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—— Abstract

Algorithms with advice have received ample attention in the distributed and online settings, and they
have recently proven useful also in dynamic settings. In this work we study local computation with
advice: the goal is to solve a graph problem II with a distributed algorithm in T'(A) communication
rounds, for some function 7" that only depends on the maximum degree A of the graph, and the key
question is how many bits of advice per node are needed.

Some of our results regard Locally Checkable Labeling problems (LCLs), which is an important
family of problems that includes various coloring and orientation problems on finite-degree graphs.
These are constraint-satisfaction graph problems that can be defined with a finite set of valid
input/output-labeled neighborhoods.

Our main results are:

1. Any locally checkable labeling problem can be solved with only 1 bit of advice per node in graphs
with sub-exponential growth (the number of nodes within radius r is sub-exponential in r; for
example, grids are such graphs). Moreover, we can make the set of nodes that carry advice
bits arbitrarily sparse. As a corollary, any locally checkable labeling problem admits a locally
checkable proof with 1 bit per node in graphs with sub-exponential growth.

2. The assumption of sub-exponential growth is complemented by a conditional lower bound:
assuming the FEzxponential-Time Hypothesis, there are locally checkable labeling problems that
cannot be solved in general with any constant number of bits per node.

3. In any graph we can find an almost-balanced orientation (indegrees and outdegrees differ by at
most one) with 1 bit of advice per node, and again we can make the advice arbitrarily sparse. As
a corollary, we can also compress an arbitrary subset of edges so that a node of degree d stores
only d/2 + 2 bits, and we can decompress it locally, in T'(A) rounds.

4. In any graph of maximum degree A, we can find a A-coloring (if it exists) with 1 bit of advice
per node, and again, we can make the advice arbitrarily sparse.

5. In any 3-colorable graph, we can find a 3-coloring with 1 bit of advice per node. As a corollary,
in bounded-degree graphs there is a locally checkable proof that certifies 3-colorability with 1 bit
of advice per node, while prior work shows that this is not possible with a proof labeling scheme
(PLS), which is a more restricted setting where the verifier can only see up to distance 1.

Our work shows that for many problems the key threshold is not whether we can achieve 1 bit of

advice per node, but whether we can make the advice arbitrarily sparse. To formalize this idea, we

develop a general framework of composable schemas that enables us to build algorithms for local

computation with advice in a modular fashion: once we have (1) a schema for solving IT; and (2) a

schema for solving I3 assuming an oracle for II1, we can also compose them and obtain (3) a schema
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that solves Il2 without the oracle. It turns out that many natural problems admit composable
schemas, all of them can be solved with only 1 bit of advice, and we can make the advice arbitrarily
sparse.
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1 Introduction

Our work explores what can and cannot be computed locally with the help of advice. Our
main focus is understanding advice in the context of classic local graph problems, such as
vertex coloring.

While computation with different forms of advice has been explored in a wide range of
distributed settings [24, 23, 14, 31, 13, 35, 46, 48, 25, 36, 51, 22, 39, 47, 26], there is hardly
any prior work on solving classic local graph problems. A rare example of prior work is [20]
from 2007, which studied the question of how much advice is necessary to break Linial’s [44]
lower bound for coloring cycles.

We initiate a systematic study of exactly how much advice is needed in the context
of a wide range of graph problems. As we will see in this work, the exploration of the
advice complexity of graph problems opens up connections with many other topics — it is
linked with distributed proofs [40, 41, 42, 43, 34, 17], distributed decompression, the notion
of order-invariant algorithms [50], and also with the exponential-time hypothesis [37] in
computational complexity theory.

1.1 Local computation with advice

Let us first formalize the setting we study:

A graph problem II can be solved with 8 bits of advice if there exists a T(A)-round
distributed algorithm A, such that for any graph G that admits a solution to II, there
is an assignment of §-bit labels on vertices, such that the output of A on the labeled
graph is a solution to II.
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We note that on graphs that do not admit a solution to II, Algorithm A is allowed to behave
arbitrarily. For instance, when we consider the 3-coloring problem, Algorithm A may produce
an arbitrary output on graphs that are not 3-colorable.

We will work in the usual LOCAL model of distributed computing. In an n-node graph,
the nodes are labeled with unique identifiers from {1,2,...,poly(n)}. We emphasize that
the advice may depend on the assignment of identifiers, and algorithm A can freely make
use of both the advice and the identifiers.

Now we seek to understand this question:

What is the smallest 5 such that II can be solved with /3 bits of advice?

Note that if II is, for example, the 3-coloring problem, it is trivial to solve with 5 = 2 bits
of advice per node, as we can directly encode the solution. The key question is how much
better we can do.

Our work shows that for many problems the key threshold is not whether we can achieve
1 bit of advice per node, but whether we can make the advice arbitrarily sparse, that is,
make the ratio between 1s and Os assigned to the nodes of the graph to be an arbitrarily
small constant. This is particularly useful, as it enables us to compose multiple sparse advice
schemes, so that it suffices to use just one bit per node in total (we will elaborate on this in
Section 1.7). Hence, a large part of this paper addresses the following question:

Which problems admit arbitrarily sparse advice?

The notion of the sparsity of the advice is discussed in more detail later in the paper.
In this context, our paper shows that some problems can be solved with arbitrarily sparse
advice. On the other hand, we also show that assuming the Exponential-Time Hypothesis,
for any constant c, there exist problems that cannot be solved with ¢ bits of advice. Finally,
there are some problems like 3-coloring that can be solved with 1 bit of advice, but where it
is not clear whether it can be solved with arbitrarily sparse advice. We discuss all of those
points in more detail in the remaining part of this section; we refer to the full version of this
work for the omitted proofs.

1.2 Contribution 1: LCLs in bounded-growth graphs

Locally checkable labeling problems (LCL), first introduced by Naor and Stockmeyer [50]
in the 1990s, are one of the most extensively studied families of problems in the theory of
distributed graph algorithms. These are graph problems that can be specified by giving a
finite set of valid local neighborhoods. Many key problems such as vertex coloring, edge
coloring, maximal independent set, maximal matching, sinkless orientation, and many other
splitting and orientation problems are examples of LCLs, at least when restricted to bounded-
degree graphs. Thanks to the extensive research effort since 2016, we now understand very
well the landscape of all LCL problems and their computational complexities across different
models of distributed computing [5, 3, 11, 28, 2, 19, 54, 9, 10, 30, 4].

We design a schema that allows us to solve any LCL problem with just one bit of advice
in graphs with a sub-exponential growth (the number of nodes in a radius-r neighborhood is
sub-exponential in 7):
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Any LCL problem can be solved with 1 bit of advice per node in sub-exponential growth
graphs.

Furthermore, we show that the encoding can be made arbitrarily sparse. Note that e.g. grids
have polynomial growth while e.g. regular trees have exponential growth, so the result is
applicable in grids but not in trees.

1.2.1 Application: locally checkable proofs in bounded-growth graphs

One prominent application of this result is its connection with distributed proofs [40, 41, 42,
43, 17], and in particular with locally checkable proofs [34]. Consider any LCL II. Assume
that our task is to prepare a distributed proof that shows that in a graph G there exists a
feasible solution of II (for example, if IT is the task of 10-coloring, then the task is to certify
that the chromatic number of G is at most 10). Now if G has sub-exponential growth, we
can use our result to prepare a 1-bit advice that enables the algorithm to find a solution of
II. Our advice is the proof: to verify it, we simply try to recover a solution with the help of
the advice, and then check that the output is feasible in all local neighborhoods (recall that
IT is locally checkable). We obtain the following corollary:

Any LCL problem admits a locally checkable proof with 1 bit per node in graphs with
sub-exponential growth.

Note that this is not a proof labeling scheme as defined in [40, 41, 42, 43], as the verifier
running at node u may need to see more than just the identifier and the proof label of u
and the proof labels of u’s immediate neighbors. However, in bounded-degree graphs it is a
locally checkable proof (LCP) as defined in [34]; for a fixed A the verification radius is a
constant T'(A).

So to summarize, if we can solve some LCL problem II with b bits of advice per node,
then we also have an LCP for the graph property “G admits a feasible solution to II” with
b-bit proofs per node. The converse is not true: Consider the LCL problem II that encodes
the task “orient edges so that each node has indegree equal to outdegree”. Now to prove “G
admits a feasible solution to II” one can use a 0-bit LCP, where even-degree nodes accept
and odd-degree nodes reject. However, this LCP does not help us at all if we would like
to solve II with the help of advice. In this sense distributed computation with advice is a
harder problem than local proofs.

It is also good to note that one can have LCPs for graph properties that are not of
the form “G admits a feasible solution to some LCL II.” For example, planarity is such a
property. Such LCPs are (to our knowledge) not directly connected with computation with
local advice.

1.3 Contribution 2: LCLs in general graphs

At this point a natural question is whether the assumption about bounded growth is necessary.
Could we solve all LCL problems in all graphs with 1 bit of advice? In Section 4 we show
that the answer is likely to be no:
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Fix any . If all LCL problems can be solved locally with at most g bits of advice, then
the Exponential-Time Hypothesis (ETH) is false.

The intuition here is that if some LCL problem II can be solved with, say, 1 bit of advice
per node with some local algorithm A4, then we could solve it with a centralized sequential
algorithm as follows: check all 2" possible assignments of advice, apply A to decode the
advice, and see if the solution is feasible. The total running time (from the centralized
sequential perspective) would be 2™ -n - s(n), where s(n) is the time we need to simulate 4 at
one node. Then we need to show that assuming the Exponential-Time Hypothesis, this is too
fast for some LCL problem II. However, the key obstacle is that it may be computationally
expensive to simulate A, as it might perform arbitrarily complicated calculations that depend
on the numerical values of the unique identifiers, and we cannot directly bound s(n).

Hence, we need to show that A can be made cheap to simulate. The key ingredient is the
following technical result, which we prove using a Ramsey-type argument that is inspired by
the proof of Naor and Stockmeyer [50]:

Assume that problem II can be solved with § bits of advice per node, using some
algorithm A. Then the same problem can be also solved with  bits of advice using an
order-invariant algorithm A’, whose output does not depend on the numerical values of
the identifiers but only on their relative order.

The key point here is that (for bounded-degree graphs) A’ can be represented as a finite
lookup table; hence the simulation of A’ is cheap, and we can finally make a formal connection
to the Exponential-Time Hypothesis. We refer to Section 4 for more details.

1.4 Contribution 3: balanced orientations

Now we move on to a specific graph problem: we study the task of finding balanced and
almost-balanced orientations. The goal is to orient the edges so that for each node indegree
and outdegree differ by at most 1. This is a hard problem to solve in a distributed setting,
while slightly more relaxed versions of the problem admit efficient (but not constant-time)
algorithms [29].

Here it is good to note that if we could place our advice on edges, then trivially one bit
of advice per edge would suffice (simply use the single bit to encode whether the edge is
oriented from lower to higher identifier). However, we are here placing advice on nodes, and
encoding the orientation of each incident edge would require a number of bits proportional
to the maximum degree. Surprisingly, we can do it, in any graph:

We can find almost-balanced orientations with 1 bit of advice per node.

Again, we can make the advice arbitrarily sparse.

1.4.1 Application: distributed decompression

Equipped with the advice schema for solving almost-balanced orientations, we can now make
a formal connection to what we call distributed decompression. Here the task is to encode
some graph labeling so that it can be decompressed locally (in T'(A) rounds).

DISC 2025



12:6

Distributed Computation with Local Advice

Local decompression is closely linked with local computation with advice. If we can
compress some solution to IT with only 8 bits per node, and decompress it locally, then we
can also solve II with § bits of advice per node. Furthermore, if IT is a problem such that for
any graph there is only one feasible solution, then the two notions coincide.

We will now show yet another connection between local decompression and local compu-
tation with advice. Consider the task of compressing an arbitrary subset of edges X C E. In
a trivial encoding, we label each node v of degree d with a d-bit string that indicates which
of the incident edges are present in X. On the other hand, we need a total of |E| bits in
order to distinguish all subsets of the edge-set E. In particular, for d-regular graphs, this
means we need at least d/2 bits per node to recover an arbitrary subset of edges.

It turns out that once we can solve almost-balanced orientations, we can also compress
a subset of edges efficiently. We simply use 1 bit of advice per node to encode an almost-
balanced orientation. Now a node of degree d has outdegree ¢ < [d/2], and it can simply
store a d-bit vector that indicates which of its outgoing edges are in X. Overall, we will need
[d/2] +1,ie. <d/2+ 2, bits per node:

We can encode an arbitrary set of edges X C F so that a node of degree d only needs to
store [d/2] + 1 bits, and we can decompress X locally, in T(A) rounds.

1.5 Contribution 4: vertex A-coloring

Next we study the problem of A-coloring graphs of maximum degree A:

In any graph of maximum degree A, we can find a A-coloring (if it exists) with 1 bit of
advice per node.

Again, we can make the advice arbitrarily sparse.

Our schema for encoding A-colorings consists of three steps. First, we compute a vertex
coloring with O(A?) colors, with the help of advice. Then we reduce the number of colors
down to A + 1, using the algorithm by [21, 6, 45]. Finally, we follow the key idea of the
algorithm by Panconesi and Srinivasan [52] to turn (A + 1)-coloring into a A-coloring, and
again we will need some advice to make this part efficient.

1.6 Contribution 5: vertex 3-coloring

So far we have seen primarily results of two flavors: many problems can be solved with 1
bit of advice so that we can make the advice arbitrarily sparse, while there are also some
problems that require arbitrarily many bits of advice.

We now turn our attention to a problem that seems to lie right at the boundary of what
can be done with only 1 bit per node: vertex 3-coloring in any 3-colorable graph. Note that
this is a problem that is hard to solve without advice not only in the distributed setting (it
is a global problem) but also in the centralized setting (it is an NP-hard problem).

In the centralized setting, 1 bit of advice per node makes the problem easy. To see this,
we can simply use the bit to indicate which nodes are of color 3. Then the rest of the graph
has to be bipartite, and we can simply find a proper 2-coloring in polynomial time.

In the distributed setting, the trivial solution does not work: 2-coloring in bipartite
graphs is still a global problem. Nevertheless, we show that 3-coloring is still doable with 1
bit of advice:
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In any 3-colorable graph, we can find a 3-coloring with 1 bit of advice per node.

Our encoding essentially uses one bit to encode one of the color classes, but we adjust
the encoding slightly so that throughout the graph there are local hints that help us to also
choose the right parity for the region that we need to 2-color.

Here, our encoding genuinely needs one bit per node (it just barely suffices); we cannot
make our advice arbitrarily sparse.

1.6.1 Application: locally checkable proofs for 3-coloring

Following the same idea as in Section 1.2.1, we can now also certify that a graph is 3-colorable
with a proof that only takes 1 bit per node. Furthermore, the verifier only needs to see up to
distance T'(A), and hence if A = O(1), this is a locally checkable proof in the sense of [34]:

There is a locally checkable proof that certifies 3-colorability with 1 bit per node in
graphs of maximum degree A = O(1).

Now it is interesting to compare this with proof labeling schemes (PLS). In essence, a
PLS is an LCP in which the verifier only sees the identifier of the present node, and the
proof labels within radius 1. The above result provides a 1-bit LCP but not a 1-bit PLS.

This connects directly with the work done by Ardévol Martinez et al. [1] and Bousquet
et al. [7], which study the same question: how many bits per node are needed to certify
k-colorability. Here Bousquet et al. [7] shows that ©(log k) bits per node are necessary for a
PLS that certifies k-colorability, and [1] shows that in particular 3-colorability cannot be
certified with 1 bit per node with any PLS (while 2 bits per node is trivial). Our work
complements the latter result, and provides a separation between PLSs and LCPs in this
setting: now we know that while 1 bit per node does not suffice to certify 3-colorability with
any PLS, it is sufficient for an LCP (with the caveat that we need to be in a bounded-degree

graph).

1.7 Key technique: composability framework

We already discussed some of the proof ingredients above. However, there is one additional

technique that we use in many of our algorithms: the framework of composable schemas.

It turns out that for many problems, it is easier to work with advice schemas in which
only a few nodes carry advice bits, but they may carry many bits of advice. In Definition 2 we
give the formal definition of such a schema, and in Definition 4 we give the formal definition
of composable schemas, which satisfy the additional property that the ratio between the total
number of bits held by the nodes, and the total number of nodes, can be made arbitrarily
small in every large-enough neighborhood.

While the definition is a bit technical, it has two key properties, which we discuss in more
detail in the full version of this work:

1. As the name suggests, composable schemas can be easily composed, in the following
sense: once we have (1) a composable schema for solving II; and (2) a composable schema
for solving II; assuming an oracle for II;, we can also compose them and obtain (3) a
composable schema that solves II; without the oracle. This way we can solve problems
in a modular fashion, in essence using schemas as “subroutines.”

12:7
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2. A composable schema can be then encoded with only 1 bit of advice per node, and we
can make the advice arbitrarily sparse.

For example, our algorithms for finding almost-balanced orientations and A-coloring with

advice are based on the framework of composable schemas.

1.8 Open questions

Our work suggests a number of open questions:

1. Our negative result in Section 4 assumes the Exponential-Time Hypothesis. Is it possible
to prove an unconditional lower bound without such assumptions? Can we exhibit a
concrete LCL problem II that is unconditionally hard?

2. We conjecture that the advice for vertex 3-coloring in 3-colorable graphs cannot be made
arbitrarily sparse. Is this true?

3. We also conjecture that for a sufficiently large d, vertex d-coloring in d-colorable graphs
cannot be encoded with one bit per node. Is this true? This is closely linked with the
discussion on the trade-off conjecture in e.g. [1, 7].

4. Our schema for distributed decompression is asymptotically optimal, but there is room
for improving additive constants. Here is a concrete open question: Let G = (V, E) be a
3-regular graph, and let X C F be an arbitrary set of edges. Is it possible to encode X
using only 2 bits per node so that it can be decompressed locally? (Note that 1 bit per
node is trivially impossible, while 3 bits per node is trivial. If we delete one edge from
each connected component, an encoding with 2 bits per node follows from 2-degeneracy.)

2 Additional related work

Computing with advice is not really a well-defined area of research, as one can consider many
kinds of advice and various models of computations. In this paper, we focus on existential
advice and the distributed LOCAL model: the advice is provided by an all-knowing oracle,
and it is designed to enable algorithms with low locality (i.e., low time complexity). More
broadly, one can consider a variant in which the restriction on the size of advice is more
relaxed, but it needs to be computable by an oracle with some limitations (realizable in some
model of computation), which then can be used as a building block of algorithms.

Advice and locality in distributed computing. Feuilloley et al. [18] consider the framework
of Proof Labeling Schemes (PLS). In this framework, there is a prover and a verifier: the
prover is a centralized entity that assigns labels to the nodes, while the verifier is a distributed
algorithm that in 7" rounds is able to verify the validity of the collection of labels. If the
predicate we want to investigate holds true, then there must exist an assignment of labels
(or certificates) such that each node, in T rounds, “accepts” the given labeling; while if the
predicate we want to investigate does not hold, then for any given labeling assignment there
must exist a node that rejects it. The authors study the tradeoff between the size of the
labels given at each node and the round-complexity of the verifier. In their work, they, too,
discover how this tradeoff is remarkably different depending on the growth rate of the graph.

Fraigniaud et al. [20] investigate the problem of distributedly 3-coloring a cycle. Without
advice, it is known that this problem requires Q(log™ n) rounds [44], and the paper seeks to
understand whether advice can help to break this barrier. In the context studied in [20],
each node receives some advice as input, and the total advice is measured as the sum of
the lengths of the bit-strings given to all nodes. The authors show that, for any constant k,
O(n/log™ n) bits of total advice are not sufficient to beat the Q(log* n) lower bound, where

log(k) n denotes k recursive iterations of logn.
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Algorithm design. Parnas and Ron [53] show that one can use distributed algorithms to
derive (by simulation) Local Computation Algorithms. Quite naturally, one can use the same
approach to derive parallel graph algorithms or graph algorithms for dynamic data sets (or
graph algorithms for any model of computation that can leverage the fact that the output
is defined by some small neighborhood of a vertex or edge). However, as is, the reduction
from [53] did not immediately imply many new state-of-the-art algorithms, as the size of the
neighborhood grows exponentially with locality, and, for many problems, the locality of the
fastest-known algorithms is fairly large. One of the ways to address this issue is to rely on
analysis of algorithms with advice.

Christiansen et al. [12] use distributed algorithms with advice to design faster dynamic
algorithms for vertex coloring, by combining dynamic graph orientations with ideas for
simulating distributed algorithms on the resulting directed graph.

While this approach in principle can be used in the design of parallel algorithms, so far
it is used implicitly or in a somewhat trivial way (e.g. Ghaffari et al. [27] mention that
4-coloring of a graph can be trivially used to compute a maximal independent set).

Advice in other models of computation with partial knowledge. More generally, one can
consider the impact of advice that captures some global knowledge about the whole input (or
distribution of inputs) on the performance of algorithms. Similarly to the case of distributed
computing, one can consider existential advice and advice that can be realized in a somewhat
practical model of computation.

Emek et al. [15] introduced the notion of advice in the context of online algorithms.

The authors studied the impact of advice in the competitive ratio of some classical online
problems, namely metrical task systems and k-server, and they show tradeoffs between the
number of bits of advice and the achievable competitive ratio. We refer to the survey by
Boyar et al. [8] for more work on online algorithms with advice.

Mitzenmacher and Vassilvitskii [49] show that algorithms using advice realized by machine
learning models can be used to provide algorithms that on average perform better than
their traditional counterparts while keeping the same worst-case bounds. However, this
particular advice model allows querying an oracle at each step. As such, in the context
of online algorithms, it is in some sense both weaker than the existential advice for online
algorithms (as it is produced by some machine learning model) and stronger as it gives a lot
of bits of advice, and has access to the prefix of the input.

3 Preliminaries

Let G = (V, E) be a graph, where V is the set of nodes and F is the set of edges. We denote
with n the number of nodes of the graph, and with A its maximum degree. We may use the

notation V(G) to denote the set of nodes of G, and E(G) to denote the set of edges of G.

With distg(u, v) we denote the distance between w € V and v € V in G, that is, the length
of the shortest path between uw and v in GG, where the length of a path is the number of edges
of the path. For an integer k, the power graph G* of a graph G is the graph that contains

the same nodes as G, and there is an edge {u,v} in G* if and only if 1 < distg(u,v) < k.

Two nodes u and v are neighbors in G if there is an edge {u,v} € E(G).

A maximal independent set (MIS) of G is a subset S of nodes of G satisfying that no
nodes of S are neighbors in G, and that all nodes in V' \ S have at least one neighbor that
isin S. An (a, 8)-ruling set is a subset S of nodes of G satisfying that each pair of nodes

12:9
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from S have distance at least «, and that all nodes in V'\ S have at least one node in S at
distance at most §. Observe that Maximal Independent Set and (2, 1)-ruling set is the same
problem. By S-ruling set we denote the (2, 3)-ruling set problem.

One important tool that we will use is the Lovasz Local Lemma, which states the following.

» Lemma 1 (Lovész Local Lemma [55, 56, 16]). Let {E1,..., E;} be a set of events satisfying
the following conditions: each event E; depends on at most d other events; each event E;
happens with probability at most p. Then, if epd < 1, there is non-zero probability that none
of the events occur.

3.1 LOCAL model

In the LOCAL model of distributed computation, each node of an n-node graph is equipped
with a unique ID, typically in {1,...,n°}, for some constant c. Initially, each node in the
graph knows its own ID, its degree (i.e., the number of neighboring nodes), the maximum
degree A in the graph, and the total number of nodes. Then, the computation proceeds in
synchronous rounds where at each round each node exchanges messages with its neighbors
and performs some local computation. The size of the messages can be arbitrarily large and
the local computation can be arbitrarily heavy. The runtime of an algorithm is defined as
the number of rounds it requires such that all nodes terminate and produce an output.

3.2 Locally checkable labelings

We formally define an LCL problem II as a tuple (Xi,, Xout, C,7) where each element of the
tuple is defined as follows. The parameters Y, and X, are finite sets of input and output
labels, respectively. The parameter r is a positive integer called checkability radius of 11, i.e.,
it determines how far in the graph each node needs to check in order to verify the validity of
a given solution. The parameter C' determines the constraints of II, that is, C' is a finite set
of labeled graphs H containing a vertex of eccentricity at most r, where each edge-endpoint
pair (uv,v) € Eg x Vp has a label ¢, € X, and a label oyt € Zout.

Let II = (Zin, Zout, C, ) be an LCL problem and let G = (V, E) be a graph where each
edge-endpoint pair (uv,v) is labeled with a label from X;,. The task of solving II on G
requires labeling each edge-endpoint pair (uv,v) € E x V with a label in X, such that, for
each node v € V it holds that the graph induced by the nodes at distance at most r from v
and edges that have at least one endpoint at distance at most r — 1 from v is isomorphic to
some (labeled) graph in C.

3.3 Advice schema

We now formally define the notion of advice schema.

» Definition 2 (Advice Schema). A (G,II, 3, T)-advice schema is a function f that receives
as input a (possibly input-labeled) graph G = (V,E,I) € G (where I is an input for the nodes
and/or the edges of the graph), and outputs a function g := f(G) that satisfies the following.
The function £ maps each node v € V into a bit-string of length at most 8, where B is a
function of A.
There exists a LOCAL algorithm A that, for each G € G, if we label each node v € V
with the bit-string e (v), then A runs in at most T rounds and outputs a valid solution
for I1, where T is a function of A.
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Moreover, we distinguish three possible types of advice schemas:

1. If all nodes of the graph receive bit-strings of the same length, then the schema is called
uniform fized-length.

2. If a subset of nodes receives bit-strings of the same length, and all the others receive
bit-strings of length 0, then the schema is called subset fized-length.

3. If a subset of nodes receives a bit-string of possibly different positive lengths, and all the
others receive bit-strings of length 0, then the schema is called variable-length. Observe
that an advice schema, as defined in Definition 2 and without further assumptions, is
variable-length.

In the second and third cases, the nodes having non-zero bit-strings assigned are called

bit-holding nodes. Moreover, observe that Type 1 is a special case of Type 2, which is a

special case of Type 3.

For uniform fixed-length advice schemas where all nodes receive one bit, we define the
notion of sparsity, which captures the fact that the ratio between nodes receiving a 1 and
nodes receiving a 0 can be made arbitrarily small.

» Definition 3 (Sparse schema). A uniform fized-length (G, 11, 8, T)-advice schema is called
e-sparse if the following holds:
B =1, that is, each node receives exactly one bit.
For any graph G € G, let ng be the number of nodes to which the schema (i.e., the function
f of Definition 2) assigns a 0, and let nqy be the number of nodes to which f assigns a 1.
Then, noTnl <e.
With abuse of notation, we call a uniform fized-length (G, 11, B, T)-advice schema (where T is
a function that receives as input € and returns a function of A) sparse if, for any constant

e > 0, there exists an e-sparse (G,11, B, T(g))-advice schema.

3.4 Composability

The main idea that we will use to devise our advice schemas is the following. Given some
problem II, it may be cumbersome to directly define an advice schema for it. Instead, it may
be easier to do this operation gradually. In more detail, many problems can be solved as
follows: first, find a solution for some subproblem; then, use the solution for the subproblem
in order to solve the problem more easily. As a running example, consider the following
problem II.
The input is a bipartite graph where all nodes have even degree.
It is required to output a coloring of the edges, say red and blue, such that each node has
the same number of red and blue incident edges.
Consider the following three problems.
Let II, be the problem of computing a 2-coloring of the nodes, say, black and white.
Let I, be the problem of outputting a 2-coloring of the edges, such that each node has
the same number of red and blue incident edges, assuming that we are given as input a
2-coloring of the nodes and a balanced orientation of the edges, and assuming that all
nodes have even degree.
Let II, be the problem of orienting all edges such that each node has the same number of
incoming and outgoing edges, assuming that all nodes have even degree.
Consider the following algorithm. First, solve Il and II,. Then, solve Il,, by coloring red
the edges oriented from black to white, and by coloring blue the edges oriented from white
to black. Observe that this algorithm solves II.
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In other words, we decomposed II into three different subproblems: two of them are
“hard” problems (II, and II,), for which some advice is needed if we want to solve them fast,
and one (I1,) is trivial once we are given as input the solution for the other two. The idea
now is to devise two different advice schemas for II, and II, separately.

For 11 there is a trivial advice schema: use 1 bit to encode the 2-coloring of the nodes.

For II, the advice schema is non-trivial, and we will show how it can be done by using 1

bit per node.

While both schemas use only 1 bit per node, we cannot directly combine these two schemas
into a single schema that uses 1 bit per node. For this reason, we will devise our schemas
in a more high-level way. In particular, for most of the results of this paper, we will not
directly provide a uniform fixed-length advice schema that uses one bit per node, but we
will start by devising variable-length schemas. Variable-length schemas provide a simpler
way to encode information: we can choose a subset of nodes and assign bit-strings to them,
without worrying about how these strings will be later encoded by giving one bit to each node.
Moreover, the variable-length schemas that we provide satisfy a property called composability,
which we will formally define later. Intuitively, this property requires the ability to make the
set of bit-holding nodes of a variable-length schema to be arbitrarily sparse. For example,
for II,,, we do not really need to provide the color of all nodes: we assign 1 bit to a sparse set
of nodes (encoding their color), and to all other nodes we do not assign any bit. The nodes
that have no bit assigned can still recover a 2-coloring by simple propagation. For Il,, things
are more complicated, but a composable variable-length schema can be obtained as well.

Once we have a composable schema for all subproblems that are used to solve our problem
of interest, we apply, as a black box, a lemma to obtain a single variable-length schema
for our problem. Then, again as a black box, we convert such a schema into a uniform
fixed-length schema that uses a single bit per node.

Summarizing, many of the results that we provide about schemas that use a single bit
per node are based on the following idea:

We first decompose a problem of interest into many subproblems;

We show that, for each of the subproblems, it is possible to devise a variable-length

schema that satisfies some desirable properties;

We prove that such properties imply that we can compose many variable-length schemas

into a single one that satisfies the same properties;

We prove that the resulting variable-length schema implies a uniform fixed-length schema

that uses a single bit per node.

Note that the last two steps are done in a problem-independent way. The conditions that
allow to combine multiple variable-length schemas are expressed in Definition 4, that, on
a high level, states the following. We want our variable-length schema to be tunable as a
function of three parameters «, 7y, and c. The schema needs to satisfy that in each a-radius
neighborhood there are at most « bit-holding nodes, and that the number of bits held by
these nodes is upper bounded by ca/v3. Hence, a composable schema is a collection of
schemas, one for each choice of parameters «, «y, and c.

» Definition 4 (Composability). A (G,I1, v, A, T)-composable advice schema is a collection
S of advice schemas satisfying the following. For any constant ¢ > 0, any v > g, and any
a > A(c,7), there exists 8 < ca /vy such that:

The collection S contains a variable-length (G, 11, B, T («, A))-advice schema S.

For each G € G, the assignment given by S to the nodes of G satisfies that, in each

a-radius neighborhood of G, there are at most vy bit-holding nodes.
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4  Structural results and lower bounds

Our main goal here is to show that if we were able to solve all LCLs with some constant
number of bits of advice per node, it would violate the Ezponential-Time Hypothesis (ETH)
[37]. However, to do that we need to first show a structural result, which is also of independent
interest: algorithms that make use of advice can be made order-invariant, i.e., they do not
need the numerical values of the identifiers.

4.1 Order-invariance

In general, in an advice schema our advice bits may depend on the numerical values of the
identifiers, and the algorithm A that solves the problem may make use of the advice bits and
the numerical values of the identifiers. However, here we will show that we can essentially
for free eliminate the dependency on the numerical values of the identifiers.

A distributed algorithm is called order-invariant [50] if the output remains the same
if we change the numerical values of the identifiers but preserve their relative order. Put
otherwise, an order-invariant algorithm may make use of the graph structure, local inputs
(which in our case includes the advice), and the relative order of the identifiers, but not the
numerical values of the identifiers.

Naor and Stockmeyer [50] showed that constant-time distributed algorithms that solve
LCL problems can be made order-invariant, and since then order-invariant algorithms have
played a key role in many lower-bound results related to constant-time distributed algorithms,
see e.g. [32, 33].

We say that graph problem II is component-wise-defined if the following holds: a valid
solution for graph G is also a valid solution for a connected component that is isomorphic to
G. Put otherwise, we can always solve II by splitting the graph into connected components
and solving II separately in each component. In essence all graph problems of interest
(especially in the distributed setting) are component-wise defined, but one can come up with
problems that do not satisfy this property (a trivial example being the task of outputting
the number of nodes in the graph).

We say that graph problem IT is a finite-input problem if the nodes and edges are either
unlabeled, or they are labeled with labels from some finite set X,.

Note that Theorem 5 below is applicable to LCL problems (they are component-wise
defined, and in any LCL we have a bounded A and bounded alphabets ¥, Xout), but also
to many other problems that are not locally checkable. We emphasize that we will assume
some bound on the maximum degree A, but if we have an encoding schema that works for
any A, we can apply the following result separately for each A.

» Theorem 5. Fiz a maximum degree A and the number of advice bits 8. Assume that II is
a finite-input component-wise defined graph problem, in which the task is to label nodes with
labels from some finite set Yout. Assume that we can solve some graph problem IT with some
distributed algorithm A in T rounds using 8 bits of advice. Then we can also solve I with
an order-invariant algorithm A’ in T rounds using B bits of advice.

Proof. Let E be the encoder that, given a graph G (with some unique identifiers), produces
(-bit advice strings that A can then use to solve II.

In the first steps, we follow the basic idea of Naor and Stockmeyer [50] to manipulate
A. Algorithm A is a mapping from labeled radius-T" neighborhoods to local outputs; we
write here N7 (v) for the radius-7" neighborhood of node v, and we let s = AT*! be an upper
bound on the number of nodes in N7 (v).
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In general, we can encode all information in N7 (v) as follows:

1. The set X C {1,2,...} of unique identifiers present in the neighborhood, with |X| < s.

2. The structure S of the neighborhood, which includes the graph topology, the relative
order of the identifiers, local inputs, and the advice bits.

So we can reinterpret A as a function that maps a pair (X, .S) to the local output A(X,S) €

Yout- But we can equally well interpret A as a function A that maps X to a type A(X) = F,

where F' is a function that maps S to the local output F(S) € Xoy; we simply let A(X)(S) =

A(X,S). The second interpretation turns out to be convenient.

Notice that we can always pad X with additional identifiers (that use values larger than
any value in X)), so that we will have | X| = s.

Then we make the key observation: there are only finitely many different structures S.
This follows from the assumptions that A is a constant, 8 is a constant, IT is a finite-input
problem, and T is a constant. Furthermore, X, is finite, so F' is a mapping from a finite
set to a finite set, and follows that there are only finitely many different types F. Let m be
the number of possible types, and identify the types with 1,2,...,m.

With this interpretation, A defines a coloring (in the Ramsey-theoretic sense) of all
s-subsets of natural numbers with m colors, that is, it assigns to each subset X C {1,2,...}
with | X| = s some color A(X) € {1,2,...,m}. By applying the infinite multigraph version
of Ramsey’s theorem, it follows that there exists an infinite set of natural numbers I and
a single canonical type F* such that for any X C I we have A(X) = F*. Set [ is called a
monochromatic set.

Now let us stop for a moment and digest what we have learned so far: if our unique
identifiers came from the set I, then we will have A(X,S) = A(X)(S) = F*(S). That is, A
will then ignore the numerical values of the identifiers and only pay attention to the structure
S. However, this is a big if; in general our identifiers can be arbitrary, and even adversarial.

Let us now continue; we will now modify the encoder E. We construct a new encoder E’
that works as follows. Assume we are given a graph G, together with some assignment of
unique identifiers. The encoder E’ first constructs graph G by renumbering the identifiers
(but preserving their order) so that all identifiers in Gy come from the monochromatic set I.

Now we would like to apply encoder F to G, but we cannot. Our encoder may assume
that the identifiers in an n-node graph come from the set {1,2,...,poly(n)}, while now we
have made our identifiers astronomically large. But to fix this we exploit the fact that II is
component-wise solvable. We simply construct a new graph H that consists of sufficiently
many copies of G, such that the first copy is G, with unique identifiers coming from I, while
in the other copies we assign identifiers from {1,2,...}\ I. This way we can arrange things
so that H has N nodes, for some (very large) number N, and the identifiers are assigned
from {1,2,...,N}.

Now H is a valid instance, and we can feed it to the encoder F, which will label it with
[-bit labels so that if we apply A to H and these labels, we will correctly solve II in each
component of H. In particular, we will correctly solve I in G;. Moreover, in component
G4, algorithm A will apply order-invariant algorithm F™ in all neighborhoods, ignoring the
numerical values of the identifiers.

However, we needed an encoding for our original graph G, with the original set of
identifiers. To do that, we proceed as follows. We make the above thought experiment, to
construct the advice for H. Then we simply copy the advice bits from component Gy to the
original graph G.

If we now applied A to solve II in G, it does not necessarily work. However, if we apply
A'(X,S) = F*(S) to solve II in G, it will behave in exactly the same way as applying
A in G;. Hence, A’ will also solve II correctly in G. Furthermore, A’ is by construction
order-invariant. |
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We note that the encoder E’ constructed above is not practical or efficient (even if the

original encoder F is). As we will see next, merely knowing that A’ exists can be sufficient.

4.2 Hardness assuming the Exponential-Time Hypothesis

In the full version of this work, we show that in graphs with sub-exponential growth, any
LCL can be solved with one bit of advice per node. We now show that one bit does not
suffice in general, assuming the Exponential-Time Hypothesis [37].

Recall that the Exponential-Time Hypothesis states that there is a positive constant
§ > 0 such that 3-SAT cannot be solved in time O(2°"), where n is the number of variables
in the 3-SAT instance.

» Theorem 6. Fiz any 5. Assume that for every LCL problem 11 there is some T such that,
on any input, IT can be solved in T rounds with B bits of advice. Then the Exponential-Time
Hypothesis is false.

Proof. Suppose there is some § such that all LCL problems can be solved with 8 bits of
advice. We show how to then solve 3-SAT in time O(2°" - n - f(g, 8)) for an arbitrarily small
€ > 0, violating the Exponential-Time Hypothesis.

Consider some 3-SAT instance ¢, with n variables and m clauses. By applying the
sparsification lemma by [38], we can assume w.l.o.g. that m = O(n).

Now turn ¢ into a bipartite graph, with nodes representing variables on one side and
nodes representing clauses on the other side. Each clause is connected by edges with the
three variables it contains. Each node is labeled by its type (variable or clause) and each
edge vc is labeled to indicate whether the variable v is negated in the clause ¢. This results

in a bipartite graph with n +m = O(n) nodes, and each clause-node has degree at most 3.

Hence, the total number of edges is at most 3m.

Variable-nodes may have arbitrarily high degrees, but the sum of their degrees is bounded
by 3m. We replace each variable-node that has degree d > 3 by a cycle of d variable-nodes,
with the new edges labeled by equality constraints. This results in a graph in which all nodes
have degree at most 3, and the total number of nodes is bounded by 3m + m = O(n). Let
Gg be the resulting graph, let ng = O(n) be the number of nodes in Gg, let Ag = 3 be the
maximum degree, and let ¢, = O(1) be the number of node and edge labels that we used to
encode the instance.

Now it is easy to define an LCL problem Iy such that a solution of Iy in graph Gy can
be interpreted as a satisfying assignment of the variables in formula ¢, and vice versa.

Now assume that we have defined an LCL problem II; and a graph G; with n; nodes,
maximum degree A;, and ¢; labels; the base case i = 0 was presented above. Define a new
LCL problem II;;; and a new graph G, as follows. We contract edges in G; to construct
G.41 so that we satisfy two properties: each node in G;41 represents O(1) nodes of G;, but
the number of nodes is n;11 < n;/2. This can be achieved by e.g. greedily contracting edges,

favoring the edges whose endpoints currently represent the smallest number of nodes of G;.

We label the nodes of G4 so that given the input labels of the nodes, we can also recover
the original graph G;. As each node represents a bounded number of original nodes, and
the original graph had maximum degree A;, the new graph will have maximum degree A;4;
that only depends on 4. Also, the number of labels ¢; 1 will be bounded by a constant that
only depends on ¢. To see that everything can be indeed encoded with constant-size labels,
note that each new node v in G4 can have its own local numbering of the original nodes v’
that were contracted to v, that is, each node v’ can be represented as a pair (v,a), where
v is a new node and a is a sequence number. This way, the new label of node v can use
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constant-size triples of the form (a, b, z) to encode that graph G; had an edge from (v, a) to
(v,b) with label z, and the new edge label of edge (u,v) can also use constant-size triples
of the form (a,b, x) to encode that graph G; had an edge from (u,a) to (v,b) with label z.
Finally, the new node label of v will use constant-size pairs of the form (a,z) to encode that
the node label of (v,a) in G; was x. This way we can use constant-size node and edge labels
in G;41 to encode the structure and node and edge labels of G;.

Now we can define an LCL problem II;;; such that a valid solution of II;;; in G;41 can
be mapped to a valid solution of II; in G;, and hence eventually to a satisfying assignment
of ¢, and conversely a satisfying assignment of ¢ can be turned into a valid solution of II;,;.
In essence, the output label of a node in G;41 captures the output labels of all O(1) nodes of
G; that it represents.

Continuing this way for ©(log(3/¢)) steps, we can construct a graph G; with fewer than
en/B nodes. Furthermore, there is some LCL problem II; such that ¢ is a yes-instance if and
only if there is a valid solution of II; in G;.

By assumption, there exists a distributed algorithm A that solves II; with 3 bits of advice
per node. Using Theorem 5, we can also assume that A is order-invariant. Hence, A is a
finite function, and we can compute A in constant time (where the constant depends on ¢,
which depends on  and ¢, but is independent of n).

Now, we simply try out all possible strings of advice; there are at most 2°™ such strings.
For each advice combination, we try to apply A to solve II; in G;; we simulate A at each of
the n; = O(n) nodes. If and only if ¢ is satisfiable, we will find an advice string such that A
succeeds in solving II;. The overall running time is O(2°" - n - f(e, 5)). <
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