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Abstract
Asynchronous byzantine agreement extension studies the message complexity of L-bit multivalued
asynchronous byzantine agreement given access to a binary asynchronous Byzantine agreement
protocol.

We prove that asynchronous byzantine agreement extension can be solved with perfect security
and optimal resilience in O(nL + n2 log n) total communication (in bits) in addition to a single
call to a binary asynchronous Byzantine agreement protocol. For L = O(n log n), this gives an
asymptotically optimal protocol, resolving a question that remained open for nearly two decades.

List decoding is a fundamental concept in theoretical computer science and cryptography, enabling
error correction beyond the unique decoding radius and playing a critical role in constructing robust
codes, hardness amplification, and secure cryptographic protocols. A key novelty of our perfectly
secure and optimally resilient asynchronous byzantine agreement extension protocol is that it uses
list decoding - making a striking new connection between list decoding and asynchronous Byzantine
agreement.

2012 ACM Subject Classification Security and privacy; Security and privacy → Cryptography;
Security and privacy → Information-theoretic techniques; Security and privacy → Distributed
systems security

Keywords and phrases Asynchronous Byzantine Agreement, Perfect Security

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.1

Related Version Full Version: https://eprint.iacr.org/2025/1488 [2]

Funding Gilad Asharov: Research supported by the Israel Science Foundation (grant No. 2439/20),
and by the European Union (ERC, FTRC, 101043243). Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European Union or the
European Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

1 Introduction

The agreement problem is perhaps the quintessential problem in fault-tolerant distributed
computing. In agreement, each party has an input and the goal is for all honest parties
to output (liveness) the same value (agreement), and that if all of them have the same
input, then this is the output (weak validity). In Byzantine agreement, the challenge is to
do this while tolerating a strongly adaptive adversary that can corrupt up to t parties. It
is known that for perfect security, or in asynchrony, byzantine agreement requires n > 3t,
so we call a protocol that can tolerate n = 3t + 1 optimally resilient. In asynchronous
byzantine agreement the network is asynchronous. In this setting infinite execution must
exist, but using randomization, protocols for binary asynchronous byzantine agreement with
an expected O(1) rounds and expected O(n2) communication are known (for example, given
access to a weak coin that has a constant probability of success) [18, 5].
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The O(n2) cost for agreement on one bit is optimal due to lower bounds of Dolev and
Reischuk [12] even in synchrony and for omission failures and even with randomization
against a strongly adaptive adversary [6].

For the multivalued case, where the input is L bits, the obvious additional lower bound is
Ω(nL) bits that are required when Ω(n) parties do not have the output as their input, need
to learn the output. Thus, we say that a multivalued asynchronous byzantine agreement
has asymptotically optimal complexity if the communication complexity is O(nL + n2).
For L = Ω(n log n), we say a multivalued asynchronous byzantine agreement that has
O(nL + n2 log n) communication complexity has asymptotically optimal complexity.

The goal of the asynchronous byzantine agreement extension problem, as suggested in
[9, 15], is to study the costs of multivalued asynchronous byzantine agreement given access
to a binary byzantine agreement protocol.

In this setting, for L = Ω(n log n), results with optimal resilience and asymptotically
optimal complexity are known under cryptographic assumptions and a PKI [17, 19] (in fact,
using a PKI allows for stronger external validity properties). In synchrony, the breakthrough
of [7] obtains perfect security (also see improvements [3] and statistical security with fewer
rounds [1]).

Recently, the results in the asynchronous model have seen great progress: using just a
cryptographic hash function [14]; near optimal resilience and statistical security [13]; and
perfect security with O(log n) overhead in communication and time, or perfect with n = 5t+1
[8] or near optimal resilience [13].

Despite nearly two decades and considerable recent work, the following remains open: for
L = Ω(n log n), does there exist an asynchronous byzantine agreement extension protocol
that is:
1. Optimally resilient (n = 3t + 1);
2. Asymptotically optimal (for L = Ω(n log n) has complexity O(Ln));
3. Perfectly secure (is error free).

The main result of this paper is a positive answer to this open question.

▶ Theorem 1.1 (Main). For L = Ω(n log n), there exists a protocol that solves multivalued
asynchronous byzantine agreement with optimal resilience, asymptotically optimal complexity,
and perfect security, given access to a single instance of binary asynchronous byzantine
agreement.

In other words, our protocol achieves O(nL+n2 log n) for inputs of size L in addition to a
single call to a binary agreement. A key novelty of our perfectly secure and optimally resilient
Asynchronous Byzantine Agreement Extension protocol is that it uses list decoding - making
a striking new connection between list decoding and asynchronous byzantine agreement. List
decoding [20, 16] is a fundamental concept in theoretical computer science and cryptography,
allowing error correction beyond the unique decoding radius and playing a critical role in
many areas of theoretical computer science. In this paper, we show its criticality in enabling
optimal asynchronous extension protocols with perfect security.

As a warm-up, we show a variant with statistical security (also see [13]) to highlight some
of the challenges before going to the perfect security case.

▶ Theorem 1.2 (Statistical). For an error parameter 0 < ϵ < 1, and L = Ω(n log n/ϵ),
there exists a protocol that solves multivalued asynchronous byzantine agreement with optimal
resilience, asymptotically optimal complexity, and statistical security (with error ϵ), given
access to a single instance of binary asynchronous byzantine agreement.
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1.1 Discussion and open questions
Our extension is asymptotically optimal when L = Ω(n log n) bits. Obtaining asymptotic
optimality for L = O(n) remains an open question. Our reduction is nearly quadratic, but the
currently best binary byzantine agreement protocol with perfect security, assuming private
channels, is Ω(n4) [4]. Improving this bound, or finding other assumptions where binary
ABA with perfect security is (nearly) quadratic, is another open question.

Just like [7], we obtain byzantine agreement with a weak form of validity that allows
parties to agree on a special symbol ⊥ if the inputs from the honest parties do not agree.
Getting similar results for stronger notions of validity (or proving this to be impossible) also
remains an open question.

1.2 High level ideas
We start with an overview of the breakthrough COOL protocol of [7] and how it can be
used in asynchrony. Then describe a new functionality called BOOST. The next step is a
new general extension framework that combines BOOST, COOL, and binary asynchronous
byzantine agreement to achieve asynchronous byzantine agreement extension. We then
overview BOOST with statistical security, and then BOOST with perfect security.

COOL in asynchrony. A modular view of the COOL protocol [7, 3] is that it is a weak
variant of asynchronous verifiable information dissemination and dispersal [10, 11, 3]. In
asynchrony, we can combine the two phases to get a reliable agreement protocol that we will
call COOL reliable agreement or simply COOL. Roughly speaking, COOL gives: (Validity)
If all honest start with the same input, they all output this value; (Totality) If an honest
outputs, then all honest will output; (Agreement) The output of all honest is the same.

Note that COOL reliable agreement does not guarantee termination in all cases. It is safe,
but live only in the good case (validity property). Can we use COOL along with a binary
asynchronous agreement protocol to get multivalued asynchronous agreement? This is where
the BOOST protocol comes in.

BOOST in asynchrony. Unlike COOL, which is safe but not live, BOOST is live but not safe.
All parties eventually output a value, or eventually output ⊥ - but these are not necessarily
mutually exclusive. A party might output twice in the protocol: a value, and later also ⊥.

In BOOST, every party will eventually output a value or output ⊥ or do both. Roughly
speaking, BOOST gives: (Validity) If all honest start with the same input, they all output
this value and never output ⊥; (Value Totality) If an honest outputs a value then all honest
will output a value; (⊥ Totality) If an honest outputs ⊥ then all honest will output ⊥; and
finally the correctness property: (Correct or Detect) Either all parties output the same value,
or all parties output ⊥.

In the correct case, all parties output the same value from BOOST. But what if they
do not? Then we are in the detect case: we are guaranteed that all parties will eventually
output ⊥. However, parties do not know what case they are in. They may output a value
first and may not be certain if they will ever eventually also output ⊥.

This leads to the following natural protocol: run BOOST. If it outputs ⊥ then enter
the binary agreement with 0. If BOOST outputs a value, then enter COOL with this value.
If COOL outputs a value, then enter the binary agreement with 1. Finally, if the binary
agreement ends with 0, then output ⊥. Otherwise, wait for the output of COOL and output
that.

DISC 2025
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Roughly speaking, (Validity) If all honest have F then BOOST will only output F and
COOL will output F and agreement will output 1; (Liveness) If BOOST outputs ⊥ then all
will eventually output ⊥ so the binary agreement will complete (note, may not always be
on 0). Otherwise, if there is no output of ⊥, then there is agreement (from the correct or
detect property in BOOST), so all will output the same and enter COOL with the same and
from the validity of COOL and the liveness of the binary agreement, all will output the same
value; (Agreement) If the binary outputs 0 then it is immediate and otherwise due to the
agreement property of COOL.

Why is it called BOOST? From BOOST validity, if all honest have F (x) and the t malicious
have G(x) ̸= F (x), then the output must be F (x). Consider a world where t + 1 honest
have F (x), t honest have G(x), and the malicious are silent. This world is indistinguishable
from the validity world with t slow parties with F (x) instead of the silent malicious. Hence,
BOOST cannot output ⊥ because of validity, so it must output a value. That means it must
output F (x).

So the t + 1 that hold F (x) must convince the t honest parties that hold G(x) to also
output F (x). So we need to boost the value F (x) from t + 1 inputs to the output of all
2t + 1 honest parties. Hence, we call this protocol BOOST because its main challenge is to
identify a value that appears in t + 1 honest parties and boost it to all parties (or detect a
problem while trying to do that).

BOOST with statistical security. For statistical security, one can test whether two polyno-
mials are equal (with statistical error) by evaluating them at a random point. Extending this
idea, a party Pi can determine whether Pj and Pk hold the same polynomial by receiving
a single evaluation at a common random challenge point. This approach, used to reduce
rounds in reliable agreement for statistical security [1], treats an evaluation as a hash of the
polynomial. The only requirement is that the challenge point be chosen after the adversary
fixes the polynomial; for simplicity in our statistical case, we assume all inputs are fixed
before the protocol begins (See [1] for removing this assumption).

In the following, define the F -case as the case there are at least t + 1 parties that have
the same input F .

Statistical BOOST protocol in 7 phases:
1. Exchange phase: parties send a random challenge point, and get responses that are

evaluations at the challenge point. In this phase parties also detect if they see t + 1
evaluations that disagree with their input.

2. Support phase: If a party sees t + 1 responses on the same point, it identifies a group of
t + 1 parties with the same input. It sends them a support message. Note that you can
send support messages for at most two groups (because 3t + 3 > 3t + 1).

3. Sending YourPoint phase: If a party hears 2t + 1 support messages on its input then it
sends each party its point on this polynomial.
In the F case, if a party has input G(x) ̸= F (x) and hears 2t + 1 support, this means
that all parties will see at least t + 1 support for G(x), and hence all t + 1 parties with
input F (x) will detect.

4. Sending MyPoint phase: If a party hears t + 1 parties send it the same YourPoint, then it
sends back this point as a MyPoint message. Critically, a party sends only one MyPoint
message.
So in the F -case, if no G(x) ̸= F (x) has 2t + 1 support then eventually all honest parties
will send their MyPoint for F (x).
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5. Reconstruct phase: Parties now wait to robustly reconstruct at least 2t + 1 MyPoint
values that agree on the same polynomial.

6. Totality and Abundance phase: standard techniques to ensure that one termination implies
all terminate and that at least t + 1 terminate with a value.

7. Disseminate phase: standard techniques to ensure that if at least t + 1 have the same
value, and all other have this value or ⊥ then all honest will output this value. This part
is done as a separate sub-protocol.

BOOST with perfect security. Moving from statistical to perfect security introduces several
new challenges.

First, in the statistical setting, either t + 1 evaluations agree on your input or t + 1
disagree, and you detect. With perfect security, detecting from 2t + 1 responses is much
harder. Moreover, sending support requires finding a set of t + 1 parties that have the same
polynomial. How can you do this if you only hear two deterministic evaluation points from
each party?

Second, unlike the statistical setting, we cannot get strong detection properties so early
in the protocol, hence we cannot stop after sending one MyPoint and we may need to send
several MyPoints. But this complicates decoding: how can you decode if each party sends
two points? multiple polynomials may fit. Even more problems arise since a support message
may help several polynomials, not just one with high probability as in the statistical setting.

Third, is the most subtle, in the F -case we must ensure that if some party outputs
G(x) ̸= F (x) then all parties will eventually detect. But party i may have G(x) such that
G(i) = F (i), so detecting a conflict seems challenging.

To address the first problem, we use a more subtle detection rule (see Claim 5.2). This
detection uses List Decoding: we observe that identifying t + 1 points that agree on a degree
< t/7 polynomial is exactly a List Decoding instance and prove the list is at most of size 3.

For the second problem, list decoding helps again: instead of interpolating, we wait to
see if there are 2t + 1 points that agree with a polynomial in our list. This may yield a list of
reconstructed polynomials, unlike the statistical case. This adds complexity and forces us to
do several non-trivial rounds of detection in order to make sure that in the F -case, if a party
outputs G(x) ̸= F (x) then all parties eventually detect.

Obtaining this detection is the crux of our protocol, and is done in three phases. The
Filter phase detects one type of disagreement and then the Simple Detect phase detects
another. After these two phases there may still be a party that wants to output G(x) ̸= F (x)
but has G(i) = F (i). In this case, we need to add an additional Resolve Conflict phase.

This phase again uses list decoding, allowing every party to learn about F (x). So parties
holding G(x) with G(i) = F (i) learn that evaluations at i cannot differentiate parties holding
G(x) from parties holding F (x), so they send a new challenge point i′ such that G(i′) ̸= F (i′)
and using responses from this new challenge point we can finally get the desired detection
property.

BOOST with perfect security - Overview of the protocol. Recall that the F -case is when
there are at least t + 1 parties that have the same input F .
1. Exchange phase: here each party i with input fi(x) sends to each party j the two points

fi(i) and fi(j). There are two non-trivial aspects when receiving these points:
a. The first is that a party detects if the number of parties that send detect plus the

number of parties that send points that do not agree with your input is more than
t + 1. This rule is used in a subtle manner to prove the detect property in Claim 5.2
in the not F -case.

DISC 2025
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b. The second is that we need to give support to any set of t + 1 parties that agree on the
same degree at most d < t/7 polynomial, but we cannot use a random challenge point
for perfect security. So the only way to find this is to use (online) List Decoding to
generate a dynamic set S1. Since our degree is < t/7, the list has at most 3 elements
(see Claim 5.2).

2. Filter phase: each party sends its support to at most 3 polynomials by sending back to
them their point on this polynomial. Now a party may see 3 different values from each
other party, how can it know if it has a support of 2t+1? The new idea here is to check
which of the polynomials in S1 has 2t + 1 points that agree with it. Parties put those
polynomials in a dynamic set S2.
Parties also detect if a polynomial other than their input is in S2. In the F -case, we prove
that all parties whose input disagrees with F (x) will eventually detect. Going forward,
let |B| be the number of parties detected this way.
This detection is not enough, because some party may get G(x) ∈ S2 with G(x) ̸= F (x)
but we may still not have t + 1 detections. The next two phases solve this.

3. Simple detect phase: In this phase if any party i adds G(x) ̸= F (x) to S3 and G(i) ̸= F (i)
then we prove all parties will eventually detect. We do this by proving that at least
t + 1− |B| parties that have F (x) as input must detect (see Claim 5.4) and use the |B|
detections from the previous phase.

4. Resolve conflict phase: Here we want to detect if a party i outputs G(x) ̸= F (x) but has
G(i) = F (i). We observe that if the previous detect does not trigger, then all honest
parties have points that agree with F (x) (even if the polynomial they have is not F (x)).
So how can a party holding G(x) ̸= F (x) with G(i) = F (i) know that it is not holding
F (x) in this case?
This observation implies that party i can list decode the values it receives at this stage,
and it must include F (x) in this list after waiting for 2t + 1 messages. Now party i, that
is holding G(x) ̸= F (x), is aware of F (x).
Party i sees that G(i) = F (i) so index i is not suitable for disambiguating between
F (x) and G(x). So party i chooses a new index i′ such that G(i′) ̸= F (i′) and sends
that as a new challenge point. With this new challenge point, in the F -case, if a party
outputs G(x) ̸= F (x) then it must be that all parties output detect (see Claim 5.5). This
is somewhat reminiscent of the random point challenge used in the statistical security
setting.

5. Totality and Abundance phase: standard techniques.
6. Disseminate phase: standard techniques.

2 Preliminaries and Building Blocks

2.1 Notations
We let n denote the total number of participants. We let t denote the total number of
corrupted parties. We assume Byzantine faults, and that n ≥ 3t + 1. Here we focus on the
case where n = 3t + 1. We assume communication channels are identifiable so parties can
identify who sent them a message.

Reed Solomon codes. Let F be a finite field such that |F| > n, where n is the number
of parties. Without loss of generality, we assume that 1, . . . , n ∈ F, while this is just to
ease convention. To encode a message m = (m0, . . . , md) where each mi ∈ F, the encoding
algorithm defines a polynomial P (x) = m0 +m1x+ . . .+mdxd, and outputs (P (1), . . . , P (n)).
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Since two polynomials of degree d can agree on at most d points, the distance is n− d. Thus,
we can correct up to (n− d− 1)/2 errors. When d < n/3, this means that we can correct,
in particular, t errors. For a set S of points, we use RSDec(S, d) as the unique decoding
procedure of Reed-Solomon codes, which returns a unique polynomial of degree d that agrees
with all but at most d points in S (if exists).

List decoding. List decoding procedure of Reed-Solomon codes allows the return of all
polynomials that agree with a set S when the distance is larger than the minimum distance
of the code. We use ListDecode(S, d, p) to denote the procedure that returns all polynomials
of degree d that agree with S on p points. Looking ahead, we will use it with d = t/7 and
p = t + 1, and our analysis would show that when 2t + 1 ≤ |S| ≤ 3t + 1, there are no more
than three possible polynomials that satisfy that, i.e., no more than three polynomials of
degree t/7 that agree with t + 1 points on S.

Input length. In our protocols, we assume that the input is a polynomial of degree d (looking
ahead, t in the statistical, and t/7 in perfect). For the general case of an L-bit message, the
parties segment the L-bit message into L = ⌈ L

(d+1) log |F|⌉ blocks of size (d + 1) log |F| bits
each (with padding when necessary). Generalizing the protocols to L-blocks input can be
done in a natural way, e.g., instead of sending a single point, we would send L points, each is
associated with a different polynomial. We omit such details. Additionally, in the perfect
security case, we assume log |F| ∈ O(log n).

2.2 Dispersal
▶ Definition 2.1 (Dispersal). A protocol for parties P1, . . . , Pn where the input of each party
Pi is some fi(x) ∈ Fd+1, is an asynchronous dispersal protocol tolerating t corrupted parties if
the following properties hold:

Termination: If one honest party terminates, then all honest parties terminate.
Weak agreement: If an honest party terminates, then at least t + 1 honest parties
terminate with the same output F (x), and the rest might terminate with either F (x) or
⊥.
Weak Validity: If all honest parties start with the same polynomial F (x) of degree at
most d, then termination and weak agreement hold with respect to F (x).

It is important to note that this protocol might never terminate. In particular, termination
is guaranteed only in the case where all honest parties have the exact same input. We might
also terminate with other outputs, in which case weak agreement is guaranteed (t + 1 honest
parties output the same output, but the rest output ⊥).

Protocol 2.1: Dispersal
Input: Each party Pi holds fi(x) of degree at most d over F.
The protocol:
1. Initialization: Each party initializes Si = ∅, A1

i = A2
i = ∅.

2. Exchange:
a. Pi sends (Exchange, fi(i), fi(j)) to each Pj .

3. Dynamic set A1
i :

a. Upon receiving (Exchange, uj , vj) from Pj , if fi(j) = uj and fi(i) = vj then add j to
A1

i .
b. Upon |A1

i | ≥ n− t, send OK1 to all.

DISC 2025
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4. Dynamic set A2
i :

a. Upon receiving message OK1 from Pj for which j ∈ A1
i , then add j to A2

j .
b. Upon |A2

i | ≥ n− t, send OK2 to all.
5. Sending Done:

a. If Pi sent OK2, and upon receiving 2t + 1 OK2 messages, send Done messages to all.
b. Upon receiving t + 1 Done messages from distinct parties, send Done to everyone.
c. Upon receiving 2t + 1 Done messages, if Pi sent OK2 message, then terminate and

output fi(x). If Pi did not send OK2 message, then terminate and output ⊥.

The following theorem is proven in [3], and the protocol is based on the protocol of [7]:

▶ Theorem 2.2 ([3]). Protocol 2.1 is a perfectly-secure asynchronous dispersal protocol
tolerating t < n/3 malicious parties (as per Definition 2.1). The protocol takes 4 rounds
and a total communication of O(nL + n2 log n) bits where each party starts with an input of
size L.

We remark that Protocol 2.1 is described where the input of each party is a polynomial
fi(x) of degree d, whereas the above theorem refers to a general input of size L. See remark
about input length in Section 2.1. We also remark that in [3], the protocol assumes that
d < t/3.

2.3 Asynchronous Data Dissemination
▶ Definition 2.3. A protocol for parties P1, . . . , Pn where the input of each party Pi is some
fi(x) ∈ Fd+1 is a Asynchronous Data Dissemination protocol tolerating t corrupted parties if
the following properties hold:

Termination: If one honest party terminates, then all parties terminate.
Validity: If at least t + 1 honest parties start with the same input F (x), and all other
honest parties start with ⊥, then all honest parties output F (x).

Protocol 2.2: Asynchronous Data Dissemination
Input: Each party Pi holds fi(x) as input, of degree at most d. Some Pi might have input
⊥.
The protocol:
1. Initialize a multi-set Mi = ∅ and Si = ∅. If fi(x) ̸= ⊥, send to each Pj its point

(YourPoint, fi(j)).
2. Upon receiving (YourPoint, uj) from Pj , add uj to Mi.
3. Upon some ui appearing t + 1 times in Mi, send (MyPoint, ui) to all parties.
4. Upon receiving (MyPoint, uj) from Pj , add (j, uj) to Si. Upon |Si| ≥ d + t + 1 execute

the following:
a. Run RSDec(Si) and try to decode a polynomial fi(x) of degree at most d that agrees

with Si on at least d + t + 1 values.
b. If no such polynomial exists, then wait to receive more points in Si and retry.
c. If such a polynomial fi(x) is computed, set fi(x) to be the resultant value.

5. Upon unique decoding fi(x), terminate and output fi(x).
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▶ Theorem 2.4 ([10, 3]). Protocol 2.2 is an asynchronous data-dissemination protocol
tolerating t < n/3 malicious parties. The protocol takes 2 rounds and O(nL + n2 log n)
communication, where each party starts with an input of size L.

2.4 Reliable Agreement
In reliable broadcast, there is a sender, and other parties have no inputs. The sender wishes
to broadcast its message, and that all honest parties would output that value. Agreement
and validity are guaranteed, but there is no guaranteed termination.

We now consider “reliable agreement”. The difference from reliable broadcast is that all
parties have an input, and there is no sender.

▶ Definition 2.5. A protocol for parties P1, . . . , Pn, where the input of each party Pi is some
fi(x) ∈ Fd+1 is a Reliable Agreement tolerating t corrupted parties, if the following properties
hold:

Termination: If one honest party terminates, then all parties terminate.
Validity: If all honest parties start with the same input F (x), then all honest parties
terminate with output F (x).
Agreement: If one honest party terminates with output F ′(x), then it is guaranteed that
all honest parties eventually terminate with output F ′(x).

Protocol 2.3: Reliable Agreement
Input: The input of each party is some polynomial fi(x) of degree d over F.
The protocol:

1. Run Dispersal (Protocol 2.1 with input fi(x).
2. Upon dispersal terminating with output f

(1)
i (x), enter dissemination (Protocol 2.2)

with that input.
3. Upon dissemination terminating with output f

(2)
i (x), output this polynomial.

The following is proven in the appendix:

▶ Theorem 2.6. Protocol 2.3 is a reliable agreement protocol tolerating t < n/3 corrupted
parties. It requires O(nL + n2 log N) communication for an input of size L.

2.5 Asynchronous Byzantine Agreement
In an asynchronous Byzantine Agreement protocol, each party has some input xi, and the
parties have to agree on some output. It is required that all parties must terminate, must
agree on the output, and if all honest parties start with the same input x, then the output x.

▶ Definition 2.7. A protocol for parties P1, . . . , Pn where the input of each party Pi is some
bit bi ∈ {0, 1} is a Asynchronous Byzantine Agreement tolerating t corrupted parties if the
following properties are satisfied:

Agreement: All honest parties must output the same value.
Validity: If all honest parties enter with the same input x, then all output x.
Termination: All honest parties must terminate.

If x ∈ {0, 1}, then we call the protocol Binary Asynchronous Byzantine Agreement; If the input
is a general string, then we call the protocol Multi-value Asynchronous Byzantine Agreement.
If a Multi-value Asynchronous Byzantine Agreement uses a Binary Asynchronous Byzantine
Agreement, then we call it a Asynchronous Byzantine Agreement Extension protocol.

DISC 2025
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3 From BOOST to Multivalue Byzantine Agreement

3.1 BOOST
We introduce a new primitive called BOOST. We build a multivalue Byzantine Agreement
protocol from BOOST, which we define its properties next:

▶ Definition 3.1. A protocol for parties P1, . . . , Pn, where the input of each party Pi is some
polynomial fi(x) of degree d over F, is a BOOST protocol, tolerating t corrupted parties, if
the following properties are satisfied:

Syntax: The protocol might not terminate, but each party eventually writes to (at least)
one of two output tapes – outputi, or/and detecti.
Validity: If all honest parties enter with the same polynomial F (x), then at least t + 1
honest parties set their output to F (x). Moreover, no honest party activates output detect.
Set output: If an honest party sets output then all honest parties set their output.
Detect or correct: If at least t + 1 honest parties hold the same polynomial F (x) as
input, then: (a) either eventually all honest parties activate their detect output tape; or
(b) at least t + 1 honest parties set their output tape to F (x), and the remaining set their
output to proceed.
Detect: If there is no set of t + 1 honest parties with the same input, then all honest
parties activate their detect tape.

In fact, the crux is in designing this primitive. In the next subsection, we show how to utilize
this primitive to obtain a multivalue byzantine agreement. In Section 4 we show how to
implement BOOST with statistical security, which is shown mainly as a warmup. In Section 5
we show how to implement it with perfect security.

3.2 Main Protocol: Multivalue Byzantine Agreement

Protocol 3.1: Multivalue Byzantine Agreement
Input: Each party Pi holds fi(x) of degree d as input.
The protocol:

1. BOOST → Dissemination → Reliable Agreement:
a. Run BOOST protocol with input fi(x).
b. Upon Pi sets outputi ̸= ⊥ in BOOST, enter asynchronous data dissemination

(Protocol 2.2). If outputi = f
(1)
i (x), then enter with that input; If outputi = proceed

then enter with ⊥.
c. Upon dissemination terminates with output f

(2)
i (x), run reliable agreement (Proto-

col 2.3) with that input f
(2)
i (x).

2. Asynchronous Binary Byzantine Agreement: The parties run a single instance
of Byzantine Agreement, where the input of each party is determined once, according
to which event occurs first:

a. Upon reliable agreement terminates with some output, enter BA with input 1.
b. Upon BOOST activates detecti = 1, enter BA with input 0.

Output:
1. Upon BA terminates with output 0, terminate and output ⊥.
2. Upon BA terminates with output 1, output the output of reliable agreement and halt.

The following theorem is proven in the appendix:

▶ Theorem 3.2. Protocol 3.1 is a multivalued byzantine agreement protocol, tolerating t

corrupted parties.
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4 BOOST with Statistical Security

We refer to Section 1.2 for an overview of the following protocol.

Protocol 4.1: BOOST with Statistical Security

Input: Each party enters with an input fi(x) – a polynomial of degree at most t.
Initialization: Initialize outputi = ⊥, gi(x) = ⊥, detecti = ⊥. Moreover, initialize an
array Ci of size n, and a list Ti.
The protocol:

1. Exchange:
a. Each party Pi chooses ri ← F uniformly at random, and send to every Pj the

message (challenge, ri).
b. Upon receiving (challenge, rj) from Pj , set Ci[j] = rj . Moreover, reply Pj with

the message (Exchange, fi(rj)).
2. Getting 2t + 1 support or send detect:

a. Upon receiving (Exchange, uj) from Pj , add (j, uj) to the list Ti. If uj ≠ fi(ri),
then add j to DAi.

b. Upon |DAi| ≥ t + 1, then send to all parties the message detect.
c. Upon Ti containing the same evaluation ui from at least t + 1 parties, send

(support, ri, ui) to all the parties.
d. Upon receiving 2t+1 messages (support, rj , uj) such that Ci[j] = rj and fi(Ci[j]) =

uj , then set gi(x) = fi(x). Send to each Pk the message (YourPoint, gi(Ci[k])).
e. Upon receiving t + 1 messages (support, rj , vj) such that Ci[j] ̸= rj or vj ̸= fi(rj),

then send detect to all parties.
3. Reconstruction:

a. Upon receiving t + 1 messages (YourPoint, u) with the same u, and Pi did not
previously send (MyPoint, ·, ·) message, then send (MyPoint, ri, u) to all. If u ̸= fi(ri),
then send detect message to all (if not sent yet).

b. Upon receiving a message (MyPoint, rj , uj) then add (rj , uj) to Si. If fi(rj) ̸= uj ,
then add j to DAi. (recall that upon |DAi| ≥ t + 1 then Pi sends detect message to
all.)

c. Upon RSDec(Si, t) = f ′
i(x), and f ′

i(rj) = uj for 2t + 1 points in Si, then set
gi(x) = fi(x); Send HaveOutput to all.

4. Have output and termination:
a. Upon receiving HaveOutput messages from 2t + 1 distinct parties, send done to all.
b. Upon receiving done messages from t + 1 distinct parties, send done message to all.

5. Detection:
a. Upon receiving detect messages from t + 1 distinct parties, and if not sent detect

message yet, send detect to all.
b. Upon receiving detect messages from 2t + 1 distinct parties, set the output tape

detecti = 1.
6. Setting output:

a. Upon receiving done messages from 2t + 1 distinct parties, then: If gi(x) ̸= ⊥ then
set outputi = gi(x). Otherwise set outputi = proceed.

DISC 2025
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The following theorem is proven in the appendix:

▶ Theorem 4.1. Protocol 4.1 is a BOOST protocol (as per Definition 3.1) where validity
and set output hold unconditionally (with probability 1), and the Detect or correct and detect
properties hold with probability 1− n3

|F| .

5 BOOST with Perfect Security

In this section, we show how to implement the BOOST protocol for the perfect setting. We
already provided an overview for this protocol in Section 1.2, and so we provide the formal
description next.

5.1 The Entire Protocol

Protocol 5.1: BOOST with Perfect Security
Input: Each party Pi starts with fi(x) of degree at most t/7 over F.
Initialization: The following variables are shared between the different sub-protocols.
Initialize Othersi, Myi, DAi = ∅. Initialize S1

i , S2
i , S3

i , LDi = ∅.
The protocol: Run all sub-protocols in parallel (Sub-protocol 5.2, 5.3, 5.4, 5.5, 5.7, 5.6),
while using the same internal variables.
Output: The protocol does not terminate, but each party Pi might eventually write to
the output tapes outputi or detecti (or both).

Sub-Protocol 5.2: Exchange Phase
1. Send to each Pj the message (Exchange, fi(i), fi(j)).
2. Upon receiving (Exchange, uj , vj) from Pj :

a. Add the points (j, uj) to Othersi and (j, vj) to Myi.
b. If |Othersi| ≥ 2t + 1, run Li = ListDecode(Othersi, t/7, t + 1), and set S1

i = S1
i ∪ Li.

c. If uj ̸= fi(j) or vj ̸= fi(i) then add j to DAi.
3. Upon |DAi| ≥ t + 1 send detect to all.
4. Upon receiving detect message from Pj , add j to DAi.

Sub-Protocol 5.3: Filter Phase
1. Upon adding a polynomial gi(x) to S1

i :
a. Let P [gi(i)] = {j ∈ [n] | (j, v) ∈ Myi}.
b. Upon |P [gi(i)]| ≥ t + 1, then send (MyPotentialPoint, gi(i)) to all parties. If

gi(i) ̸= fi(i), then send detect to all. Moreover, note that each party sends at most
two MyPotentialPoint messages.

2. Upon receiving (MyPotentialPoint, uj) from Pj , add (j, uj) to Ti.
3. Upon (a) gi(x) ∈ S1

i ; (b) gi(x) agrees with 2t + 1 points in Ti, then add gi(x) to S2
i .

4. Upon a polynomial gi(x) added to S2
i , but gi(x) ̸= fi(x), then send detect to all.

Sub-Protocol 5.4: Detect Simple Conflicts
1. Upon adding a polynomial gi(x) to S2

i :
a. Send to each party Pj the message (YourPoint, gi(j)).
b. If gi(j) ̸= fi(j), then send detect message to all.

2. Upon receiving (YourPoint, uj) from Pj , add (j, uj) to Si.
3. Upon (a) gi(x) ∈ S2

i ; (b) Si containing (j, gi(i)) from at least 2t + 1 distinct parties, then
add gi(x) to S3

i .
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Sub-Protocol 5.5: Resolve Conflicts
1. Upon adding a polynomial hi(x) to S3

i :
a. Send to each party Pj the message (MyPoint, hi(j)).

2. Upon |S3
i | > 1, send detect to all.

3. Upon receiving first (MyPoint, uj) from Pj , add (j, uj) to Ri. (If a party sends more
than one point, add to Ri only the first point it sent.)

4. Upon Ri containing messages from 2t + 1 distinct parties:
a. Let LDi := ListDecode(Ri, t/7, t + 1).
b. If |S3 ∪ LDi| > 1 then

i. Find i′ = i+ c ·n for the first integer c for which |{h(i′) | h ∈ S3
i ∪LDi}| = |S3

i ∪LDi|,
i.e., h(i′) is different for every polynomial in S3

i ∪ LDi.
ii. Send to all parties (challenge, i′).
iii. Upon

A. receiving 2t + 1 responses (response, v) from distinct parties, that all agree on v;
B.

∣∣{hi(x) ∈ S3
i | hi(i′) = v

}∣∣ = 1; and
C. gi(x) = ⊥:
Set gi(x) to be that unique polynomial hi(x).

c. Upon seeing (challenge, j′) from j: if there exists gi(x) ∈ S3
i and you did not yet

respond with (response, gi(j′)) then send Pj (response, gi(j′)).
d. Upon (a) |S3 ∪ LDi| = 1; (b) S3

i = {hi(x)}; (c) gi(x) = ⊥: set gi(x) = hi(x).

Sub-Protocol 5.6: Totality and Abundance Phase

1. Upon gi(x) ̸= ⊥, set HaveOutput to all.
2. Upon receiving HaveOutput from distinct 2t + 1 parties, send done to all.
3. Upon receiving done messages from distinct t + 1 parties, and did not send done message

yet, send done to all.
4. Upon receiving done messages from distinct 2t+1 parties, set outputi = gi(x) if gi(x) ̸= ⊥

and set outputi = proceed otherwise.

Sub-Protocol 5.7: Detection
1. Upon receiving t + 1 detect message, send detect to all.
2. Upon receiving detect messages from 2t + 1 distinct parties, set detecti = 1.

In Section 5.2 we prove the following theorem:

▶ Theorem 5.1. Protocol 5.1 is a BOOST protocol (as per Definition 3.1), tolerating at most
t corrupted parties. The protocol is perfectly secure and requires O(n2 log n) communication.

The theorem is proven by explicitly specifying the properties each sub-protocol achieves.
We provide a formal proof for those sub-protocols in the full version [2].

▷ Claim 5.2. Sub-protocol 5.2 (Exchange phase) satisfies the following properties:
1. Validity: If all honest start with the same input F (x), then no honest send detect

message and eventually all honest add F (x) to S1
i .

2. Locally small: Each honest party Pi adds no more than 3 polynomials to S1
i .

3. Boost: If there exists a set of at least t + 1 honest parties that start with the same
polynomial F (x), then each honest party eventually adds F (x) to its S1

i .
4. Detect: If there is no set of t + 1 honest parties with the same polynomial, then all

honest parties eventually detect.
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▷ Claim 5.3. Sub-Protocol 5.3 (Filter phase) satisfies the following properties:
1. Validity: if all honest parties have F (x) in their input, then no honest party detects,

and each honest party eventually adds F (x) to S2
i . Moreover, no other polynomial is ever

added to S2
i .

2. Detect or correct: If there exists a set of t + 1 honest parties that start with the same
input F (x), then each honest party eventually has F (x) ∈ S2

i . Moreover, honest parties
that do not hold F (x) as input will detect.

Now the problem is that we may get two polynomials in S2
i . The above protocol guarantees

that any ̸= F (x) input party will detect, but they are the minority so we may just get just
|B| < t + 1 detects from this.

The next step makes sure that if all honest eventually have F (x) ∈ S2
i and some honest

adds G(x) ̸= F (x) to S3
i with G(i) ̸= F (i) then at least t + 1− |B| additional parties that

started with F (x) detect. For a total desired t + 1 honest detections.

▷ Claim 5.4. Sub-protocol 5.4 (Detect Simple Conflicts) satisfies the following properties:
1. Validity: If all honest eventually have S2

i = {F (x)} then no honest detects and eventually
all honest have S3

i = {F (x)}.
2. Detect or correct: Assume there exists a set of t + 1 honest parties that hold the same

F (x) as input. Then; (a) all honest parties eventually add F (x) to S3
i , (b) if some honest

party i adds G(x) ̸= F (x) to S3
i with G(i) ̸= F (i), then all honest parties eventually

detect.

So now the remaining problem is if all honest that add G(x) ̸= F (x) to S3
i have G(i) = F (i).

The next protocol handles this case. First, it makes sure that the parties with G(i) = F (i)
will see F (x) in in a new List Decoding, then it resolves this by having them choose a new
index where G(i′) ̸= F (i′).

▷ Claim 5.5. Sub-protocol 5.5 (Resolve conflicts) satisfies the following properties:
1. Validity: If all honest parties eventually have S3

i = {F (x)}, then all eventually set
gi(x) = F (x).

2. Detect or correct: If all honest eventually have F (x) ∈ S3
i , all honest will eventually

have set gi(x) = F (x), or t + 1 honest parties eventually detect.

▷ Claim 5.6. Sub-Protocol 5.6 (Totality and Abundance Phase) The protocol satisfies the
following properties:
1. Totality: If an honest set output then all will eventually set output.
2. Abundance: If an honest set output then at least t + 1 must have gi(x) ̸= ⊥.
3. Validity: If all honest set gi(x) ̸= ⊥, then all will set output outputi.

▷ Claim 5.7. Sub-protocol 5.7 (Detection phase) satisfies the following conditions:
1. If parties set detecti = 1, then at least one honest party initiated a detect message

throughout the protocol.
2. If t + 1 honest parties initiate detect message, then all honest parties eventually set

detecti = 1.

5.2 Putting it All Together: Proving Theorem 5.1
▶ Theorem 5.8 (Theorem 5.1, restated). Protocol 5.1 is a BOOST protocol (as per Defini-
tion 3.1), tolerating at most t corrupted parties. The protocol is perfectly secure and requires
O(n2 log n) communication.



I. Abraham and G. Asharov 1:15

Proof. We show that each of the properties must hold.

Validity. We show that if all honest parties start with the same input F (x), then honest
parties do not detect, and at least t + 1 honest parties output F (x) and the rest output
detect.

1. From the validity condition of Claim 5.2, no honest party detects in that subprotocol,
and eventually all honest parties add F (x) to S1

i .
2. From the validity condition of Claim 5.3, no honest party detects, and each party

eventually have S2
i = {F (x)}.

3. From the validity condition of Claim 5.4, all honest parties eventually have S3
i = {F (x)}

and do not trigger detect.
4. From the validity condition of Claim 5.5, all honest parties eventually set gi(x) = F (x).
5. From the validity condition of Claim 5.6, when all honest parties set gi(x) ̸= ⊥, then all

set output outputi.
6. If one honest party sets output outputi, then from the Abundance condition of Claim 5.6,

at least t + 1 honest parties must have gi(x) ̸= ⊥. The only value that this could be is
F (x). The rest (which might not have gi(x) ̸= ⊥) set their output to proceed.

Set output. If an honest party sets its output, then all honest parties eventually set output
– this follows directly from the abundance condition in Claim 5.6.

Detect. If there is no set of t + 1 honest parties with the same input, then all honest parties
eventually detect. This follows directly from the detect condition in Claim 5.2.

Detect or correct. We show that if at least t + 1 honest parties hold the same polynomial
F (x) as input, then (a) either eventually all honest parties detect; or (b) t + 1 honest parties
set their output to F (x) and the remaining set output to proceed.

We show that if there is no detect, then t + 1 honest parties set their output to F (x),
and the remaining set to proceed:
1. From the boost condition in Claim 5.2, all honest parties eventually add F (x) to S1

i .
2. From the detect or correct condition of Claim 5.3, each honest party eventually has

F (x) ∈ S2
i . Moreover, honest parties that do not hold F (x) as input trigger detect.

However, we assume that those are less than t parties.
3. From the detect or correct condition of Claim 5.4, then all honest parties eventually add

F (x) to S3
i ; moreover, if some honest party adds G(x) ̸= F (x) to S3

i with G(i) ̸= F (i),
then all honest parties detect. Therefore, since we assume that there is no detect, the
only polynomials G(x) that could be added to S3

i must satisfy G(i) = F (i).
4. From the detect or liveness property of Claim 5.5, if all honest parties eventually have

F (x) ∈ S3
i , then all honest parties eventually set gi(x). Moreover, from detect or correct,

if some party sets gi(x) to be G(x) ̸= F (x), then all honest parties must detect. Assuming
no detect, we must conclude that all honest parties set gi(x) = F (x).

5. From the validity condition of Claim 5.6, when all honest parties set gi(x) ̸= ⊥, then all
set output outputi.

6. If one honest party sets output outputi, then from the Abundance condition of Claim 5.6,
at least t+1 honest parties must have gi(x) ̸= ⊥. We showed that if this value is not F (x),
then we must eventually detect. Moreover, the rest (which might not have gi(x) ̸= ⊥ yet)
set their output to proceed.
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Efficiency. From Claim 5.2, each party has at most 3 polynomials in S1
i . This bounds all the

potential points that a party might send, and by inspection, each party sends at most O(n)
points on F to every other party. We conclude that all honest parties send/receive O(n2 log n)
bits. In case of L ∈ Ω(n log n), the protocol requires encoding the input as polynomials, and
requires O(nL + n2 log n) communication. ◀
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A Omitted Proofs for Section 2

▶ Theorem A.1 (Theorem 2.6, restated). Protocol 2.3 is a reliable agreement protocol
tolerating t < n/3 corrupted parties. It requires O(nL + n2 log N) communication for an
input of size L.

Proof. We show that each one of the properties hold:
Termination: A party terminates only after the dissemination terminates. As guaranteed
by dissemination, if one party terminates, then all honest parties eventually terminate.
Validity: If all honest parties enter the protocol with the same input F (x), then dispersal
is guaranteed to terminate, and at least t + 1 honest parties terminate with the same
output F (x), and the rest terminate with ⊥. The validity of dissemination then guarantees
that all honest parties terminate and output F (x).
Agreement: Assume an honest party terminates the protocol with output F ′(x). This
implies that dispersal must have terminated. Dispersal guarantees weak agreement – if
an honest party terminates, then at least t + 1 honest parties terminates with the same
polynomial F ′′(x), and the rest might terminate with either F ′′(x) or ⊥. The parties
then run dissemination, which then guarantees that all honest parties terminate with
the output F ′′(x). It thus hold that F ′′(x) = F ′(x), and that all honest parties must
terminate with F ′(x). ◀

B Omitted Proofs for Section 3

▶ Theorem B.1 (Theorem 3.2, restated). Protocol 3.1 is a multivalued byzantine agreement
protocol, tolerating t corrupted parties.

Proof. We show that each one of the properties hold.

Validity. If all honest parties start with the same input F (x), then:
The validity property of BOOST (Definition 3.1) guarantees that no honest party triggers
detecti = 1; moreover, all honest parties must eventually set outputi = F (x).
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The validity property of data dissemination then guarantees that all parties eventually
set f

(2)
i (x) = F (x).

The validity reliable agreement guarantees that all honest parties must receive F (x) as
output.
We get that no honest party enters 0 to the Byznatine Agreement, as no honest party
ever set BOOST.detecti = 1. All honest parties start the BA with the same input 1. The
validity property of BA then guarantees that all honest parties must output 1.
All honest parties output the output of the second dissemination, i.e., F (x).

Termination. To show termination, we show that the parties must eventually enter the BA.
To show that the parties must eventually enter the BA, we have three cases to consider:
1. If all honest parties hold the same input F (x), then as guaranteed from the validity

property, all terminate, and in particular also enter the BA.
2. If there is no set of t+1 honest parties with the same input F (x), then the detect property

of BOOST guarantees that all honest parties eventually activate detect. Therefore, all
honest parties must eventually enter the BA (some might enter earlier with different
input).

3. If there is a set of t + 1 honest parties with the same input F (x), then the detect or
correct property of BOOST guarantees that either:
a. Detect: Eventually, all honest parties activate their detect output tape. In that case,

parties have input to the BA.
b. Correct: At least t + 1 honest parties set their output tape to F (x) and the remaining

to proceed. The validity of dissemination (Definition 2.3) property then guarantees
that all honest parties must terminate with output F (x). The protocol then proceeds
to reliable agreement, which now its validity guarantees that all output F (x). We
conclude that all honest parties eventually can enter the BA with 1.

Agreement. We show that all honest parties must have the same output. In particular,
this follows from BA: all honest parties must receive the exact same output from BA. There
are two cases:

If the output is 0, then all honest parties terminate and output ⊥.
If the output is 1, then there exists an honest party that inputs 1 to the BA. A party
inputs 1 to the BA only if its reliable agreement terminated. If an honest party terminates
the reliable agreement, then all honest parties would eventually terminate the reliable
agreement with some output F ′(x), then eventually all honest parties terminate with
output F ′(x). ◀

C Omitted Proofs for Section 4

▶ Theorem C.1 (Theorem 4.1, restated). Protocol 4.1 is a BOOST protocol (as per Defi-
nition 3.1) where validity and set output hold unconditionally (with probability 1), and the
Detect or correct and detect properties hold with probability 1− n3

|F| .

Proof. We show that the protocol satisfies all those properties.

Validity. If all honest parties enter with the same polynomial F (x), then no matter what
challenge each party chooses, the parties will agree with each other. Each party Pi might
add to DAi only corrupted parties, and thus |DAi| ≤ t. Each party never sends support
message on a value that is not on F , and each party sees 2t + 1 support messages to points
on F . Therefore, each party Pi sends (YourPoint, F (Ci[k])) to each Pk. Each Pk receives
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2t + 1 YourPoint messages with the same value, and therefore sends (MyPoint, rk, F (rk)) to
all. Each party will eventually see 2t + 1 points on F (x), and the unique decoding is exactly
F (x). Therefore, each party eventually sets gi(x) = F (x), and send HaveOutput message.

However, parties might set output before setting gi(x) = F (x). A party sets its output
when receiving 2t + 1 done messages. This implies that t + 1 honest parties sent a done
message. A party sends a done message if it received t + 1 done messages, or if it received
2t + 1 HaveOutput messages. In the latter case, t + 1 sent HaveOutput messages; In the
former case, this implies that at least one honest party initiated a done message – which again
implies that there are t + 1 honest parties that sent HaveOutput message. We showed that all
honest parties eventually set gi(x) = F (x), send HaveOutput message, and therefore when a
party sets its output, there are at least t + 1 honest parties that already set gi(x) = F (x),
and the rest would set their output to proceed.

We also claim that no honest party send detect message. An honest party Pj might send
such a message in the following cases:
1. |DAj | ≥ t + 1. However, since all honest parties agree with their exchange messages, a

party might add to DAj only corrupted parties, and therefore |DAj | ≤ t.
2. A party sends a detect message if it receives t + 1 messages (support, rj , vj) such that

Ci[j] ̸= rj or vj ̸= fi(rj). However, an honest party Pi sends support only after seeing
at least t + 1 Exchange messages with the same (ri, ui). Since all honest parties have the
same input, the only value that can reach t + 1 cardinality is a value on F . Therefore,
the only (support, ri, vi) for which Cj [i] ̸= ri, or vi ≠ fj(ri) are messages from corrupted
parties, and therefore it can receive at most t of those.

3. An honest party might send detect upon receiving t + 1 messages (YourPoint, u) with the
same u, but u ≠ fj(rj). As previously, honest parties send YourPoint messages only on
values on F , and therefore no other value can reach cardinality t + 1.

4. Once again, parties add i to DAj if they receive (MyPoint, ri, ui) for which fj(ri) ̸= ui.
However, since all honest parties send MyPoint only on values on F , DAj never reaches
cardinality t + 1.

We conclude that no honest party ever sends detect message.

Set output. An honest party sets its output only after receiving done messages from 2t + 1
distinct parties. This implies that t + 1 honest parties must send done messages. Those
parties send that message to all parties, and therefore each honest party must eventually
receive t + 1 done messages, and thus also send done messages. As a result, each honest
party must eventually receive done messages from 2t + 1 distinct parties, and set its output.

Bad event. Before proceeding to show the detect or correct property that and the detect
property, we first define a bad event. let Badi,j denote the event in which Pi and Pj hold input
fi(x) ̸= fj(x), respectively, but Pi chooses ri such that fi(ri) = fj(ri). In that case, Pi might
not recognize that Pj does not hold the same polynomial. We can bound Pr [Badi,j = 1] ≤ d

|F| .
This is because the two polynomials agree on d points, and Pi chooses its challenge uniformly
at random. Moreover, let Bad denote the event in which there exists some i, j for which
Badi,j occurs. We have that

Pr [Bad = 1] ≤
∑
i,j

Pr [Badi,j = 1] ≤ n2d

|F|
≤ n3

|F|
.

We note that here we assume that the adversary must choose the input of all honest parties
before the protocol starts. To handle adaptive inputs, a variant with additional rounds
are needed (see [1]). Since our goal with statistical security is as a warm-up to the perfect
security case, we defer this variation to a full version. We proceed with the analysis assuming
that Bad does not occur.

DISC 2025
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Detect or correct. We assume that t + 1 honest parties start with the same input F (x).
We show that, unless there is a detection, at least t + 1 honest parties set their output to
F (x), and the rest set their output to proceed.

There are two cases to consider:
1. Suppose some honest party Pi receives 2t + 1 messages (support, ri, ui) such that Pi

previously sent (challenge, ri) and ui ≠ F (ri). Then, we show that all honest parties
eventually detect.
Specifically, if an honest party sees 2t + 1 such messages, then t + 1 honest parties sent
(support, ri, vi) to all. All honest parties would see those messages, specifically also
the parties that hold F (x). Due to Step 2e, they would see t + 1 values vi for which
vi ̸= F (rj), and thus would send detect to all. Since t + 1 parties hold F (x), t + 1 honest
parties send detect, which leads to all parties detect.

2. No honest parties gets 2t+1 support on a value F ′(ri) ̸= F (ri). Clearly, all honest parties
must receive 2t+1 messages (support, ri, F (ri)): Each honest party sends (challenge, ri)
to all parties; it would receive from the parties in F the same value (Exchange, F (ri)),
and thus send (support, ri, F (ri)) to all. The t + 1 honest parties holding F would
eventually receive 2t + 1 messages (support, ri, F (i)) (with difference indices i), and
therefore all would send to each Pi (YourPoint, F (ri)). According to our assumption, no
other value receives 2t + 1, therefore, all messages honest parties send are on F . Each
party would receive t + 1 (YourPoint, F (ri)) with the same value, and therefore would
send (MyPoint, ri, F (ri)) to all. The only polynomial that can be decoded is F (x).

Detect. We show that if there is no set of t+1 honest parties that hold the same polynomial,
and assuming that Bad does not occur, then all honest parties set detecti = 1. Since there
is no common input for t + 1 honest parties, each honest party must hold a different input
than at least t + 1 parties. Assuming that Bad does not occur, each party Pi adds at least
t + 1 indices to its DAi set, and eventually send detect message. All honest parties eventually
send detect, and activate detecti = 1. ◀

D Omitted Proofs for Section 5

For the proofs of section 5, please refer to the full version of this paper [2].
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