
Towards Fully Automatic Distributed Lower Bounds
Alkida Balliu #

Gran Sasso Science Institute, L’Aquila, Italy

Sebastian Brandt #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Fabian Kuhn #

University of Freiburg, Germany

Dennis Olivetti #

Gran Sasso Science Institute, L’Aquila, Italy

Joonatan Saarhelo #

Unaffiliated, Helsinki, Finland

Abstract
In the past few years, a successful line of research has led to lower bounds for several fundamental
local graph problems in the distributed setting. These results were obtained via a technique called
round elimination. On a high level, the round elimination technique can be seen as a recursive
application of a function that takes as input a problem Π and outputs a problem Π′ that is one
round easier than Π. Applying this function recursively to concrete problems of interest can be
highly nontrivial, which is one of the reasons that has made the technique difficult to approach. The
contribution of our paper is threefold.

Firstly, we develop a new and fully automatic method for finding so-called fixed point relaxations
under round elimination. The detection of a non-0-round solvable fixed point relaxation of a problem
Π immediately implies lower bounds of Ω(log∆ n) and Ω(log∆ log n) rounds for deterministic and
randomized algorithms for Π, respectively.

Secondly, we show that this automatic method is indeed useful, by obtaining lower bounds for
defective coloring problems. More precisely, as an application of our procedure, we show that the
problem of coloring the nodes of a graph with 3 colors and defect at most (∆−3)/2 requires Ω(log∆ n)
rounds for deterministic algorithms and Ω(log∆ log n) rounds for randomized ones. Additionally,
we provide a simplified proof for an existing defective coloring lower bound. We note that lower
bounds for coloring problems are notoriously challenging to obtain, both in general, and via the
round elimination technique.

Both the first and (indirectly) the second contribution build on our third contribution: a new
method to compute the one-round easier problem Π′ in the round elimination framework. This
method heavily simplifies the usage of the round elimination technique, and in fact it has been
successfully exploited in a recent work in order to prove quantum advantage in the distributed
setting [STOC ’25].

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases round elimination, lower bounds, defective coloring

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.13

Related Version Full Version: https://arxiv.org/abs/2410.20224

Funding This work was partially supported by the MUR (Italy) Department of Excellence 2023 -
2027 for GSSI, the European Union - NextGenerationEU under the Italian MUR National Innovation
Ecosystem grant ECS00000041 - VITALITY – CUP: D13C21000430001, and the PNRR MIUR
research project GAMING “Graph Algorithms and MinINg for Green agents” (PE0000013, CUP
D13C24000430001).

© Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti, and Joonatan Saarhelo;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 13; pp. 13:1–13:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alkida.balliu@gssi.it
https://orcid.org/0000-0001-5293-8365
mailto:brandt@cispa.de
https://orcid.org/0000-0001-5393-6636
mailto:kuhn@cs.uni-freiburg.de
https://orcid.org/0000-0002-1025-5037
mailto:dennis.olivetti@gssi.it
https://orcid.org/0000-0002-6600-6443
mailto:joon.saar@gmail.com
https://doi.org/10.4230/LIPIcs.DISC.2025.13
https://arxiv.org/abs/2410.20224
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

13:2 Towards Fully Automatic Distributed Lower Bounds

1 Introduction

In the standard setting of distributed graph algorithms, known as the LOCAL model [29, 35],
the nodes V of a graph G = (V, E) communicate over the edges E of G in synchronous rounds.
Initially, the nodes do not know anything about G (except for their own unique identifier and
possibly some global parameters such as the number of nodes n or the maximum degree ∆)
and at the end, each node must output its local part of the solution for the graph problem
that needs to be solved. For example, if we intend to compute a vertex coloring of G, at
the end, every node must output its own color in the final coloring. The time complexity
of such a distributed algorithm is then measured as the number of rounds needed from the
start until all nodes have terminated.

The study of the complexity of solving graph problems in the LOCAL model and in related
distributed models has been a highly active area of research with a variety of substantial
results over the last years. Apart from very significant and insightful new algorithmic
results for distributed graph problems (e.g., [20, 19, 26, 36, 21, 25, 24]), the last ten years in
particular also brought astonishing progress on proving lower bounds for distributed graph
problems in the LOCAL model (e.g., [17, 19, 3, 5]). Essentially all of this recent progress on
lower bounds has been obtained by a technique known as round elimination. The technique
works for a class of problems known as locally checkable problems [33, 16]. Informally, a
locally checkable problem is a problem for which there exists a constant-time algorithm
satisfying the following: if a given solution is correct, the algorithm accepts on all nodes;
otherwise, the algorithm rejects on at least one node. This class encompasses many of the
most fundamental problems studied in the context of the LOCAL model, such as maximal
matching, maximal independent set, and different variants of graph coloring.

Round Elimination. On a very high level, round elimination works as follows. Given a
problem Π provided in the proper language, the round elimination framework provides a
way to mechanically construct a problem Π′ = R̂(Π) that is exactly one round easier (under
some mild assumptions). That is, if Π can be solved in R rounds, then Π′ can be solved in
R − 1 rounds (and vice versa).1 For proving an R-round lower bound on problem Π, one
then has to show that the problem R̂

(R−1)
(Π), or a relaxation of it, is not trivial, i.e., it

cannot be solved in 0 rounds.
In its modern form, round elimination has first been used to show that the problems of

computing a sinkless edge orientation or a ∆-vertex coloring of G require Ω(log log n) rounds
with randomization and Ω(log n) rounds deterministically [17, 19].2 Subsequently Brandt [16]
showed that round elimination can be applied to essentially every locally checkable problem
and if a problem Π is specified in the right language, the problem R̂(Π) can be computed in
a fully automatic way. Automatic round elimination in the following led to a plethora of
new distributed lower bounds. We next list some of the highlights. In [3], it was shown that
even in regular trees, computing a maximal matching requires Ω(min {∆, log∆ log n}) rounds
with randomized algorithms and Ω(min {∆, log∆ n}) rounds with deterministic algorithms.
Previously, the best known lower bound as a function of ∆ for this problem was only

1 Formally, round elimination has to be performed on a weaker version of the LOCAL model, which is
known as the port numbering model. In the port numbering model, nodes do not have unique IDs, but
they can distinguish their neighbors through different port numbers. Round elimination lower bounds
in the port numbering model can then be lifted to lower bounds in the standard LOCAL model [5].

2 We remark that although phrased differently, the classic proofs that 3-coloring a ring requires Ω(log∗ n)
rounds [32, 29] can also be seen as round elimination proofs.

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and J. Saarhelo 13:3

Ω(log ∆/ log log ∆) [28]. By a simple reduction, the same lower bound as for maximal
matching also holds for computing a maximal independent set (MIS). In later work, the same
lower bound was also proven directly for the MIS problem on trees and it was generalized in
particular to the problems of computing ruling sets and of computing maximal matchings in
hypergraphs, leading to tight (as a function of ∆) lower bounds for those problems [8, 4, 5, 7].

We emphasize that all the recent progress on developing new lower bounds for locally check-
able problems in the LOCAL model has only been possible because the work of Brandt [16]
describes an automatic and generic way to turn any locally checkable problem (given in the
right formalism) into a locally checkable problem that is exactly one round easier. Moreover,
for much of the progress, it was crucial that there exists efficient software as described by
Olivetti in [34] that can be used to apply round elimination to concrete locally checkable
problems.

Unfortunately, while round elimination has been extremely successful for proving many
new lower bounds for computing locally checkable graph problems, the method has so far not
been able to provide new lower bounds for many of the standard variants of distributed graph
coloring and thus for some of the most important and most well-studied locally checkable
problems. When applying round elimination to standard (∆ + 1)-coloring and related graph
coloring problems, the descriptions of the problems in the sequence obtained by applying
R̂(·) iteratively grow doubly exponential in each round elimination step (i.e., with each
application of R̂(·)) and thus even the one round easier problem R̂(Π) often becomes too
complex to understand.

We are convinced that in order to continue the present success story, further developing
the existing automatic techniques will be indispensible and the main objective of this paper
is to provide more efficient and more powerful methods for finding distributed lower bounds
in an automatic fashion.

Distributed Coloring. As a concrete application, we aim to make progress towards obtaining
lower bounds for distributed coloring problems. To achieve this, we consider the problem of
computing a d-defective c-coloring. For two parameters c and d, a d-defective c-coloring of a
graph G = (V, E) is a partition of V into c color classes so that every node v ∈ V has at most
d neighbors that have the same color as v. Such colorings have become an important tool in
many recent distributed coloring algorithms [15, 12, 13, 11, 14, 27, 6, 10, 23]. In [23], it is also
argued that further progress on defective coloring algorithms might be key towards obtaining
faster distributed (∆ + 1)-coloring algorithms and proving hardness results on distributed
defective coloring algorithms might therefore also provide insights into understanding the
hardness of the standard (∆ + 1)-coloring problem. To obtain proper colorings, defective
colorings are commonly used as a subroutine in a recursive manner and to obtain efficient
coloring algorithms using few colors, it would be particularly convenient to have algorithms
that efficiently compute defective colorings with c colors and defect only (1 + o(1))∆/c. Such
defective colorings always exist [30] and efficient distributed algorithms for computing such
colorings would immediately lead to faster O(∆)-coloring algorithms and potentially also to
faster (∆ + 1)-coloring algorithms. In fact, a generalized variant of (1 + o(1))∆/2-defective
2-colorings of line graphs have recently been used in a breakthrough result that obtains the
first poly log ∆ + O(log∗ n)-round algorithm for computing a (2∆ − 1)-edge coloring of a
graph [6].

In contrast, the best known algorithms for computing an O(∆) or (∆ + 1)-vertex coloring
require time polynomial in ∆ [11, 22, 14, 31]. For vertex coloring, it is already known that
computing (1 + o(1))∆/2-defective 2-colorings requires Ω(log n) rounds even in bounded-

DISC 2025

13:4 Towards Fully Automatic Distributed Lower Bounds

degree graphs [9]. This raises the important question whether an increased number of c > 2
colors can admit the desired efficient (1 + o(1))∆/c-defective c-colorings. Already the case of
c = 3 was wide open previous to our work and an important open problem in its own right:
obtaining the desired efficient defective coloring algorithm for c = 3 would have fundamental
consequences by improving the complexity of O(∆)-coloring (and of (∆ + 1)-coloring if
extendable to list defective colorings [23]), while proving a substantial lower bound for
any such algorithm might pave the way for proving similar lower bounds for larger c in
the future. As one of the main technical results of this paper, we show that computing
(1 + o(1))∆/3-defective colorings (and in fact (1− o(1))∆/2-defective colorings) with 3 colors
requires Ω(log n) rounds. We conjecture that a similar result should also hold for more than
3 colors and we hope that such a result can be proven by extending the techniques that we
introduce in this paper.

1.1 Our Contributions and High-Level Ideas of Our Techniques
In the present paper, we take the task of automating round elimination and thus automating
the search for distributed lower bounds one step further. In the following, we provide a
high-level discussion of the contributions of the paper.

1.1.1 An Automatic Way of Generating Round Elimination Fixed Points
Chang, Kopelowitz, and Pettie [19] showed that in the LOCAL model, every locally checkable
problem Π can either be solved deterministically in f(∆) ·O(log∗ n) rounds (for some function
f(·)) or Π has a deterministic Ω(log∆ n) and a randomized Ω(log∆ log n) lower bounds. In
the following, we call problems of the first type easy problems and problems of the second
type hard problems.

Fixed Points Imply Hardness Results. A particularly elegant way to prove that a problem
is of the second type is through round elimination fixed points. A locally checkable problem
Π is called a round elimination fixed point if R̂(Π) = Π, i.e., if the problem that is “one
round easier” than Π is Π itself. We say that a problem Π is a non-trivial fixed point if Π
is a round elimination fixed point that cannot be solved in 0 rounds. If a problem Π is a
non-trivial fixed point, existing standard techniques directly imply that Π is a hard problem,
i.e., that any deterministic LOCAL algorithm to solve Π requires at least Ω(log∆ n) rounds
and every randomized such algorithm requires at least Ω(log∆ log n) rounds (see, e.g., [5]).
Moreover, we obtain the same lower bounds for Π if Π is not a fixed point itself but can
be relaxed to a non-trivial fixed point Π̃. In fact, while interesting problems exist that are
non-trivial fixed points themselves (see, e.g., [17]), finding a non-trivial fixed point relaxation
Π̃ for Π (which we may simply call a fixed point for Π) is a more common way to prove
lower bounds for a given problem Π (see, e.g., [2, 5, 7]). Furthermore, as shown in [5, 7],
surprisingly, fixed points can also be used to prove lower bounds on the ∆-dependency of
easy problems, i.e., problems that can be solved in time f(∆) ·O(log∗ n).

Fixed Points Can Be Large. In order to understand the distributed complexity of locally
checkable problems, we therefore need methods to find non-trivial fixed points for such
problems in case such fixed points exist. We argue that, similarly to performing and
analyzing round elimination, also finding new fixed points will in many cases require some
automated support for searching for fixed points. Note that in general, even for a relatively
simple problem Π with a small description, the smallest fixed point relaxation Π̃ of Π might

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and J. Saarhelo 13:5

be much more complex and have a much larger description than the original problem Π.
Consider for example the ∆-coloring problem in ∆-regular graphs. While the problem itself
can be described3 with ∆ different labels and ∆ different node configurations (one for each
possible color), the round elimination fixed point for ∆-coloring that has been described in
[5] consists of 2∆ different labels and 2∆ − 1 different node configurations (and no smaller
fixed point for ∆-coloring is known or suspected to exist). Finding fixed points for problems
that are not as symmetric and not as well-behaved as ∆-coloring might quickly become
infeasible when it has to be done by hand, even when using the support of existing software
for performing single round elimination steps.

Our Contribution: a Procedure for Finding Fixed Points Automatically. While the round
elimination procedure is fully automatic in the sense that it gives a mechanical way to
compute R̂(Π) as a function of Π, finding fixed point relaxations is a manual process, where
it is required to guess what is the right relaxation Π̃ of Π and then test if Π̃ is indeed a
non-trivial fixed point.

One of the major open questions in the field is understanding whether one can automati-
cally decide whether a given problem is easy or hard. Essentially, the only known way to
prove that a problem is hard is producing a non-trivial fixed point relaxation of it, and it is
not even known if all hard problems admit a non-trivial fixed point relaxation.

As our first main contribution, we make substantial progress on this question, by providing
a method to automatically generate relaxations Π̃ of a given locally checkable problem Π
that are guaranteed to be fixed points under the round elimination framework. While there is
no formal guarantee that the resulting problem is non-trivial (and hence that the procedure
succeeded in giving a lower bound), this procedure is able to automatically derive all fixed
point relaxations that have been manually obtained in the past. Moreover, we additionally
show that the procedure provides novel results.

Our Contribution: a First Simple Application of Our Procedure. As a first direct
application we get a simpler proof of a result of [5]: by applying our method to the ∆-coloring
problem, we directly obtain the ∆-coloring fixed point that was presented in [5].

1.1.2 Lower Bounds for Defective Coloring Problems
Understanding the complexity of (∆ + 1)-coloring is one of the major open questions in the
field, and one of the very few techniques known to be able to prove lower bounds for local
problems is round elimination. Unfortunately, (∆ + 1)-coloring, and many other variants of
coloring, behave very badly in round elimination, in the sense that the problem Π′ constructed
via round elimination is typically doubly exponentially larger than the original problem Π.
Understanding defective colorings seems to be one of the main obstacles that we need to
overcome in order to make progress on (∆ + 1)-coloring, for different reasons:

While we still cannot understand the resulting problem Π′, we can observe that it is some
variant of coloring that includes, as a subproblem, variants of defective coloring. Hence,
in order to prove lower bounds for (∆ + 1)-coloring, we need to understand defective
colorings first;
In [23] it has been argued that improving defective coloring algorithms might be the key
for improving upper bounds for (∆ + 1)-coloring.

3 For an introduction to the description of problems, see Section 1.1.3 or Section 3.2.

DISC 2025

13:6 Towards Fully Automatic Distributed Lower Bounds

For defective 2-coloring, hardness results are known [9]. However, such results do not
say much about defective c-coloring for c ≥ 3, because defective 2-coloring is special, in the
sense that this problem seems to be much harder than the case c ≥ 3. In fact, even on
graphs where each node has some minimum degree equal to some large constant, even the
seemingly simpler task of requiring each node of the graph to have at least two neighbors of
a different color is hard. While this is not our main contribution regarding defective coloring,
we show that our fixed point procedure is able to automatically obtain a non-trivial fixed
point relaxation for defective 2-coloring.

The problem of computing a d-defective 3-coloring is much more interesting, since,
differently from defective 2-coloring, for a large range of values of d, it is known to be easy. In
our work, we make substantial progress on defective coloring, by proving that, for d ≤ ∆−3

2 ,
the d-defective 3-coloring problem is hard. Such a result is obtained by applying our fixed
point procedure on defective 3-coloring. However, the obtained fixed point is so large that
we needed to introduce an additional technique to let a computer verify that the resulting
problem is indeed non-trivial. We believe that the three new techniques that we introduce to
obtain our result on defective 3-coloring (namely, a new way of applying round elimination, a
way to automatically compute fixed points, and a way to let computers verify that an entire
family of problems is non-trivial) will pave the way to proving lower bounds for d-defective
c-coloring for c > 3. In the following, we give more details on our contributions on defective
coloring.

Our Contribution: Defective 2-Coloring. Not many bounds on the complexity of defective
colorings are known (we discuss known bounds in the full version of this paper). An exception
is the case of defective colorings with 2 colors, which is understood. By computing an MIS
(which can be done in O(∆ + log∗ n) rounds [15]) and assigning the MIS nodes one of the
colors and the remaining nodes the other color, one obtains a (∆− 1)-defective 2-coloring
of the graph. Interestingly, the problem becomes hard if we try to just go one step further:
in [9], it was shown that computing a (∆− 2)-defective 2-coloring is a hard problem. This
result has been shown via a reduction from the hardness of sinkless orientation. However,
this reduction is based on the construction of virtual graphs on which the defective coloring
algorithm is executed in order to obtain a sinkless orientation on the original graph, and
in particular the lower bounds are not proved by providing a non-trivial fixed point. As a
second application of our fixed point generation method, we show the following.

There exists a non-trivial fixed point relaxation for (∆− 2)-defective 2-coloring.

This result is significant in light of the fundamental open question stated in [18, 5] asking
whether, for every locally checkable problem Π that has a deterministic Ω(log∆ n) and
a randomized Ω(log∆ log n) lower bound, such a lower bound can be proven via a round
elimination fixed point. The (∆− 2)-defective 2-coloring problem was one of an only very
small number of such problems for which previously no fixed point lower bound proof was
known.

Our Contribution: Defective 3-Coloring. As a main application of our automatic fixed
point procedure, we study the defective coloring problem with 3 colors. From the arbdefective
coloring lower bound of [5], it is known that d-defective 3-coloring is hard if 3(d + 1) ≤ ∆
and thus if d ≤ ∆

3 − 1. In [9], it was further shown that if d ≥ 2∆−4
3 , d-defective 3-coloring

can be solved in O(∆ + log∗ n) rounds. By using our fixed point method, we manage to
partially close this gap by proving the following statement.

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and J. Saarhelo 13:7

For d ≤ ∆−3
2 , the d-defective 3-coloring problem is a hard problem, i.e., it requires

Ω(log∆ n) rounds deterministically and Ω(log∆ log n) rounds with randomization.

This in particular implies that there is no (1 + o(1))∆/3-defective 3-coloring algorithm
that violates those time lower bounds, thereby ruling out the possibility of using defective
3-coloring as an approach for attacking O(∆) and (∆ + 1)-coloring in the manner outlined
before Section 1.1.

We note that the fixed point that we automatically generate for this problem is highly
non-trivial, and that manually proving that the fixed point that we provide is indeed a fixed
point would require to perform a case analysis over hundreds of cases. For this reason, we do
not manually prove that the fixed point that we provide is indeed a fixed point. Instead, we
provide a way to automate this process, by reducing the problem of determining whether
a problem is a fixed point to the problem of proving that certain systems of inequalities
have no solution. The remaining task of showing that said systems have no solution can be
performed automatically via computer tools. This automatization process provides a partial
answer to Open Question 9 in [5].

1.1.3 A More Efficient Method for Performing Round Elimination
Another major contribution of our work is providing a new way of applying round elimination.
In particular, we provide a new procedure for computing the problem R̂(Π). We would
like to point out that after our work appeared online, our procedure has already proved to
be extremely helpful for writing proofs based on round elimination. In fact, our procedure
has been used to prove quantum advantage in the distributed setting [1]. We now provide
more details on this procedure, and how we modified it to obtain the fixed point procedure
mentioned in Section 1.1.1.

As a first step, in our work, we first provide a novel way for computing a locally checkable
problem Π′ that is exactly one round easier than Π. Then, we show that, by applying such a
procedure in a slightly modified way, instead of obtaining the problem Π′, we obtain some
problem Π̃ which is guaranteed to be a fixed point relaxation of Π. While in some cases the
obtained problem Π̃ may be solvable in 0 rounds (i.e., this must be the case when applying
the procedure on an easy problem), the results presented in Section 1.1.2 are obtained by
proving that the fixed points that we get by applying the procedure on defective colorings
are non-trivial.

While our new procedure for applying the round elimination technique has applications
for finding fixed points, this procedure is interesting on its own. In order to better explain the
reason, we first highlight the main issue of the standard way of applying round elimination.
While for a given locally checkable problem Π, the framework of Brandt [16] gives a fully
automatic way for computing a locally checkable problem Π′ that is exactly one round easier
than Π, this computation is in general not computationally efficient. To illustrate why, we
somewhat informally sketch how round elimination works (for a formal description we refer
to Section 3.3).

How Round Elimination Works. For the automatic round elimination framework, a locally
checkable problem on a ∆-regular graph G = (V, E) is formalized on the bipartite graph H

between the nodes V and the edges E of G.4 That is, H is obtained by adding an additional

4 More generally, round elimination can be defined on biregular bipartite graphs or hypergraphs (see
Section 3).

DISC 2025

13:8 Towards Fully Automatic Distributed Lower Bounds

node in the middle of the edges in E. Each edge of G is thus split into 2 halfedges. A
solution to a locally checkable problem is given by an assignment of labels from a finite
alphabet Σ to all edges of H (i.e., to each halfedge of G). The validity of a solution is given
by a set of allowed node and edge configurations, where a node configuration is a multiset
of labels of size ∆ and an edge configuration is a multiset of labels of size 2. One step of
round elimination on G is done by performing two steps of round elimination on H (note
that one round on G corresponds to two rounds on H). When starting from a node-centric
problem Π (i.e., a problem where the nodes in H corresponding to nodes in G assign the
labels to their incident half-edges), the first step transforms Π into an edge-centric problem
Π′ that is exactly one round easier on H and the second step transforms the problem into a
node-centric problem Π′′ that is one round easier than Π′ on H and thus one round easier
than Π on G. The label set Σ′ of Π′ is the power set 2Σ of Σ and the label set Σ′′ of Π′′

is the power set of Σ′. The allowed edge configurations of Π′ are, roughly speaking, the
multisets {L1, L2} of labels L1, L2 ∈ Σ′ = 2Σ such that for all ℓ1 ∈ L1 and ℓ2 ∈ L2, {ℓ1, ℓ2}
is an allowed edge configuration of Π.5 The allowed node configurations of Π′ are all the
multisets {L1, . . . , L∆} of labels Li ∈ Σ′ (that appear in some allowed edge configuration of
Π′) such that there exists an allowed node configuration {ℓ1, . . . , ℓ∆} with ℓi ∈ Li in problem
Π. In the second step, Π′′ is obtained in the same way from Π′, but by exchanging the
roles of nodes and edges. That is, in the second step, the “for all” quantifier is applied to
the allowed node configurations and the “exists” quantifier is applied to the allowed edge
configurations (of Π′).

The Computationally Expensive Part. Note that from a computational point of view, it is
mainly the application of the “for all” quantifier on the edge side when going from Π to Π′

and even more importantly on the node side when going from Π′ to Π′′ that is challenging.
When implemented naively, one has to iterate over all possible size-2 multisets of Σ′ in the
first step and over all possible size-∆ multisets of Σ′′ in the second step. While in general,
the problem Π′′ that is one round easier than the original problem Π on G can be doubly
exponentially larger than Π, for interesting problems this is often not the case. For such
more well-behaved problems, the “for all” case can potentially be computed in a much more
efficient way.

Our Contribution. As our final contribution, we give a new elegant way to perform the
application of the “for all” quantifier in round elimination. The method makes use of the fact
that often the node and edge configurations of a problem can be represented by a relatively
small number of condensed configurations. A condensed node or edge configuration is a
multiset {S1, . . . , Sk} (where k = ∆ for nodes and k = 2 for edges) of sets S1, . . . , Sk ⊆ Σ
of labels, representing the set of all configurations {ℓ1, . . . , ℓk} for which ℓi ∈ Si for all
i ∈ {1, . . . , k}. We prove that the “for all” part of round elimination can be performed by a
simple process that consists of steps of the following kind. In each step, we take two condensed
configurations of the current problem and we combine those condensed configurations in some
way to generate new condensed configurations. We then remove redundant configurations
and continue until such a step cannot generate any new condensed configurations. In the
end, each condensed configuration {S1, . . . , Sk} is interpreted as a multiset of labels of the
new problem. We formally define the process and prove its correctness in Section 4.

5 In the formally precise definition of the set of edge configurations of Π′ provided in Section 3.3, we’ll
refine this definition slightly.

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and J. Saarhelo 13:9

Informally, we prove that each configuration of the resulting problem can be described as
a binary tree, where leaf nodes are condensed configurations of the original problem, and
each internal node of the tree is the configuration obtained by combining its two children.

Since our new procedure is mainly used as a tool for obtaining fixed points, we do not
formally state the benefits of this new procedure. However, we informally highlight the
following:

The new procedure avoids the cost of enumerating all possible size-∆ multisets of Σ′′ in
the second step, and its running time only depends on the number of input configurations,
output configurations, and the height of the aforementioned trees. Such trees have height
at most ∆ · |Σ′|, and we observe that, for many natural problems, the height is much
smaller. We thus obtain that, for many problems of interest, the running time of the new
procedure is output-sensitive.
Thanks to the new procedure, we obtain that, in order to check whether a problem is
a fixed point, it is sufficient to check whether the combination of pairs of condensed
configurations does not create new configurations. While this drastically reduces the time
complexity of checking whether a problem is a fixed point, this also makes it much easier
to prove that a problem is a fixed point. In fact, in the latter case, it is sufficient to
consider two configurations at a time, instead of going through an exponential number of
cases. We point out that, even if some friendly oracle gave us the fixed point for defective
3-coloring (which we present in the full version of this paper), we believe that, without
exploiting this new procedure, proving that such a problem is indeed a fixed point would
not have been possible.

2 Road Map

Further related work. In the full version of this paper, we provide further related work.
More in detail, we discuss existing fixed points, the surprising fact that fixed points can be
used to prove lower bounds as a function of ∆, and defective coloring.

Preliminaries. In Section 3, we provide some preliminaries. We first define the model of
computation and the language that we use to formally describe problems. Then, we describe
the round elimination framework.

A new way of applying round elimination. On a high level, round elimination allows us
to start from a problem Π and to compute a problem Π′ that, under some assumptions,
is exactly one round easier (in the distributed setting) than Π. As it will become clear in
Section 3, computing Π′ as a function of Π can be a tricky process. In Section 4 we provide
a novel and simplified way to compute Π′ as a function of Π, and in the full version of this
paper we prove its correctness.

Fixed point generation. A problem Π′ is a non-trivial fixed point relaxation of Π if it
satisfies the following: Π′ can be solved in 0 rounds if we are given a solution for Π; Π′

cannot be solved in 0 rounds in the so-called port numbering model (see Section 3 for the
definition of this model); By applying round elimination on Π′, we obtain Π′ itself.

It is known by prior work (see Theorem 1) that, if there exists a non-trivial fixed point
relaxation for a problem Π, then Π requires Ω(log∆ n) rounds for deterministic algorithms
and Ω(log∆ log n) rounds for randomized ones. In the full version of this paper, we provide
an automatic way to obtain non-trivial fixed point relaxations. More in detail, we provide a

DISC 2025

13:10 Towards Fully Automatic Distributed Lower Bounds

procedure FixedPoint that takes as input a problem Π and an object D (called diagram),
and it produces a problem Π′ that is always guaranteed to be a fixed point. Whether such a
fixed point is non-trivial depends on Π and on the choice of D.

Selecting the right diagram. As mentioned, the choice of the diagram D may affect the
triviality of the obtained fixed point. In the full version of this paper, we first provide a
generic way to construct a diagram as a function of Π, that we call default diagram. Then,
we show possible ways to modify the default diagram in the case in which the fixed-point
obtained with the default diagram is a trivial one.

An alternative proof for the hardness of ∆-coloring. In the full version of this paper, we
show a first application of our fixed point procedure, by providing a non-trivial fixed point
relaxation for the ∆-coloring problem. Such a fixed point was already shown in [5], but here
we show a much easier proof. While this section is not the main contribution of our work, its
main purpose is to warm-up the reader for what comes later.

An alternative proof for the hardness of defective 2-coloring. In the full version of this
paper, we show another application of our fixed point procedure, by providing a non-trivial
fixed point relaxation for the (∆− 2)-defective 2-coloring problem. This is one of the few
problems for which an Ω(log∆ n) lower bound is known by prior work [9], but a non-trivial
fixed point relaxation for this problem was unknown. Whether a non-trivial fixed point
relaxation exists for all problems that require Ω(log∆ n) deterministic rounds is one of the
major open questions about round elimination, and hence we make progress in understanding
it. Again, this result is not the main contribution of our work, and its main purpose is to
prepare the reader for what comes next.

Defective 3-coloring. In the full version of this paper, we use our fixed point procedure to
show a lower bound for defective 3-coloring. While the proofs for ∆-coloring and defective
2-coloring require a relatively short case analysis, the proof for defective 3-coloring requires
to analyze hundreds of cases. For this reason, we prove that such a case analysis can be
performed automatically by using computer tools. In particular, we reduce the task of
checking whether a given problem Π is the result of applying our fixed point procedure, to
proving that all systems of inequalities belonging to a certain finite set have no solution,
which can be checked automatically via computer tools.

Open questions. We present some open questions in the full version of this paper.

3 Preliminaries

3.1 The LOCAL Model
The computational model that we consider is the standard LOCAL model of distributed
computing [29, 35], where the nodes V of a graph G = (V, E) communicate over the edges
E. More precisely, time is divided into synchronous rounds, and in each round each node
can send an arbitrarily large message to each neighbor. Moreover, between sending messages,
nodes can perform any internal computation on the information they gathered so far. In the
beginning of the computation, each node v is aware of its own degree deg(v), and has an
internal ordering of its incident edges represented by the ports 1, . . . , deg(v) being assigned

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and J. Saarhelo 13:11

bijectively to v’s incident edges. We also assume that each node is aware of the number n

of nodes and the maximum degree ∆ of the input graph. As we will prove lower bounds in
this work, this assumption makes our results only stronger. Moreover, each node is equipped
with some symmetry-breaking information to avoid trivial impossibilities: in the case of
deterministic algorithms, each node is assigned some globally unique ID of length O(log n)
bits; in the case of randomized algorithms, each node instead has access to an unlimited
amount of private random bits. Each node executes the same algorithm that governs which
messages a node sends (depending on the accumulated knowledge of the node) and what the
node outputs at the end of the computation. Each node has to terminate at some point and
then provide a local output; all local outputs together form the global solution to the problem.
The (round or time) complexity of a distributed algorithm is the number of rounds until the
last node terminates. In the randomized setting, as usual, the algorithms are required to
be Monte-Carlo algorithms that produce a correct solution with high probability, i.e., with
probability at least 1− 1/n.

While the lower bounds we prove hold in the LOCAL model, for technical reasons we
will also make use of the port numbering model along the way. The (deterministic) port
numbering model is the same as the deterministic LOCAL model apart from two differences:
1. No symmetry-breaking information is provided, i.e., nodes are not equipped with IDs.
2. For each hyperedge e, a total order on the set of incident nodes is provided (which can be

formalized via a bijection between this node set and the set {1, . . . , k}, where k denotes
the number of nodes contained in e).

The second difference can be seen as an analog (on the hyperedge side) of the port numbers
via which the nodes can distinguish between incident hyperedges.

3.2 Problems
The problems we study in this work fall into the class of locally checkable problems. Locally
checkable problems are problems that can be defined via local constraints and encompass the
vast majority of problems studied in the LOCAL model. A modern formalism to define these
problems is given by the so-called black-white formalism that we will also use in this paper.
In fact, as we will see, this formalism captures locally checkable problems not only on graphs,
but more generally on hypergraphs (where we will denote the maximum number of nodes in
a hyperedge by δ). In the full version of this paper we provide an example illustrating (some
of) the definitions provided in this section.

The black-white formalism. In the black-white formalism, a locally checkable problem
is given as a triple Π = (ΣΠ,NΠ, EΠ). Here, ΣΠ is a finite set of elements, called labels,
NΠ = (N1, . . . ,N∆) and EΠ = (E1, . . . , Eδ), where each Ni and Ei is a collection of multisets
of cardinality i with labels from ΣΠ. We call NΠ the node constraint of Π and EΠ the
edge constraint of Π. On a hypergraph, a correct solution for Π is an assignment of labels
from ΣΠ to the incident node-hyperedge pairs such that for each node v, the multiset of
labels corresponding to v is contained in Ndeg(v), and analogously for hyperedges w.r.t. the
respective Ei. More formally, let F denote the set of pairs (v, e) where e is a hyperedge
incident to v. A correct solution for Π on a hypergraph G = (V, E) is a mapping f : F → ΣΠ
such that, for each v ∈ V , we have {f(v, e′) | e′ ∋ v} ∈ Ndeg(v), and, for each e ∈ E, we have
{f(v′, e) | v′ ∈ e} ∈ Erank(e). Here, the rank rank(e) of a hyperedge e is the number of nodes
contained in e, and the displayed sets are to be understood as multisets.

When solving a locally checkable problem in the distributed setting, each node v has to
output one label for each “incident” node-hyperedge pair in F such that the induced global
solution is correct. While the improvements for the general round elimination technique

DISC 2025

13:12 Towards Fully Automatic Distributed Lower Bounds

(discussed below) that we will obtain in this work apply to the general hypergraph setting,
for the results about concrete problems that we provide we can restrict attention to the
special case of graphs. In this special case, each hyperedge is of rank 2, and consequently we
will replace the edge constraint (E1, . . . , Eδ) by E2. Moreover, to simplify notation, in this
case, we will set E := E2.

We remark that besides providing a formalism for graphs by considering them as a special
case of hypergraphs, the black-white formalism provides a (different) way to encode and
study problems on bipartite graphs, by identifying the “black” nodes in the bipartition with
the nodes in the above formalism, and the “white” nodes with the hyperedges. This relation
to bipartite graphs is also where the name “black-white formalism” comes from.

As can be observed, the definition of the problems in this formalism depends on ∆ (and
δ), which provides the power to also describe important problems like (∆ + 1)-coloring in
this formalism. If we are to be very precise, in this formalism each problem is a collection of
problems indexed by ∆ (and, if considered on hypergraphs, δ). Throughout the paper, we
implicitly assume that some (arbitrary) ∆ (and, if required, some δ) is fixed. Note that this
does not impact the generality of our results.

Finally, we remark that, for simplicity, we consider two locally checkable problems given
in the black-white formalism as identical if one can be obtained from the other by renaming
the labels used to describe the latter.

Configurations. We will use the term configuration to refer to a multiset of labels, and
write it in either of the two equivalent forms {ℓ1, . . . , ℓi} and ℓ1 . . . ℓi. Note that the order of
the ℓj does not matter (also in the second form): all configurations that can be obtained from
a configuration by reordering are considered to be the same configuration. When referring to
the multiset of labels assigned to the pairs (v, e′) incident to a fixed node v, we will use the
term node configuration; when referring to the multiset of labels assigned to the pairs (v′, e)
corresponding to a fixed (hyper)edge e, we will use the term edge configuration. Moreover, for
simplicity we may slightly abuse notation by writing {ℓ1, . . . , ℓi} ∈ L1 × · · · × Li if L1, . . . , Li

are sets containing the labels ℓ1, . . . , ℓi, respectively.
It will be convenient to refer to certain collections of configurations in a condensed manner.

A condensed configuration C is a configuration {L1, . . . , Li} of sets of labels. Configuration C
is to be understood as the set of all configurations {ℓ1, . . . , ℓi} ∈ L1 × · · · × Li (though we
will also consider the condensed configuration C as a configuration of sets when convenient).
To indicate that a configuration of sets represents a condensed configuration, we will often
write each set in the configuration in the form [ℓ1 . . . ℓj] (unless the set only contains one
element ℓ, in which case we will simply write the set as ℓ).

Diagrams. A useful way of capturing certain aspects of problems is via so-called diagrams.
A diagram D = (ΣD, ED) is nothing else than a directed acyclic graph with node set ΣD and
edge set ED. The edge diagram of a problem Π = (ΣΠ,NΠ, EΠ) is the diagram D obtained
by setting ΣD := ΣΠ and defining ED as the set of those directed edges (ℓ, ℓ′) that satisfy
that ℓ′ ̸= ℓ and, for every configuration {ℓ1, . . . , ℓδ} ∈ EΠ with ℓi = ℓ for some 1 ≤ i ≤ δ,
also {ℓ1, . . . , ℓi−1, ℓ′, ℓi+1, . . . , ℓδ} ∈ EΠ. When displaying a diagram, we often omit arrows
that can be obtained as the composition of displayed arrows. We call a subset S ⊆ ΣD

right-closed (w.r.t. D) if, for any edge (ℓ, ℓ′) ∈ ED, ℓ ∈ S implies ℓ′ ∈ S.

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and J. Saarhelo 13:13

3.3 The Round Elimination Technique
In this section, we give a formal introduction to round elimination. As some of the definitions
provided in this section are fairly technical, the reader is encouraged to consult the illustrating
example provided in the full version of this paper alongside reading the definitions.

For technical reasons, round elimination requires the considered input (hyper)graphs to
be regular (and uniform). As such, we will assume throughout the paper that every node of
the input (hyper)graph has the same degree ∆ and every (hyper)edge has the same rank δ

(which, in the case of graphs, is simply 2). This also simplifies the representation of locally
checkable problems Π = (ΣΠ,NΠ, EΠ): now we can assume that NΠ and EΠ are collections
of multisets of cardinalities ∆ and δ, respectively, instead of sequences of similar collections.
Note that, as we will prove lower bounds in this work, the inherent restriction to regular
graphs makes our results only stronger.

R(·) and R(·). At the heart of the round elimination technique lie the round elimination
operators R and R, which are functions that take a locally checkable problem in the black-
white formalism as input and return such a problem. More precisely, for a locally checkable
problem Π = (ΣΠ,NΠ, EΠ), the locally checkable problem R(Π) = (ΣR(Π),NR(Π), ER(Π)) is
defined as follows.

The label set ΣR(Π) of R(Π) is simply the set of non-empty subsets of ΣΠ, i.e., ΣR(Π) :=
2ΣΠ \ {{}}. For the definition of the edge constraint ER(Π) of R(Π), we need the notion of
a maximal configuration. Let Z be a collection of configurations of sets of labels. Then, a
configuration L1 . . . Li ∈ Z is maximal (in Z) if there is no configuration L′

1 . . . L′
i ∈ Z (of the

same length) such that there exists a bijection ϕ : {1, . . . , i} → {1, . . . , i} satisfying Lj ⊆ L′
ϕ(j)

for all 1 ≤ j ≤ i and Lj ⊊ L′
ϕ(j) for at least one 1 ≤ j ≤ i. In other words, a configuration

of sets is maximal if no other configuration in the considered configuration space can be
reached by enlarging (some of) the sets (and reordering the sets).

Now we can define ER(Π) as follows. Let E denote the collection of all configurations
L1 . . . Lδ such that L1, . . . , Lδ ∈ ΣR(Π) and for all choices (ℓ1, . . . , ℓδ) ∈ L1 × · · · × Lδ of labels
we have {ℓ1, . . . , ℓδ} ∈ EΠ. Then, ER(Π) is obtained from E by removing all configurations that
are not maximal in E . Finally, the node constraintNR(Π) ofR(Π) is defined as the collection of
all configurations L1 . . . L∆ such that each Li appears in at least one configuration from ER(Π)
and there exists a choice (ℓ1, . . . , ℓ∆) ∈ L1 × · · · × L∆ of labels satisfying {ℓ1, . . . , ℓ∆} ∈ NΠ.

The problem R(Π) = (ΣR(Π),NR(Π), ER(Π)) is defined dually to R(Π), where the role
of nodes and hyperedges are reversed. More precisely, we have the following. As before,
ΣR(Π) = ΣR(Π) = 2ΣΠ \{{}}. The node constraint NR(Π) of R(Π) is the collection of maximal
configurations L1 . . . L∆ such that L1, . . . , L∆ ∈ ΣR(Π) and for all choices (ℓ1, . . . , ℓ∆) ∈
L1 × · · · × L∆ of labels we have {ℓ1, . . . , ℓ∆} ∈ NΠ. The edge constraint ER(Π) of R(Π)
is the collection of all configurations L1 . . . Lδ such that each Li appears in at least one
configuration from NR(Π) and there exists a choice (ℓ1, . . . , ℓδ) ∈ L1 × · · · × Lδ of labels
satisfying {ℓ1, . . . , ℓδ} ∈ EΠ.

We will refer to the operation of deriving ER(Π) from EΠ (and NR(Π) from NΠ) as applying
the universal quantifier (to EΠ and NΠ, respectively) and say that a problem satisfies the
universal quantifier if it is the result of such an operation.

The hard part in computing R(Π) and R(Π) is applying the universal quantifier. In
fact, consider the problem R(Π). There is an easy way to compute NR(Π), that is the
following. Start from all the configurations in NΠ, and for each configuration add to NR(Π)
the condensed configuration obtained by replacing each label ℓ by the set that contains all
label sets in ΣR(Π) containing ℓ.

DISC 2025

13:14 Towards Fully Automatic Distributed Lower Bounds

The round elimination sequence. In the round elimination framework, the two operators R
andR are used to define a sequence of problems that is essential for obtaining complexity lower
bounds via round elimination. This sequence Π0, Π1, Π2, . . . is defined via Πi+1 := R(R(Πi))
for all i ≥ 0, where Π0 is the given problem of interest. The following theorem provides a
way to obtain lower bounds for the complexity of Π0 via analyzing the 0-round-solvability of
the problems in the sequence. It is a simplified version of Theorem 7.1 from [5].

▶ Theorem 1. Let Π0, Π1, . . . , Πt be a sequence of problems satisfying Πi+1 = R(R(Πi)) for
all 0 ≤ i ≤ t− 1. Moreover, let B be an integer (that may depend on n and/or ∆) such that
|ΣΠi
| ≤ B for all 0 ≤ i ≤ t, and |ΣR(Πi)| ≤ B for all 0 ≤ i ≤ t−1. Then, if Πt is not 0-round-

solvable in the port numbering model, Π0 has lower bounds of Ω(min{t, log∆ n− log∆ log B})
rounds in the deterministic LOCAL model and Ω(min{t, log∆ log n− log∆ log B}) rounds in
the randomized LOCAL model.

Fixed points. As implied by Theorem 1, it is crucial for proving lower bounds via round
elimination to be able to determine the 0-round solvability of problems in the round elimination
sequence produced by the studied problem Π0. A class of problems that produces very
simple sequences are so-called fixed points. A locally checkable problem Π is called a fixed
point if R(R(Π)) = Π. Moreover, for a fixed point Π, the problem Π′ := R(Π) is called the
intermediate problem. Note that such an intermediate problem Π′ satisfies R(R(Π′)) = Π′.
We get the following corollary from Theorem 1.

▶ Corollary 2. Let Π be a fixed point in the round elimination framework. Then, if Π is not
0-round-solvable in the port numbering model, Π has lower bounds of Ω(log∆ n) rounds in
the deterministic LOCAL model and Ω(log∆ log n) rounds in the randomized LOCAL model.

0-round-solvability. Due to Theorem 1, we are interested in determining whether a problem
can be solved in 0 rounds or not. For technical reasons, throughout the paper, whenever
we consider the 0-round-solvability of a problem, we will consider it in the port numbering
model. In the port numbering model, 0-round-solvability admits a simple characterization: a
problem Π is 0-round-solvable if and only if there is a configuration ℓ1 . . . ℓ∆ ∈ NΠ such
that, for any δ (not necessarily distinct) labels ℓ′

1, . . . , ℓ′
δ ∈ {ℓ1, . . . , ℓ∆}, it holds that ℓ′

1
. . . ℓ′

δ ∈ EΠ. We will use the terms trivial and non-trivial to refer to 0-round-solvable and
non-0-round-solvable problems, respectively. In particular, we will be interested in trivial
and non-trivial fixed points.

For the interested reader, in the full version of this paper we provide an example of the
application of the round elimination procedure to a simple problem called sinkless orientation.

4 A New Way of Applying Round Elimination

In this section, we describe a novel and simple way for applying the round elimination
technique. As already discussed in Section 3.3, the hard and error-prone part in applying the
R(·) and R(·) operators consists in applying the universal quantifier. Let Π = (ΣΠ,NΠ, EΠ)
be the problem of interest, where NΠ contains multisets of size ∆ and EΠ contains multisets
of size δ. Also, let Π′ = R(Π) = (ΣΠ′ ,NΠ′ , EΠ′). Recall that applying the universal quantifier
means computing EΠ′ as follows. First, let C be the maximal set such that for all L1 . . .

Lδ ∈ C it holds that, for all i, Li ∈ 2ΣΠ \ {{}}, and all multisets {ℓ1, . . . , ℓδ} ∈ L1 × . . .× Lδ

are in EΠ. Then, EΠ′ is obtained by removing all non-maximal configurations from C. This
definition, if implemented in a naive manner, requires considering all possible configurations
from labels in 2ΣΠ , and then, for each of them, checking if all possible configurations obtained
by selecting one label from each set in the configuration are contained in EΠ.

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and J. Saarhelo 13:15

4.1 A new way to compute EΠ′

We show a drastically simplified way of applying the universal quantifier, that, at each point
in time, requires to consider only two configurations and to perform elementary operations
on those.

Input of the new procedure. While, formally, the given constraint EΠ is described as a set
of multisets, in some cases the given constraint is described in a more compact form, that is,
by providing condensed configurations. The procedure that we describe does not need to
unpack condensed configurations into a set of non-condensed ones, and this feature allows to
apply this new procedure more easily. For this reason, we assume that EΠ is described as a set
ΓΠ of condensed configurations, that is, ΓΠ contains multisets, where each multiset L ∈ ΓΠ is
of the form {L1, . . . , Lδ}, and for all 1 ≤ i ≤ δ it holds that Li ⊆ ΣΠ. Clearly, if we are given
EΠ as a list of non-condensed configurations, we can convert it into this form by replacing
each label with a singleton set. While we assume that the input is described as a set of
condensed configurations, the output of the procedure is going to be a set of non-condensed
configurations. We call the condensed configurations in ΓΠ input configurations.

Combining configurations. At the heart of our procedure lies an operation that combines
two given configurations of sets. We now formally define what it means to combine two such
configurations. Let L = {L1, . . . , Lδ} and L′ = {L′

1, . . . , L′
δ} be two configurations, where Li

and L′
i are sets. Let ϕ : {1, . . . , δ} → {1, . . . , δ} be a bijection, i.e., a permutation of {1, . . . , δ}.

Let u ∈ {1, . . . , δ}. Combining L and L′ w.r.t. ϕ and u means constructing the configuration
C = {C1, . . . , Cδ} where Ci = Li ∪ L′

ϕ(i) if i = u and Ci = Li ∩ L′
ϕ(i) otherwise. In other words,

we consider an arbitrary perfect matching between the sets of the two configurations, and we
take the union for one matched pair and the intersection for the remaining matched pairs.
In Figure 1, we show an example of a combination of two configurations.

The New Procedure. In the following, we construct a sequence (Ψi) of sets of configurations
until certain desirable properties are obtained. The first step of the procedure is setting
Ψ0 = ΓΠ. The next step is to apply a subroutine that creates Ψi+1 as a function of Ψi, and
this subroutine is repeatedly applied until we get that Ψi+1 = Ψi. Let the final result be E∗

Π′ .
The subroutine computes all possible combinations of pairs of configurations (including a

configuration with itself) that are in Ψi, for all possible permutations ϕ and for all possible
choices of u. If a resulting configuration contains an empty set, the configuration is discarded.
Let Ψi+1 be the set of configurations obtained by starting from the configurations in Ψi,
adding the newly computed configurations, and then removing the non-maximal ones. We
call the defined procedure NewRE, which is described more formally in Algorithm 1.

In the full version of this paper, we will first provide an example of execution of our new
procedure, and then we will prove that the constraint E∗

Π′ returned by NewRE is equal to the
constraint EΠ′ as defined according to the definition of round elimination given in Section 3.
Finally, we will also prove that the procedure always terminates.

{I, O} ∪ {O} = {I, O}, {I, O} ∩ {I, O} = {I, O}, {O} ∩ {I, O} = {O}

Figure 1 One possible way to combine {I, O} {I, O} {O} with itself. The resulting configuration
is {I, O} {I, O} {O}.

DISC 2025

13:16 Towards Fully Automatic Distributed Lower Bounds

Algorithm 1 The new procedure.

▷ Applies the procedure to the input configurations Γ ◁

procedure NewRe(Γ, δ)
Ψ0 ← Γ
for i← 0, 1, 2, . . . do

Ψ← Ψi

for all L ∈ Ψi do
for all L′ ∈ Ψi do

for all permutations ϕ over the integers {1, . . . , δ} do
for all 1 ≤ u ≤ δ do
C ← Combine(L, L′, δ, ϕ, u)
if {} /∈ C then

Ψ← Ψ ∪ {C}
Ψi+1 ← DiscardNonMaximal(Ψ)
if Ψi+1 = Ψi then

break
return Ψi

▷ Combines two configurations w.r.t. a given permutation ϕ and position u ◁

procedure Combine(L = {L1, . . . , Lδ}, L′ = {L′
1, . . . , L′

δ}, δ, ϕ, u)
for i← 1, . . . , δ do

if i = u then
Ci = Li ∪ L′

ϕ(i)
else

Ci = Li ∩ L′
ϕ(i)

C ← {C1, . . . , Cδ}
return C

▷ Returns the set of maximal configurations of Ψ ◁

procedure DiscardNonMaximal(Ψ)
S ← {}
for all L ∈ Ψ do

if ¬(∃L′ ∈ Ψ s.t. L′ ̸= L and Dominates(L′, L)) then
S ← S ∪ {L}

return S
▷ Determines whether L′ dominates L ◁

procedure Dominates(L′ = {L′
1, . . . , L′

δ}, L = {L1, . . . , Lδ})
return ∃ permutation ϕ such that, for all 1 ≤ i ≤ δ, Li ⊆ L′

ϕ(i)

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and J. Saarhelo 13:17

References
1 Alkida Balliu, Sebastian Brandt, Xavier Coiteux-Roy, Francesco D’Amore, Massimo Equi,

Francois Le Gall, Henrik Lievonen, Augusto Modanese, Dennis Olivetti, Marc-Olivier Renou,
Jukka Suomela, Lucas Tendick, and Isadora Veeren. Distributed quantum advantage for
local problems. In Proceedings of the 57th Annual ACM SIGACT Symposium on Theory of
Computing, (STOC 2025), 2025.

2 Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti,
and Jukka Suomela. Classification of distributed binary labeling problems. In Proc. 34th
Symp. on Distributed Computing (DISC), 2020.

3 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. In Proc.
60th IEEE Symp. on Foundations of Computer Science (FOCS), pages 481–497, 2019. doi:
10.1109/FOCS.2019.00037.

4 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Improved distributed
lower bounds for MIS and bounded (out-)degree dominating sets in trees. In Proc. 40th ACM
Symposium on Principles of Distributed Computing (PODC), 2021. doi:10.1145/3465084.
3467901.

5 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed ∆-coloring
plays hide-and-seek. In 54th ACM SIGACT Symposium on Theory of Computing (STOC),
pages 464–477, 2022.

6 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed edge coloring
in time polylogarithmic in ∆. In PODC ’22: ACM Symposium on Principles of Distributed
Computing, Salerno, Italy, July 25 - 29, 2022, pages 15–25. ACM, 2022. doi:10.1145/3519270.
3538440.

7 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed maximal
matching and maximal independent set on hypergraphs. In Proc. 34th ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 2632–2676, 2023. doi:10.1137/1.9781611977554.CH100.

8 Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. Distributed lower bounds for ruling
sets. In Proc. 61st IEEE Symp. on Foundations of Computer Science (FOCS), pages 365–376,
2020. doi:10.1109/FOCS46700.2020.00042.

9 Alkida Balliu, Juho Hirvonen, Christoph Lenzen, Dennis Olivetti, and Jukka Suomela. Locality
of not-so-weak coloring. In Structural Information and Communication Complexity - 26th
International Colloquium, SIROCCO 2019, L’Aquila, Italy, July 1-4, 2019, Proceedings,
volume 11639 of Lecture Notes in Computer Science, pages 37–51. Springer, 2019. doi:
10.1007/978-3-030-24922-9_3.

10 Alkida Balliu, Fabian Kuhn, and Dennis Olivetti. Distributed edge coloring in time quasi-
polylogarithmic in delta. In Proc. 39th ACM Symp. on Principles of Distributed Computing
(PODC), pages 289–298, 2020. doi:10.1145/3382734.3405710.

11 Leonid Barenboim. Deterministic (∆+1)-Coloring in Sublinear (in ∆) Time in Static, Dynamic,
and Faulty Networks. Journal of ACM, 63(5):1–22, 2016. doi:10.1145/2979675.

12 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using Nash-Williams decomposition. Distributed Comput., 22:363–379, 2010. doi:
10.1007/s00446-009-0088-2.

13 Leonid Barenboim and Michael Elkin. Deterministic distributed vertex coloring in polyloga-
rithmic time. Journal of ACM, 58:23:1–23:25, 2011. doi:10.1145/2027216.2027221.

14 Leonid Barenboim, Michael Elkin, and Uri Goldenberg. Locally-iterative distributed (∆ + 1)-
coloring below Szegedy-Vishwanathan barrier, and applications to self-stabilization and to
restricted-bandwidth models. In Proc. 37th ACM Symp. on Principles of Distributed Computing
(PODC), pages 437–446, 2018. doi:10.1145/3212734.3212769.

15 Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (∆+1)-coloring in linear (in
∆) time. SIAM Journal on Computing, 43(1):72–95, 2014. doi:10.1137/12088848X.

DISC 2025

https://doi.org/10.1109/FOCS.2019.00037
https://doi.org/10.1109/FOCS.2019.00037
https://doi.org/10.1145/3465084.3467901
https://doi.org/10.1145/3465084.3467901
https://doi.org/10.1145/3519270.3538440
https://doi.org/10.1145/3519270.3538440
https://doi.org/10.1137/1.9781611977554.CH100
https://doi.org/10.1109/FOCS46700.2020.00042
https://doi.org/10.1007/978-3-030-24922-9_3
https://doi.org/10.1007/978-3-030-24922-9_3
https://doi.org/10.1145/3382734.3405710
https://doi.org/10.1145/2979675
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1145/2027216.2027221
https://doi.org/10.1145/3212734.3212769
https://doi.org/10.1137/12088848X

13:18 Towards Fully Automatic Distributed Lower Bounds

16 Sebastian Brandt. An automatic speedup theorem for distributed problems. In Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 - August 2, 2019, pages 379–388, 2019. doi:10.1145/3293611.3331611.

17 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local
lemma. In Proceedings of the 48th ACM Symposium on Theory of Computing (STOC 2016),
pages 479–488. ACM Press, 2016. doi:10.1145/2897518.2897570.

18 Sebastian Brandt and Dennis Olivetti. Truly tight-in-∆ bounds for bipartite maximal matching
and variants. In Proc. 39th ACM Symp. on Principles of Distributed Computing (PODC),
pages 69–78, 2020. doi:10.1145/3382734.3405745.

19 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between ran-
domized and deterministic complexity in the LOCAL model. SIAM Journal on Computing,
48(1):122–143, 2019. doi:10.1137/17M1117537.

20 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆+1)-coloring
algorithm? In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, (STOC 2018), pages 445–456, 2018. doi:10.1145/3188745.3188964.

21 Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Václav Rozhon. Local
distributed rounding: Generalized to mis, matching, set cover, and beyond. In Proc. 34th
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 4409–4447, 2023. doi:10.1137/1.
9781611977554.CH168.

22 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In Proc.
57th IEEE Symp. on Foundations of Computer Science (FOCS), pages 625–634, 2016. doi:
10.1109/FOCS.2016.73.

23 Marc Fuchs and Fabian Kuhn. List defective colorings: Distributed algorithms and applications.
In Rotem Oshman, editor, Proc. 37th Int. Symp. on Distributed Computing (DISC), volume
281 of LIPIcs, pages 22:1–22:23, 2023. doi:10.4230/LIPICS.DISC.2023.22.

24 Mohsen Ghaffari and Christoph Grunau. Near-optimal deterministic network decomposition
and ruling set, and improved MIS. In 2024 IEEE 65th Annual Symposium on Foundations
of Computer Science (FOCS), pages 2148–2179. IEEE, 2024. doi:10.1109/FOCS61266.2024.
00007.

25 Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav Rozhon.
Improved distributed network decomposition, hitting sets, and spanners, via derandomization.
In Proc. 34th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 2532–2566, 2023.
doi:10.1137/1.9781611977554.CH97.

26 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In Proc. 59th Symp. on Foundations of Computer Science (FOCS), pages 662–673,
2018. doi:10.1109/FOCS.2018.00069.

27 Fabian Kuhn. Faster deterministic distributed coloring through recursive list coloring. In
Proc. 32st ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1244–1259, 2020. doi:
10.1137/1.9781611975994.76.

28 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and
upper bounds. Journal of ACM, 63:17:1–17:44, 2016. doi:10.1145/2742012.

29 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

30 L. Lovász. On decompositions of graphs. Studia Sci. Math. Hungar., 1:237–238, 1966.
31 Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists. In 34th

International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual
Conference, volume 179 of LIPIcs, pages 16:1–16:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.DISC.2020.16.

32 Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM
Journal on Discrete Mathematics, 4(3):409–412, 1991. doi:10.1137/0404036.

https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3382734.3405745
https://doi.org/10.1137/17M1117537
https://doi.org/10.1145/3188745.3188964
https://doi.org/10.1137/1.9781611977554.CH168
https://doi.org/10.1137/1.9781611977554.CH168
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.4230/LIPICS.DISC.2023.22
https://doi.org/10.1109/FOCS61266.2024.00007
https://doi.org/10.1109/FOCS61266.2024.00007
https://doi.org/10.1137/1.9781611977554.CH97
https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1137/1.9781611975994.76
https://doi.org/10.1137/1.9781611975994.76
https://doi.org/10.1145/2742012
https://doi.org/10.1137/0221015
https://doi.org/10.4230/LIPIcs.DISC.2020.16
https://doi.org/10.1137/0404036

A. Balliu, S. Brandt, F. Kuhn, D. Olivetti, and J. Saarhelo 13:19

33 Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

34 Dennis Olivetti. Round Eliminator: a tool for automatic speedup simulation, 2019. URL:
https://github.com/olidennis/round-eliminator.

35 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

36 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. In Proceedings of 52nd Annual ACM Symposium on
Theory of Computing (STOC 2020), 2020. doi:10.1145/3357713.3384298.

DISC 2025

https://doi.org/10.1137/S0097539793254571
https://github.com/olidennis/round-eliminator
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1145/3357713.3384298

	1 Introduction
	1.1 Our Contributions and High-Level Ideas of Our Techniques
	1.1.1 An Automatic Way of Generating Round Elimination Fixed Points
	1.1.2 Lower Bounds for Defective Coloring Problems
	1.1.3 A More Efficient Method for Performing Round Elimination

	2 Road Map
	3 Preliminaries
	3.1 The LOCAL Model
	3.2 Problems
	3.3 The Round Elimination Technique

	4 A New Way of Applying Round Elimination
	4.1 A new way to compute {E}_{Pi'}

