
Amnesiac Flooding: Easy to Break, Hard to Escape
Henry Austin #

Durham University, UK

Maximilien Gadouleau #

Durham University, UK

George B. Mertzios #

Durham University, UK

Amitabh Trehan #

Durham University, UK

Abstract
Broadcast is a central problem in distributed computing. Recently, Hussak and Trehan [PODC’19/
STACS’20/DC’23] proposed a stateless broadcasting protocol (Amnesiac Flooding), which was
surprisingly proven to terminate in asymptotically optimal time (linear in the diameter of the
network). However, it remains unclear: (i) Are there other stateless terminating broadcast algorithms
with the desirable properties of Amnesiac Flooding, (ii) How robust is Amnesiac Flooding with
respect to faults?

In this paper we make progress on both of these fronts. Under a reasonable restriction (oblivi-
ousness to message content) additional to the fault-free synchronous model, we prove that Amnesiac
Flooding is the only strictly stateless deterministic protocol that can achieve terminating broadcast.
We achieve this by identifying four natural properties of a terminating broadcast protocol that
Amnesiac Flooding uniquely satisfies. In contrast, we prove that even minor relaxations of any of
these four criteria allow the construction of other terminating broadcast protocols.

On the other hand, we prove that Amnesiac Flooding can become non-terminating or non-
broadcasting, even if we allow just one node to drop a single message on a single edge in a single
round. As a tool for proving this, we focus on the set of all configurations of transmissions between
nodes in the network, and obtain a dichotomy characterizing the configurations, starting from which,
Amnesiac Flooding terminates. Additionally, we characterise the structure of sets of Byzantine
agents capable of forcing non-termination or non-broadcast of the protocol on arbitrary networks.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Mathematics
of computing → Graph algorithms; Theory of computation → Distributed algorithms; Theory of
computation → Graph algorithms analysis

Keywords and phrases Amnesiac flooding, Terminating protocol, Algorithm state, Stateless protocol,
Flooding algorithm, Network algorithms, Graph theory, Termination, Communication, Broadcast

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.10

Related Version Full Version: https://arxiv.org/abs/2502.06001 [2]

Funding George B. Mertzios: Supported by the EPSRC grant EP/P020372/1.
Amitabh Trehan: Supported by the EPSRC grant EP/P021247/1.

Acknowledgements We would like to thank Danial Maqbool (Durham University) for his insightful
work with a precursor to the uniqueness result.

1 Introduction

The dissemination of information to disparate participants is a fundamental problem in
both the construction and theory of distributed systems. A common strategy for solving
this problem is to “broadcast”, i.e. to transmit a piece of information initially held by one
agent to all other agents in the system [1, 18, 21, 24, 25]. In fact, broadcast is not merely

© Henry Austin, Maximilien Gadouleau, George B. Mertzios, and Amitabh Trehan;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 10; pp. 10:1–10:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:henry.b.austin@durham.ac.uk
https://orcid.org/0009-0007-5685-4944
mailto:m.r.gadouleau@durham.ac.uk
https://orcid.org/0000-0003-4701-738X
mailto:george.mertzios@durham.ac.uk
https://orcid.org/0000-0001-7182-585X
mailto:amitabh.trehan@durham.ac.uk
https://orcid.org/0000-0002-2998-0933
https://doi.org/10.4230/LIPIcs.DISC.2025.10
https://arxiv.org/abs/2502.06001
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

10:2 Amnesiac Flooding: Easy to Break, Hard to Escape

a fundamental communication primitive in many models, but also underlies solutions to
other fundamental problems such as leader election and wake-up. Given this essential role in
the operation of distributed computer systems and the potential volume of broadcasts, an
important consideration is simplifying the algorithms and minimizing the overhead required
for each broadcast.

Within a synchronous setting, Amnesiac Flooding as introduced by Hussak and Trehan
in 2019 [13, 14] eliminates the need of the standard flooding algorithm to store historical
messages. The algorithm terminates in asymptotically optimal O(D) time (for D the diameter
of the network) and is stateless as agents are not required to hold any information between
communication rounds. The algorithm in the fault-free synchronous message passing model
is defined as follows:

▶ Definition 1 (Amnesiac flooding algorithm, adapted from [16]). Let G = (V, E) be an
undirected graph, with vertices V and edges E (representing a network where the vertices
represent the nodes of the network and edges represent the connections between the nodes).
Computation proceeds in synchronous “rounds” where each round consists of nodes receiving
messages sent from their neighbours. A receiving node then sends messages to some neighbours
which arrive in the next round. No messages are lost in transit. The algorithm is defined by
the following rules:

(i) All nodes from a subset of sources or initial nodes I ⊆ V send a message M to all of
their neighbours in round 1.

(ii) In subsequent rounds, every node that received M from a neighbour in the previous
round, sends M to all, and only, those nodes from which it did not receive M . Flooding
terminates when M is no longer sent to any node in the network.

These rules imply several other desirable properties. Firstly, the algorithm only requires
the ability to forward the messages, but does not read the content (or even the header
information) of any message to make routing decisions. Secondly, the algorithm only makes
use of local information and does not require knowledge of a unique identifier. Thirdly, once
the broadcast has begun, the initial broadcaster may immediately forget that they started it.

However, extending Amnesiac Flooding and other stateless flooding algorithms (such as
those proposed in [27, 29, 4]) beyond synchronous fault-free scenarios is challenging. This is
due to the fragility of these algorithms and their inability to build in complex fault-tolerance
due to the absence of state and longer term memory. It has subsequently been shown that
no stateless flooding protocol can terminate under moderate asynchrony, unless it is allowed
to perpetually modify a super-constant number (i.e. ω(1)) of bits in each message [27]. Yet,
given the fundamental role of broadcast in distributed computing, the resilience of these
protocols is extremely important even on synchronous networks.

Outside of a partial robustness to crash failures, the fault sensitivity of Amnesiac Flooding
under synchrony has not been explored in the literature. This omission is further compounded
by the use of Amnesiac Flooding as an underlying subroutine for the construction of other
broadcast protocols. In particular, multiple attempts have been made to extend Amnesiac
Flooding to new settings (for example routing multiple concurrent broadcasts [4] or flooding
networks without guaranteed edge availability [29]), while maintaining its desirable properties.
However, none have been entirely successful, typically requiring some state-fulness. It has
not in fact been established that any other protocol can retain all of Amnesiac Flooding’s
remarkable properties even in its original setting. These gaps stem fundamentally from the
currently limited knowledge of the dynamics of Amnesiac Flooding beyond the fact of its
termination and its speed to do so. In particular, all of the existing techniques (e.g. parity

H. Austin, M. Gadouleau, G. B. Mertzios, and A. Trehan 10:3

arguments such as in [16] and auxiliary graph constructions such as in [28]) used to obtain
termination results for Amnesiac Flooding are unable to consider faulty executions of the
protocol and fail to capture the underlying structures driving terminating behaviour.

We address these gaps through the application of novel analysis and by considering
the structural properties of Amnesiac Flooding directly. By considering the sequence of
message configurations, we are able to identify the structures underlying Amnesiac Flooding’s
termination and use these to reason about the algorithm in arbitrary configurations. The
resulting dichotomy gives a comprehensive and structured understanding of termination in
Amnesiac Flooding. For example, we apply this to investigate the sensitivity of Amnesiac
Flooding with respect to several forms of fault and find it to be quite fragile. Furthermore,
we show that under reasonable assumptions on the properties of a synchronous network, any
strictly stateless deterministic terminating broadcast algorithm oblivious to the content of
messages, must produce the exact same sequence of message configurations as Amnesiac
Flooding on any network from any initiator. We therefore argue that Amnesiac Flooding
is unique. However, we show that if any of these restrictions are relaxed, even slightly,
distinct terminating broadcast algorithms can be obtained. As a result of this uniqueness and
simplicity, we argue that Amnesiac Flooding represents a prototypical broadcast algorithm.
This leaves open the natural question: do there exist fundamental stateless algorithms
underlying solutions to other canonical distributed network problems? Though memory can
be essential or naturally useful in certain scenarios [5, 7, 8, 10, 17, 20], understanding what
we can do with statelessness can help us push fundamental boundaries.

1.1 Our Contributions

In this work, we investigate the existence of other protocols possessing the following four
desirable properties of Amnesiac Flooding:
1. Strict Statelessness: Nodes maintain no information other than their port labellings

between rounds. This includes whether or not they were in the initiator set.
2. Obliviousness: Routing decisions may not depend on the contents of received messages.
3. Determinism: All decisions made by a node must be deterministic.
4. Unit Bandwidth: Each node may send at most one message per edge per round.

Our main technical results regarding the existence of alternative protocols to Amnesiac
Flooding are given in the next two theorems (reworded in Section 4).

▶ Theorem 2 (Uniqueness of Amnesiac Flooding). Any terminating broadcast algorithm
possessing all of Strict Statelessness, Obliviousness, Determinism and Unit Bandwidth
behaves identically to Amnesiac Flooding on all graphs under all valid labellings for all source
nodes.

Note that the last theorem allows, but does not require, that nodes have access to unique
identifiers labelling themselves and their ports. However, we enforce the condition that these
identifiers, should they exist, may be drawn adversarially from some super set of [n + κ]
where n is the number of nodes on the networks and κ = R(9, 8) where R(9, 8) is a Ramsey
Number (≤ 2662)[22]. It is important to stress here that Theorem 2 holds even if the space
of unique identifiers is only greater than n by an additive constant. In contrast to the last
theorem, the next one does not assume that agents have access to unique identifiers.

DISC 2025

10:4 Amnesiac Flooding: Easy to Break, Hard to Escape

▶ Theorem 3 (Existence of relaxed Algorithms). There exist terminating broadcast algorithms
which behave distinctly from Amnesiac Flooding on infinitely many networks possessing any
three of: Strict Statelessness, Obliviousness, Determinism and Unit Bandwidth.

We derive four of these relaxed algorithms which all build upon Amnesiac Flooding:
1. Neighbourhood-2 Flooding: Strict Statelessness is relaxed and agents are given

knowledge of their neighbours’ neighbours. This allows for distinct behaviour on networks
of radius one as some agents are aware of the entire network topology.

2. Random Flooding: Determinism is relaxed and agents are given access to a random
coin. Agents randomly choose in each round whether to use Amnesiac Flooding or to
forward messages to all of their neighbours.

3. 1-Bit Flooding (Message Dependent): Obliviousness is relaxed and the source is
allowed to include one bit of read-only control information in the messages. The source
records in the message whether they are a leaf vertex, and if so agents perform Amnesiac
Flooding upon receiving the message. Otherwise, agents perform a modified version
where leaf vertices return messages.

4. 1-Bit Flooding (High Bandwidth): Unit Bandwidth is relaxed and agents are allowed
to send either one or two messages over an edge. This permits the same algorithm as the
previous case by encoding the control information in the number of messages sent.

We note that despite being a non-deterministic algorithm Random Flooding achieves
broadcast with certainty and terminates almost surely in finite time.

We also perform a comprehensive investigation of the fault sensitivity of Amnesiac
Flooding in a synchronous setting. Through the use of a method of invariants, we obtain
stronger characterizations of termination than were previously known, for both Amnesiac
Flooding, and a subsequently proposed Stateless Flooding protocol [27]. This allows us to
provide precise characterizations of the behaviour of Amnesiac Flooding under the loss of
single messages, uni-directional link failure, and time bounded Byzantine failures. The above
invariants may be of independent interest, beyond fault sensitivity, as they provide strong
intuition for how asynchrony interferes with the termination of both Amnesiac Flooding
and the Stateless Flooding proposed in [27]. The main technical result concerning fault
sensitivity is a dichotomy characterizing the configurations, starting from which, Amnesiac
Flooding terminates. As the rigorous statement of the result requires some additional
notation and terminology, we will state it only informally here. We show in Theorem 15
that, whether Amnesiac Flooding terminates when begun from a configuration or not, is
determined exclusively by the parity of messages distributed around cycles and so-called
faux-even cycles (FEC) (essentially pairs of disjoint odd cycles connected by a path, see
section 5 for a full definition) within the graph. It follows from this characterisation that
Amnesiac Flooding terminates from a configuration if and only if it the configuration can
be reached from some sequence of multi-casts. Theorem 15 also implies the following three
theorems which demonstrate the fragility of Amnesiac Flooding under three increasingly
strong forms of fault. We give our fault model explicitly in Section 5.2.

▶ Theorem 4 (Single Message Failure). If single-source Amnesiac Flooding experiences a
single message drop failure for the message (u, v) then it fails to terminate if and only if
either or both of the following hold:

uv is not a bridge
uv lies on a path between vertex disjoint odd cycles

Moreover, it fails to broadcast if and only if this is the first message sent along uv, uv is a
bridge, and the side of the cut containing u does not contain an odd cycle.

H. Austin, M. Gadouleau, G. B. Mertzios, and A. Trehan 10:5

We also consider the possibility of a link/edge failing in one direction (or if we consider an
undirected edge as two directed links in opposite directions, only one of the directed links
fails).

▶ Theorem 5 (Uni-directional link failure). For any graph G = (V, E) and any initiator set
I ⊊ V there exists an edge e ∈ E such that a uni-directional link failure at e will cause
Amnesiac Flooding to either fail to broadcast or fail to terminate when initiated from I on
G. Furthermore, for any non-empty set of uni-directional link failures there exists v ∈ V

such that, when Amnesiac Flooding is initiated at v, it will either fail to broadcast or fail to
terminate.

We, finally, consider a set of Byzantine nodes, who know the original message, are free to
collude among themselves and may decide to forward this message in any arbitrary pattern
to their neighbours. However, for a discussion of termination to be meaningful, we require
that the nodes have Byzantine behaviour for only a finite number of rounds.

▶ Theorem 6 (Byzantine Failure). If Amnesiac Flooding on G = (V, E) initiated from I ⊊ V

experiences a weak Byzantine failure at J ⊆ V \ I, then the adversary can force:
Failure to broadcast if and only if J contains a cut vertex set.
Non-termination if and only if at least one member of J lies on either a cycle or a path
between odd-cycles.

Two natural corollaries of the Theorem 4 we wish to highlight here are: (i) on any network
from any initial node there exists a single message, the dropping of which, will produce either
non-termination or non-broadcast and (ii) dropping any message on a bipartite network will
cause either non-termination or non-broadcast. The latter requires the additional observation
that each edge is traversed by a message precisely once in a bipartite graph under Amnesiac
Flooding. Similarly, Theorem 6 implies that any Byzantine set containing a non-leaf node
on any network can force either non-termination or non-broadcast for Amnesiac Flooding
with any initial set.

1.2 Organisation of the paper
The initial part of the paper presents the required technical and motivational background,
statements of our results and a technical outline of the more interesting proofs. Due to
space limitations detailed proofs are deferred to the appendices and the full version [2].
Related work is presented in Section 2. Section 3 presents the model and notation required
for the following technical sections. Uniqueness of the algorithm is discussed in Section 4.
In subsection 4.1 we discuss the conditions under which the algorithm is unique and in
subsection 4.2 we relax the conditions individually to derive additional algorithms. The proof
of the uniqueness result is given in Appendix A. We present our work on the termination
dichotomy for Amnesiac Flooding and its applications to fault sensitivity in Section 5 with
the proof of the dichotomy given in Appendix B. We end with our conclusions and pointers
to future work in Section 6.

2 Related Work

The literature surrounding both the broadcast problem and fault sensitivity is vast, and a
summary of even their intersection is well beyond the scope of this work. Instead, we shall
focus on work specifically concerning stateless, or nearly stateless broadcast.

DISC 2025

10:6 Amnesiac Flooding: Easy to Break, Hard to Escape

The termination of Amnesiac Flooding and its derivatives has been the focus of several
works. In combination they provide the following result that Amnesiac Flooding terminates
under any sequence of multi-casts, i.e.

▶ Theorem 7 (Termination of Amnesiac Flooding (adapted from [15, 16, 28])). For G = (V, E)
a graph and I1, ..., Ik ⊆ V a sequence of sets of initiator nodes, Amnesiac Flooding on G

terminates when initiated from I1 in round 1, then I2 in round 2 and so forth.

Two independent proofs of the algorithm’s termination have been presented, using either
parity arguments over message return times [16] or axillary graph constructions [28]. The
latter technique has further been used to establish tight diameter independent bounds on
the termination of multicast using Amnesiac Flooding, complementing the eccentricity based
bounds of [16]. The techniques we develop in this work, however, are more closely aligned
with those of [15], as we exploit a similar notion to their “even flooding cycles” in our message
path argument. In contrast to that work we focus on arbitrary configurations of messages,
rather than just those resulting purely from a correct broadcast which allows us to obtain a
stronger characterisation. Combining our techniques with the dual “reverse” flood introduced
by [15], we are able to show the complement of Theorem 7, that only those configurations
reachable from a sequence of multi-casts lead to termination.

There have, further, been multiple variants of Amnesiac Flooding introduced. It was
observed by [27] in a result reminiscent of the BASIC protocol proposed by [12], that
sending a second wave of messages from a subset of the initial nodes reduces the worst
case 2D + 1 termination time to the optimal D + 1 in all but a specific subset of bipartite
graphs. We note that our fault sensitivity results extend naturally to this algorithm as
well, as the same invariants apply to this setting. Beyond this, there have been several
approaches to deal with the flooding of multiple messages simultaneously. In [15], the original
authors of [13] show that under certain conditions termination can be retained, even when
conflicting floods occur. Since then, two partially stateless algorithms have been proposed,
both making use of message buffers and a small amount of local memory [29, 4]. We will
not be directly concerned with these approaches, however, as we assume a single concurrent
broadcast throughout. However, the mechanism employed in [29] should be highlighted as it
rather cleverly exploits the underlying parity properties we identify as driving termination.
Furthermore, as reduction to Amnesiac Flooding is used as a technique for proofs in many of
these works, the comprehensive understanding of its termination we present here could prove
a powerful tool for future work in these areas.

While the robustness of Amnesiac flooding and its variants have been previously studied,
this has been focused on two forms of fault. The first is the disappearance and reappearance
of nodes and links. The termination of Amnesiac Flooding is robust to disappearance and
vulnerable to reappearance [16]. We will observe that this is a necessary consequence of the
invariants driving termination and their relation to cyclicity. In particular, the disappearance
of nodes and links cannot form new cycles violating the invariant, whereas their reappearance
can. A pseudo-stateless extension to Amnesiac Flooding has been proposed to circumvent
this [29], implicitly exploiting the parity conditions of [16]. The second are faults that
violate synchrony. Under a strong form of asynchrony, truly stateless and terminating
broadcast is impossible [27]. However, the landscape under a weaker form of asynchrony
(namely, the case of fixed delays on communication links) is more fine-grained. Although
termination results have been obtained for cycles, as well as the case of single delayed edges
in bipartite graphs [16], there is no clear understanding of the impact of fixed channel delays.
While we do not directly address this, we believe that techniques mirroring our invariant

H. Austin, M. Gadouleau, G. B. Mertzios, and A. Trehan 10:7

characterizations may prove fruitful in this area. To our knowledge, this work is the first to
consider both the uniqueness of Amnesiac Flooding, as well as its fault sensitivity beyond
node/link unavailability in a synchronous setting.

Beyond Amnesiac Flooding and its extensions, the role of memory in information dis-
semination is well studied in a variety of contexts. Frequently, stateful methods obtain
faster termination time, such as in the phone-call model where the ability to remember one’s
communication partners and prevent re-communication dramatically improves termination
time and message efficiency [10, 5, 8]. Similarly, for bit dissemination in the passive com-
munication model the addition of only log log n bits of memory is sufficient to break the
near linear time convergence lower bound of [7] and achieve polylogarithmic time [17]. Even
more strongly, a recent work [20] has shown that in the context of synchronous anonymous
dynamic networks, stabilizing broadcast from an idle start is impossible with O(1) memory
and even with o(log n) memory if termination detection is required. Despite this, low memory
and even stateless broadcasts remain desirable [12]. The possibility of solving other canonical
distributed computing problems beyond broadcast, in a stateless manner, remains intriguing.
In this direction, various low memory stateful models have been proposed to handle more
complex distributed problems e.g. the compact local streaming (CLS) model in [6] with
deterministic solutions (routing, self-healing fault-tolerance etc.) and randomised solutions
for distributed colouring in a similar model [11].

Stateless broadcast schemes have been studied in a variety of contexts. To give an example,
they are used in mobile ad hoc networks, which, due to the lower power and rapid movement
of devices, see diminishing returns from maintaining information about the network [19].
However, given a lack of synchronisation as well as the wish to avoid so-called broadcast
storms [26], these techniques typically rely on either some form of global knowledge (such
as the direction or distance to the initiator) or the ability to sample network properties
by eavesdropping on communications over time [3, 23]. It should be noted however, that
in contrast to many models, such as anonymous dynamic networks, radio networks and
many mobile ad hoc networks, the typical framework for studying stateless flooding (“true
statelessness” as defined by [27] restricting the model of [9]) permits the knowledge and
distinguishing of neighbours in both broadcasting and receiving.

3 Model and Notation

Throughout this work we consider only finite, connected graphs on at least two nodes. We
denote the set {1, ..., x} by [x] and R(r, s) the Ramsey number such that any graph on
R(r, s) vertices contains either a clique on r vertices or an independent set on s vertices.
In this work, we make use of a generic synchronous message passing model (as described
in definition 1) with several additional assumptions based on the truly stateless model of
[27]. Our agents are the nodes of a network and are able to communicate via messages
of arbitrary size sent over the edges of this network. Computation occurs in synchronous
rounds, consisting of three phases: (i) nodes receive messages sent in the previous round,
(ii) nodes perform computation and (iii) nodes send messages to be delivered in the next
round. Unless stated otherwise, agents do not suffer faults and no messages are lost. In
addition to these standard assumptions, we enforce that the model is stateless, i.e. nodes
cannot maintain any additional information between rounds (such as routing information,
previous participation in the flood or even a clock value), cannot hold onto messages and
can only forward, not modify the messages.

DISC 2025

10:8 Amnesiac Flooding: Easy to Break, Hard to Escape

Unless stated otherwise we do not assume that nodes have access to unique identifiers,
however they have locally labelled ports that are distinguishable and totally orderable for
both receiving and sending messages. When we do work with identifiers these identifiers are
assumed to be unique, drawn from [|V | + κ] for κ > 0 a constant and assigned adversarially.
We refer to such an assignment of IDs to a network as a labelling of the network and we
identify the port label of a link leading to a node with the ID of that node. We further
assume that individual nodes have access to arbitrarily powerful computation on information
they do have.

We are principally interested in the problem of broadcast, although we will occasionally
consider the related multicast problem i.e. there are multiple initiators who may potentially
wake up in different rounds with the same message to be broadcast. For a graph G = (V, E)
and an initiator set I ⊆ V we say that a node is informed if it has ever received a message
from a previously informed node (where initiators are assumed to begin informed). An
algorithm correctly solves broadcast (resp. multicast) on G if for all singleton (resp. non-
empty) initiator sets there exists a finite number of rounds after which all nodes will be
informed. Unless specified otherwise, we assume that initiator nodes remain aware of their
membership for only a single round. We say that an algorithm terminates on G = (V, E) if,
for all valid initiator sets, there exists a finite round after which no further messages are sent
(i.e. the communication network quiesces).
Formally, for the message M , we denote a configuration of Amnesiac Flooding as follows:

▶ Definition 8. A configuration of Amnesiac Flooding on graph G = (V, E) is a collection
of messages/edges S ⊆ {(u, v)|uv ∈ E} where (u, v) ∈ S implies that in the current round u

sent a message to v.

Further, for H a subgraph of G, we denote by SH , S restricted to H. Below, we define
the operator AI,G : 2V 2 → 2V 2 to implement one round of Amnesiac Flooding on the given
configuration where agents in I receive the message from outside the network:

▶ Definition 9. The operator AI,G : 2V 2 → 2V 2 is defined as follows: The set I of nodes
initiate the broadcast. The message (u, v) ∈ AI,G(S) if uv ∈ E, (v, u) /∈ S and either
∃w ∈ V : (w, u) ∈ S or u ∈ I.

We will drop the subscript when G is obvious from context and I = ∅. Further, we adopt
the standard convention of using Ak

I,G to mean AI,G applied k times. Theorem 7 in this
notation can be expressed as follows:

▶ Theorem 10 (Theorem 7 restated). For any graph G = (V, E), and any finite sequence
I1, ..., Ik ⊆ V , there exists m ∈ N such that

Am
∅,G(AIk,G(...AI1,G(∅))) = ∅.

4 Uniqueness

In this section, we investigate broadcast protocols similar to Amnesiac Flooding and establish
four desirable properties that Amnesiac Flooding uniquely satisfies in combination. On the
other hand, we show that this result is sharp and that by relaxing any of these conditions
one can obtain similar terminating broadcast protocols.

H. Austin, M. Gadouleau, G. B. Mertzios, and A. Trehan 10:9

4.1 Uniqueness
Our first major result concerns the uniqueness of Amnesiac Flooding. Given the algorithms
surprising properties, a natural question is whether other broadcast algorithms exist main-
taining these properties. Specifically, does there exist a terminating protocol for broadcast
which obeys all of the following for all graphs and valid port labellings:
1. Strict Statelessness: Nodes maintain no information other than their port labellings

between rounds. This includes whether or not they were in the initiator set.
2. Obliviousness: Routing decisions may not depend on the contents of received messages.
3. Determinism: All decisions made by a node must be deterministic.
4. Unit Bandwidth: Each node may send at most one message per edge per round.

The answer is negative. We will actually prove the slightly stronger case, that this
holds even if agents are provided with unique identifiers, are aware of the identifiers of their
neighbours and that these identifiers have bounded size. Intuitively, the Strict Statelessness
condition forces any broadcast protocol to make its forwarding decisions based only on the
messages it receives in a given round. The combination of Obliviousness and Unit Bandwidth
forces any protocol meeting the conditions to view messages as atomic. Finally, Determinism
forces the protocol to make identical decisions every time it receives the same set of messages.
Formally, any broadcast protocol meeting the four conditions must be expressible in the
following form:

▶ Definition 11. A protocol P = (b, f) is a pair of functions, an initial function b and a
forwarding function f , where b : N × 2N → 2N and f : N × 2N × 2N → 2N. The protocol is
implemented as follows. On the first round the initiator node s with neighbourhood N(s)
sends messages to every node with a label in b(s, N(s)). On future rounds, each node u sends
messages to every node with a label in f(u, N(u), S) where S is the set of labels of nodes u

received messages from in the previous round. Further, we require that for any B ⊆ A ⊂ N
b(u, A), f(u, A, B) ⊆ A and that f(u, A, ∅) = ∅, enforcing that agents can only communicate
over edges of the graph and can only forward messages they have actually received respectively.

In this setting, achieving broadcast is equivalent to every node receiving a message at least
once and terminating in finite time corresponds to there existing a finite round after which
no messages are sent. For example, Amnesiac Flooding is defined by the following functions:

▶ Definition 12 (Amnesiac Flooding Redefinition). Amnesiac Flooding is defined by PAF =
(bAF , fAF) where, for all T ⊆ S ⊂ N, b(u, S) = S and f(u, S, T) = S \ T if T ̸= ∅ and ∅
otherwise.

In order, to argue that Amnesiac Flooding is unique we require a notion of what it means
for two broadcast algorithms to be distinct.

▶ Definition 13. Let G = (V, E) be a graph and L ⊆ N a set of labels. We say that the pair
(G, L) distinguishes the protocols P and Q if there exists a labelling of G using only labels
from L such that for some initial vertex s, P and Q send messages over different sets of
edges in the same round when implementing broadcast on G initiated from s. If there exists
some pair (G, L) which distinguishes P and Q, we describe P and Q as distinct. Otherwise,
we consider them the same protocol.

For a protocol P = (b, f), a set S ⊆ N and a number k ∈ N we describe P as AF up to
degree k on S if there is no graph G of maximum degree k such that (G, S) distinguishes
P from PAF . From here on we will assume that all unique labels are drawn from [n + κ]

DISC 2025

10:10 Amnesiac Flooding: Easy to Break, Hard to Escape

where κ is a sufficiently large constant and n is the number of nodes in the graph. As this
only eliminates possible pairs distinguishing protocols from Amnesiac Flooding, this only
strengthens the result. We obtain the following result, discussion and sketching the proof of
which makes up the remainder of this section, provided κ ≥ R(9, 8).

▶ Theorem 14. (Restatement of Theorem 2) Let P = (b, f) be a correct and terminating
broadcast protocol defined according to definition 11, then P is not distinct from Amnesiac
Flooding.

Proof sketch for Theorem 14. The basic argument is to show that any correct and termi-
nating broadcast protocol meeting the criteria is identical to Amnesiac Flooding. Our core
technique is to construct a set of network topologies such that any policy distinct from
Amnesiac Flooding fails on at least one of them. However, the behaviour of these alternative
protocols can be quite complex, as can the relationship between the constraints enforced by
different networks under different labellings. In order to circumvent this, we find very simple
networks, and labellings there of, where any algorithm must behave like Amnesiac Flooding
and then modify them to obtain new instances, with the property that only a small number
of vertices may ever behave distinctly from Amnesiac Flooding. In these more manageable
cases, we are able to then show that any distinct behaviour leads to an incorrect algorithm.
More precisely, for any given protocol we derive a directed graph (separate from the network
topology) describing its behaviour and demonstrate via a forbidden subgraph argument that
any set of IDs of size R(x, 8) must contain a subset T of size at least x such that P is AF

up to degree 1 on T . We take κ = R(9, 8) and show that there must then exist U ⊆ T

containing at least 6 identifiers such that P is AF up to degree 2 on U . By constructing a
set of small sub-cubic graphs, we are able to extend this to degree 3.
These form the base case of a pair of inductive arguments. First, we construct a progression
of sub-cubic graphs which enforce that if P is AF on [m] up to degree 3 it must be AF on
[m + 1] up to degree 3. We then construct a family of graphs which have a single node of
high-degree, while all other nodes have a maximum degree of 3 and so must behave as though
running Amnesiac Flooding. These graphs permit a second inductive argument showing
that this unique high degree node must also behave as if running Amnesiac Flooding. In
combination, these two constructions enforce that P behaves like Amnesiac Flooding in all
possible cases. The proof is given in appendix A. ◀

4.2 Relaxing the constraints
Despite the uniqueness established in the previous subsection, we are able to derive four
relaxed algorithms distinct from Amnesiac Flooding each obeying only three of the four
conditions.

▶ Theorem 3 (Existence of relaxed Algorithms). There exist terminating broadcast algorithms
which behave distinctly from Amnesiac Flooding on infinitely many networks possessing any
three of: Strict Statelessness, Obliviousness, Determinism and Unit Bandwidth.

The algorithms we obtain all build upon Amnesiac Flooding, and we believe illuminate the
role of each of the four conditions in the uniqueness result by showing what they prevent.
The algorithms for Obliviousness and Unit Bandwidth are presented together, as they differ
only in how control information is encoded.

Strict Statelessness: Several relaxations of this already exist, such as Stateless Flooding
(the initiator retains information for one round) or even classical non-Amnesiac Flooding
(nodes are able to retain 1-bit for one round). We present Neighbourhood-2 Flooding.
Nodes know the ID of their neighbours’ neighbours. The protocol behaves distinctly on
star graphs, as the hub can determine the entire network topology.

H. Austin, M. Gadouleau, G. B. Mertzios, and A. Trehan 10:11

Obliviousness and Unit Bandwidth: 1-bit flooding. Nodes are allowed to send a single
bit of read-only control information (in the message header or encoded in the number
of messages sent) communicating whether the initiator is a leaf vertex. If it is, nodes
implement Amnesiac Flooding, otherwise they use a different mechanism called Parrot
Flooding (leaves bounce the message back) which always terminates when begun from
a non-leaf vertex.
Determinism: Random-Flooding. Nodes have access to one bit of randomness per
round. Each round every node randomly chooses to implement Amnesiac Flooding or to
forward to all neighbours. Random-Flooding is correct with certainty and terminates
almost surely in finite time.

Since each of these constitutes only a minor relaxation of the restrictions, we argue that the
uniqueness of Amnesiac Flooding is in some sense sharp. We present the protocols fully and
demonstrate their correctness and termination for each of these cases independently in the
full version [2].

5 Termination Dichotomy

With the uniqueness of Amnesiac Flooding established, a greater understanding of its
properties is warranted. In this section, we study the configuration space of Amnesiac
Flooding and obtain an exact characterisation of terminating configurations. We then apply
this to investigate the algorithm’s fault sensitivity.

5.1 Obtaining a termination dichotomy
In order to consider the fault sensitivity of Amnesiac Flooding, we need to be able to determine
its behaviour outside of correct broadcasts. Unfortunately, neither of the existing termination
proofs naturally extend to the case of arbitrary message configurations. Fortunately, we can
derive an invariant property of message configurations when restricted to subgraphs that
exactly captures non-termination, which we will call “balance” (see Definition 20).

▶ Theorem 15. Let S be a configuration on G = (V, E) then there exists k ≥ 0 such that
Ak

G(S) = ∅ if and only if S is balanced on G.

In fact we obtain that not only do balanced configurations terminate, they terminate quickly.

▶ Corollary 16. Let S be a balanced configuration on G = (V, E) then there exists k ≤ 2|E|
such that Ak

G(S) = ∅.

Intuitively, for the protocol not to terminate, we require that a message is passed around
forever and since it is impossible for a message to be passed back from a leaf node the message
must traverse either a cycle or system of interconnected cycles. As we will demonstrate in
the rest of the section we need only consider systems of at most two cycles. Specifically, we
introduce an invariant property determined by parity constraints on the number of messages
travelling in each direction and their spacing around: odd-cycles, even cycles and what we
will dub, faux-even cycles.

▶ Definition 17. A faux-even cycle (FEC) is a graph comprised of either two node disjoint
odd cycles connected by a path or two odd cycles sharing only a single node. We denote by
FECx,y,z the FEC with one cycle of length 2x+1, one of length 2z +1 and a path containing
y edges between them. We emphasize that if y = 0 the two cycles share a common node and
if y = 1 the two cycles are connected by a single edge.

DISC 2025

10:12 Amnesiac Flooding: Easy to Break, Hard to Escape

FECs get their name from behaving like even cycles with respect to the operator A. In order
to capture this we can perform a transformation to convert them into an equivalent even
cycle.

▶ Definition 18. Let F = (V, E) be FECx,y,z. Then the even cycle representation of F

denoted F2 is the graph constructed by splitting the end points of the interconnecting path in
two, and duplicating the path to produce an even cycle. Formally, if the two cycles are of the
form a0...a2xa0 and c0...c2zc0, with a0 and c0 connected by the path b1...by−1, we construct
the following large even cycle from four paths: a0...a2xa−1d1...dy−1c−1c2z...c0by−1...b1a0.

Here a−1 is a copy of a0, c−1 is a copy of c0, and the path d1...dy−1 is a copy of the path
b1...by−1 (See figure 1). Note that if y = 0, a0 = c0 and so we do not include any nodes from
b or d. Similarly, if y = 1, a0 and c0 are connected by a single edge, as are a−1 and c−1.

There then exists a corresponding message configuration over the even cycle representation.
Essentially (other than a few technical exceptions), this new configuration is the same as the
old configuration but with two copies of each message on the path, one on each corresponding
edge of the even cycle representation. Formally,

▶ Definition 19. Let F = (V, E) be FECx,y,z and S a configuration of Amnesiac Flooding
on F , the even cycle representation of S on F denoted S2,F is determined as follows. For
each m ∈ S

If m = (a2x, a0) (resp. (a0, a2x)) we add (a2x, a−1) (resp. (a−1, a2x)) to S2,F .
If m = (bi, bj) for some i, j ∈ {1, ..., y − 1}, we add both (bi, bj) and (di, dj) to S2,F .
If m = (c2z, c0) (resp. (c0, c2z)) we add (c2z, c−1) (resp. (c−1, c2z)) to S2,F .
If m = (a0, b1) (resp. (b1, a0)) we add both (a0, b1) and (a−1, d1) (resp. (b1, a0) and
(d1, a−1)) to S2,F .
If m = (c0, by−1) (resp. (by−1, c0)) we add both (c0, by−1) and (c−1, dy−1) (resp. (by−1, c0)
and (dy−1, c−1)) to S2,F .
If m = (a0, c0) (resp. (c0, a0)) we add both (a0, c0) and (a−1, c−1) (resp. (c0, a0) and
(c−1, a−1)) to S2,F .
Otherwise we add m to S2,F .

With this established we can now define the notion of balance.

▶ Definition 20. A configuration S is balanced on G = (V, E) if for all subgraphs H of G

one of the following holds:
H is not a cycle or FEC.
H is an odd cycle and SH contains an equal number of messages travelling clockwise and
anti-clockwise on H.
H is an even cycle and for any given message m in SH , there is an equal number of
messages travelling clockwise and anti-clockwise on H such that their heads are an even
distance from m’s.
H is an FEC and S2,H is balanced on H2 (i.e. obeys the previous condition).

With these definitions established, we can present the intuition behind the proof of Theo-
rem 15.

Sketch of the proof of Theorem 15. We first establish that balance, and therefore imbal-
ance, is conserved by Amnesiac flooding and, as the empty configuration is balanced, Amnesiac
Flooding cannot terminate from any imbalanced configuration. For Amnesiac Flooding not
to terminate it requires that some message travels around the communication graph and
returns to the same edge, in the same direction. We show that if a configuration is balanced,
the trajectory of any message can spend only a bounded number of consecutive steps on any

H. Austin, M. Gadouleau, G. B. Mertzios, and A. Trehan 10:13

a0

a1 a2x

a2 a2x-1

c1

c0

c2x

b1

c2x-1c2

by-1

a2

a1

a2x-1

a2x

a0

b1

by-1

c0

c1

c2 c2x-1

c2x

c-1

dy-1

d1

a-1

Figure 1 Left: An F ECx,y,z. Right: The corresponding even cycle representation. Please note
that this depiction only holds for y ≥ 2. For y = 1: a0 and c0 are connected directly by an edge in
both sub figures (as are a−1 and c−1). For y = 0: a0 = c0 and a−1 = c−1.

given cycle or FEC. However, we can also show that any message’s trajectory which crosses
the same edge twice in the same direction, must have spent a large number of consecutive
steps on some cycle or FEC, and therefore could not have begun in a balanced configuration.
Thus, Amnesiac Flooding started from any balanced configuration must terminate. The
proof is given in appendix B. ◀

5.2 Applying the termination dichotomy
In this section, we apply the dichotomy to obtain a number of results.

5.2.1 Extended Dichotomy
While Theorem 15 provides a full dichotomy over the configuration space of Amnesiac
Flooding and is easier to reason about than previous results, the definition is somewhat
unwieldy. In this subsection, we demonstrate the effectiveness of the dichotomy and unify it
with the existing results [15, 16, 28]. It has previously been observed that running Amnesiac
Flooding backwards obtains another instance of multi-cast Amnesiac Flooding [15]. Formally,

▶ Definition 21. Let G = (V, E) be a graph and S be a configuration of messages on G.
Then S̄ = {(v, u)|(u, v) ∈ S}.

The following lemma is similar to the argument made in Corollary 4.6. of [15].

▶ Lemma 22. Let G = (V, E) be a graph, S a configuration of messages on G and T = {u ∈
V |∀v ∈ N(u) : (u, v) ∈ S} the set of source vertices. Then AT,G

(
A∅,G(S̄)

)
= S

Which gives the following immediately via induction,

DISC 2025

10:14 Amnesiac Flooding: Easy to Break, Hard to Escape

▶ Lemma 23. Let G = (V, E) be a graph and S a configuration of messages on G. Then for
any k ∈ N there exists a sequence I1, ..., Ik ⊆ V such that AI1,G

(
...

(
AIk,G

(
Ak

∅,G

(
S̄

)))
...

)
=

S.

Intuitively, this means that given any configuration S of Amnesiac Flooding, we can run it
backwards through time to some earlier configuration S′. Further we obtain a sequence of
vertex sets I1, ..., Ik that were sinks in the time-reversed process and therefore sources in the
forwards process. We can therefore reconstruct S beginning from S′ via some sequence of
fresh multi-casts from I1, ..., Ik. We will use this fact to obtain all configurations from which
Amnesiac Flooding terminates (i.e. balanced configurations) from the empty configuration.
The following lemma is immediate from the definition of balance (definition 20), as reversing
the direction of all messages in a configuration does not affect its balance.

▶ Lemma 24. S̄ is balanced on G if and only if S is balanced on G

Putting it all together, we obtain the following extension of the dichotomy result, as well as
the complement to Theorem 7.

▶ Theorem 25. Let G = (V, E) be a graph and S a configuration of G, the following are all
equivalent:
1. ∃k ∈ N : Ak

∅,G(S) = ∅
2. ∃k ∈ N, I1, ..., Ik ⊆ V : AIk,G (... (AI1,G(∅)) ...) = S

3. S is balanced on G

Proof. The equivalence of (1) and (3) follow immediately from Theorem 15. Further, we have
that (2) implies (1) from Theorem 7. Now assume S is balanced, then by lemma 24, so is S̄.
Thus by Theorem 15 there exists a finite k such that after k rounds Amnesiac flooding started
from S̄ must terminate, i.e. Ak

∅,G(S̄) = ∅ . Therefore, by lemma 23 we have a sequence
I1, ..., Ik ⊆ V such that S = AI1,G

(
...

(
AIk,G

(
Ak

∅,G

(
S̄

)))
...

)
= AI1,G (... (AIk,G(∅)) ...).

Thus, we have (3) implies (2) and the result follows. ◀

5.2.2 Fault Sensitivity
In this work we consider three key forms of fault of increasing severity: message dropping,
uni-directional link failure and weak-Byzantine failures. Intuitively, these correspond to a
set of messages failing to send in a specific round, a link failing in one direction creating a
directed edge and a set of nodes becoming transiently controlled by an adversary.

More precisely, let S = (Si)i∈N be the sequence of actual message configurations on our
network. We say that S is fault free for G = (V, E) if Si+1 = AG(Si) for all i ∈ N. Otherwise,
we say it experienced a fault. In this case we say S has suffered from,

Message dropping, if there exists T ⊆ V 2 and k ≥ 1 such that Sk+1 = A(Sk) \ T and for
all i ≠ k, Si+1 = A(Si). This corresponds to all messages in T being dropped on round k.
Uni-directional link failure, if there exists X ⊆ V 2 such that for all i ≥ 1, Si+1 = A(Si)\X.
This corresponds to all oriented links in X failing.
Weak-Byzantine failure, if there exists Y ⊆ V such that for some k at least twice the
diameter, for all i < k, Si+1 \ {(u, v)|u ∈ Y } = A(Si) \ {(u, v)|u ∈ Y }. This corresponds
to a possible failure where an adversary determines the forwarding decisions of the nodes
in Y until round k.

Note that we refer to the Byzantine failures as weak, since they are transient and only
interfere with the forwarding of the message, not its content. It is obvious to see that in a
stateless setting there is no way to deal with a Byzantine fault that changes the message

H. Austin, M. Gadouleau, G. B. Mertzios, and A. Trehan 10:15

as there is no method to verify which message is authentic. Intuitively, in our setting,
Weak-Byzantine agents may choose to send messages to an arbitrary set of neighbours in
each round and they are all controlled by a single coordinated adversary. We say that a
Weak-Byzantine adversary with control of a given set of nodes can force some behaviour if
there exists any weak byzantine failure on that set of nodes producing the forced behaviour.
We can now express our fault sensitivity results, the proofs of which we defer to the full
version [2], and begin with an extreme case of single message dropping.

▶ Theorem 4 (Single Message Failure). If single-source Amnesiac Flooding experiences a
single message drop failure for the message (u, v) then it fails to terminate if and only if
either or both of the following hold:

uv is not a bridge
uv lies on a path between vertex disjoint odd cycles

Moreover, it fails to broadcast if and only if this is the first message sent along uv, uv is a
bridge, and the side of the cut containing u does not contain an odd cycle.

Thus, Amnesiac Flooding is extremely fault-sensitive with respect to message dropping.
Secondly, considering uni-directional link failures we obtain the following.

▶ Theorem 5 (Uni-directional link failure). For any graph G = (V, E) and any initiator set
I ⊊ V there exists an edge e ∈ E such that a uni-directional link failure at e will cause
Amnesiac Flooding to either fail to broadcast or fail to terminate when initiated from I on
G. Furthermore, for any non-empty set of uni-directional link failures there exists v ∈ V

such that, when Amnesiac Flooding is initiated at v, it will either fail to broadcast or fail to
terminate.

Finally for the weak-Byzantine case.

▶ Theorem 6 (Byzantine Failure). If Amnesiac Flooding on G = (V, E) initiated from I ⊊ V

experiences a weak Byzantine failure at J ⊆ V \ I, then the adversary can force:
Failure to broadcast if and only if J contains a cut vertex set.
Non-termination if and only if at least one member of J lies on either a cycle or a path
between odd-cycles.

6 Conclusions and Future Work

In this paper, we prove a uniqueness result: Under standard synchronous message passing
assumptions, any strictly stateless deterministic algorithm oblivious to the message content
which solves terminating broadcast is indistinguishable from Amnesiac Flooding. We therefore
argue due to both its uniqueness and simplicity, that Amnesiac Flooding is a fundamental
or prototypical broadcast algorithm. We formalise the four properties required for this
uniqueness to hold, and show that by relaxing each individually one can obtain other correct
and terminating broadcast algorithms, of which we present several. These present the
following natural questions: To what extent does Amnesiac Flooding represent a “minimal”
broadcast algorithm? Are there identifiable families of algorithms solving terminating
broadcast with a subset of these restrictions? Are any of these independent of (i.e. not
derivatives of) Amnesiac Flooding? Lastly, we are not aware of any similar uniqueness
results in algorithms literature, restricting the number of successful algorithms to just one
(or even to small finite numbers) - can this result stimulate a study into enumerating distinct
algorithms for solutions to interesting problems? Note that our model of true statelessness
rules out trivial extensions to algorithms such as delaying algorithm start or holding messages
for a certain count. Are there reasonable ways to define distinctiveness i.e. discard “trivial”
extensions to algorithms in less restrictive models than ours?

DISC 2025

10:16 Amnesiac Flooding: Easy to Break, Hard to Escape

We also obtain an understanding of the structural properties of Amnesiac Flooding. In
particular, we study its sensitivity to single message drops, uni-directional link failures, and
weak byzantine collusion, showing it can easily become non-terminating or non-broadcasting
under such conditions. This is perhaps surprising, as statelessness is frequently associated
with fault tolerance, such as in the self stabilizing setting. A reasonable interpretation of
Theorem 15, however, is that Amnesiac Flooding, while locally stateless, depends heavily on
a distributed “meta-state” contained in the configuration of sent messages. This suggests it
is unlikely that any minor modification of Amnesiac Flooding will resolve its fragility without
depending on an entirely different mechanism for termination. In support of this, we note
that of the four alternatives presented in the proof of Theorem 3, only Random-Flooding is
meaningfully more robust (and will in fact terminate from any configuration in finite time
almost surely). Nevertheless, we contend that further exploration of stateless algorithms such
as Amnesiac Flooding, their properties and related models are important for both theory
and practice of distributed networks.

References

1 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics. John Wiley & Sons, 2004.

2 Henry Austin, Maximilien Gadouleau, George B. Mertzios, and Amitabh Trehan. Amnesiac
flooding: Easy to break, hard to escape, 2025. doi:10.48550/arXiv.2502.06001.

3 Abhik Banerjee, Chuan Heng Foh, Chai Kiat Yeo, and Bu-Sung Lee. Performance improvements
for network-wide broadcast with instantaneous network information. J. Netw. Comput. Appl.,
35(3):1162–1174, 2012. doi:10.1016/J.JNCA.2012.01.008.

4 Zahra Bayramzadeh, Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma.
Weak amnesiac flooding of multiple messages. In Karima Echihabi and Roland Meyer, editors,
Networked Systems - 9th International Conference, NETYS 2021, Virtual Event, May 19-21,
2021, Proceedings, volume 12754 of Lecture Notes in Computer Science, pages 88–94. Springer,
2021. doi:10.1007/978-3-030-91014-3_6.

5 Petra Berenbrink, Robert Elsässer, and Thomas Sauerwald. Randomised broadcasting: Memory
vs. randomness. Theor. Comput. Sci., 520:27–42, 2014. doi:10.1016/J.TCS.2013.08.011.

6 Armando Castañeda, Jonas Lefèvre, and Amitabh Trehan. Fully compact routing in low
memory self-healing trees. In Nandini Mukherjee and Sriram V. Pemmaraju, editors, ICDCN
2020: 21st International Conference on Distributed Computing and Networking, Kolkata, India,
January 4-7, 2020, pages 21:1–21:10. ACM, 2020. doi:10.1145/3369740.3369786.

7 Niccolò D’Archivio and Robin Vacus. On the Limits of Information Spread by Memory-Less
Agents. In Dan Alistarh, editor, 38th International Symposium on Distributed Computing
(DISC 2024), volume 319 of Leibniz International Proceedings in Informatics (LIPIcs), pages
18:1–18:21, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.DISC.2024.18.

8 Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. Social networks spread rumors in
sublogarithmic time. In Proceedings of the Forty-Third Annual ACM Symposium on Theory
of Computing, STOC ’11, pages 21–30, New York, NY, USA, 2011. Association for Computing
Machinery. doi:10.1145/1993636.1993640.

9 Danny Dolev, Michael Erdmann, Neil Lutz, Michael Schapira, and Adva Zair. Stateless
computation. In Elad Michael Schiller and Alexander A. Schwarzmann, editors, Proceedings
of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington,
DC, USA, July 25-27, 2017, pages 419–421. ACM, 2017. doi:10.1145/3087801.3087854.

10 Robert Elsässer and Thomas Sauerwald. The power of memory in randomized broadcasting.
In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium

https://doi.org/10.48550/arXiv.2502.06001
https://doi.org/10.1016/J.JNCA.2012.01.008
https://doi.org/10.1007/978-3-030-91014-3_6
https://doi.org/10.1016/J.TCS.2013.08.011
https://doi.org/10.1145/3369740.3369786
https://doi.org/10.4230/LIPIcs.DISC.2024.18
https://doi.org/10.1145/1993636.1993640
https://doi.org/10.1145/3087801.3087854

H. Austin, M. Gadouleau, G. B. Mertzios, and A. Trehan 10:17

on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008,
pages 218–227. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347107.

11 Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and Alexandre Nolin.
Coloring fast with broadcasts. In Kunal Agrawal and Julian Shun, editors, Proceedings of the
35th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2023, Orlando,
FL, USA, June 17-19, 2023, pages 455–465. ACM, 2023. doi:10.1145/3558481.3591095.

12 Ajei S. Gopal, Inder S. Gopal, and Shay Kutten. Fast broadcast in high-speed networks.
IEEE/ACM Trans. Netw., 7(2):262–275, 1999. doi:10.1109/90.769773.

13 Walter Hussak and Amitabh Trehan. On termination of a flooding process. In Peter Robinson
and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 153–155.
ACM, 2019. doi:10.1145/3293611.3331586.

14 Walter Hussak and Amitabh Trehan. On the termination of flooding. In Christophe Paul and
Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer
Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages
17:1–17:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.
STACS.2020.17.

15 Walter Hussak and Amitabh Trehan. Terminating cases of flooding. CoRR, abs/2009.05776,
2020. arXiv:2009.05776.

16 Walter Hussak and Amitabh Trehan. Termination of amnesiac flooding. Distributed Comput.,
36(2):193–207, 2023. doi:10.1007/S00446-023-00448-Y.

17 Amos Korman and Robin Vacus. Early adapting to trends: self-stabilizing information
spread using passive communication. Distributed Comput., 37(4):335–362, 2024. doi:10.1007/
S00446-024-00462-8.

18 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
19 Victoria Manfredi, Mark Crovella, and Jim Kurose. Understanding stateful vs stateless

communication strategies for ad hoc networks. In Parmesh Ramanathan, Thyaga Nandagopal,
and Brian Neil Levine, editors, Proceedings of the 17th Annual International Conference on
Mobile Computing and Networking, MOBICOM 2011, Las Vegas, Nevada, USA, September
19-23, 2011, pages 313–324. ACM, 2011. doi:10.1145/2030613.2030649.

20 Garrett Parzych and Joshua J. Daymude. Memory Lower Bounds and Impossibility Results
for Anonymous Dynamic Broadcast. In Dan Alistarh, editor, 38th International Symposium
on Distributed Computing (DISC 2024), volume 319 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 35:1–35:18, Dagstuhl, Germany, 2024. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.DISC.2024.35.

21 David Peleg. Distributed Computing: A Locality Sensitive Approach. SIAM, 2000.
22 Stanisław Radziszowski. Small ramsey numbers. The electronic journal of combinatorics,

pages DS1–Sep, 2012.
23 Patricia Ruiz and Pascal Bouvry. Survey on broadcast algorithms for mobile ad hoc networks.

ACM Comput. Surv., 48(1):8:1–8:35, 2015. doi:10.1145/2786005.
24 Andrew Tanenbaum. Computer networks. Pearson Prentice Hall, Boston, 2011.
25 Gerard Tel. Introduction to distributed algorithms. Cambridge University Press, New York,

NY, USA, 1994.
26 Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, and Jang-Ping Sheu. The broadcast storm

problem in a mobile ad hoc network. Wirel. Networks, 8(2-3):153–167, 2002. doi:10.1023/A:
1013763825347.

27 Volker Turau. Stateless information dissemination algorithms. In Andréa Werneck Richa and
Christian Scheideler, editors, Structural Information and Communication Complexity - 27th
International Colloquium, SIROCCO 2020, Paderborn, Germany, June 29 - July 1, 2020,
Proceedings, volume 12156 of Lecture Notes in Computer Science, pages 183–199. Springer,
2020. doi:10.1007/978-3-030-54921-3_11.

DISC 2025

http://dl.acm.org/citation.cfm?id=1347082.1347107
https://doi.org/10.1145/3558481.3591095
https://doi.org/10.1109/90.769773
https://doi.org/10.1145/3293611.3331586
https://doi.org/10.4230/LIPICS.STACS.2020.17
https://doi.org/10.4230/LIPICS.STACS.2020.17
https://arxiv.org/abs/2009.05776
https://doi.org/10.1007/S00446-023-00448-Y
https://doi.org/10.1007/S00446-024-00462-8
https://doi.org/10.1007/S00446-024-00462-8
https://doi.org/10.1145/2030613.2030649
https://doi.org/10.4230/LIPIcs.DISC.2024.35
https://doi.org/10.1145/2786005
https://doi.org/10.1023/A:1013763825347
https://doi.org/10.1023/A:1013763825347
https://doi.org/10.1007/978-3-030-54921-3_11

10:18 Amnesiac Flooding: Easy to Break, Hard to Escape

28 Volker Turau. Amnesiac flooding: Synchronous stateless information dissemination. In Tomás
Bures, Riccardo Dondi, Johann Gamper, Giovanna Guerrini, Tomasz Jurdzinski, Claus Pahl,
Florian Sikora, and Prudence W. H. Wong, editors, SOFSEM 2021: Theory and Practice
of Computer Science - 47th International Conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM 2021, Bolzano-Bozen, Italy, January 25-29, 2021,
Proceedings, volume 12607 of Lecture Notes in Computer Science, pages 59–73. Springer, 2021.
doi:10.1007/978-3-030-67731-2_5.

29 Volker Turau. Synchronous concurrent broadcasts for intermittent channels with bounded
capacities. In Tomasz Jurdzinski and Stefan Schmid, editors, Structural Information and
Communication Complexity - 28th International Colloquium, SIROCCO 2021, Wrocław,
Poland, June 28 - July 1, 2021, Proceedings, volume 12810 of Lecture Notes in Computer
Science, pages 296–312. Springer, 2021. doi:10.1007/978-3-030-79527-6_17.

Appendix

In this section we present the proof of our main technical results, i.e. theorems 14 and 15, as
well as their constituent lemmas. Due to space constraints, we defer the proofs of all such
lemmas as well as the correctness of all other results to the full version. Additionally, we will
refer to Amnesiac Flooding as simply AF throughout.

A Proof of Uniqueness (Theorem 14)

We begin with the following observations, which follow from case analysis on paths:

▶ Observation 26.
1. For all ∅ ≠ S ⊂ N and u ∈ N, b(u, S) ̸= ∅. Otherwise no new nodes will be informed after

the first round, violating correctness.
2. For u, v, w ∈ N, f(v, {u, w}, {u}) ∈ {{w}, {u, w}}. Otherwise, if uvw is a subsequence of

a path the message started from u will not reach w.
3. For u, v ∈ [κ], if f(u, {v}, {v}) = v then f(v, {u}, {u}) = ∅. Otherwise P will not

terminate on the two node path labelled with u and v.
4. For u, v, w ∈ [κ] if f(u, {v}, {v}) = {v} and f(w, {v}, {v}) = {v} then f(v, {u, w}, {u}) =

{u, w} and/or f(v, {u, w}, {w}) = {u, w}. Additionally, f(v, {u, w}, {u, w}) = ∅. Other-
wise the protocol would not terminate on the three node path with labels uvw.

Via a combinatorial argument followed by case analysis, we show the existence of a small set
of labels which when restricted to, P behaves identically to AF for subcubic graphs.

▶ Lemma 27. There exists T ⊆ [κ] such that |T | ≥ 6 and P is AF on T up to degree 3.

With this established we can extend the result to all labels via an inductive argument.
Essentially, we are able to construct a sequence of graph-labelling pairs that grow to include
all labels with all possible neighbourhoods. At each state, by our constructions and the
induction hypothesis, at most four vertices may behave distinctly from AF. By careful
construction, however, any distinct behaviour will lead to an incorrect algorithm.

▶ Lemma 28. P is AF on N up to degree 3.

The main proof makes use of a very similar argument. However, we now construct graphs
with one high degree vertex, while the rest all have degree at most three and so behave
indistinguishably from AF.

https://doi.org/10.1007/978-3-030-67731-2_5
https://doi.org/10.1007/978-3-030-79527-6_17

H. Austin, M. Gadouleau, G. B. Mertzios, and A. Trehan 10:19

Proof of Theorem 14. By lemma 28 we have that P is AF up to degree 3 on N. It is
immediate that for all u ∈ N, S ⊂ N b(u, S) = S as u could be at the centre of a star with
one of its leaves replaced by a long path. In this case, u will never receive a message again
and so must send to all of its neighbours in the first round.

For an arbitrary label u ∈ N and degree k ∈ N we can show that u must behave as though
it is implementing AF if it is at a node of degree k. Take S ⊂ N such that |S| = k, we will
show that for all non-empty T ⊆ S, f(u, S, T) = S \ T via induction on the size of T .

Beginning with our base case. If u receives from a single neighbour we can construct a
pair of graphs (special cases of our general construction) that enforce the AF policy. Consider
the tree in figure 2a, if u receives a message from v it must send to at least x1, ..., xk−1 as
u will receive messages in only a single round. This follows as the rest of tree will use AF
policies and since the graph is bipartite each node will be active only once. Thus, the only
two options for f(u, S, {v}) are S or S \ {v}. Now consider the second graph from figure 2a
and a broadcast initiated at u. We can see that if f(u, S, {v}) = S then the cycle and u will
simply pass a message back and forth forever. Thus, f(u, S, {v}) = S \ {v}.
We now generalize this construction and perform our induction. Assume that for any non-
empty subset T of S of size at most q, f(u, S, T) = S \T . For the sake of contradiction assume
that this is not true for V where T ⊂ V ⊆ S with |V | = q + 1. Thus either f(u, S, V) ∩ V ̸= ∅
or f(u, S, V) ∪ V ̸= S.
In the first, case let W = V ∩ f(u, S, V), and for some ordering label the elements of W :
w1, ..., wr and the elements of V \ W : v1, ..., vq+1−r.
If W = V , then we construct a communication graph as in figure 2b and consider a broadcast
initiated at u. The messages will travel in only one direction through the binary tree and so
when w∗ receives a message it will be the only message on the graph. This message will then
be passed onto the cycle where it will circulate, before being passed back onto the binary
tree in the opposite direction. Again the policy of all nodes other than u is indistinguishable
from AF and so when u next receives a message, it receives from all of V and these are the
only messages (outside of the path from c to d). We therefore have a repeating sequence as
u will forward the message back to every node of W .
If W ⊂ V , then we construct a slightly different communication graph (see figure 2c). This
graph instead partitions S into W , V \ W and S \ V , with separate binary trees for W

and V \ W . Here we consider a broadcast initiated at a. When u first receives a message
it will receive the message from all identifiers in V and there will be no other messages
in the body of the graph. Then by assumption u will send a message to some portion of
{l1, ..., lk−q−1} as well as all of W . The leaves will not respond and messages will travel
only upwards in the binary tree with W as leaves and w∗ as its root. Thus, a will next
receive a message only from w∗ and will send to v∗ and c. Until u receives a message the
only messages in the body of the graph will be those travelling down the binary tree with
V \ W as its leaves and they will all arrive at u simultaneously. Thus, u will then receive
only from V \ W . Since |V \ W | < |V | = q + 1 by assumption u must make the same
decision as AF and so will send messages to all of W and its leaves. This creates a repeating
sequence and so we have non-termination. Thus, since f(u, S, V) ∩ V ̸= ∅ always allows us
to construct a communication graph with a non-terminating broadcast, we must have that
f(u, S, V) ∩ V = ∅. Now consider the communication graph from figure 2c again but with W

an arbitrary strict subset of V . Since f(u, S, V) does not contain any id from V and none
of {l1, ..., lk−q−1} will send a message back to u, u sends messages in only a single round.
Therefore, u must send to all of {l1, ..., lk−q−1} otherwise some would not receive the message
(and so the protocol would not implement broadcast correctly). Thus, f(u, S, V) = S \ V

and so we have our contradiction.

DISC 2025

10:20 Amnesiac Flooding: Easy to Break, Hard to Escape

xk-1

x1

u v

xk-1

x1

u v

z

y

d c d c

(a) Two graphs used in the proof of theorem 14 to determine identifiers’ response to
receiving only a single message. Left: A tree that forbids sending to too small a subset
of neighbours. Right: A graph that forbids sending a message to all neighbours.

u

w1

w2

wr-1

wr

a c

w*

l1

lk-r

b
d

v

(b) A graph used in the proof of theorem 14. The graph consists of a star centred
at u with its leaves partitioned into two sets of size r and k − r. The leaves in the
set of size r are connected by a binary tree of depth ⌈log2 r⌉ with root w∗ to a cycle,
which in turn is connected to a path.

u

v1

vq-r+1

w1

w2

vq-r

v2

wr-1

wr

v*

a c

d

w*

l1

lk-q-1

(c) A graph used in the proof of Theorem 14. The graph consists of a star centred at
u with its leaves partitioned into three sets of size r, q − r + 1 and k − q − 1. The
leaves in the first two sets are then each joined to a single node labelled by w∗ and
v∗ respectively by binary trees of depth ⌈log2 q⌉. The single nodes are connected to
a node labelled a which is the start of a path ac...d.

Figure 2 Note that in all figures the path c...d contains all identifiers in [m] not used in labelling
the body of the graph, where m is the largest id in the whole labelling.

H. Austin, M. Gadouleau, G. B. Mertzios, and A. Trehan 10:21

Therefore, if f(u, S, T) = S \ T for S ⊂ N where |S| = k and all T ⊆ S such that
0 < |T | ≤ q, then f(u, S, V) = S \ V for V ⊂ S such that |V | = q + 1. Thus, by induction
since we know this to be true for all u and S when q = 1 it must hold for all q ≤ |S|.

This gives our claim, as for every u and k we can apply this argument and show that for
any k ∈ N, P is AF up to degree k. ◀

B Proof of the Dichotomy (Theorem 15)

We begin by showing that (im)balance is preserved by the operation of AF,

▶ Lemma 29. For any set of initiators I ⊆ V and configuration S on G = (V, E), AI,G(S)
is balanced if and only if S is balanced.

This gives the following immediate corollary, as ∅ is trivially balanced.

▶ Corollary 30. If S is imbalanced on G = (V, E), then for all k > 0, Ak
G(S) ̸= ∅.

This gives us the forward direction of Theorem 15. For the other direction, we need the
notion of message paths and their recurrence.

▶ Definition 31. A message m = (v0, v1) in configuration S ⊂ V 2 has a message path v0v1.
We define the rest of its paths recursively, i.e. m = (v0, v1) has a message path v0...vk+1 from
S on G if:

v0v1...vk is a message path of m in S

The message (vk, vk+1) exists in Ak
G(S)

We say that a message m = (v0, v1) is recurrent on G = (V, E) from S if m has a message
path of the form v0v1...v0v1 on G from S.

We obtain the following property relating message paths and termination immediately.

▶ Lemma 32. Let S be a non-empty configuration on G = (V, E) such that Ak
G(S) = S,

then S contains a recurrent message on G.

The following theorem connects the notions of imbalance and recurrence.

▶ Theorem 33. Let S be a configuration on G, S is imbalanced if and only if it contains a
recurrent message.

Since, all non-terminating configurations must either contain a recurrent message or eventually
reach a configuration with a recurrent message, we have that all balanced configurations
must terminate. Thus, Theorem 15 follows immediately from Theorem 33. The forward
direction is itself immediate from Corollary 30. For the reverse we take G = (V, E) to
be a communication graph and S ⊆ V 2 to be a balanced configuration of messages. For
contradiction we assume that S contains a recurrent message m which has a message path W

performing exactly one excursion and return to m. We will view W = w0w1...w0w1 as both
a walk on G and a word. The key observation we require is that the number of consecutive
steps that can be spent on certain subgraphs by a message path is bounded from a balanced
configurations.

▶ Lemma 34. W must obey the following rules:
1. W cannot return to the node it just came from, i.e. no sequence of the form uvu.
2. W cannot take 2x + 2 consecutive steps around an odd cycle of length 2x + 1.
3. W cannot take x + 1 consecutive steps around an even cycle of length 2x .

DISC 2025

10:22 Amnesiac Flooding: Easy to Break, Hard to Escape

4. If W takes more than x + y + z + 2 consecutive steps on an FEC it remains on one cycle.
5. If W takes x steps around an even cycle of length 2x, then there exists W ′ which takes

the opposite path of equal length and is otherwise identical.
The fifth of these has the following useful interpretation, if the existence of W ′ implies
imbalance then the existence of W implies imbalance. Therefore, we will use this rule as a
substitution allowing us to “modify” W to take the alternate path. By application of these
rules we can obtain the following further conditions:

▶ Lemma 35. W must contain the following four rules:
1. If W contains a factor u...u then that factor contains an odd cycle as a subfactor.
2. There can only be one factor of W that forms an odd cycle.
3. Every node appears at most twice in W .
4. There exists at most one node that is both a member of a consecutive odd cycle and appears

twice. Furthermore, such a node must be the start and end of the cycle.
No matter how we construct W , it will violate one of these rules.

Proof of the reverse direction of Theorem 33. Since W must have the form w0w1...w0w1,
it follows from Lemma 35 (3) that there exists a cycle C containing m such that W fully
traverses C before returning to m, with possible excursions. Specifically, there exists a
sequence of pairs (w0, w1), (w1, w2)...(wk, w0), (w0, w1) such that C = w0w1..wkw0 is a cycle
of G, each pair appears in W in consecutive order (i.e. W = w0w1...w1w2...wkw0..w0w1).

▷ Claim 36. C is an odd cycle

Proof. If C is of even length (say 2k), then there must be an excursion from C otherwise
Lemma 34 (3) would be violated. However, by Lemma 35 (1) and (2), there can be at most
one such excursion as it must contain a consecutive odd cycle. Thus, the two subsequences
on either side must be factors of W . Therefore, since some subsequence of W traverses C

fully with one additional step, one of the two factors must take k + 1 steps around C. This
also violates Lemma 34 (3) and so C must be an odd cycle. ◁

▷ Claim 37. W consists of two odd cycles C and Ĉ connected by a path.

Proof. If C is an odd cycle there must be an excursion from it or Lemma 34 (2) would be
violated. By Lemma 35 (1) and (2) the excursion must contain exactly one consecutive odd
cycle which we denote by Ĉ. If Ĉ does not share its starting node with C, W either forms
a path between C and Ĉ or some chain of cycles. We can use Lemma 34 (5) to eliminate
all even cycles of this chain, after which any odd cycles in the chain correspond to a fully
traversed FEC when paired with Ĉ and so violate Lemma 34 (4). Thus, W takes a simple
path from C to Ĉ and back, although possibly intersecting C along the way. ◁

▷ Claim 38. C and Ĉ intersect with each other but not the path between them.

Proof. If the path to Ĉ does intersect C, since we are taking the same path in both directions
any node shared between the path and C appears in W three times. This violates Lemma 35
(3) and so C must be disjoint from the path to Ĉ. Similarly Ĉ must be disjoint from the
path otherwise it would violate the same lemma. If C is disjoint from Ĉ the pair would form
a fully traversed FEC, thereby violating Lemma 34 (4). Thus, C and Ĉ must intersect. ◁

▷ Claim 39. Claim: C and Ĉ do not intersect.

H. Austin, M. Gadouleau, G. B. Mertzios, and A. Trehan 10:23

Proof. Let W = uv..wx1, ..., xkw..uv where C = u...w...uv and the excursion to Ĉ is given
by wx1...xkw. Now assume that Ĉ contains a node from C which occurs strictly before w in
W . This node is on a consecutive odd cycle and appears twice. There must exist a latest
such node in the ordering of C, we denote it y. Since y is on a consecutive odd cycle and
appears twice in W it must be the start and end point of Ĉ by Lemma 35 (4). However,
then since y ̸= w it must appear three times, violating Lemma 35 (3). The same argument
holds taking the earliest node shared by C and Ĉ strictly after w. Thus, the only node that
can be shared by C and Ĉ is W , implying that W forms two odd cycles sharing a single
node. However, this is an FEC which is fully traversed and so violates Lemma 34 (4). ◁

Thus, W cannot exist and so there can be no recurrent message in S ◀

DISC 2025

	1 Introduction
	1.1 Our Contributions
	1.2 Organisation of the paper

	2 Related Work
	3 Model and Notation
	4 Uniqueness
	4.1 Uniqueness
	4.2 Relaxing the constraints

	5 Termination Dichotomy
	5.1 Obtaining a termination dichotomy
	5.2 Applying the termination dichotomy
	5.2.1 Extended Dichotomy
	5.2.2 Fault Sensitivity

	6 Conclusions and Future Work
	A Proof of Uniqueness (Theorem 14)
	B Proof of the Dichotomy (Theorem 15)

