a few studies
have explored the idea of using motif discovery in temporal association rule mining. Interval-based
temporal association rules have been recently defined and studied, along with the temporal version of
the known frequent patterns, and therefore, association rule extraction algorithms (such as APRIORI
and FP-Growth). In this work, we define a vocabulary of propositional letters wrapping motifs,
and show how to extract temporal association rules starting from such a vocabulary. We apply our
methodology to time series datasets in the fields of hand signs execution and gait recognition, and
we discuss how they capture curious insights within data, keeping a high level of interpretability.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Theory and algorithms for application domains

Keywords and phrases Motifs, Interval Temporal Logic, Association Rules

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.19

Category Short Paper

Supplementary Material Software (Source Code): https://github.com/aclai-lab/Sole.jl [11]
archived at swh:1:dir:dd723aee72578208606649ff12168e891cdae221

Software (Source Code): https://github.com/aclai-lab/ModalAssociationRules.jl [10]
archived at swh:1:dir:697da0b30a22cd23450ab445a887ebf1a602db8f

Funding We acknowledge the support of the FIRD project Methodological Developments in Modal
Symbolic Geometric Learning, funded by the University of Ferrara. Moreover, this research has
also been funded by the Italian Ministry of University and Research through PNRR – M4C2 –
Investimento 1.3 (Decreto Direttoriale MUR n. 341 del 15/03/2022), Partenariato Esteso PE00000013
– “FAIR – Future Artificial Intelligence Research” – Spoke 8 “Pervasive AI”, funded by the European
Union under the NextGeneration EU programme.

1 Introduction

In machine learning, we distinguish between functional and symbolic learning. The former
encompasses strategies for representing the theory underlying a certain phenomenon as
functions, while the latter derives logical descriptions of that phenomenon. Traditional
symbolic methods rely on propositional logic and assume static data, in which each instance
is described by 𝑛 attributes. Temporal data, however, cannot be successfully dealt within the
same schema in a native way, and it is commonly pre-processed (e.g., via averaging attributes
along all dimensions) to appear static, enabling standard symbolic techniques.

© Mauro Milella, Giovanni Pagliarini, Guido Sciavicco, and Ionel Eduard Stan;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 19; pp. 19:1–19:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mauro.milella@edu.unife.it
https://orcid.org/0000-0001-7128-6745
mailto:giovanni.pagliarini@unife.it
https://orcid.org/0000-0002-8403-3250
mailto:guido.sciavicco@unife.it
https://orcid.org/0000-0002-9221-879X
mailto:ioneleduard.stan@unimib.it
https://orcid.org/0000-0001-9260-102X
https://doi.org/10.4230/LIPIcs.TIME.2025.19
https://github.com/aclai-lab/Sole.jl
https://archive.softwareheritage.org/swh:1:dir:dd723aee72578208606649ff12168e891cdae221;origin=https://github.com/aclai-lab/Sole.jl;visit=swh:1:snp:921c0e3817509d813e0ea03398f093fbd48ca539;anchor=swh:1:rev:8b79f0b7e41c91745a780262e11c7d07be660084
https://github.com/aclai-lab/ModalAssociationRules.jl
https://archive.softwareheritage.org/swh:1:dir:697da0b30a22cd23450ab445a887ebf1a602db8f;origin=https://github.com/aclai-lab/ModalAssociationRules.jl;visit=swh:1:snp:72b4fb9d69583cb16dd357b5c9de2a2359b80727;anchor=swh:1:rev:4c69384c9ff2e0cf401e27ae9874b1c728962829
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

19:2 Temporal Association Rules from Motifs

Modal, and in particular temporal symbolic learning [8, 12] takes a different point of view:
modal symbolic methods are characterized by being based on modal logic (e.g., temporal
logic) so that non-static data can be dealt with natively, and that the extracted knowledge
takes the form of interpretable modal logic formulas. Association rule extraction techniques
can benefit from a similar approach [9, 14], with the introduction of the modal adaptation of
the known frequent set extraction algorithms, namely APRIORI [1] and FP-Growth [5]. In
particular, the temporal case is considered a representative example to illustrate the qualities
and characteristics of modal association rules. Nevertheless, the original approach presents
some important limitations, originating from the basic definition of temporal alphabet, which
may cause difficult-to-interpret association rules. One way to overcome the limits in alphabet
definition towards temporal association rule extraction is to consider time series motifs, that
is, patterns that are considered interesting because they frequently occur.

In this paper, we consider the problem of temporal rule extraction from time series
using a motif-based alphabet. We adapt the original definition of local support, introduced
in [9, 14], to accommodate motifs suitably, and apply our methodology to two temporal
datasets, showing how the obtained rules have an immediate natural language translation.

2 Background

Motif discovery for time series was introduced in 2003 [4], generating quite a body of research.
Virtually every time series data mining technique has been applied to the motif discovery
problem, including indexing, data discretization, triangular-inequality pruning, hashing, early
abandoning.

▶ Definition 1. A time series is a sequence 𝑇 : 𝑡1, . . . , 𝑡𝑁 of 𝑁 real-valued observations. A
set of T time series 𝑇1, . . . , 𝑇𝑛 is called multivariate time series. A region 𝑇𝑖 𝑗 : 𝑡𝑖 , . . . , 𝑡 𝑗
of 𝑗 − 𝑖 + 1 consecutive observations in a time series is called a subsequence. Given two
subsequences 𝑇𝑖 and 𝑇𝑘, their distance is the Euclidean distance between their 𝑍-normalized
forms.

Given a subsequence, we can compute its distance to all subsequences in the same time series.

▶ Definition 2. Given an 𝑁-observations time series 𝑇 and a subsequence 𝑇𝑖 𝑗 , the distance
profile 𝐷𝑖 is the vector of all distances between 𝑇𝑖 𝑗 and 𝑇𝑘 (𝑘+ 𝑗−𝑖+1) , for every 1 ≤ 𝑘 ≤ 𝑁.

Distance profiles are collected in a distance matrix, from which a matrix profile is built.

▶ Definition 3. Given a time series 𝑇 and a length 𝑙, the full distance matrix 𝑀𝑇,𝑙 is the
squared matrix of dimension 𝑁 − 𝑙 + 1 whose 𝑖-th row is the distance profile 𝐷𝑖. Given
an integer 𝑠, the matrix profile 𝑃 is the vector that at position 𝑖 contains the minimum
value in 𝐷𝑖, ignoring all the values in 𝐷𝑖 (𝑖−𝑠) and 𝐷𝑖 (𝑖+𝑠) , as these distances are considered
trivialities.

For each position 𝑖 in a matrix profile 𝑃, if the value 𝑃𝑖 is lower than a threshold 𝛼, we say
that 𝑇𝑖 (𝑖+𝑙) is an instance of a motif.

Note that both the literature and the maintained packages on motif discovery are relatively
extensive; in this work, we enrich the existing software ecosystem with the framework
Sole.jl 1, an open source solution for symbolic learning with non-tabular data, leveraging the
MatrixProfile.jl 2 library, which implements the STAMP algorithm [15] for computing the
matrix profile of a time series, allowing for motifs discovery.

1 See https://github.com/aclai-lab/Sole.jl and https://github.com/aclai-lab/
ModalAssociationRules.jl.

2 https://github.com/baggepinnen/MatrixProfile.jl

https://github.com/aclai-lab/Sole.jl
https://github.com/aclai-lab/ModalAssociationRules.jl
https://github.com/aclai-lab/ModalAssociationRules.jl
https://github.com/baggepinnen/MatrixProfile.jl

M. Milella, G. Pagliarini, G. Sciavicco, and I. E. Stan 19:3

Table 1 Allen’s relation and their notation within HS; equality and inverse relations are omitted.

HS modality Definition w.r.t. the interval structure Example
𝑖 𝑗

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

𝑖′ 𝑗′

⟨𝐴⟩ (after) [𝑖, 𝑗]𝑅𝐴[𝑖′, 𝑗 ′] ⇔ 𝑗 = 𝑖′

⟨𝐿⟩ (later) [𝑖, 𝑗]𝑅𝐿 [𝑖′, 𝑗 ′] ⇔ 𝑗 < 𝑖′

⟨𝐵⟩ (begins) [𝑖, 𝑗]𝑅𝐵 [𝑖′, 𝑗 ′] ⇔ 𝑖 = 𝑖′ ∧ 𝑗 ′ < 𝑗

⟨𝐸⟩ (ends) [𝑖, 𝑗]𝑅𝐸 [𝑖′, 𝑗 ′] ⇔ 𝑗 = 𝑗 ′ ∧ 𝑖 < 𝑖′

⟨𝐷⟩ (during) [𝑖, 𝑗]𝑅𝐷 [𝑖′, 𝑗 ′] ⇔ 𝑖 < 𝑖′ ∧ 𝑗 ′ < 𝑗

⟨𝑂⟩ (overlaps) [𝑖, 𝑗]𝑅𝑂 [𝑖′, 𝑗 ′] ⇔ 𝑖 < 𝑖′ < 𝑗 < 𝑗 ′

In this paper, we are interested in learning association rules from data. Fixed an alphabet
of propositional literals P = {𝑝1, . . . , 𝑝𝑘}, a propositional rule is an object of the type
𝜌 : 𝑋 ⇒ 𝑌 , where 𝑋 ⊂ P is called antecedent, 𝑌 ⊂ P is called consequent, and 𝑋 ∩ 𝑌 = ∅;
following the classical jargon, we refer to each literal as item and we call a set of items as
itemset. In this scenario, 𝑋 ∪ 𝑌 is considered interesting when it is frequent, that is, if it
occurs more often than a predetermined threshold referred to as minimum support, and a
rule 𝑋 ⇒ 𝑌 is extracted if the ratio between the support of 𝑋 and that of 𝑋 ∪ 𝑌 is higher
than another predetermined threshold known as minimum confidence.

While classical association rules are designed for propositional patterns to emerge, tem-
poral association rules are designed to generalize this idea to patterns with a temporal
component. The natural choice to describe temporalized co-occurrence of events or patterns
with a duration is Halpern and Shoham modal logic of time intervals (HS), defined over
Allen’s relations, as show in Tab. 1.

Interval temporal logic gives us a way to naturally describe temporal association rules,
as time series can be naturally seen as interval models. Let 𝔗 = {T1, . . . ,T𝑚} be a set of
(multivariate) time series, or temporal dataset, and fix a propositional alphabet P; let us
also assume that each time series in 𝔗 is based on the same temporal domain 𝐷. Each
single multivariate time series T is a collection of 𝑛 time series 𝑇1, . . . , 𝑇𝑛; elements of P
are naturally associated to a specific time series. In this way, if T is a multivariate time
series (i.e., an interval model), [𝑖, 𝑗] is an interval, and 𝜑 an interval formula, the notion of
T , [𝑖, 𝑗] ⊩ 𝜑 can be interpreted as the notion of T satisfies 𝜑 at [𝑖, 𝑗].

A temporal itemset is a set of temporal items, that is, items enriched with a temporal
relation, and temporal rules are such that antecedents and consequents are temporal itemsets.
The notion of support is generalized to the case of a temporal dataset 𝔗 by distinguishing
a local support, computing the relative frequency of a temporal itemset occurring in some
instance T ∈ 𝔗, and a global support, counting the number of instances such that their
local support is higher than a minimum local support threshold. An itemset 𝑋 is said to be
frequent if its global support is greater than a minimum global support threshold. In this
scenario, ModalAPRIORI [14] and ModalFP-Growth [9] can be used to extract temporal
patterns as a particular case of modal patterns.

3 Extracting Temporal Association Rule from Motifs

Let us consider a set of feature extraction functions F = {𝐹1, . . . , 𝐹𝑘}, where each function
𝐹 is defined as 𝐹 : R𝑑 → R for some natural value 𝑑 ≤ 𝑁. Theoretically speaking, given a
multivariate time series T , it is possible to define an alphabet of items based on F , that is,
P = {𝛼 ≤ 𝐹 (𝑇) ≤ 𝛽 | 𝐹 ∈ F , 𝑇 ∈ T , 𝛼 ∈ R ∪ {−∞}, 𝛽 ∈ R ∪ {+∞}}, which allows for mining
temporal association rules, as items can be immediately interpreted over intervals, obtaining
a scalar value which can be compared with lower and upper bounds 𝛼, 𝛽.

TIME 2025

19:4 Temporal Association Rules from Motifs

Unfortunately, it can be shown that this approach may introduce strong bias during
(local) support computation, leading to promising association rules which, however, encode
trivialities. An intuition about this is that the scalar value obtained by applying a feature
extraction function to an interval [𝑖, 𝑗], could be redundant with many other identical values
obtained by applying the same function on sub-intervals or super intervals of [𝑖, 𝑗] (e.g.,
considering max, min, average functions, but even more refined functions such as catch22 [7]).

To avoid flattening intervals with feature extraction functions, we modify the definition
of the alphabet. We consider a set A𝔗 of the most representative motifs for the temporal
dataset 𝔗, that is, the distinct motifs approximating the largest fraction of data in 𝔗 [6].
Fixed a distance function 𝛿 and a constant 𝛼, we define a motif-based temporal alphabet as:

P = {𝛿(𝑇, 𝜇) ≤ 𝛼 | 𝑇 ∈ 𝔗, 𝜇 ∈ A𝔗 , 𝛼 ∈ R}.

This is a first step towards dealing with intervals natively, as a given non-temporal item
𝑝 ∈ P is true on 𝑇𝑖 𝑗 if and only if the behaviour of 𝑇 within the segment is close enough to
the motif 𝜇 encapsulated by 𝑝. However, the definition above is insufficient to guarantee
that the computation of local support is unbiased. For example, we can consider a temporal
item enriched with Allen’s ⟨𝐵⟩ relation: if it is true on 𝑇𝑖 𝑗 , then it automatically inflates the
support computation, as it is trivially true on all the interval 𝑇𝑖 (𝑗+1) . . . 𝑇𝑖𝑁 .

To ensure a fair support computation, we must “anchor” temporal items to a specific
temporal frame, that is, the temporal relations must be applied to the subset of intervals
having at least one non-temporal item true on them, instead of possibly any interval. This
consideration is also crucial when translating an itemset to natural language, as it naturally
filters out two tricky scenarios: firstly, the case in which a conjunction of only temporal items
is considered, as it is no clear the set of intervals they refer to, and, secondly, it ensures that
two non-temporal items wrapping motifs of different lengths are not mixed, as the number of
intervals the two items can be true at the same time is 0.

▶ Definition 4. An itemset 𝑋 is said to be anchored iff contains at least one non-temporal
item, and all non-temporal items Ω ⊆ 𝑋, called anchor of 𝑋, are based on motifs of the same
length. Let 𝑙 (Ω) denote the length of the interval on which an anchor may hold.

In this way, the length of intervals that may potentially satisfy the entire itemset is fixed,
allowing us to define the frequency of that itemset in a truly representative way.

▶ Definition 5. Let 𝔗 be a temporal dataset, ΛP be the set of temporal items built on the
motif-based alphabet P, let 𝑋 ⊆ ΛP be an anchored itemset, and let Ω ⊆ 𝑋 be its anchor. The
motif-based local and global supports of 𝑋 on some instance T ∈ 𝔗 are defined respectively as:

𝑚𝑏𝑙𝑠T (𝑋) =
|{[𝑖, 𝑗] ∈ 𝐼 (𝐷) | 𝑇, [𝑖, 𝑗] ⊩ 𝑋}|

|{[𝑖, 𝑗] ∈ 𝐼 (𝐷) | 𝑗 − 𝑖 + 1 = 𝑙 (Ω)}| , 𝑚𝑏𝑔𝑠
𝑠𝑙
𝔗
(𝑋) = |{T ∈ 𝔗 | 𝑚𝑏𝑙𝑠T (𝑋) ≥ 𝑠𝑙}|

|𝔗 | .

Using the motif-based support, we proceed to comment our experiments.

4 Experiments

We consider two well-known public datasets concerning human gestures and gait recognition,
namely NATOPS [13], from which we consider an arm gesture called “I have command”, and
HuGaDB [3], from which we consider the “Walk” movement, aiming to describe insightful
common patterns and to express them in natural language.

M. Milella, G. Pagliarini, G. Sciavicco, and I. E. Stan 19:5

In both cases, we mine frequent itemsets by leveraging ModalAPRIORI. First of all, we
extract the top 5 motifs with length 10 and the top 3 with length 20, in order to capture
qualitatively appreciable patterns; the two class of motifs encodes a behaviour expressed
respectively in nearly half a second and one second: shorter subsequences would bring
little informativeness, while longer one would be too coarse. We establish two thresholds
for minimum local and global support, respectively 𝑠𝑙 and 𝑠𝑔, to 0.1, which is relatively
low: this is not a problem, as the vast majority of the association rules generated after the
itemset extraction phase (14233 for “I have command”, 253 for “Walking”) are filtered out
by leveraging confidence and lift [2] meaningfulness measures. In particular, the higher the
lift, the more the antecedent and the consequent of a rule are positively correlated.

The motif-based alphabet is generated considering the Z-normalized Euclidean distance 𝛿.
We choose the threshold 𝛼 associated to a specific motif 𝜇 to be the tenth percentile of the
values in the distance profile of 𝜇; in this way, we ensure each single non-temporal item to be
frequent. We enrich the propositional alphabet with the set of temporal items ΛP obtained
by considering every Allen’s relation.

Even if we did not graphically shown an example of “I have command” gesture, we try
to describe a chunk of it with the following rule we extracted, which exhibits a perfect
confidence (of 1.0) and an high lift (of 6.7). The rule is expressed in a compact format, fixing
a coordinate, leveraging superscripts to provide an intuition about the movement captured
by the motif underlying each item, and subscripts to indicate the length of the motif and
which body part it refers to (e.g., re for right elbow, rh for right hand).

𝑦
𝑢𝑝

20, 𝑟𝑒 ∧ 𝑧
𝑓 𝑟𝑜𝑛𝑡

20, 𝑟ℎ ⇒ ⟨𝑂⟩𝑥𝑙𝑒 𝑓 𝑡&𝑖𝑛𝑣𝑒𝑟𝑡

10, 𝑟ℎ ∧ ⟨𝐵⟩𝑦𝑟𝑒𝑠𝑡&𝑢𝑝

10, 𝑟𝑒

The rule above can be read as whenever the right hand of the operator is completely stretching
in front of him/her and their elbow goes all the way up on the y-axis, the same elbow started
the movement range in a rest position and, near the end of the movement range, the operator’s
right hand is moving to the left, but will soon change direction.

The following pair of rules describes a non-trivial behaviour typical of the walking gait;
note that rf (lf) stands for right (left) foot, while rt (lt) stands for right (left) thigh.

𝑥
𝑓 𝑟𝑜𝑛𝑡

10, 𝑟 𝑓 ⇒ ⟨𝐴⟩𝑥𝑢𝑝10, 𝑙𝑡 , 𝑥𝑏𝑎𝑐𝑘10, 𝑙 𝑓 ⇒ ⟨𝐴⟩𝑥𝑢𝑝10, 𝑟𝑡

The rules states that when the right (left) foot accelerates forward (backwards) for approxim-
ately half of a second, then the left (right) thigh accelerates upward immediately after.

5 Conclusions

In this paper we introduced a motif-based approach to temporal alphabet definition and
rule extraction. By leveraging motifs-based frequently recurring patterns in time series,
we obtained a more interpretable and structurally robust framework for mining temporal
association rules, solving the biases introduced by naive alphabet definitions and enhancing
semantic clarity. We formalized the concept of anchored itemsets and introduced a novel
definition of motif-based local and global support, ensuring that patterns are both meaningful
and computationally tractable. Experimental validation on temporal datasets demonstrates
the expressiveness and interpretability of the extracted rules, showing promise for applications
in explainable temporal data analysis.

TIME 2025

19:6 Temporal Association Rules from Motifs

References
1 R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases.

In Proceedings of 20th International Conference on Very Large Data Bases (VLDB), pages
487–499, 1994.

2 Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic itemset counting
and implication rules for market basket data. In SIGMOD 1997, Proceedings ACM SIGMOD
International Conference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA,
pages 255–264, 1997. doi:10.1145/253260.253325.

3 Roman Chereshnev and Attila Kertész-Farkas. Hugadb: Human gait database for activity
recognition from wearable inertial sensor networks. In Analysis of Images, Social Networks and
Texts - 6th International Conference, AIST 2017, Moscow, Russia, July 27-29, 2017, Revised
Selected Papers, pages 131–141. Springer, 2017. doi:10.1007/978-3-319-73013-4_12.

4 B.Y. Chiu, E.J. Keogh, and S. Lonardi. Probabilistic discovery of time series motifs. In Proc.
of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 493–498. ACM, 2003. doi:10.1145/956750.956808.

5 J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data,
pages 1–12, 2000.

6 S. Imani, F. Madrid, W. Ding, S. Crouter, and E. Keogh. Matrix profile xiii: Time series
snippets: A new primitive for time series data mining. In Proc. of the IEEE international
conference on big knowledge (ICBK), pages 382–389. IEEE, 2018.

7 Carl H Lubba, Sarab S Sethi, Philip Knaute, Simon R Schultz, Ben D Fulcher, and Nick S
Jones. catch22: Canonical time-series characteristics: Selected through highly comparative
time-series analysis. Data mining and knowledge discovery, 33(6):1821–1852, 2019. doi:
10.1007/S10618-019-00647-X.

8 Federico Manzella, Giovanni Pagliarini, Guido Sciavicco, and Ionel Eduard Stan. Interval
temporal random forests with an application to COVID-19 diagnosis. In Carlo Combi, Johann
Eder, and Mark Reynolds, editors, 28th International Symposium on Temporal Representation
and Reasoning, TIME 2021, September 27-29, 2021, Klagenfurt, Austria, volume 206 of
LIPIcs, pages 7:1–7:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPICS.TIME.2021.7.

9 M. Milella, G. Pagliarini, G. Sciavicco, and I.E Stan. Modalfp-growth: Efficient extraction of
modal association rules from non-tabular data. In Proc. of the 25th Italian Conference on
Theoretical Computer Science (ICTCS), volume 3811 of CEUR, pages 241–254. CEUR-WS.org,
2024. URL: https://ceur-ws.org/Vol-3811/paper150.pdf.

10 Mauro Milella, Giovanni Pagliarini, Guido Sciavicco, and Ionel Eduard
Stan. ModalAssociationRules.jl. Software, version 0.1.0., swhId:
swh:1:dir:697da0b30a22cd23450ab445a887ebf1a602db8f (visited on 2025-09-18). URL:
https://github.com/aclai-lab/ModalAssociationRules.jl, doi:10.4230/artifacts.
24783.

11 Mauro Milella, Giovanni Pagliarini, Guido Sciavicco, and Ionel Eduard Stan. Sole.jl.
Software, version 0.6.2., swhId: swh:1:dir:dd723aee72578208606649ff12168e891cdae221
(visited on 2025-09-18). URL: https://github.com/aclai-lab/Sole.jl, doi:10.4230/
artifacts.24782.

12 Guido Sciavicco and Ionel Eduard Stan. Knowledge extraction with interval temporal logic
decision trees. In Emilio Muñoz-Velasco, Ana Ozaki, and Martin Theobald, editors, 27th
International Symposium on Temporal Representation and Reasoning, TIME 2020, September
23-25, 2020, Bozen-Bolzano, Italy, volume 178 of LIPIcs, pages 9:1–9:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.TIME.2020.9.

13 Y. Song, D. Demirdjian, and R. Davis. Tracking body and hands for gesture recognition:
NATOPS aircraft handling signals database. In Proc. of the 9th IEEE International Conference
on Automatic Face and Gesture Recognition (FG), pages 500–506, 2011.

https://doi.org/10.1145/253260.253325
https://doi.org/10.1007/978-3-319-73013-4_12
https://doi.org/10.1145/956750.956808
https://doi.org/10.1007/S10618-019-00647-X
https://doi.org/10.1007/S10618-019-00647-X
https://doi.org/10.4230/LIPICS.TIME.2021.7
https://doi.org/10.4230/LIPICS.TIME.2021.7
https://ceur-ws.org/Vol-3811/paper150.pdf
https://archive.softwareheritage.org/swh:1:dir:697da0b30a22cd23450ab445a887ebf1a602db8f;origin=https://github.com/aclai-lab/ModalAssociationRules.jl;visit=swh:1:snp:72b4fb9d69583cb16dd357b5c9de2a2359b80727;anchor=swh:1:rev:4c69384c9ff2e0cf401e27ae9874b1c728962829
https://github.com/aclai-lab/ModalAssociationRules.jl
https://doi.org/10.4230/artifacts.24783
https://doi.org/10.4230/artifacts.24783
https://archive.softwareheritage.org/swh:1:dir:dd723aee72578208606649ff12168e891cdae221;origin=https://github.com/aclai-lab/Sole.jl;visit=swh:1:snp:921c0e3817509d813e0ea03398f093fbd48ca539;anchor=swh:1:rev:8b79f0b7e41c91745a780262e11c7d07be660084
https://github.com/aclai-lab/Sole.jl
https://doi.org/10.4230/artifacts.24782
https://doi.org/10.4230/artifacts.24782
https://doi.org/10.4230/LIPICS.TIME.2020.9

M. Milella, G. Pagliarini, G. Sciavicco, and I. E. Stan 19:7

14 I.E Stan, G. Sciavicco, E. Muñoz-Velasco, G. Pagliarini, M. Milella, and A. Paradiso. On
modal logic association rule mining. In Proc. of the 23rd Italian Conference on Theoretical
Computer Science (ICTCS), volume 3284 of CEUR, pages 53–65. CEUR-WS.org, 2022. URL:
https://ceur-ws.org/Vol-3284/492.pdf.

15 Y. Zhu, Z. Zimmerman, N.S. Senobari, C-C.M. Yeh, G.J. Funning, A. Mueen, P. Brisk, and
E.J. Keogh. Matrix profile II: exploiting a novel algorithm and GPUs to break the one hundred
million barrier for time series motifs and joins. In Proc. of the 16th International Conference
on Data Mining (ICDM), pages 739–748. IEEE, 2016.

TIME 2025

https://ceur-ws.org/Vol-3284/492.pdf

Temporal Considerations in DJ Mix Information
Retrieval and Generation
Alexander Williams1 #Ñ

Centre for Digital Music, Queen Mary University of London, United Kingdom

Gregor Meehan1 #

Centre for Digital Music, Queen Mary University of London, United Kingdom

Stefan Lattner #Ñ

Sony CSL, Paris, France

Johan Pauwels # Ñ

Centre for Digital Music, Queen Mary University of London, United Kingdom

Mathieu Barthet #Ñ

Aix-Marseille Univ CNRS PRISM, France
Centre for Digital Music, Queen Mary University of London, United Kingdom

Abstract
Music is the art of arranging sounds in time so as to produce a continuous, unified, and evocative
composition. Electronic dance music (EDM) is a collection of musical sub-genres produced using
computers and electronic instruments and often presented through the medium of DJing, where tracks
are curated and mixed sequentially into a continuous stream of music to offer unique listening and
dancing experiences over time periods ranging from several minutes to several hours. A DJ’s actions
and decisions occur at several levels of temporal granularity, from real-time audio manipulation (e.g.
of tempo) for smooth inter-track transitions to long-term planning of track selection and sequencing
for mix content and flow. While human DJs can instinctively operate across these different temporal
resolutions, replicating this capability in an end-to-end automated DJing system presents significant
challenges. In this paper, we analyse existing works in DJ mix information retrieval and generation
from this temporal perspective. We first explain the close link between DJing and the temporal
notion of musical rhythm, then describe a framework for categorising DJing actions by temporal
granularity. Using this framework, we summarise and contrast potential approaches for automating
and augmenting sequential DJ decision making, and discuss the unique characteristics of DJ mix track
selection as a sequential recommendation task. In doing so, we hope to facilitate the implementation
of more robust and complete automated DJing systems in future research.

2012 ACM Subject Classification Applied computing → Sound and music computing; Computing
methodologies → Control methods; Computing methodologies → Planning under uncertainty

Keywords and phrases Music Information Retrieval, Computational Creativity, Recommender
Systems, Electronic Dance Music, DJ

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.20

Category Short Paper

Funding Alexander Williams and Gregor Meehan are research students at the UKRI Centre for
Doctoral Training in Artificial Intelligence and Music, supported by UK Research and Innovation
[grant number EP/S022694/1] and Queen Mary University of London. Alexander Williams is also
supported by Sony CSL.

1 Alexander Williams and Gregor Meehan contributed equally to this work.

© Alexander Williams, Gregor Meehan, Stefan Lattner, Johan Pauwels, and Mathieu Barthet;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 20; pp. 20:1–20:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.j.williams@qmul.ac.uk
https://alexjameswilliams.github.io/
https://orcid.org/0000-0003-2387-6876
mailto:gregor.meehan@qmul.ac.uk
https://orcid.org/0009-0007-2619-9299
mailto:stefan.lattner@sony.com
https://csl.sony.fr/member/stefan-lattner-phd/
https://orcid.org/0000-0002-3945-7580
mailto:j.pauwels@qmul.ac.uk
https://www.qmul.ac.uk/eecs/people/profiles/pauwelsjohan.html
https://orcid.org/0000-0002-5805-7144
mailto:m.barthet@qmul.ac.uk
https://www.qmul.ac.uk/eecs/people/profiles/barthetmathieu.html
https://orcid.org/0000-0002-9869-1668
https://doi.org/10.4230/LIPIcs.TIME.2025.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

20:2 Temporal Considerations in DJ Mix Information Retrieval and Generation

1 Introduction

Electronic Dance Music (EDM) has seen a huge growth in popularity in recent years, from
a relatively underground movement to a mainstream industry worth billions [30]. EDM is
often consumed through the medium of DJ performances, leading to a corresponding increase
in interest in DJing among EDM fans. Computer programs that could perform or assist
with the creative task of DJing have the potential to democratise access to high quality
continuous music mixes [42], and therefore have seen a corresponding increase in research
attention [45]. At the highest abstraction, we can specify two key tasks for an end-to-end
computational DJ system: long-term track selection and sequencing, and real-time audio
manipulation for inter-track DJ mixing. However, existing computational DJ systems are
typically not end-to-end: to simplify their implementation, they are instead deconstructed
into a hierarchy of components, some of which involve manual curation or simple rule-based
heuristics. In this paper, we aim to highlight the challenges of implementing an intelligent and
fully end-to-end DJing system by viewing its actions from a temporal perspective. We first
explain the link between DJing and the temporal notion of musical rhythm, then describe how
a DJ’s actions can be divided across different levels of temporal granularity. Through this
framework, we analyse existing works in automated DJ mixing and how its unique challenges
prevent straightforward application of related techniques in sequential music recommendation.
Finally, we discuss challenges relating to the adoption of computational DJ systems and
outline future research directions.

2 Rhythm and DJing

Music is typically organised into beats and repetitive rhythmic patterns that collectively form
the foundation of musical rhythm [32]. Here rhythm refers to the medium-scale temporal
organisation of sound, characterised by the arrangement of events, beats, and accents over
time. It is composed of several key components: tempo, i.e. the speed of the pulse; timing,
i.e. the placement of events relative to pulses; metre, i.e. the structural relationship among
pulses; and grouping, i.e. the phrasing of musical ideas independent of metre.

Rhythmic properties are particularly important in EDM, as many EDM sub-genres are
defined by their timbral palette and associated rhythm patterns. Further, structural changes
and progression in EDM tracks / DJ mixes are usually indicated by an evolution of timbre and
rhythm rather than melody and harmony [34, 22, 46, 24, 44]. EDM tracks, and subsequently
DJ mixes, are typically built around repeating loops of melodies, vocals, drums, and sound
effects (FX) that change and are layered over time – for example, through an element being
added or removed from the mix or being affected by continuous temporal processes such
as FX and synthesizer parameter automation [20, 37] – to produce rhythmic and timbral
variation and progression in the composition. Modelling these rhythmic properties is therefore
an important task in automated DJing systems, as we discuss further in Section 3 below.

3 Temporal Abstraction in DJ Tasks

We next examine in more detail the necessary capabilities of an end-to-end automated DJing
system. The two key tasks in DJing are transitioning from track to track (i.e. DJ mixing)
and selecting and ordering the tracks to be played. In the remainder of this section, we
discuss existing approaches to each of these tasks, dividing DJing actions into three temporal
levels as shown in Fig. 1. From most to least granular, these are:

A. Williams, G. Meehan, S. Lattner, J. Pauwels, and M. Barthet 20:3

1. Transition-level: the immediate actions needed to transition from the current song to a
given next song;

2. Track-level: the choice of what the next song should be; and
3. Mix-level: the overall flow and content of the entire mix.

Figure 1 The temporal abstraction hierarchy for key sub-tasks in DJ mix construction.

3.1 Automatic DJ Mixing
DJ mixing can be formulated as a real-time sequential decision-making problem, where the
objective is to apply a sequence of audio signal transformations to two (or more) concurrently
playing tracks to optimise the perceptual quality of the resulting audio mixture for the
listener. These decisions take place entirely at the transition-level (1), using features relating
to the rhythm and other characteristics of the current and incoming tracks.

DJ transitions are considered an art-form and their perceived quality is highly subjective
and dependent on the audio tracks being mixed and the cultural context in which the
transition takes place. Nevertheless, common techniques exist and many works have proposed
automatic DJ mixing systems, attempting to implement probabilistic rules informed by
signal processing to produce systems exhibiting what each author believes constitutes valid
DJ mixing. For example, (beat-matched) crossfading over fixed-length temporal horizons
is commonly applied [7, 33, 40, 42, 10, 23, 3, 27, 26, 2, 38]. Other approaches include
3-band equaliser mixing [21, 38], avoiding vocal clashes [42, 38], double drop / rolling /
relaxed transition [42], looping out [33], looping to produce a drum roll-like effect [3], adding
samples [27] or an MC-like voiceover [33], slam / cut / switching [40, 2, 3], echo out [40, 2],
and power down [40]. While such rules can produce reasonable transitions, the predictability
arising from using the same limited transition techniques mean that computer-generated
transitions are more likely to be identified and negatively viewed by listeners in repeated
exposures [18].

A notable exception to rule-based systems is a deep neural network to generate audio-
dependent control trajectories for DJ transitions [7]. Although described as having developed
a unique style, it also employed unfamiliar mixing techniques and subsequently its perform-
ance was only considered on par with rule-based methods. This highlights the challenge of

TIME 2025

20:4 Temporal Considerations in DJ Mix Information Retrieval and Generation

predicting effective temporal control sequences, which must balance a degree of unpredictab-
ility with some adherence to established mixing norms and contextual appropriateness to
deliver robust mixes that are satisfactory at a psychoacoustic level [41]. So far, no automatic
DJ transition generation system has matched the performance of human DJs.

3.2 DJ Track Selection and Sequencing
DJ track selection is influenced by a DJ’s own curatorial interests and the context of the
mix (e.g. a pop music night at a club versus an EDM festival). Sequencing depends on
both transition compatibility and the DJ’s longer-term goals: for example, after playing
several songs with high tempo, a DJ may choose to play lower energy tracks to give the
audience a break. To successfully select and sequence tracks, generative DJ mix systems must
therefore act across all three levels of temporal granularity. However, operating intelligently
across all three temporal levels simultaneously is a fundamental difficulty in automated
DJ mixing, and, to the best of our knowledge, no existing works attempt to do so. Most
existing systems operate primarily at levels (1) and (2) in their sequencing algorithms: to
ensure that the automated transitions discussed in Section 3.1 can be applied effectively, they
select an appropriate next track by “mixability”, i.e. by compatibility in tempo, rhythm, or
harmony. This compatibility can be either fine-grained at the transition points [19, 42, 38] (at
transition-level), based on coarser similarity of overall acoustic features [40] (at track-level),
or a combination of both [42]. Other works [11, 2, 33] place more emphasis on flow at the
mix-level but forgo mix-level content curation and/or transition-level compatibility, while
DJ-MC [25] focuses only on the higher two levels.

The above temporal framework also helps explain why existing sequential music recom-
mendation algorithms cannot be straightforwardly applied in the DJ mixing context, even
though DJ track selection is closely related to tasks such as playlist generation [13, 35, 1] and
next song recommendation [16, 43, 36]. In particular, transition-level factors are unique to
DJ mixing, and are not modelled by generic sequential music recommenders. However, these
transition-level constraints exert a considerable influence on the other levels and therefore on
the overall system: track-level choices require consideration of transition-level compatibility,
which in turn affects mix-level track selection. There are also practical difficulties arising
from the need to model all three levels of granularity, from the coarse sequence-level view
of the selected tracks down to musical content at the beat or frame level. Furthermore, al-
though some existing sequential music recommender systems or DJing systems do implement
curatorial filtering (e.g. to specific genres or “vibes”, as in [33]), they typically do not operate
with long-term goals in mind in the same way a DJ would. It is not clear whether such
behaviour could be explicitly encouraged during model training, and any such effort would
likely require a large dataset of DJ mixes with associated audio and track labels. However,
no such corpus is currently publicly available.

4 Adoption and Ethical Challenges

Many DJs are concerned about how automation may affect their livelihoods [39], as compu-
tational DJing is already reshaping both live performance [5] and radio or home listening
contexts [6, 2, 4]. For instance, iHeartMedia – a global network of local radio stations – laid
off up to 850 DJs and producers in favour of software to schedule music, mix songs, and mimic
the voice of radio hosts [9, 17, 14]. Yet, DJ practices have continually evolved alongside tech-
nological innovation [29]. Automatic beat tracking and alignment, key / tempo detection and
transposition, and various visualisation techniques [46, 15, 8] to aid musical understanding

A. Williams, G. Meehan, S. Lattner, J. Pauwels, and M. Barthet 20:5

and inform DJ decision making at multiple temporal levels are now ubiquitous in digital DJ
workflows. Rather than replacing DJs, computational tools, like those discussed in this paper,
can complement and expand contemporary practice. While quality-cost considerations may
drive some autonomous applications [28], socio-cultural factors – particularly the importance
of the dynamic between DJs and live audiences [31] – ensure continued demand for human
DJs and intelligent mixing and recommendation systems can be used to support their creative
expression. The key challenge comes in developing application use-cases that respect DJs’
artistic autonomy while leveraging the potential of these technologies to reduce various task
complexities, enable enhanced performance, and augment creative decision making [12].

5 Conclusion and Future Directions

This paper outlines how a multi-resolution temporal framework is critical for both feature
extraction and the development of hierarchical, modular systems capable of intra/inter-track
mixing, track-level selection, and mix-level sequencing in an EDM DJing context. We also
distinguish between DJ track selection and general sequential music recommendation based
on this framework, and discuss potential consequences of this technology being democratised.
In previous work, we identified that audio features that capture and emphasise timbral and
rhythmic features are valuable for the analysis of DJ mixes at arbitrarily fine temporal
intervals [46], particularly in computing DJ transition properties such as length and relative
smoothness. In the future, we hope to apply such representations at various temporal
resolutions for DJ mix information retrieval and to integrate approaches at multiple temporal
levels to assist in various artist-centric, co-creative scenarios such as informative visualisation,
multi-track mixing, and real-time assistance in DJ mix construction.

References
1 Walid Bendada, Guillaume Salha-Galvan, Thomas Bouabça, and Tristan Cazenave. A scalable

framework for automatic playlist continuation on music streaming services. In Proceedings of
the 46th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 464–474, 2023. doi:10.1145/3539618.3591628.

2 Rachel M Bittner, Minwei Gu, Gandalf Hernandez, Eric J Humphrey, Tristan Jehan, P Hunter
McCurry, and Nicola Montecchio. Automatic Playlist Sequencing and Transitions. In Proceed-
ings of the 18th ISMIR Conference, Suzhou, China, 2017.

3 Jaume Parera Bonmati. DJ Codo Nudo: a novel method for seamless transition between songs
for electronic music. Master’s thesis, Universitat Pompeu Fabra, Barcelona, 2016. URL: http:
//mtg.upf.edu/system/files/publications/Jaume-Parera-Master-thesis-2016.pdf.

4 Georgina Born, Jeremy Morris, Fernando Diaz, and Ashton Anderson. Artificial Intelligence,
Music Recommendation, and the Curation of Culture: A White Paper, June 2021.

5 Becky Buckle. East London’s first “AI-rave” receives mixed reviews. Mixmag, March 2023. URL:
https://mixmag.net/read/east-london-nightclub-hosts-algorhythm-rave-with-ai-
generated-music-tech.

6 Nyshka Chandran. RA Pro Newsletter: AI’s role in independent radio, May 2025. URL:
https://ra.co/news/82747.

7 Bo-Yu Chen, Wei-Han Hsu, Wei-Hsiang Liao, Marco A. Martínez Ramírez, Yuki Mitsufuji, and
Yi-Hsuan Yang. Automatic DJ Transitions with Differentiable Audio Effects and Generative
Adversarial Networks. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 466–470, May 2022. ISSN: 2379-190X. doi:
10.1109/ICASSP43922.2022.9746663.

8 Ya-Xi Chen and René Klüber. ThumbnailDJ: Visual Thumbnails of Music Content. In 11th
International Society for Music Information Retrieval Conference, 2010.

TIME 2025

https://doi.org/10.1145/3539618.3591628
http://mtg.upf.edu/system/files/publications/Jaume-Parera-Master-thesis-2016.pdf
http://mtg.upf.edu/system/files/publications/Jaume-Parera-Master-thesis-2016.pdf
https://mixmag.net/read/east-london-nightclub-hosts-algorhythm-rave-with-ai-generated-music-tech
https://mixmag.net/read/east-london-nightclub-hosts-algorhythm-rave-with-ai-generated-music-tech
https://ra.co/news/82747
https://doi.org/10.1109/ICASSP43922.2022.9746663
https://doi.org/10.1109/ICASSP43922.2022.9746663

20:6 Temporal Considerations in DJ Mix Information Retrieval and Generation

9 Martin Clancy. Reflections on the Financial and Ethical Implications of Music Generated by
Artificial Intelligence. PhD Thesis, Trinity College, Dublin, Ireland, 2021.

10 Dave Cliff. Hang the DJ: Automatic sequencing and seamless mixing of dance-music tracks.
Technical report, Hewlett-Packard Laboratories, 2000.

11 Dave Cliff. hpDJ: An Automated DJ with Floorshow Feedback. In Kenton O’Hara and
Barry Brown, editors, Consuming Music Together: Social and Collaborative Aspects of Music
Consumption Technologies, Computer Supported Cooperative Work, pages 241–264. Springer
Netherlands, Dordrecht, 2006. doi:10.1007/1-4020-4097-0_12.

12 Emmanuel Deruty, Maarten Grachten, Stefan Lattner, Javier Nistal, and Cyran Aouameur. On
the Development and Practice of AI Technology for Contemporary Popular Music Production.
Transactions of the International Society for Music Information Retrieval, 5(1):35–49, February
2022. Ubiquity Press. doi:10.5334/tismir.100.

13 Anna Gatzioura, João Vinagre, Alípio Mário Jorge, and Miquel Sanchez-Marre. A hybrid
recommender system for improving automatic playlist continuation. IEEE Transactions on
Knowledge and Data Engineering, 33(5):1819–1830, 2019.

14 Nell Geraets. Thy has been on the radio for six months. Turns out she isn’t real. The
Sydney Morning Herald, April 2025. Section: TV & radio. URL: https://www.smh.com.au/
culture/tv-and-radio/thy-has-been-on-the-radio-for-six-months-turns-out-she-
isn-t-real-20250424-p5ltxi.html.

15 Masatoshi Hamanaka. Real-time Future-rhythm Visualizer for DJ Performance. In Proceedings
of the Sound and Music Computing Conference, Porto, Portugal, July 2024.

16 Casper Hansen, Christian Hansen, Lucas Maystre, Rishabh Mehrotra, Brian Brost, Federico
Tomasi, and Mounia Lalmas. Contextual and sequential user embeddings for large-scale music
recommendation. In Proceedings of the 14th ACM Conference on Recommender Systems, pages
53–62, 2020. doi:10.1145/3383313.3412248.

17 Drew Harwell. iHeartMedia laid off hundreds of radio DJs. Executives blame AI. DJs blame
the executives. The Washington Post, January 2020. URL: https://www.washingtonpost.
com/technology/2020/01/31/iheartmedia-radio-artificial-intelligence-djs/.

18 Jordan V. Hawkins. Automating Music Production with Music Information Retrieval. Un-
dergraduate Thesis, The Ohio State University, Ohio, USA, March 2013. URL: https:
//kb.osu.edu/handle/1811/54438.

19 Tatsunori Hirai, Hironori Doi, and Shigeo Morishima. MusicMixer: Automatic DJ System
Considering Beat and Latent Topic Similarity. In Proceedings, Part I, of the 22nd International
Conference on MultiMedia Modeling - Volume 9516, MMM 2016, pages 698–709, Berlin,
Heidelberg, January 2016. Springer-Verlag. doi:10.1007/978-3-319-27671-7_59.

20 Aline Honingh, Maria Panteli, Thomas Brockmeier, David Iñaki López Mejía, and Makiko
Sadakata. Perception of Timbre and Rhythm Similarity in Electronic Dance Music. Journal
of New Music Research, 44(4):373–390, October 2015. doi:10.1080/09298215.2015.1107102.

21 Cheng-Zhi Anna Huang, Hendrik Vincent Koops, and Ed Newton-Rex. AI Song Contest:
Human-AI Co-Creation in Songwriting. In 21st International Society for Music Information
Retrieval Conference,, Montreal, Canada, 2020.

22 Thor Kell and George Tzanetakis. Empirical Analysis of Track Selection And Ordering
In Electronic Dance Music Using Audio Feature Extraction. In Proceedings of the 14th
International Society for Music Information Retrieval Conference, Curitiba, Brazil, 2013.

23 Adrian Kim, Soram Park, Jangyeon Park, Jung-Woo Ha, Taegyun Kwon, and Juhan Nam.
Automatic DJ Mix Generation Using Highlight Detection. In Extended abstracts for the
Late-Breaking Demo Session of the 18th International Society for Music Information Retrieval
Conference, Suzhou, China, October 2017.

24 Taejun Kim, Minsuk Choi, Evan Sacks, Yi-Hsuan Yang, and Juhan Nam. A Computational
Analysis of Real-World DJ Mixes Using Mix-to-Track Subsequence Alignment. In Proc. of the
21st Int. Society for Music Information Retrieval Conf., Montreal, Canada, 2020.

https://doi.org/10.1007/1-4020-4097-0_12
https://doi.org/10.5334/tismir.100
https://www.smh.com.au/culture/tv-and-radio/thy-has-been-on-the-radio-for-six-months-turns-out-she-isn-t-real-20250424-p5ltxi.html
https://www.smh.com.au/culture/tv-and-radio/thy-has-been-on-the-radio-for-six-months-turns-out-she-isn-t-real-20250424-p5ltxi.html
https://www.smh.com.au/culture/tv-and-radio/thy-has-been-on-the-radio-for-six-months-turns-out-she-isn-t-real-20250424-p5ltxi.html
https://doi.org/10.1145/3383313.3412248
https://www.washingtonpost.com/technology/2020/01/31/iheartmedia-radio-artificial-intelligence-djs/
https://www.washingtonpost.com/technology/2020/01/31/iheartmedia-radio-artificial-intelligence-djs/
https://kb.osu.edu/handle/1811/54438
https://kb.osu.edu/handle/1811/54438
https://doi.org/10.1007/978-3-319-27671-7_59
https://doi.org/10.1080/09298215.2015.1107102

A. Williams, G. Meehan, S. Lattner, J. Pauwels, and M. Barthet 20:7

25 Elad Liebman, Maytal Saar-Tsechansky, and Peter Stone. DJ-MC: A Reinforcement-Learning
Agent for Music Playlist Recommendation. In Proceedings of the 14th International Conference
on Autonomous Agents and Multiagent Systems, Istanbul, Turkey, May 2015. URL: https:
//www.ifaamas.org/Proceedings/aamas2015/aamas/p591.pdf.

26 Elad Liebman, Maytal Saar-Tsechansky, and Peter Stone. The Right Music at the Right Time:
Adaptive Personalized Playlists Based on Sequence Modeling. MIS Quarterly, 43(3):765–786,
January 2019. doi:10.25300/MISQ/2019/14750.

27 Yin-Tzu Lin, Chuan-Lung Lee, Jyh-Shing Roger Jang, and Ja-Ling Wu. Bridging Music Using
Sound-Effect Insertion. IEEE MultiMedia, 22(4):30–38, October 2015. Conference Name:
IEEE MultiMedia. doi:10.1109/MMUL.2015.71.

28 Nigel P. Melville, Lionel Robert, and Xiao Xiao. Putting humans back in the loop: An
affordance conceptualization of the 4th industrial revolution. Information Systems Journal,
33(4):733–757, 2023. doi:10.1111/isj.12422.

29 Ed Montano. ‘How do you know he’s not playing Pac-Man while he’s supposed to be DJing?’:
technology, formats and the digital future of DJ culture. Popular Music, 29(3):397–416,
October 2010. Publisher: Cambridge University Press. doi:10.1017/S0261143010000449.

30 Mark Mulligan. The ims business report 2023, 2023. URL: https://www.
internationalmusicsummit.com/business-report.

31 Keith Munro, Ian Ruthven, and Perla Innocenti. Can you feel it? The information behaviour of
creative DJs. Journal of Documentation, 79(4), January 2022. doi:10.1108/JD-05-2022-0106.

32 Meinard Müller. Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications.
Springer International Publishing, Cham, 2015. doi:10.1007/978-3-319-21945-5.

33 Metehan Pala. RoboDJ: automatic dj mix generation using Spotify Web API and machine
learning methods. Master’s thesis, Politecnico Milano, Milan, Italy, 2021. URL: https:
//www.politesi.polimi.it/handle/10589/179255.

34 Maria Panteli, Bruno Rocha, Niels Bogaards, and Aline Honingh. A model for rhythm and
timbre similarity in electronic dance music. Musicae Scientiae, 21(3):338–361, September 2017.
Publisher: SAGE Publications Ltd. doi:10.1177/1029864916655596.

35 Keigo Sakurai, Ren Togo, Takahiro Ogawa, and Miki Haseyama. Controllable Music Playl-
ist Generation Based on Knowledge Graph and Reinforcement Learning. Sensors (Basel,
Switzerland), 22(10):3722, May 2022. doi:10.3390/s22103722.

36 Pavan Seshadri, Shahrzad Shashaani, and Peter Knees. Enhancing sequential music recommend-
ation with negative feedback-informed contrastive learning. In Proceedings of the 18th ACM
Conference on Recommender Systems, pages 1028–1032, 2024. doi:10.1145/3640457.3688188.

37 Jeremy W. Smith. The Functions of Continuous Processes in Contemporary Electronic Dance
Music. Music Theory Online, 27(2), June 2021. URL: https://mtosmt.org/issues/mto.21.
27.2/mto.21.27.2.smith.html.

38 Robert Sowula and Peter Knees. Mosaikbox: Improving Fully Automatic DJ Mixing Through
Rule-Based Stem Modification and Precise Beat-Grid Estimation. In Proceedings of the 25th
International Society for Music Information Retrieval Conference, pages 850–857, San Francisco,
California, USA and Online, November 2024. ISMIR. doi:10.5281/zenodo.14877463.

39 Anna Spagnolli, Diletta Mora, Matteo Fanchin, Valeria Orso, and Luciano Gamberini. Auto-
mation and Creativity: A Case Study of DJs’ and VJs’ Ambivalent Positions on Automated
Visual Software. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, pages 1–11, Honolulu HI USA, April 2020. ACM. doi:10.1145/3313831.3376463.

40 Florian Thalmann, Lucas Thompson, and Mark Sandler. A User-Adaptive Automated DJ Web
App with Object-Based Audio and Crowd-Sourced Decision Trees. In Web Audio Conference,
Berlin, Germany, September 2018.

41 Amelia Skye Turrell. The Emotional & Neurological Effects of Expectancy and Tension Within
Electronic Dance Music. PhD Thesis, University of Kent, March 2022. doi:10.22024/UniKent/
01.02.93493.

TIME 2025

https://www.ifaamas.org/Proceedings/aamas2015/aamas/p591.pdf
https://www.ifaamas.org/Proceedings/aamas2015/aamas/p591.pdf
https://doi.org/10.25300/MISQ/2019/14750
https://doi.org/10.1109/MMUL.2015.71
https://doi.org/10.1111/isj.12422
https://doi.org/10.1017/S0261143010000449
https://www.internationalmusicsummit.com/business-report
https://www.internationalmusicsummit.com/business-report
https://doi.org/10.1108/JD-05-2022-0106
https://doi.org/10.1007/978-3-319-21945-5
https://www.politesi.polimi.it/handle/10589/179255
https://www.politesi.polimi.it/handle/10589/179255
https://doi.org/10.1177/1029864916655596
https://doi.org/10.3390/s22103722
https://doi.org/10.1145/3640457.3688188
https://mtosmt.org/issues/mto.21.27.2/mto.21.27.2.smith.html
https://mtosmt.org/issues/mto.21.27.2/mto.21.27.2.smith.html
https://doi.org/10.5281/zenodo.14877463
https://doi.org/10.1145/3313831.3376463
https://doi.org/10.22024/UniKent/01.02.93493
https://doi.org/10.22024/UniKent/01.02.93493

20:8 Temporal Considerations in DJ Mix Information Retrieval and Generation

42 Len Vande Veire and Tijl De Bie. From raw audio to a seamless mix: creating an automated
DJ system for Drum and Bass. EURASIP Journal on Audio, Speech, and Music Processing,
2018(1):13, September 2018. doi:10.1186/s13636-018-0134-8.

43 Dongjing Wang, Xin Zhang, Yuyu Yin, Dongjin Yu, Guandong Xu, and Shuiguang Deng.
Multi-view enhanced graph attention network for session-based music recommendation. ACM
Transactions on Information Systems, 42(1):1–30, 2023. doi:10.1145/3592853.

44 Brian C. Wesolowski and Alex Hofmann. There’s More to Groove than Bass in Electronic
Dance Music: Why Some People Won’t Dance to Techno. PLoS ONE, 11(10):e0163938,
October 2016. doi:10.1371/journal.pone.0163938.

45 Alexander Williams, Stefan Lattner, and Mathieu Barthet. A Review of Music Informa-
tion Retrieval and Computational Creativity Tools for Electronic Dance Music and DJing.
(forthcoming).

46 Alexander Williams, Haokun Tian, Stefan Lattner, Mathieu Barthet, and Charalampos Saitis.
Deep Learning-based Audio Representations for the Analysis and Visualisation of Electronic
Dance Music DJ Mixes. In AES International Symposium on AI and the Musician, Boston,
MA, USA, June 2024. Audio Engineering Society.

https://doi.org/10.1186/s13636-018-0134-8
https://doi.org/10.1145/3592853
https://doi.org/10.1371/journal.pone.0163938

A Translation of Probabilistic Event Calculus into
Markov Decision Processes
Lyris Xu #

Dept. of Information Studies, University College London, UK

Fabio Aurelio D’Asaro #

Dip. di Studi Umanistici, Università del Salento, Lecce, Italy

Luke Dickens #

Dept. of Information Studies, University College London, UK

Abstract
Probabilistic Event Calculus (PEC) is a logical framework for reasoning about actions and their
effects in uncertain environments, which enables the representation of probabilistic narratives
and computation of temporal projections. The PEC formalism offers significant advantages in
interpretability and expressiveness for narrative reasoning. However, it lacks mechanisms for goal-
directed reasoning. Our work bridges this gap by developing a formal translation of PEC domains
into Markov Decision Processes (MDPs), introducing the concept of “action-taking situations” to
preserve PEC’s flexible action semantics. The resulting PEC-MDP formalism enables the extensive
collection of algorithms and theoretical tools developed for MDPs to be applied to PEC’s interpretable
narrative domains. We demonstrate how the translation supports both temporal reasoning tasks
and objective-driven planning, with methods for mapping learned policies back into human-readable
PEC representations, maintaining interpretability while extending PEC’s capabilities.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning; Computing methodologies → Planning and scheduling; Computing methodologies →
Temporal reasoning; Computing methodologies → Markov decision processes

Keywords and phrases Probabilistic Event Calculus, Markov Decision Processes, Temporal Projec-
tion, Narrative Reasoning

Digital Object Identifier 10.4230/LIPIcs.TIME.2025.21

Category Short Paper

Related Version Full Version: https://arxiv.org/abs/2507.12989 [15]

Supplementary Material Software: https://github.com/LyrisX02/PEC-MDP
archived at swh:1:dir:c557c388a86ca997275d269b6f53c804051a8727

Funding Fabio Aurelio D’Asaro: Partially supported by the project FAIR – Future AI Research
(PE00000013), under the NRRP MUR program funded by the NextGenerationEU.

1 Introduction

Reasoning about actions and their effects in dynamic, uncertain environments is a fundamental
challenge in Artificial Intelligence (AI). The importance of narrative reasoning – the ability
to represent and reason about sequences of events and their causal relationships over time –
has been recognised since the early days of AI, leading to various temporal reasoning
formalisms [10, 1, 5, 12]. Building on these early foundations, the Probabilistic Event
Calculus (PEC) [3] has emerged as a powerful framework for representing and reasoning
about uncertain scenarios. PEC extends the Event Calculus (EC) [5, 11], to provide an
“action-language” style framework for modelling actions, their effects, and the evolution of
world states over time under uncertainty. PEC-style frameworks offer highly interpretable

© Lyris Xu, Fabio Aurelio D’Asaro, and Luke Dickens;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Temporal Representation and Reasoning (TIME 2025).
Editors: Thierry Vidal and Przemysław Andrzej Wałęga; Article No. 21; pp. 21:1–21:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:l.xu24@ucl.ac.uk
https://orcid.org/0009-0004-2371-4548
mailto:fabioaurelio.dasaro@unisalento.it
https://orcid.org/0000-0002-2958-3874
mailto:l.dickens@ucl.ac.uk
https://orcid.org/0000-0003-0896-1407
https://doi.org/10.4230/LIPIcs.TIME.2025.21
https://arxiv.org/abs/2507.12989
https://github.com/LyrisX02/PEC-MDP
https://archive.softwareheritage.org/swh:1:dir:c557c388a86ca997275d269b6f53c804051a8727;origin=https://github.com/LyrisX02/PEC-MDP;visit=swh:1:snp:cb4475610628336ea3c0e39dfcf79c6635bc289e;anchor=swh:1:rev:6627d262e976fa6f5a9132c7082cb5ea33460829
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

21:2 A Translation of Probabilistic Event Calculus into Markov Decision Processes

and flexible representations of complex narratives, with demonstrated applications in domains
such as medicine, environmental monitoring, and commonsense reasoning [2, 3]. Markov
Decision Processes (MDPs), meanwhile, have established themselves as a powerful framework
for modelling time-evolving systems controlled by an agent. MDPs and their variants are
widely used across AI for decision-making under uncertainty and serve as the foundation
for many statistical and reinforcement learning algorithms. While MDPs excel at control
optimisation problems, PEC and its variants offer superior narrative interpretability but lack
mechanisms for learning goal-directed behaviour.

A translation between these frameworks presents a compelling opportunity to bridge this
gap, combining PEC’s human-readable representation with MDP’s computational efficiency
and reinforcement learning capabilities. Such a bridge would allow for both efficient PEC
implementation and the application of statistical learning techniques to narrative reasoning
tasks. Towards this goal, we have developed a novel translation of PEC into an MDP
framework, termed the PEC-MDP. This translation preserves the core assumptions and
semantics of PEC while enabling the application of a wide range of MDP-based algorithms
to PEC’s human-readable domains.

The key contributions of our work include:
A formal translation of PEC domains to PEC-MDPs, with a Python implementation
made available through a shared repository.
An approach for performing temporal projection via the PEC-MDP formalism.
A novel approach to planning under uncertainty in PEC domains.

2 Background

Probablistic Event Calculus. A PEC domain D comprises a finite, non-empty set of fluents
F and values V , a finite set of actions U , a set of fluent states S̃, and a non-empty set of time
instants I. Fluents, as in classical narrative reasoning formalisms [12, 9], refer to properties
of the world which may be affected by actions taken. A fluent state S̃ ∈ S̃ is an assignment
of values to all fluents of the domain, while a partial fluent state X̃ ∈ X̃ is a subset of
value-assigned fluents, i.e., X̃ ⊆ S̃ for some S̃ ∈ S̃. PEC uses a set of action-language style
propositions to specify probabilistic narrative information. A domain consists of:
1. A finite set of v-propositions which detail the values that a fluent may take.
2. Exactly one i-proposition which specifies the probabilities of initial fluent states that hold

at the minimum time instant.
3. A finite set of c-propositions which model the causal effects of actions, each specifying a

set of preconditions for effects to take hold (where at least one action is true), a partial
fluent X̃ for each set of effects, and their corresponding probabilities.

4. A set of p-propositions modelling the occurrence of actions, each specifying an action, a
time instant, the probability for the action to be taken, and optional fluent preconditions.

PEC supports a possible-worlds semantics, where a world is an evolution of an environment
over time. Using this semantics, temporal projection computes the probability of fluent states
or partial fluent states at future time points given an initial state distribution and a narrative
of action occurrences. See [3] for more.

Markov Decision Processes. An MDP is defined as the tuple (S, A, p0, T, R), where S
and A are finite sets of states and actions respectively (distinct from PEC states and
actions). The initial state distribution is given by p0, where the probability of starting at
time t = 0 in state s is given by p0(s). Transition dynamics are given by transition function

L. Xu, F. A. D’Asaro, and L. Dickens 21:3

T (s, a, s′) = Pr(st+1 = s′|at = a, st = s), while the reward function R(s, a, s′) = r maps each
state transitions to a numerical rewards. Behaviours in an MDP are encoded in a policy µ.
Stationary policies map states to actions independent of time, either deterministically
µ(s) = a or stochastically µ(s, a) = Pr(at = a|st = s). Non-stationary policies [6] allow
time-dependent mappings, µt, where if t ̸= t′, then µt(s, a) can be different from µt′(s, a).

3 PEC-MDP Formalism

A translation of PEC domains into a MDP-derivative requires reconciliation of several key
differences between the two frameworks: i. PEC dynamics operate on fluents (properties of
the environment), while the MDP operates directly on environment states without internal
structure; ii. PEC does not model rewards; iii. PEC assumes a progression of time independent
to actions and environmental changes, while the MDP assumes a direct correspondence
of each discrete time step to each episode of agent-state interaction; iv. PEC allows for
simultaenous action-taking while the MDP does not; v. Action-taking in PEC conditions
obligatorily on time-instants and optionally on specific partial fluent conditions, while the
MDP’s standard stationary policy which conditions only on the state an agent resides in.

Given that PEC’s action-taking is conditioned on time, a non-stationary policy [6] is
adopted to model time-dependent policies while maintaining stationary transition dynamics.
The reward component of the MDP framework is omitted in the initial translation of PEC
domains as PEC domains are without inherent reward signals. The PEC-MDP formalism is
thus a reward-free MDP with a non-stationary policy.

To allow for efficient matrix operations, we translate PEC’s natural language components
into 0-based numerical encodings while maintaining bidirectional mappings to preserve
interpretability. This encoding assigns each element an index based on arbitrary orderings
over PEC fluents F , values V, and actions U . The PEC-MDP state space is constructed
through a two-step process: first, PEC fluent states are mapped to vector representations of
fluent value indices (i.e. (x0, x1, x2, ...) where xj denotes that the index of the value taken
by the fluent of index j); next, these vectors are mapped to integers for a more compact
representation, acting as the base unit of a PEC-MDP state. The vector representation
allows access to specific fluents, enabling two crucial functions: i. the mapping of a partial
fluent state X̃ to a set of PEC-MDP states in which fluents in X̃ are entailed; ii. the update
of a PEC-MDP state with the effect of a partial fluent state X̃ by modifying fluent elements
affected by X̃ but retaining those which are not.

Next, to accommodate PEC’s more flexible action-taking mechanisms into the MDP’s
rigid framework, we introduce action-taking situations composing single, composite, and
null actions to simulate time-points at which agents perform one action, multiple actions
simultaneously, or do not take any actions, respectively. The set of action-taking situations
is determined by referring to p-propositions, to find all possible action combinations that
may be taken at one time, including the null action situation where no action is taken.

Time instants are normalised to begin at 0 while preserving temporal ordering. The
initial distribution is retrieved from PEC’s i-propositions, as a probability distribution over
PEC-MDP states mapped from fluent states. Transition probabilities are derived from c-
propositions, where the effects of an action-taking situation are aggregated from its composite
actions. The fluent state update operation associates a current state to an updated state given
some effect X̃ with its corresponding probability. Finally, a non-stationary policy captures
PEC’s time-conditioned action probabilities from p-propositions, representing distributions
over action-taking situations rather than individual actions.

TIME 2025

21:4 A Translation of Probabilistic Event Calculus into Markov Decision Processes

The PEC-MDP translation has been fully implemented in Python and may be found here.
For a comprehensive overview of the functionalities, example domains, and usage instructions,
readers are directed to the repository’s README file.

4 Applications

The PEC-MDP enables applying MDP techniques to PEC domains, most notably reinforce-
ment learning for optimal decision-making, while preserving PEC’s original capability for
temporal projection in narrative reasoning.

Previous implementations of temporal reasoning for PEC predominately calculate probab-
ilities through summing over all possible worlds [3], or through approximate sampling [2]. Our
proposed approach provides an exact solution through efficient matrix operations. We define
policy-weighted transition matrices to propagate the initial distribution over PEC-MDP
states forward to the queried time, to retrieve the distribution over states at that time. The
probability that X̃ holds then is computed by summing probabilities over all fluent states
that entail X̃. While a formal efficiency experiment has yet to be conducted, this method
avoids the combinatorial explosion that comes with the computation of all possible worlds.

Next, to apply objective-directed strategies for the PEC-MDP, a desirability criterion must
first be established in the form of an MDP reward function to guide agent behaviour. Once
an appropriate quantitative reward signal is defined over outcomes, actions, or transitions,
suitable reinforcement learning methods can be applied to discover optimal policies for the
narrative domain. To preserve the interpretability advantages of PEC’s original formalism,
learned policies may be translated back into human-readable p-propositions. This requires
deterministic policies since action-taking situations must be separated into individual actions
for p-propositions, meaning that probabilistic dependencies between actions cannot be
preserved.

The mapping of a policy over action-taking situations is trivial where each action in a
situation is performed at the corresponding instant where the fluent state holds. However, as
this generates a large number of p-propositions, refinements can be applied to reduce this
set for interpretability while maintaining semantic equivalence. These include eliminating p-
propositions for unreachable state-time combinations and generalising fluent state conditions
to their minimal distinguishing features.

The complete formal translation of the PEC-MDP may be found at [15], alongside a
more detailed outline of temporal reasoning and objective-directed strategies.

5 Conclusion

Finally, let us note that other probabilistic extensions of the Event Calculus have been
proposed, focusing on event recognition using probabilistic logic programming and learning
from noisy data in both offline and online settings, i.e., [14, 13, 8, 4, 7]. In contrast, our
PEC-MDP framework inherits the main features of PEC, which is more expressive (see [2] for
a comparison), compiling it into an MDP. This shift lays the groundwork for reinforcement
learning, positioning our work toward goal-driven reasoning and policy optimisation.

While our current work focuses on the PEC-MDP’s application to temporal projection
and objective-directed learning, the PEC-MDP framework lays the groundwork for further
applications that leverage MDP-based techniques within narrative domains. Beyond these
broader applications, future work will include formal efficiency analyses and extending the
framework to the Epistemic Probabilistic Event Calculus (EPEC) [2].

https://github.com/LyrisX02/PEC-MDP/
https://github.com/LyrisX02/PEC-MDP/blob/main/README.md

L. Xu, F. A. D’Asaro, and L. Dickens 21:5

References
1 James F Allen. Maintaining knowledge about temporal intervals. Communications of the

ACM, 26(11):832–843, 1983. doi:10.1145/182.358434.
2 Fabio Aurelio D’Asaro, Antonis Bikakis, Luke Dickens, and Rob Miller. Probabilistic reasoning

about epistemic action narratives. Artificial Intelligence, 287:103352, 2020. doi:10.1016/J.
ARTINT.2020.103352.

3 Fabio Aurelio D’Asaro, Antonis Bikakis, Luke Dickens, and Rob Miller. Foundations for a prob-
abilistic event calculus. In International Conference on Logic Programming and Nonmonotonic
Reasoning, pages 57–63. Springer, 2017. doi:10.1007/978-3-319-61660-5_7.

4 Nikos Katzouris, Georgios Paliouras, and Alexander Artikis. Online learning probabilistic
event calculus theories in answer set programming. Theory and Practice of Logic Programming,
23(2):362–386, 2023. doi:10.1017/S1471068421000107.

5 Robert Kowalski and Marek Sergot. A logic-based calculus of events. New generation computing,
4:67–95, 1986. doi:10.1007/BF03037383.

6 Erwan Lecarpentier and Emmanuel Rachelson. Non-stationary markov decision processes, a
worst-case approach using model-based reinforcement learning. Advances in neural information
processing systems, 32, 2019. URL: https://dl.acm.org/doi/10.5555/3454287.3454935.

7 Periklis Mantenoglou. Reasoning over Complex Temporal Specifications and Noisy Data
Streams. PhD thesis, Univeristy of Athens, 2024.

8 Periklis Mantenoglou, Alexander Artikis, and Georgios Paliouras. Online event recognition
over noisy data streams. International Journal of Approximate Reasoning, 161:108993, 2023.
doi:10.1016/J.IJAR.2023.108993.

9 John McCarthy. Programs with common sense, 1959.
10 John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint of

artificial intelligence. In B. Meltzer and Donald Michie, editors, Machine Intelligence 4, pages
463–502. Edinburgh University Press, 1969.

11 Rob Miller and Murray Shanahan. Some alternative formulations of the event calculus.
In Computational Logic: Logic Programming and Beyond: Essays in Honour of Robert A.
Kowalski Part II, pages 452–490. Springer, 2002. doi:10.1007/3-540-45632-5_17.

12 Erick Sandewall. Features and fluents: A systematic approach to the representation of
knowledge about dynamical systems. Technical Report LiTH-IDA-R-92-30, Department of
Computer and Information Science, 1992.

13 Anastasios Skarlatidis, Alexander Artikis, Jason Filippou, and Georgios Paliouras. A Prob-
abilistic Logic Programming Event Calculus. Theory and Practice of Logic Programming,
15:213–245, March 2015. doi:10.1017/S1471068413000690.

14 Anastasios Skarlatidis, Georgios Paliouras, Alexander Artikis, and George A. Vouros. Prob-
abilistic Event Calculus for Event Recognition. ACM Transactions on Computational Logic
(TOCL), 16(2):11, 2015. doi:10.1145/2699916.

15 Lyris Xu, Fabio Aurelio D’Asaro, and Luke Dickens. A translation of probabilistic event
calculus into markov decision processes, 2025. arXiv:2507.12989.

TIME 2025

https://doi.org/10.1145/182.358434
https://doi.org/10.1016/J.ARTINT.2020.103352
https://doi.org/10.1016/J.ARTINT.2020.103352
https://doi.org/10.1007/978-3-319-61660-5_7
https://doi.org/10.1017/S1471068421000107
https://doi.org/10.1007/BF03037383
https://dl.acm.org/doi/10.5555/3454287.3454935
https://doi.org/10.1016/J.IJAR.2023.108993
https://doi.org/10.1007/3-540-45632-5_17
https://doi.org/10.1017/S1471068413000690
https://doi.org/10.1145/2699916
https://arxiv.org/abs/2507.12989

	p000-Frontmatter
	Preface
	TIME Steering Committee
	Program Committee Members
	Local Organizing Committee

	p001-Zakharyaschev
	1 Extended Abstract

	p002-Gigante
	1 Introduction
	2 Semantics
	3 Computational trade-offs
	4 Recent trends
	5 Conclusions

	p003-Alsmann
	1 Introduction
	2 Preliminaries
	3 Metric LTL with First-Time Semantics
	4 An Automata-Theoretic Decision Procedure
	5 Conclusion

	p004-Bellodi
	1 Introduction
	2 Related Work
	3 Interval Temporal Logic
	4 Benchmark Generation
	5 Results and Discussion
	6 Conclusions

	p005-Bruse
	1 Introduction
	2 Preliminaries
	2.1 Trees and Automata
	2.2 Higher-Order Recursion Schemes
	2.3 Timed Automata
	2.4 The Timed mu-Calculus
	2.5 Tail Recursion

	3 Higher-Order Recursive Timed Automata
	4 Tail Recursion
	5 Upper Bounds for Model-Checking
	5.1 The Region Abstraction
	5.2 The Untiming Construction
	5.3 The Reduction

	6 Matching Lower Bounds
	6.1 Tiling Problems
	6.2 Encoding Rows
	6.3 The Reduction

	7 Conclusion
	A Additional Material
	A.1 An example of a HORTA

	p006-Chevallier
	1 Introduction
	1.1 Organisation of the paper

	2 Background
	2.1 Signal temporal logic: a brief overview
	2.2 Previous work on neurosymbolic integration of STL

	3 Formal Semantics for GradSTL
	3.1 Recursive algorithm for the standard semantics of STL
	3.2 Recursive algorithm for smooth robustness semantics of STL
	3.3 Code generation

	4 Case Study
	5 Conclusion

	p007-DeGiacomo
	1 Introduction
	2 Preliminaries
	2.1 Linear Temporal Logic on finite traces (ltl_f)
	2.2 Deterministic Finite Automata
	2.3 ltl_f Reactive Synthesis
	2.4 dfa Games
	2.5 Symbolic Synthesis
	2.6 Fully Observable Non-Deterministic (fond) Planning

	3 pddl to Symbolic dfa
	4 Reduction of fond Planning to Synthesis
	5 Evaluation
	5.1 Benchmark
	5.2 Empirical Results

	6 Conclusion

	p008-Dondi
	1 Introduction
	1.1 Related Works

	2 Preliminaries
	3 An ILP Formulation for k-MinTimelineCover
	4 A Local Search Heuristic
	5 Experiments
	6 Conclusion and Future Works

	p009-Dyreson
	1 Introduction
	2 Review of GraphQL
	2.1 GraphQL Schemas
	2.2 Queries

	3 Temporal GraphQL
	3.1 Temporal Types
	3.2 Temporal Queries

	4 A Layered Approach to Supporting Temporal GraphQL
	4.1 A Tree Grammar Approach to Modeling GraphQL Schemas
	4.2 Temporal Tree Grammar
	4.2.1 Grammar Evolution
	4.2.2 A Representational Model for Data Evolution
	4.2.3 Evaluating Temporal Queries

	5 Related Work
	6 Conclusions

	p010-Geatti
	1 Introduction
	2 Background
	2.1 Linear Temporal Logic
	2.2 The safety and the liveness fragments of infinite words
	2.3 Finite Automata

	3 The safety fragment on finite words
	3.1 Safety languages of finite words
	3.2 Properties of the safety fragment on finite words
	3.3 The complexity of recognizing safety languages of finite words
	3.4 Comparison of the safety fragments of LTL and LTLf

	4 The liveness fragment on finite words
	4.1 Liveness languages of finite words
	4.2 Recognizing liveness languages of finite words
	4.3 Comparison of the liveness fragments of LTL and LTLf

	5 Decomposition of regular languages
	6 Implications on LTLf Model Checking
	6.1 The cosafety case
	6.2 The general case

	7 Conclusions
	A Omitted proofs

	p011-Hunsberger
	1 Background
	2 Overview of Existing Algorithms
	2.1 Canonical Form of Nested Diamond Structures
	2.2 Error in the fastMinDispESTNU Algorithm

	3 A New Approach to Generating Stand-in Edges
	4 Empirical Evaluations
	5 Conclusions
	A Pseudocode

	p012-Jansen
	1 Introduction
	2 Definitions and preliminaries on trajectory sample databases
	3 Syntax, semantics and evaluation of (R, T)-queries
	3.1 The syntax of (R, T)-queries
	3.2 The semantics of (R, T)-queries
	3.3 Evaluation of (R, T)-queries

	4 The complexity of the (R, T)-realisability problem
	4.1 The query complexity of the (R, T)-realisability problem
	4.2 The data complexity of the (R, T)-realisability problem
	4.3 A class of events for which the realisability problem has polynomial time combined complexity

	5 Conclusion

	p013-Li
	1 Introduction
	2 Preliminaries
	2.1 Temporal Ensemble Logic
	2.2 Conceptual Correspondence for Trial Modeling
	2.3 Related Work: Temporal Logics for Clinical Trials

	3 Clinical Trial Simulation (CTS)
	3.1 Self-Controlled Case Series (SCCS)
	3.2 Eligibility Cohort Specification

	4 Structure of Clinical Trial Specification
	4.1 Individual Timeline-Based Structure of CTS
	4.2 Cohort-Based Structure of CTS

	5 Logical Representation of CTS using Temporal Ensemble Logic
	5.1 TEL-Based Formalization of Timeline-based CTS
	5.2 TEL-Based Formalization of Cohort-based CTS
	5.3 Model-Checking of Clinical Trial Specifications

	6 Case Study
	6.1 AD Clinical Trial Ontology
	6.2 AD Clinical Trial Simulation System

	7 Discussion
	8 Conclusion

	p014-Belmecheri
	1 Introduction
	2 Related Work
	3 Experiments
	3.1 Results

	4 Conclusion

	p015-Bellomarini
	1 Introduction
	2 Time-Aware Joins and Time Series Operators by Example
	3 The Temporal Vadalog Architecture
	A DatalogMTL

	p016-Jansen
	1 Introduction
	2 Deciding the generalised alibi query via the spatial projection
	3 Deciding the generalised alibi query via the temporal projection

	p017-Jansen
	1 Introduction
	2 Towards a definition of visit probability in space-time prisms
	3 When is visit probability a probability?

	p018-Kouvaras
	1 Introduction
	2 Background: RTEC
	3 Prompt Pipeline
	4 Further Work
	A Prompt S

	p019-Milella
	1 Introduction
	2 Background
	3 Extracting Temporal Association Rule from Motifs
	4 Experiments
	5 Conclusions

	p020-Williams
	1 Introduction
	2 Rhythm and DJing
	3 Temporal Abstraction in DJ Tasks
	3.1 Automatic DJ Mixing
	3.2 DJ Track Selection and Sequencing

	4 Adoption and Ethical Challenges
	5 Conclusion and Future Directions

	p021-Xu
	1 Introduction
	2 Background
	3 PEC-MDP Formalism
	4 Applications
	5 Conclusion

