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Abstract
In this work, we give two results that put new limits on distributed quantum advantage in the
context of the LOCAL model of distributed computing:
1. We show that there is no distributed quantum advantage for any linear program. Put otherwise,

if there is a quantum-LOCAL algorithm A that finds an α-approximation of some linear
optimization problem Π in T communication rounds, we can construct a classical, deterministic
LOCAL algorithm A′ that finds an α-approximation of Π in T rounds. As a corollary, all classical
lower bounds for linear programs, including the KMW bound, hold verbatim in quantum-LOCAL.

2. Using the above result, we show that there exists a locally checkable labeling problem (LCL) for
which quantum-LOCAL is strictly weaker than the classical deterministic SLOCAL model.

Our results extend from quantum-LOCAL to finitely dependent and non-signaling distributions,
and one of the corollaries of our work is that the non-signaling model and the SLOCAL model are
incomparable in the context of LCL problems: By prior work, there exists an LCL problem for
which SLOCAL is strictly weaker than the non-signaling model, and our work provides a separation
in the opposite direction.
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11:2 Dequantizing Linear Programs

– Can solve some fractional problems faster than deterministic LOCAL
– LCL problem Π can be solved in O(log n) rounds

– Equally strong for fractional problems
– LCL problem Π cannot be solved in O(log n) rounds
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Figure 1 Overview of the results and relevant models of computing.

1 Introduction

In this work, we explore the landscape of distributed graph algorithms in two dimensions:
1. Classical distributed algorithms vs. distributed quantum algorithms.
2. Combinatorial graph problems (e.g., maximum independent set) vs. their fractional

linear-programming relaxations (e.g., maximum fractional independent set).
We prove two results that put limits on distributed quantum advantage; see Figure 1 for a
schematic overview:
1. We show that there is no distributed quantum advantage for any linear program.
2. Using the above result, we give a new separation between quantum algorithms and

classical algorithms (more precisely, between quantum-LOCAL and SLOCAL models).

1.1 Contribution 1: Dequantizing Fractional Algorithms
Setting: Fractional Problems in the LOCAL Model and the Quantum-LOCAL Model.
Let us first recall what fractional linear-programming relaxations of graph problems are. For
example, in the maximum independent set problem, the task is to label each node v ∈ V

with a value xv ∈ {0, 1} such that for each edge {u, v}, we satisfy xu + xv ≤ 1, and we are
maximizing

∑
v xv. Now the maximum fractional independent set problem is the obvious

linear-programming relaxation, where the range of values is xv ∈ [0, 1]. See Section 2.2 for
more details.

In the LOCAL model of distributed computing, a set of computers (nodes) communicates
via bidirectional links (edges) defined by an input graph, and computation proceeds in
synchronous rounds. In each round, each computer may send a message of unlimited size
to each of its neighbors and update its state based on the messages it receives, and the
main complexity measure is the number of communication rounds required to solve the
given problem. The quantum-LOCAL model is like the LOCAL model, except that we
replace all computers with quantum computers and all communication links with quantum
communication links capable of exchanging qubits. The main source of potential advantage
of the quantum-LOCAL over LOCAL comes from the fact that the messages may contain
qubits entangled with the state of the computer, and this has indeed been used to show an
advantage for LCL problems [5].
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New Result. We prove the following result that is applicable to any fractional linear-
programming relaxation:

Assume A is a distributed algorithm that finds an α-approximation of some linear
optimization problem Π in T communication rounds in the quantum-LOCAL model.
Then there is also an algorithm A′ that finds an α-approximation of Π in T communication
rounds in the classical deterministic LOCAL model.

It was already well-known that distributed graph algorithms for solving linear programs can
be derandomized for free – without losing anything in the running time or approximation
ratio. What we show is that they can also be dequantized. This can be pushed even further,
beyond the quantum-LOCAL model: We show that it holds even if A is an algorithm in
the non-signaling model, which is a model strictly stronger than quantum-LOCAL (see
Section 2.3 for detailed definitions).

Technical Overview. The proof is near-trivial: A′ outputs the expected value of the output
of A. A bit more precisely, let Xv be the random variable that represents the output of
A at node v, and let xv = E [Xv] be the output produced by A′. Now if we look at the
entire output vector, it holds that x = E [X]. In particular, x is a linear combination of
α-approximate solutions X to problem Π, and hence x is also an α-approximate solution
to Π. We give the details in Section 3.

Implications for the KMW Bound. One of the seminal lower bounds for distributed graph
algorithms is the KMW lower bound by Kuhn, Moscibroda, and Wattenhofer [16]; see
Appendix C. In 2009, Gavoille, Kosowski, and Markiewicz [14] observed that this lower
bound holds also for quantum-LOCAL and non-signaling models. However, to our knowledge,
the proof was never published – they merely write that “by careful analysis, it is easy
to prove”.

However, now we no longer need to do the careful analysis. The key observation is that
the KMW bound is inherently a bound for fractional problems. As we now know that there
is no quantum advantage for fractional problems, we know that all the implications of the
KMW bound indeed hold verbatim also in the quantum-LOCAL model.

While this is not a new result, at least now there is a proof explicitly written down, and
the proof is fundamentally different from the idea of carefully inspecting the inner workings
of the KMW bound and checking that the argument holds.

1.2 Contribution 2: A New Separation for SLOCAL vs. Non-Signaling
Distributions

Setting: LCL Problems and SLOCAL Model. Let us now move on from fractional
optimization problems to locally checkable labeling problems or LCLs. First defined by Naor
and Stockmeyer in the 1990s [17], LCLs constitute a particularly simple family of graph
problems that manages to capture many problems of interest in our field. LCL problems
are graph problems that can be described by listing a finite set of valid labelings in local
neighborhoods. There is a long line of work on understanding the landscape of LCL problems,
e.g., [1,2,7–10,12,17,18], and this line of research has recently started to explore the interplay

DISC 2025



11:4 Dequantizing Linear Programs

between various models of distributed computing, including not only the classical LOCAL
model, quantum-LOCAL model, and non-signaling distributions, but also models such as
SLOCAL and online-LOCAL.

The SLOCAL model [15] is a sequential counterpart of the LOCAL model: An adversary
queries nodes in a sequential order, and when a node v is queried, the algorithm has to
choose the final label of node v. To do that, the algorithm can gather the full information
on its radius-T neighborhood, store all this information at node v (for the benefit of other
nodes nearby that get queried later), and use all this information to choose its label. We
refer to Section 2 for precise definitions, and to Figure 1 for an overview of how SLOCAL is
related to other recently-studied models of computing.

New Result. The SLOCAL model is at least as strong as the LOCAL model because with
the full knowledge of the radius-T neighborhood, it can simulate any LOCAL algorithm for
T steps. However, its exact relation with the quantum-LOCAL model and non-signaling
distributions has been an open question – in essence, the question is whether the ability to
manipulate qubits is more useful or less useful than the ability to process nodes in some
sequential order. We prove the following new result:

There exists an LCL problem Π such that Π can be solved with locality O(log n) in the
SLOCAL model, but it cannot be solved with locality O(log1.49 n) in the non-signaling
model or the quantum-LOCAL model.

Technical Overview. While this may seem disconnected from the results in Section 1.1, it
is, in a sense, a direct corollary. One implication of the KMW bound is that the problem of
finding a maximal matching in a bipartite graph of degree at most ∆ cannot be solved in
o(log ∆/ log log ∆) rounds. On the other hand, this is a problem that is trivial to solve in
the SLOCAL model in O(1) rounds. So at this point, we have a family of LCL problems
Π′(∆) parameterized by ∆ that is trivial in SLOCAL but nontrivial in the non-signaling
model. We can now plug this family of problems into the construction of [5], as maximal
matchings satisfy their key technical requirement of linearizability. Deploying this machinery
yields a single genuine LCL problem that is strictly easier to solve in SLOCAL than in the
non-signaling and quantum-LOCAL models. We give the details in Section 4.

Implications for the Landscape of Models. By recent work [6], there is an LCL problem
that is strictly easier to solve in the non-signaling model than in the SLOCAL model. Here,
we have obtained a separation in the converse direction. Therefore, in particular:

The SLOCAL model and the non-signaling model are incomparable in the context of
LCL problems; neither is able to simulate the other with constant overhead.

We contrast this with, e.g., the situation for the randomized online-LOCAL model, i.e.,
the SLOCAL model augmented with a global memory that all nodes can access [2]. The
randomized online-LOCAL model can simulate both the SLOCAL model and the non-
signaling model [1].
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2 Preliminaries

Natural numbers are denoted as N and include 0, while we use N+ = N \ {0} for natural
numbers without 0. Moreover, we use the notation [n] = {1, . . . , n} for any n ∈ N+.
Throughout this work, we consider only undirected graphs. A graph G = (V, E) consists of a
set of nodes V and a set of edges E, and we use the notation V (G) and E(G), respectively,
if we need to specify which graph we refer to. Given a subset of nodes A, G[A] is the
subgraph induced by A, that is, G[A] = (A, EA), where (u, v) ∈ EA if and only if u, v ∈ A

and (u, v) ∈ E.
For any two nodes u, v ∈ V in graph G = (V, E), distG(u, v) is the length of a shortest

path starting from u and ending at v. If there is no ambiguity, we write dist(u, v) without
the graph subscript. For subsets of nodes A, B ⊆ V , we can then define dist(A, B) =
min(u,v)∈A×B dist(u, v). For T ∈ N, we define the radius-T neighborhood of a node u as
NT [u] = {v | dist(u, v) ≤ T}, i.e., the set of nodes at distance at most T from u. This can
be extended to a subset of nodes A ⊆ V as NT [A] = ∪u∈ANT [u]. All the above notions of
distances and neighborhoods can be easily generalized to the case where we consider the
edges instead of the nodes of a graph.

If v is a node and e = {u, v} is an edge, then the pair (v, e) is a half-edge, and H(G) is
the set of all pairs (v, e) where v ∈ V (G) and (v, e) is a half-edge. A centered graph is a pair
(G, c), where G is a graph and c ∈ V (G) is one of its nodes, called the center. The eccentricity
of (G, c) is the maximum distance maxu∈V (G) distG(c, u) of a node from the center.

We now introduce the notion of labeled graph.

▶ Definition 1 (Labeled graph [5]). Suppose that V and E are sets of labels. A graph
G = (V, E) is said to be (V, E)-labeled if the following holds:
1. Each node v ∈ V is assigned a label from V;
2. Each half-edge (v, e) ∈ V × E satisfying v ∈ e is assigned a label from E.

We will consider problems that, in general, take as input a labeled graph and require as
output a labeling such that some constraints are satisfied. To formalize the class of problems
we consider, for a (V, E)-labeled graph G, let ℓ(v) ∈ V be the label assigned to node v and
ℓ((v, e)) ∈ E be the label assigned to half-edge (v, e).

To be able to consider labelings restricted to a subset of nodes, we say that, if we are
given sets A and B, a subset A′ ⊆ A, and a function f : A → B, then f ↾A′ is the function
g : A′ → B such that f(x) = g(x) for all x ∈ A′, and ↾ is called the restriction operator.
Given a (V, E)-labeled graph G with labeling function ℓ, and another (V, E)-labeled graph
G′ with labeling ℓ′, suppose that φ : V (G) → V (G′) is an isomorphism between G and G′.
We say that ℓ and ℓ′ are isomorphic if the labeling is preserved under φ.

2.1 Locally Checkable Labeling (LCL) Problems
In the distributed setting, the well-studied class of locally checkable labeling (LCL) problems
[17] plays a central role, as they are those problems where the validity of a solution can be
checked locally, that is, within a constant radius r. The intuition is that a node can gather
its radius-r neighborhood to check whether its output satisfies the constraints of the LCL.

To formally define what it means to satisfy an LCL, we first introduce the notion of a
set of constraints. This is the set of all valid labelings of a neighborhood of radius r and
maximum degree ∆.

DISC 2025



11:6 Dequantizing Linear Programs

▶ Definition 2 (Set of constraints). Let r, ∆ ∈ N be constants. Consider two finite label sets
V and E. Let C be a finite set of pairs (H, vH), where (H, vH) is a (V, E)-labeled centered
graph such that the eccentricity of vH is at most r and the degree of H is at most ∆. We say
that C is an (r, ∆)-set of constraints over (V, E).

After defining the notion of constraint, we can now define the notion of constraint
satisfaction. Namely, we say that a graph satisfies a set of constraints if all of its radius-r
neighborhoods belong to that set.

▶ Definition 3 (Satisfying a set of constraints). Let G be a (V, E)-labeled graph, and let C
be an (r, ∆)-set of constraints over (V, E), for some finite set of labels V, E. The graph G

satisfies C if the following holds:
For every node u ∈ V (G), the (V, E)-labeled graph G[Nr[u]] is such that the centered
graph (G[Nr[u]], u) belongs to C.

We can now define the notion of locally checkable labeling (LCL) problems. An LCL can
be seen as a relation that specifies which pairs of input and output labelings are valid.

▶ Definition 4 (Locally Checkable Labeling (LCL) problems). Let r, ∆ ∈ N be constants, and
let Vin, Ein, Vout, and Eout be finite sets of labels. A locally checkable labeling (LCL) problem
Π is a tuple (Vin, Ein, Vout, Eout, C) such that the following holds:

C is an (r, ∆)-set of constraints over (Vin × Vout, Ein × Eout).

Suppose that we are given as input a (Vin, Ein)-labeled graph G, and let ℓin be the input
labeling function of G. Solving an LCL problem Π = (Vin, Ein, Vout, Eout, C) on G means
to find a labeling function ℓout that produces an output labeling on G, turning G into a
(Vout, Eout)-labeled graph, such that the following holds:

For each node v ∈ G, let ℓ(v) = (ℓin(v), ℓout(v)). For each half-edge (v, e) in G,
let ℓ((v, e)) = (ℓin((v, e)), ℓout((v, e))). Then the labeling function ℓ turns G into a
(Vin × Vout, Ein × Eout)-labeled graph that satisfies C according to Definition 3.

In other words, if we are given a graph and an input labeling, solving an LCL means finding
an output labeling under which the graph satisfies the set of constraints of the LCL.

2.2 Distributed Linear Programming (LP) Problems

Next, we define distributed LP problems. We consider the following distributed setting: We
are given a communication graph G = (V, E) and a linear program bound to G of the form

optimize
∑
i∈F

ci · xi

subject to
∑
i∈F

Aj,i · xi ⊴ bj ∀j ∈ C

xi ≥ 0 ∀i ∈ F ,

where F is the set of variables, C is the set of constraints, coefficients Aj,i, bj , ci are known
locally, and the inequality ⊴ can be ≤, =, or ≥, depending on the LP formulation. In the
distributed setting, each node v ∈ V in the network “owns” one or more variables xi ∈ F .
Furthermore, in the LOCAL (resp. SLOCAL) model, each node v ∈ V knows the local
constraints and variables involving nodes within its radius-T neighborhood NT [v].
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Types of Distributed LPs. There are three classes of distributed LP formulations: node-
based, edge-based, and node-edge-based. In the first one, each node v ∈ V is associated with
a variable xv. In the second, each node has a variable x(v,u) for each u ∈ N [v]. Since an
edge (u, v) ∈ E is shared by both endpoints, we require that the two local copies coincide,
i.e., x(v,u) = x(u,v). In other words, v and u must agree on a common value for their shared
edge variable. In the latter formulation, each node is associated with both a variable xv and
a set of variables x(v,u) shared with its neighborhood.

There are different types of local outputs for each class of distributed LP. For node-based
LPs, the local output is a real value xv ∈ R≥0 for each node v ∈ V , whereas for edge-based
LPs, each node pair (v, u) ∈ E agrees on and outputs a real value x(u,v). Consequently,
for node-edge LPs, each node outputs both xv and the incident edge values x(v,u). These
local outputs must collectively satisfy the constraint set of the LP. That is, the union of all
local outputs across the network must form a globally feasible solution to the LP, meaning
that the variable assignments computed and output by the nodes must jointly satisfy all
constraints of the LP formulation.

We remark that, in general, distributed LPs are not LCLs. The reason is that LPs involve
continuous variables and global feasibility constraints, which cannot be verified using only
local information and a finite label set.

Approximation Factor for Distributed LPs. Let P be a linear program defined over a
communication network G = (V, E) with variable set F , and denote the optimal objective
value by OPT. Let x̂ be a solution produced by a distributed algorithm after a bounded
number of synchronous communication rounds. We say that the distributed algorithm
achieves an α-approximation to P, for some α ≥ 1, if (1) x̂ is a feasible solution to the LP,
and (2)

∑
i∈F ci · x̂i ≤ α · OPT or OPT ≤ α ·

∑
i∈F ci · x̂i for minimization or maximization

problems, respectively. In other words, the distributed solution is within a factor α of the
global optimum, even though each node operates with only local information. If we are
dealing with a probabilistic model of computation (e.g., rand-LOCAL or non-signaling; see
Section 2.3 below), then we require that the respective algorithm outputs an α-approximation
in expectation.

Fractional Maximum Matching. In this work, we consider the fractional maximum matching
problem formulated as the following LP:

maximize
∑
e∈E

xe

subject to
∑

(v,u)∈E

x(v,u) ≤ 1 ∀v ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

Here, each variable xe corresponds to an edge e = (v, u) ∈ E and it is “owned” by both
endpoints v and u in G. Each node v ∈ V is responsible for the constraint

∑
u∈N [v] x(v,u) ≤ 1,

which involves all variables corresponding to the edges incident to v.
Now consider any maximal matching in the graph. By definition, a maximal matching is

a matching where no additional edge can be added without violating the matching property.
It is a standard result in approximation algorithms that any maximal matching is a 2-
approximation to the maximum integral matching. Furthermore, the size of a maximum
matching can be up to a factor 2/3 smaller than the fractional maximum matching. Combining
these bounds, we obtain that any maximal matching gives a feasible solution to the above
LP and a solution value within a factor 3 of the optimum.

DISC 2025



11:8 Dequantizing Linear Programs

2.3 Models
In this section, we define all our computational models of interest.

The LOCAL Model. In the LOCAL model of computing, we are given a distributed system
of n processors (or nodes) connected through a communication network represented as a
graph G = (V, E), along with an input function x. Every node v ∈ V (G) has input data
x(v), which encodes the number n of nodes in the network, a unique identifier from the set
[nc] = {1, 2, . . . , nc}, where c ≥ 1 is a fixed constant, and possible inputs defined by the
problem of interest (we assume nodes store both input node labels and input half-edge labels).
If computation is randomized, we call the model randomized LOCAL (or rand-LOCAL),
which means that x(v) additionally encodes an infinite string of bits that are uniformly
and independently sampled for each node, and not shared with the other nodes. If this is
not the case and computation is deterministic, we call the model deterministic LOCAL (or
det-LOCAL). Computation is performed by synchronous rounds of communication. In each
round, nodes can exchange messages of unbounded (but finite) size with their neighbors,
and then perform an arbitrarily long (but terminating) local computation. Errors occur
neither in sending messages nor during local computation. Computation terminates when
every node v outputs a label ℓout(v). The running time of an algorithm is the number of
communication rounds, given as a function of n, that are needed to output a labeling that
solves the problem of interest. In rand-LOCAL, we also ask that the algorithm solves the
problem of interest with probability at least 1 − 1/ poly(n), where poly(n) is any polynomial
function in n. If an algorithm runs in T rounds and both communication and computation
are unbounded, we can look at it as a function mapping radius-T neighborhoods to output
labels in the deterministic case, or to a distribution of output labels in the randomized case.
Thus, we say that T is the locality of the algorithm.

Depending on the context, we may assume that the computing units are actually the
edges of the graph, and the local variable x(v) is stored inside all edges that are incident to v.

The quantum-LOCAL Model. The quantum-LOCAL model is defined like the LOCAL
model introduced above, with the following differences. Every processor (node) can locally
operate on an unbounded (but finite) number of qubits, applying any unitary transformations,
and quantum measurements can be locally performed by nodes at any time. In each
communication round, nodes can send an unbounded (but finite) number of qubits to their
neighbors. The local output of a node still needs to be an output label encoded in classical
bits. As in rand-LOCAL, we ask that an algorithm solves a problem with probability at least
1 − 1/ poly(n). A more formal definition of the model can be found in [14].

The SLOCAL Model. The SLOCAL model of computing [15] is a sequential counterpart
of the LOCAL model: An algorithm A processes the nodes sequentially in an order p =
v1, v2, . . . , vn. The algorithm must work for any given order p. When processing a node v,
the algorithm can query NT [v], and A can read u’s state for all nodes u ∈ NT [v]. Based on
this information, node v updates its own state and computes its output y(v). In doing so,
node v can perform unbounded computation, i.e., v’s new state can be an arbitrary function
of the queried NT [v]. The output y(v) can be remembered as a part of v’s state. The time
complexity TA,p(G, x) of the algorithm on graph G and inputs x = (x(v1), x(v2), . . . , x(vn))
with respect to order p is defined as the maximum T over all nodes v for which the algorithm
queries a radius-T neighborhood of v. The time complexity TA of algorithm A on graph G

and inputs x is the maximum TA,p(G, x) over all orders p.
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The non-signaling Model. The non-signaling model is a model of computing that abstracts
from how the actual computation is happening in the network, focusing on a probabilistic
description of the valid output labelings. In this model, rather than given algorithms, we
are asked to produce outcomes (also called strategies) that are functions mapping the input
to a probability distribution over output labelings. In other words, given a graph and its
input, a probability distribution over output labelings is assigned to the graph such that
a sample from the distribution will produce a valid output labeling with high probability.
The complexity of the outcome is given by its dependency radius T . This means that an
outcome is non-signaling beyond distance T if, for any subset A of the nodes of the graph,
modifying the graph or its input at distance greater than T from A does not change the
output distribution over A. We proceed to give all the formal details needed to properly
define the non-signaling model.

We first formally introduce the concept of outcome. For a network G, let x represent the
function that maps every node to its input, which includes the input labeling function, port
numbers, and unique identifiers. An outcome, then, is a function mapping a network and an
input (G, x) to a probability distribution over output labelings.

▶ Definition 5 (Outcome). Let V, E be sets of labels, and let F be the family of all input
networks (G, x). An outcome O is a function that maps an input network (G, x) ∈ F to a
probability distribution O(G, x) = {(outi, pi)}i∈I defined as follows:

The set I is a set of indices.
The function outi is a labeling function that maps half-edges and nodes of G to labels in
V and E, respectively, making G a (V, E)-labeled graph.
Each pi is a non-negative probability and

∑
i∈I pi = 1.

We say that an outcome O solves an LCL problem Π over a family of graphs F with
probability q > 0 if, for every G ∈ F and every input data x, it holds that∑

outi∈O(G,x):
outi solves Π on G

pi ≥ q.

Let (G, x) be an input network, and consider any subset of nodes S ⊆ V (G). Let H(G)[S]
be the subset of H(G) that contains half-edges (v, e) for v ∈ S. The restriction of the output
distribution O(G, x) = {(outi, pi)}i∈I to S is the distribution O(G, x)[S] = {(outj , p′

j)}j∈J ,
where the output-labeling functions {outj} assign labels only on nodes of S and on half-edges
of H(G)[S], and the probability p′

j satisfies the following condition:

p′
j =

∑
outi∈O(G,x):

outi coincides with outj

on S and H(G)

pi.

We now define the notion of isomorphic output distributions. Consider two graphs G and
G′ such that φ : V (G) → V (G′) is an isomorphism. A probability distribution {(outi, pi)}i∈I

over output labelings for G is isomorphic to a probability distribution {(outj , p′
j)}j∈J over

output labelings for G′ if they are preserved under the action of φ.
We would now like to define a special type of outcome called non-signaling outcome.

To this end, we first need to define the concept of view up to distance T . Given an input
network (G, x) and a subset of its nodes A ⊆ V (G), consider the subgraph G[NT [A]] induced
by NT [A]. The view up to distance T of A is the pair VT (A) = (GA, xA), where GA is
the graph defined as V (GA) = V (G[NT [A]]) = NT [A] and E(GA) = {(u, v) | (u, v) ∈
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E(G[NT [A]]), distG(u, A) < T or distG(v, A) < T}, and xA = x ↾ NT [A]. Intuitively, nodes
in A see everything up to distance T except for the edges among the bordering nodes of
G[NT [A]] (but they can see the labels of the half-edges incident to them). In general, for two
arbitrary graphs G and H and subsets of nodes A ⊆ V (G), B ⊆ V (H), we say that a function
φ : V (G) → V (H) is an isomorphism between VT (A) = (GA, xA) and VT (B) = (GB , xB) if
φ is an isomorphism between V (GA) and V (GB) and xA = xB ◦ φ. Now, a non-signaling
outcome is defined as follows.

▶ Definition 6 (Non-signaling outcome). Let O be an outcome, G and H be graphs, φ :
V (G) → V (H) be a function, and T ∈ N. Outcome O is non-signaling beyond distance T

if, for any two subsets of nodes AG ⊆ V (G), AH ⊆ V (H) such that φ is an isomorphism
between VT (AG) and VT (AH), the restricted distributions O(G, xG)[AG] and O(H, xH)[AH ]
are isomorphic under φ.

Alternatively, we can also say that O has locality T . Running T -round classical or quantum-
LOCAL algorithms, both with or without shared resources, yields output-labeling distribu-
tions that are non-signaling outcomes with locality T .

The non-signaling model is, thus, a computational model where the input is a network
with input (G, x), and an LCL problem Π is solved if there exists a non-signaling outcome O
that solves Π with success probability at least 1 − 1/ poly(n), where n = |V (G)|.

When the input of a problem is clear from the context, we will omit the input network
(G, x), writing O(G). Observe that all the concepts of views and of restrictions of outcomes
can be naturally defined via half-edges instead of nodes, especially when dealing with problems
that only ask us to label half-edges (such definitions will be used later in Section 4.5).

We further assume that all probability distributions and output labelings that define
a non-signaling O are computable. This is because a proper quantum-LOCAL algorithm
can be implemented by a quantum circuit, which can be simulated in a classical computer
(with costly computation). Hence, its output distribution is computable, and we can restrict
ourselves to computable output-labeling distributions.

3 Dequantization for Distributed Linear Programming Problems

In this section, we prove our first result, i.e., that distributed non-signaling (and in particular
also quantum-LOCAL) has no advantage over det-LOCAL for distributed linear programming
problems.

▶ Theorem 7. Let P be a distributed linear programming problem that admits a non-signaling
distribution over α-approximations with locality T . Then there exists a deterministic LOCAL
algorithm that finds an α-approximation of P with locality T .

For simplicity, we will consider only the case where P is a node-based problem. It is clear how
to extend the proof to the other classes of distributed LPs. The idea of the proof is relatively
simple: We first note that for any distribution of α-approximations of a linear program P,
the expectation is also an α-approximation; this follows directly from the convexity of a linear
program and the linearity of expectation. A detailed proof can be found in Appendix B.

▶ Lemma 8. Let P be a linear program, and let O be a distribution over α-approximations
of P. Then x̂ = E [O] is also an α-approximation of P.

Then we show that there exists a LOCAL algorithm that can locally compute this
expectation, given access to the distribution. Intuitively, the algorithm gathers its radius-T
neighborhood, where T is the locality of the non-signaling distribution, then calls the outcome
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function O on its neighborhood to obtain a distribution of output labelings, and finally
outputs the expected value of such a distribution. Again, the technical details are deferred
to Appendix B.

▶ Lemma 9. Let O be a computable non-signaling distribution with locality T over graph
family F . Then there exists a LOCAL algorithm with locality T that computes the expected
outcome of this distribution everywhere.

We are now ready to state the proof of Theorem 7.

Proof of Theorem 7. Let P be a distributed linear programming problem and let O be
computable non-signaling distribution with locality T over α-approximations of P. By
Lemma 9, we have a LOCAL algorithm A that computes the expectation of O locally
everywhere. As the outcome is a vector over local elements, its expectation is a vector
over the expectations of the local elements. Hence, A computes the expectation of O. By
Lemma 8, this is an α-approximation of P. ◀

4 Separation Between SLOCAL and non-signaling

In this section, we prove that there exists an LCL problem Π that has complexity O(log n)
in the SLOCAL model and complexity ω(log n) in the non-signaling model.

▶ Theorem 10. There exists an LCL problem Π that has complexity O(log n) in the deter-
ministic SLOCAL model and Ω

(
log n ·

√
log n

log log n

)
in the non-signaling model.

We devote the rest of this section to proving Theorem 10.

4.1 Overview
In order to define the problem Π, we borrow ideas from [5]. We start by giving a recap of
the main ideas presented in [5].

Recap of Previous Results. The authors of [5] introduced the notion of linearizable problems,
which are locally checkable problems that are not necessarily LCLs. They proved that, if
there exists some linearizable problem P with some complexity f(n) for some function f , then
there exists some LCL problem Π = lift(P ) with some complexity f ′(n), where f ′ depends
on f . For small-enough f , the function f ′ is a multiplicative factor Θ(log n) larger than f .
Interestingly, both the quantum complexity and the standard complexity are increased by
this Θ(log n) factor. In more detail, the authors of [5] proved the following:
1. In [3], it has been shown that there exists a problem P with quantum complexity O(1)

and randomized LOCAL complexity Ω(min{∆, log∆ log n}). By taking a suitable value
of ∆, this result implies a lower bound of Ω( log log n

log log log n ).
2. The problem P can be expressed as a linearizable problem.
3. The authors defined a function lift that takes as input a linearizable problem P and

returns an LCL problem Π = lift(P ).
4. The authors showed that Π = lift(P ) has the following complexities:

O(log n) in quantum-LOCAL.
Ω(log n · log log n

log log log n ) in rand-LOCAL.
Note that, while the problem P itself does not have any super-constant lower bound when
∆ = O(1), this construction allows us to nevertheless obtain a problem Π = lift(P ) with a
super-constant lower bound as a function of n on graphs in which ∆ = O(1).
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Our Approach. In essence, we show that the construction of [5] also preserves complexities
in SLOCAL and in non-signaling, and we will use the maximal matching problem, phrased
as a linearizable problem, as P . We will obtain the following:
1. Our problem P will be the maximal matching problem, phrased as a linearizable one.
2. The problem P has complexity O(1) in SLOCAL, even on graphs of unbounded degree.
3. The problem Π = lift(P ) has complexity O(log n) in SLOCAL.
4. Maximal matching has a rand-LOCAL lower bound of Ω(

√
log n

log log n ), proved as part of
the KMW lower bound [16].

5. Maximal matching is a 3-approximation of fractional maximum matching, and the KMW
bound, which is more general, holds for this latter problem as well. Thus, by Theorem 7,
the lower bound for maximal matching also holds in non-signaling.

6. We prove that, in non-signaling, an upper bound of o(log n ·
√

log n
log log n ) for Π would imply

an upper bound of o(
√

log n
log log n ) for P , contradicting the KMW lower bound.

In order to achieve this, we prove a result similar to the one of [5], with the difference
that we consider SLOCAL upper bounds, and non-signaling lower bounds.

4.2 The Definition of Π = lift(P )
We summarize the definition of Π = lift(P ) that appeared in [5]. At a high level, the problem
Π is an LCL with inputs (i.e., nodes and node-edge pairs have input labels that come from a
finite set) that is defined as a combination of two LCL problems:

The LCL problem ΠbadGraph, which is a problem defined on any graph.
The LCL problem Πpromise, which is a problem defined on some specific class G of graphs
labeled with some input (which is the input of Π). Note that, in order for a graph G to
be in G, the input given to the nodes of G must satisfy some specific local constraints.

In particular, ΠbadGraph asks us to produce some output that satisfies, among others, the
following properties:

Each node is either marked (labeled with some specific output labels) or unmarked
(labeled ⊥).
If G ∈ G, then no node of G is marked.

Moreover, it is shown that there exists a deterministic O(log n) LOCAL algorithm A solving
ΠbadGraph on any graph G, such that the output of A satisfies that each connected component
induced by unmarked nodes is in G. Specifically, the authors of [5] proved the following.

▶ Lemma 11 ([5]). Let G ∈ G. Then, the only valid solution for ΠbadGraph on G is the one
assigning ⊥ to all nodes.

▶ Lemma 12 ([5]). Let G be any graph. There exists a solution for ΠbadGraph where each
connected component induced by nodes outputting ⊥ is a graph in G. Moreover, such a
solution can be computed in O(log n) deterministic rounds in the LOCAL model.

The problem Π is defined such that it is first required to solve ΠbadGraph, and then, on
each connected component induced by unmarked nodes, it is required to solve Πpromise. We
will later describe the problem Πpromise, the definition of which will depend on the given
linearizable problem P . Now we argue that, in order to prove our lower and upper bounds,
we can restrict our attention to graphs that are in G and to the problem Πpromise.

In [5], the quantum-LOCAL upper bound for Π is obtained as follows:
First, apply Lemma 12. That is, in O(log n) deterministic LOCAL rounds, we obtain
a solution for ΠbadGraph satisfying that each connected component induced by nodes
outputting ⊥ is a graph in G.
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(a) (b)

Figure 2 (a) A tree-like gadget at the top, and an octopus gadget at the bottom. (b) A proper
instance at the bottom and, at the top, the graph obtained by contracting each octopus gadget into
a single node.

Then, use a quantum algorithm to solve Πpromise on each connected component induced
by nodes outputting ⊥. This requires O(log n) quantum rounds.

Since an O(log n) deterministic LOCAL algorithm can be directly executed in SLOCAL (i.e.,
SLOCAL is at least as strong as LOCAL), and since an SLOCAL algorithm obtained by
composing two different SLOCAL algorithms has an asymptotic complexity equal to the sum
of the complexities of the two composed algorithms, it is clear from the quantum algorithm
that, in order to provide an O(log n) SLOCAL algorithm for Π, it is sufficient to provide an
O(log n) SLOCAL algorithm for Πpromise on graphs that are in G.

The randomized LOCAL lower bound for Π is obtained by considering graphs G ∈ G.
On these graphs, by Lemma 11, the only valid solution for ΠbadGraph is the one assigning ⊥
to all nodes. By the definition of Π, this implies that, on G, it is required to solve Πpromise.
For our non-signaling lower bound, we will follow the exact same strategy.

4.3 The Graph Family G
In order to define the family G, we need to first introduce the notion of proper instances.
At a high level, a proper instance is a graph that can be obtained by starting from some
graph G′ (which is not necessarily a simple graph) and replacing nodes with some gadgets
according to some rules. Then, a graph G ∈ G will be obtained by labeling a proper instance
in some specific way. In the following, we report the definition of some objects as given in [5].
The basic building block is the notion of tree-like gadget, of which we give an example in
Figure 2a (top), while the formal definition can be found in Appendix A (Definition 23).

The next building block is called octopus gadget. At a high level, an octopus gadget is
obtained by starting from a tree-like gadget, and connecting one or two additional tree-like
gadgets to each “leaf” of the tree-like gadget. See Figure 2a (bottom) for an example and
Appendix A (Definition 24) for a formal definition.

We can now define the family of proper instances. An example is shown in Figure 2b.

▶ Definition 13 (Proper instance [5]). Let G = (V, E) be a graph. We say that G is a proper
instance if there exists a node labeling function λ : V → {intra-octopus, inter-octopus} with
the following properties.
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1. Every connected component in the subgraph induced by nodes labeled intra-octopus is an
octopus gadget (according to Definition 24).

2. The subgraph induced by nodes labeled inter-octopus does not contain any edge.
3. A node v labeled intra-octopus is connected to a node labeled inter-octopus if and only if v

has coordinates (w − 1, 0) in the port gadget P containing v, where w is the height of P

(that is, v is the left-most leaf of the port gadget containing v).

The authors of [5] proved that proper instances are locally checkable, in the sense that
there exist a set of local constraints C and finite sets of labels V and E for which an arbitrary
graph G can be (V, E)-labeled such that the constraints C to be satisfied on all nodes, if and
only if G is a proper instance. More precisely, they proved the following statements.

▶ Lemma 14 ([5]). Let G be any non-empty connected graph that is (V, E)-labeled such that
C is satisfied at all nodes. Then G is a proper instance according to Definition 13.

▶ Lemma 15 ([5]). Let G be a proper instance as defined in Definition 13. Then there exists
a (V, E)-labeling of G that satisfies the constraints in C at all nodes.

We are now ready to define the family G.

▶ Definition 16. A (V, E)-labeled graph G is in G if and only if the constraints in C are
satisfied at all nodes.

4.4 Linearizable Problems
In order to define Πpromise, we first need to introduce the notion of linearizable problems.
A linearizable problem Πlinearizable = (Σ, (F, L, P ), B) is defined as follows. Let us consider
a hypergraph described as its bipartite incidence graph, where white nodes represent the
original nodes, black nodes represent hyperedges, and we are also given an ordering of the
edges of the white nodes. Intuitively, a problem Πlinearizable = (Σ, (F, L, P ), B) is linearizable
if it is possible to encode it as another LCL where the constraints for white nodes can be
expressed solely in terms of consecutive edges in the ordering. More specifically, sets F and L

define which labels are allowed for the first and last edges, respectively, while set P contains
pairs of labels that can appear consecutively. In other words, P specifies the combinations
in which labels can be assigned to a node and its successor in the ordering. We refer to
Appendix A (Definition 25) for a formal definition.

We will use maximal matching as the running example of a linearizable problem. This
is an important step to reach our goal, as we will use the fact that maximal matching can
be expressed as a linearizable problem to separate SLOCAL from non-signaling. Maximal
matching is a problem defined on graphs, and hence, we will describe a linearizable problem
on hypergraphs of rank 2. In this case, the black constraint describes the edge constraints,
and the white constraint describes the node constraints. An example of a solution to the
maximal matching problem encoded as a linearizable problem is provided in Figure 3, and
the following lemma formally states the existence of a linearized version of maximal matching.
We defer the details of the proof to Appendix B.

▶ Lemma 17. There exists a linearizable problem Πlinearizable = (Σ, (F, L, P ), B) satisfying
the following:

A solution for Πlinearizable can be converted into a maximal matching in 0 deterministic
LOCAL rounds.
A solution for maximal matching can be converted into a solution for Πlinearizable in 0
deterministic LOCAL rounds.
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Figure 3 On the left, we show a solution to the maximal matching problem, where black nodes
represent hyperedges of rank 2 and blue edges are in the matching. On the right, the same solution
is encoded as a solution to Πlinearizable.

We now connect the notion of a linearizable problem with the problem Πpromise that
we aim to define. The problem Πpromise is defined in [5] as an LCL problem (i.e., by
describing its local constraints). This problem is defined as a function of a given problem
Πlinearizable = (Σ, (F, L, P ), B). For our purposes, we do not need the details of the definition
of Πpromise, and it is sufficient to state the properties that any valid solution needs to satisfy.
Informally, Πpromise is defined such that, if we contract each octopus gadget into a single
white node, and we treat each inter-cluster node as a black node, it must hold that, in the
resulting graph, we get a solution for Πlinearizable. The formal definition of Πpromise can be
found in Appendix A (Definition 26) or in [5].

4.5 SLOCAL Upper Bound and non-signaling Lower Bound
We now establish both an upper bound in the SLOCAL model and a lower bound in the
non-signaling model, deferring the formal proofs to Appendix B. For SLOCAL, we have the
following upper bound.

▶ Lemma 18. Let T (n) be an upper bound on the SLOCAL complexity of Πlinearizable that
holds also if the given graph contains parallel edges. Then the SLOCAL complexity of Π is
upper bounded by O(T (n) log n).

For non-signaling, we have the following lower bound.

▶ Lemma 19. Let T (n) be a lower bound on the locality of Πlinearizable in non-signaling with
failure probability p(n), which is a non-increasing function of n bounded above by some
constant q < 1. Then any non-signaling outcome for Πpromise with failure probability at most
p(n) requires locality Ω(T (n1/3) log n).

The following lemma is the key ingredient for the proof of Lemma 19.

▶ Lemma 20. Let Πlinearizable be any linearizable problem, and consider the LCL problem
Π = lift(Πlinearizable). Suppose that there exists an outcome O that is non-signaling beyond
distance T (n) that solves Π with failure probability p(n), which is a non-increasing function
of n bounded above by some constant q < 1. Then we can construct an outcome O′ that
solves Πlinearizable with failure probability at most p(n) and is non-signaling beyond distance
T ′(n) = O(T (n3)/ log n).

The proof of Lemma 19 is now straightforward.
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Proof of Lemma 19. If any non-signaling outcome for Π with failure probability p′(n) ≤ p(n)
has locality o(T (n1/3) · log n), then we can construct a non-signaling outcome that solves
Πlinearizable with failure probability at most p′(n) and has locality o(T (n)) by Lemma 20,
which is a contradiction with the fact that we assumed T (n) to be a lower bound on the
locality of Πlinearizable. ◀

4.6 Instantiating Our Construction
We are now ready to prove Theorem 10, referring to Appendix C for a high-level description
of the KMW lower bound and to [11] for a detailed exposition. We consider the maximal
matching problem, and by Lemma 17, there exists a linearizable problem P that is equivalent
to maximal matching. In SLOCAL, maximal matching, and hence P , can be solved in one
deterministic round by a trivial greedy algorithm. Hence, by Lemma 18, the deterministic
SLOCAL complexity of Π = lift(P ) is O(log n).

For a lower bound, recall that KMW gives us a lower bound of Ω(
√

log n/ log log n) for
O(log ∆)-approximation of fractional maximum matching (see Theorem 27) on graphs of
degree ∆ = 2Θ(

√
log n log log n). Combining Theorem 7 with the KMW lower bound and the

fact that fractional maximum matching can be expressed as a linear program, we obtain the
following corollary.

▶ Corollary 21. There does not exist a non-signaling distribution for O(log ∆)-approximation
of fractional maximum matching with locality o(

√
log n/ log log n) on graphs of degree ∆ =

2Θ(
√

log n log log n).

Since a maximal matching is a 2-approximation of a maximum matching, and a maximum
matching is a 3

2 -approximation of a maximum fractional matching, we obtain the following.

▶ Corollary 22. There does not exist a non-signaling distribution for maximal matching with
locality o(

√
log n/ log log n).

By combining Corollary 22 with Lemma 19, we obtain that in non-signaling, Π has
complexity Ω(log n ·

√
log n

log log n ), as desired.
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A Omitted Definitions

▶ Definition 23 (Tree-like gadget [4, 5]). A graph G is a tree-like gadget of height ℓ if it is
possible to assign coordinates (lu, ku) to each node u ∈ G, where

0 ≤ lu < ℓ denotes the depth of u in the tree, and
0 ≤ ku < 2lu denotes the position of u (according to some order) in layer lu,

such that there is an edge connecting two nodes u, v ∈ G with coordinates (lu, ku) and (lv, kv)
if and only if:

lu = lv and |ku − kv| = 1, or
lv = lu − 1 and kv = ⌊ ku

2 ⌋, or
lu = lv − 1 and ku = ⌊ kv

2 ⌋.

▶ Definition 24 (Octopus gadget[5]). Let x ≥ 1 be a natural number, and η = (η0, . . . , η2x−1−1)
a vector of 2x−1 entries in {1, 2}. Let W = {w(i,j)}(i,j)∈I be a family of positive integer
weights, where I is the set containing all pairs (i, j) satisfying (i, j) ∈ {0, 1, . . . , 2x−1 − 1}
×{1, 2} and j ≤ ηi.

A graph G = (V, E) is an (x, η, W )-octopus gadget if there exists a labeling λ : V → L =
I ∪ {root} of the nodes of G such that the following holds.
1. For each element y ∈ L, let Gy be the subgraph of G induced by nodes labeled with y.

Then, for all y ∈ L, Gy must be a tree-like gadget according to Definition 23.
2. For all y, z ∈ L such that y ̸= z, Gy and Gz must be disjoint.
3. Groot has height x and, for all (i, j) ∈ I, G(i,j) has height w(i,j) ∈ W .
4. For all (i, j) ∈ I, there is an edge connecting the node of G(i,j) that has coordinates (0, 0)

with the node of Groot that has coordinates (x − 1, i).
Groot is called the head-gadget and, for all (i, j) ∈ I, G(i,j) is called a port gadget.

▶ Definition 25 (Linearizable problem [5]). Let H be a hypergraph, and let G be its bipartite
incidence graph. Let the nodes of G corresponding to the nodes of H be called white nodes,
and let the nodes of G corresponding to the hyperedges of H be called black nodes.

The task requires to label each edge of G with a label from some finite set Σ.
There is a list of allowed black node configurations B, which is a list of multisets of labels
from Σ that describes valid labelings of edges incident on a black node. We say that a
black node satisfies the black constraint if the multiset of labels assigned to its incident
edges is in B. It is assumed that the rank of H, and hence the maximum degree of black
nodes, is a constant.
Constraints on white nodes are described as a triple (F, L, P ), where F (which stands
for first) and L (which stands for last) are finite sets of labels, and P (which stands for
pairs) is a finite set of ordered pairs of labels. In this formalism, it is assumed that an
ordering on the incident edges of a white node is given, and it is required that:

The first edge is labeled with a label from F ;
The last edge is labeled with a label from L;

https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1145/3357713.3384298
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Each pair of consecutive edges must be labeled with a pair of labels from P .
We say that a white node satisfies the white constraint if its incident edges are labeled in
a valid way.

When solving a linearizable problem in the distributed setting, it is assumed that each node
knows whether it is white or black.

▶ Definition 26 (The definition of Πpromise of [5], rephrased). Given a graph G ∈ G, the
problem Πpromise requires to label the nodes of the graph as follows:

Each node that is not in a port gadget must be labeled ⊥.
Each node that is in a port gadget must be labeled with a label from Σ.
Nodes that belong to the same port gadget must be assigned the same label.
Let g be an octopus gadget, and let ℓ1, . . . , ℓd be the labels assigned to the d port gadgets
of g, according to the natural left-to-right order of the port gadgets of g. It must hold that
ℓ1 ∈ F , ℓd ∈ L, and (ℓi, ℓi+1) ∈ P for all i.
Let v be an inter-cluster node, and let ℓ1, . . . , ℓr be the labels assigned to the nodes of its
r incident port gadgets. It must hold that {ℓ1, . . . , ℓr} ∈ B.

B Omitted Proofs

Proof of Lemma 8. To show that x̂ is an approximation of P , we need to establish (1) that
x̂ is feasible and (2) that x̂ gives the correct approximation ratio. To see the feasibility of x̂,
observe that the feasibility constraints are of the form∑

i∈F
Aj,i · xi ⊴ bj ∀j ∈ C .

Plugging in x̂ and fixing j ∈ C gives us∑
i∈F

Aj,i · x̂i =
∑
i∈F

Aj,i · E [Oi] = E
[∑

i∈F
Aj,i · Oi︸ ︷︷ ︸
⊴bj

]
⊴ bj .

The first equality holds by definition, the second equality holds by linearity of expectation,
and the conclusion holds by the fact that O is a distribution over feasible solutions and the
monotonicity of expectation. Hence, x̂ is a feasible solution for P.

It is left to show that x̂ is also an α-approximation. Again, we can plug x̂ into the target
function, obtaining∑

i∈F
ci · x̂i =

∑
i∈F

ci · E [Oi] = E
[∑

i∈F
ci · Oi

]
.

As each outcome of O is an α-approximation, we can invoke the linearity and monotonicity
of expectation and get that this new target is also an α-approximation of P. ◀

Proof of Lemma 9. We give the description for the LOCAL algorithm A: Node v gathers
its radius-T neighborhood NT [v]; this can be done with locality T . It then constructs
an arbitrary graph G′ ∈ F such that the neighborhood of node v′ ∈ V (G′) is isomorphic
to NT [v]. Note that such a graph always exists, as the graph the algorithm is being run on is
one such graph. Now v invokes the distribution O on graph G′ to compute the distribution
of outputs for node v′ and, in particular, the outcome. Node v then outputs this expected
outcome and halts.

DISC 2025
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It remains to argue that this algorithm computes the expected outcome of O everywhere.
This follows directly from the definition of the non-signaling distributions as the marginals
of nodes v and v′ coincide, and hence their expectations must also coincide. Moreover, the
choice of graph G′ does not affect this marginal distribution. ◀

Proof of Lemma 17. We define the problem as follows. The label set Σ is defined as
Σ = {M, B, A, P}, where M, B, A, and P stand for matched, before, after, and pointer,
respectively. The list of allowed black configurations is defined as

B = {{M, M}, {P, B}, {P, A}, {B, B}, {B, A}, {A, A}}. Then, F is defined as F = {M, B, P},
L is defined as L = {M, A, P}, and P is defined as P = {(B, B), (B, M), (M, A), (A, A), (P, P)}.

We observe that the defined problem Πlinearizable satisfies the following properties.
In any valid solution, for each node v, if we treat the labels assigned to the half-edges
incident to v as a string (according to the ordering assigned to the half-edges incident
to v), we obtain that such a string must satisfy the regular expression P∗ | B∗MA∗. We
call nodes satisfying P∗ unmatched nodes and nodes satisfying B∗MA∗ matched nodes.
Moreover, we call an edge matched if both its half-edges are labeled M.
Since {P, P} /∈ B, we get that, in any valid solution, unmatched nodes cannot be neighbors.
Since the label M appears only in the pair {M, M}, and since each matched node must
have exactly one incident matched edge, matched edges form an independent set.

This implies that a solution for Πlinearizable can be converted into a maximal matching in 0
deterministic LOCAL rounds.

We now show that a maximal matching can be converted into a solution for Πlinearizable in
0 deterministic LOCAL rounds. A solution for Πlinearizable can be computed as follows:

Each unmatched node labels P all its incident half-edges.
Each matched node labels M its incident half-edge e that is part of the matching, B all
edges that come before e in the given ordering, and A all edges that come after e in the
given ordering.

It is easy to see that the computed solution satisfies the constraints of Πlinearizable. ◀

Proof of Lemma 18. Let A be an SLOCAL algorithm for Πlinearizable with complexity T (n).
We show how to use A to solve Πpromise with SLOCAL complexity O(T (n) log n). As argued
in Section 4.2, this implies a solution for Π with the same asymptotic SLOCAL complexity.

Let G ∈ G be the graph in which we want to solve Πpromise. Consider the virtual bipartite
graph Ĝ obtained by contracting each octopus gadget into a single node (see Figure 2b),
that is:

For each octopus gadget g of G, there is a white node vg in Ĝ.
For each inter-cluster node b of G, there is a black node ub in Ĝ.
For each edge connecting an inter-cluster node b of G to an octopus gadget g of G, there
is an edge between vg and ub in Ĝ.

Note that Ĝ may contain parallel edges. Since the diameter of a valid octopus gadget is
clearly upper bounded by O(log n), we get that the distances in G are at most an O(log n)
factor larger than distances in Ĝ. Thus, it is possible to simulate the execution of an SLOCAL
algorithm for Ĝ with an O(log n) multiplicative overhead on G. We use A to solve Πlinearizable

on Ĝ. For each octopus gadget g, we assign the solution of the i-th port of gv to the nodes of
the i-th port gadget of g, according to the natural left-to-right order of the port gadgets of g.
The output clearly satisfies the constraints of Πpromise, and the runtime is upper bounded by
O(T (n) log n). ◀
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Proof of Lemma 20. By hypothesis, there exists a non-signaling outcome O that solves Π
with failure probability p(n). Consider any input hypergraph F for Πlinearizable of size n, and
let G be the bipartite incidence graph of F . We construct a graph G′ as a function of G as
follows.

For each white node v of degree d of G, we put an octopus gadget gv with d port gadgets,
each of height Θ(log n), into G′.

For each black node u of G, we put an inter-octopus node bu in G′.

Let v be an arbitrary white node in G, and let {v, u} be its i-th incident edge, according
to the given ordering. We put, in G′, an edge connecting bu to the left-most leaf of the
i-th port gadget of gv, according to the natural left-to-right order of the port gadgets
of gv.

By construction, G′ is a proper instance, and by Lemma 15 it can be labeled such that
G′ ∈ G. In the following, we assume that G′ is labeled in such a way. Hence, G′ is an input
instance for Πpromise. Moreover, we get that if G has n nodes, then G′ has n ≤ N ≤ n3 nodes.

We define a function fG as follows. Let v be a white node of G, and let r be the root
node of the i-th port gadget of gv. The function fG maps r to the i-th edge incident to v,
according to the given ordering. It is straightforward to see that fG maps solutions for
Πpromise on G′ to solutions for Πlinearizable on G.

Let Vr(G′) be the domain of fG, and let Σpromise be the set of output labels for Πpromise

for the nodes in Vr(G′). Let {(outi, pi)}i∈I be the output distribution that O defines on G′

for Π. As discussed in Section 4.2, this is also a valid output distribution for Πpromise. Note
that G is a bipartite incidence graph and Πlinearizable asks only to label edges of G. This means
that only half-edges of F are labeled. We now define an outcome O′ on G just by describing
output labelings on edges of G (which correspond to half-edges of F ) – more specifically, we
set O′(G) = {(outi ◦f−1

G , pi)}i∈I .

First, it is clear that the sum of all pi in O′(G) is exactly 1. Furthermore, it is straight-
forward to check that O′ has failure probability at most p(n) > 0. If not, by construction
of O′, then O(G′) has failure probability strictly greater than p(n) for Πpromise, which is a
contradiction because O has failure probability p(N) ≤ p(n) by monotonicity of p.

We now claim that O′ is non-signaling beyond distance T ′(n). Recall that each octopus
gadget in G′ represents a white node v of G, and neighboring octopus gadgets represent
neighboring white nodes of G. Hence, for every subset of edges A of E(G), the distribution
O′(G)[A] is defined only by {(outi, pi)}i∈I [f−1

G (A)]. Let k(n) be the height of a port gadget,
and observe that k(n) = Θ(log n). Suppose we modify G outside the radius-T ′(n) view of A

and obtain a graph H with a subset of edges AH such that V0(A) is isomorphic to V0(AH)
and VT ′(n)(A) is isomorphic to VT ′(n)(AH). Notice that, as before, H also defines a proper
instance H ′ ∈ G for Πpromise. However, because of the isomorphic regions between G and H,
we get that V0(f−1

G (A)) is isomorphic to V0(f−1
H (AH)), and VT ′(n)·k(n)(f−1

G (A)) is isomorphic
to VT ′(n)·k(n)(f−1

H (AH)), since each port gadget has height at least k(n). We impose that
T ′(n) · k(n) ≥ T (N), which is equivalent to asking that T ′(n) ≥ T (N)/k(n). Since the
distribution O is non-signaling beyond distance T (N), we have that O(G′)[V0(f−1

G (A))] is the
same distribution as O(H ′)[V0(f−1

H (A))]. Hence, O′(G)[A] and O′(H)[A] are equal, and O′ is
non-signaling beyond distance T ′(n). Note that it is sufficient to take T ′(n) = O(T (n3)/ log n),
since T (N) is non-decreasing in N and n ≤ N ≤ n3. ◀
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C KMW in a Nutshell

To instantiate our construction, we use a lower bound for approximating maximum matchings
based on the KMW bound [16]. For completeness, we now describe the high-level idea of this
bound, state it formally, and sketch the key components of its construction that are relevant
for our work. See Coupette and Lenzen [11] for a detailed exposition and a simplified proof.

The KMW bound establishes that there exist graphs with n nodes and maximum degree
∆ = 2Θ(

√
log n log log n) on which Ω(

√
log n/ log log n) (expected) communication rounds are

required to obtain polylogarithmic approximations to a minimum vertex cover, minimum
dominating set, or maximum matching.

▶ Theorem 27 ([16]). There does not exist a randomized LOCAL algorithm providing an
O(log ∆)-approximation of fractional maximum matching with locality o(

√
log n/ log log n)

on graphs with degree ∆ = 2Θ(
√

log n log log n).

The KMW bound holds under both randomization and approximation, and it extends to
symmetry-breaking tasks like finding maximal independent sets or maximal matchings via
straightforward reductions.

At the core of the bound lies a class of high-girth graphs constructed from a blueprint,
the Cluster Tree, which arranges differently-sized independent sets of nodes as a tree and
prescribes that node sets adjacent in the tree are connected via biregular bipartite graphs.
Both blueprints and graphs are parametrized by the number of communication rounds k, and
they are designed to enable an indistinguishability argument: For a given k, the associated
Cluster Tree graph contains two independent sets of nodes, one large and one small, such that
both sets of nodes have isomorphic radius-k neighborhoods, but only the small set of nodes is
needed to solve a given covering problem. This forces any algorithm to select a large fraction
of the large node set into the solution (in expectation), yielding a poor approximation ratio.

The construction extends to packing problems by taking two copies of a Cluster Tree
and additionally prescribing that each node in the first copy is connected to its counterpart
in the second copy. Importantly, the graphs arising from Cluster Trees are bipartite by
design. In bipartite graphs, the optimal fractional solution and the optimal integral solution
coincide for both minimum vertex cover and maximum matching, and by Kőnig’s theorem
[13], the solution sets to both problems have the same cardinality. Moreover, the two-copy
construction of Cluster Trees for packing problems has a natural bicoloring such that the
large cluster in the first copy and the small cluster in the second copy have the same color
– i.e., providing the bicoloring keeps the indistinguishability argument intact. Hence, the
KMW bound is inherently a bound for (bipartite) fractional problems.
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