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Abstract
This paper introduces a novel, fast atomic-snapshot protocol for asynchronous message-passing
systems. In the process of defining what “fast” means exactly, we spot a few interesting issues
that arise when conventional time metrics are applied to long-lived asynchronous algorithms. We
reveal some gaps in latency claims made in earlier work on snapshot algorithms, which hamper their
comparative time-complexity analysis. We then come up with a new unifying time-complexity metric
that captures the latency of an operation in an asynchronous, long-lived implementation. This
allows us to formally grasp latency improvements of our atomic-snapshot algorithm with respect to
the state-of-the-art protocols: optimal latency in fault-free runs without contention, short constant
latency in fault-free runs with contention, the worst-case latency proportional to the number of
active concurrent failures, and constant amortized latency.
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1 Introduction

The distributed snapshot abstraction [14, 26] allows us to determine a consistent view of
the global system state. Originally proposed in the asynchronous fault-free message-passing
context, it was later cast to shared-memory models [3] as a vector of shared variables,
exporting an update operation that writes to one of them and a snapshot operation that
returns the current vector state. Atomic snapshot can be implemented from conventional
read-write registers in a wait-free manner, i.e., tolerating unpredictable delays or failures
of any number of processes. By applying the reduction from shared memory to message-
passing [6], one can get an asynchronous distributed atomic-snapshot implementation that
tolerates up to a minority of faulty processes. The atomic-snapshot object (ASO) is, in a
strong sense, equivalent to lattice agreement (LA) [8, 17]1: one can implement the other with
no time overhead. A long line of results improve time and space complexities of ASO and
LA algorithms in shared-memory [5, 4, 7] and message-passing [17, 21, 19, 16, 18] models.

1 Lattice agreement can be seen as a weak version of consensus, where decided values form totally ordered
joins of proposed values in a join semi-lattice.
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15:2 Asynchronous Latency and Fast Atomic Snapshot

Table 1 Comparative time complexity of atomic-snapshot algorithms in asynchronous message-
passing models. The table shows results for Single-Writer Multi-Reader (SWMR) implementations.

Fault-free
w/o contention

Fault-free
w/ contention Worst-case Amortized

constant
Faleiro et al. [17] 2 16 O(k) yes
Imbs et al. [21] 2 O(n) O(n) no
Garg et al. [18] ≥ 6 ≥ 8 O(k) yes

Garg et al. [18] + Zheng et al. [27] O(log n) O(log n) O(log n) no
Delporte et al. [16] 2 O(n) O(n) no

This paper 2 8 O(k) yes

In this paper, we focus on the latency of operations in message-passing ASO implemen-
tations. We propose an LA (and, thus, ASO) algorithm that is faster than (or matches)
state-of-the-art solutions in all execution scenarios: with or without failures and with or
without contention. The comparative analysis of our algorithm with respect to the existing
work appeared to be challenging: as we show, earlier work considered diverging metrics
and execution scenarios, and sometimes used over-simplified reasoning. We observed that
conventional metrics [13, 6, 2] are not always suitable for long-lived asynchronous algorithms.
Besides, prior latency analyses of ASO and LA algorithms [17, 21, 19, 16, 18] used different
ways to measure time, which complicated the comparison. We therefore propose a unifying
time-complexity analysis of prior asynchronous ASO and LA algorithms with respect to a
new metric, which we take as a contribution on its own.

Lamport [25] proposed to measure time in asynchronous systems as the length of the
longest chain of causally related messages, the metric used to to determine the best-case
latency of consensus [25] and Crusader Agreement [1]. However, as we show in this paper, the
metric may produce counter-intuitive results for protocols involving all-to-all communication.
For instance, in the failure-free case, n-process reliable broadcast [12] exhibits a causal chain
of n hops, even though, intuitively one expects it to terminate in one.

Building upon the classical approach by Canetti and Rabin [13], Abraham et al. [2]
recently proposed an elegant metric to grasp the good-case latency of broadcast protocols.
We observe, however, that the metric does not really apply to executions of long-lived
abstractions, which may contain holes – periods of inactivity when no protocol messages are
in transit. Moreover, we get diverging results when applying [2] and [13] to operation latency,
i.e., the time between invocation and response events of a given operation.

We therefore extend the round-based approach to long-lived abstractions (such as ASO and
LA) and establish a framework to measure the time between arbitrary events, subsequently
showing that the results align with those from earlier classical metrics [6, 13].

To summarize, our main contribution is a novel LA (and, thus, ASO) protocol that is
generally faster than prior solutions, i.e., it exhibits shorter latency of its operations in various
scenarios. In our complexity analysis, we compared our protocol to the original long-lived
LA algorithm by Faleiro et al. [17]2, the first direct message-passing ASO implementation
by Delporte et al. [16], the ASO algorithm based on the set-constraint broadcast by Imbs
et al. [21], and the ASO algorithms by Garg et al. based on generic construction of ASO
from one-shot LA with constant latency in fault-free runs [18] or log n worst-case latency by
Zheng et al. [27] (where n is the number of processes).

2 We consider the ASO protocol built atop the lattice agreement protocol proposed in [17].
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As shown in Table 1, in a fault-free run, the latency of an operation of our protocol
is the optimal two rounds if there is no contention and eight rounds in the presence of
contention (four rounds if we ignore the “buffering” period when a value is submitted but not
yet proposed), regardless of the number of contending operations. Moreover, the worst-case
latency of our algorithm is proportional to the number of active failures k, i.e., the number
of faulty processes whose messages are received within the operation’s interval, therefore
the amortized latency (averaged over a large number of operations in a long-lived execution)
converges to the fault-free constant.

Our protocol can be seen as a novel combination of techniques employed separately in
prior work. These include the use of generalized (long-lived) lattice agreement as a basis
for ASO [23], the helping mechanism where all the learned lattice values are shared [23],
relaying of messages to all replicas instead of quorum-based rounds [21, 18, 22, 15], and
buffering proposed values until previous proposals get committed [17]. Similar to earlier
proposals [17], our algorithm involves O(n2) (all-to-all) communication, which is compensated
by its constant (amortized) latency. An interesting open question is whether one can reduce
the communication cost in good runs, while maintaining constant amortized latency.

The paper is organized as follows. In Section 2, we present our model assumptions, and
in Section 3, we state the problem of atomic snapshot and relate it to generalized lattice
agreement. In Section 4, we present our protocol and analyze its correctness. In Section 5,
we discuss several gaps in the complexity analyses of earlier work. In Section 6, we present
a comparative analysis of time metrics. Certain proofs and a detailed discussion of time
complexity of earlier protocols are delegated to the appendix.

2 System Model

Processes and Channels. We consider a system of n processes (or nodes). Processes
communicate by exchanging messages m = (s, r, data) with a sender s, a receiver r, and a
message content data.

A process is an automaton modeled as a tuple (I,O,Q, q0, π), where I is a set of inputs
(messages and application calls) it can receive, O is a set of outputs (messages and application
responses), Q is a (potentially infinite) set of possible internal states, q0 ∈ Q is an initial
state and π : 2I ×Q → 2O ×Q is a transition function mapping a set of inputs and a state
to a set of outputs and a new state. Each process i is assigned an algorithm Ai which defines
(I,O,Q, q0, π), a distributed algorithm is an array [A1, ..., An].

Events and Configurations. Application calls and responses are tuples (i, aReq) and (i, aRep)
with a process identifier, a request, and a reply respectively.

An event e is a tuple (R, P, S) where R is a set of received messages and/or application
calls, P is the set of nodes producing the event and S is a set of messages sent and/or
application responses. We denote receive(e) as the set of messages received in the event,
conversely, send(e) is the set of messages sent. A message hop is a pair (e, e′) in which e′

receives at least one message that was sent in e.
Messages in transit are stored in the message buffer.3 A configuration C is an (n+1)-array

[M, s1, ..., sn] with the buffer’s state M = C[0] and the local state si = C[i] of each node i

(i = 1, . . . , n). Let C0 denote the initial configuration in which every si is an initial state
and the buffer M is empty.

3 We assume that every message in the message buffer is unique.

DISC 2025



15:4 Asynchronous Latency and Fast Atomic Snapshot

Executions. An execution (or run) is an alternating sequence C0e1C1e2... of configurations
and events, where for each j > 0 and i = 1, . . . , n:

1. receive(ej) ⊆ Cj−1[0];
2. ej .S consists of messages and application outputs that the nodes in ej .P produce, given

their algorithms, their states in Cj−1 and their inputs in ej .R; the nodes in ej .P carry
their states from Cj−1 to Cj , accordingly;

3. for the nodes i /∈ ej .P , Cj−1[i] = Cj [i].

Each triple Cj−1ejCj is called a step. In this paper, we consider algorithms defined by
deterministic automata, and we assume a default initial state. Thus, we sometimes skip
configurations and simply write e1e2 . . ..

In an infinite execution, a process is correct if it takes part in infinitely many steps, and
faulty otherwise. We only consider infinite executions in which f < n/2, where f is the
number of faulty processes and n is the total number of processes. Moreover, in an infinite
execution, messages exchanged among correct processes are eventually received, i.e., if there
is an event e from a correct process sending a message m to another correct process, then
there is e′ succeeding e such that m ∈ receive(e′).

We also assume that the communication channels neither alter nor create messages.
Finally, we assume that the channels are FIFO: messages from a given source to a given
destination arrive in the order they were sent. A FIFO channel can be implemented by
attaching sequence numbers to messages, without extra communication or time overhead.

3 Lattice Agreement and Atomic Snapshot

3.1 Lattice Agreement

A join semi-lattice is defined as a tuple (L,⊑), where ⊑ is a partial order on a set L, such
that for any pair of values u and v in L, there exists a unique least upper bound u⊔ v ∈ L (⊔
is called the join operator). Also, u and v in L are said to be comparable if u ⊑ v ∨ v ⊑ u.

The (generalized) Lattice Agreement abstraction LA [17] defined over (L,⊑) can be
accessed by every node with operation Propose(v), v ∈ L (we say that the node proposes
v) which triggers the reply event Learn(w) (we say that the node learns w). Each node
may invoke Propose any number of times but does so sequentially, that is, it initiates a new
operation only after the previous one has returned.4 The abstraction must satisfy:

▶ Definition 1 (Lattice Agreement (LA)).
Validity. Any value learned by a node is the join of some set of proposed values that
includes its last proposal.
Stability. The values learned by any node increase monotonically, with respect to ⊑.
Consistency. All values learned are comparable, with respect to ⊑.
Liveness. If a correct node proposes v, it eventually learns a value w.

4 Following [23], without loss of generality, we slightly modified the conventional LA interface [8, 17]
by introducing the explicit Propose operation that combine proposing and learning the values, the
properties of the abstraction are adjusted accordingly.
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3.2 Atomic Snapshot Object (ASO)

An atomic snapshot object (ASO) stores a vector of values R = [r1, ..., rm] and exports two
operations: update(i, v) and snapshot(). The update(i, v) operation writes the value v in
R[i] and returns OK, and snapshot() returns the entire vector R. An ASO implementation
guarantees that every operation invoked by a correct process eventually completes. It also
ensures that each of its operations appears to take effect in a single instance of time within
its interval, i.e., it is linearizable [20].

We say that an ASO is single writer SW (resp. multi writer MW) if for each of
its registers R[i], only a single process can call update(i, v) (resp. every process can call
update(i, v)). In this paper, we focus mostly on SWMR atomic snapshot objects. In Table 1
we give results only for SWMR. A MWMR ASO can be devised from SWMR by adding
an additional “read” phase when updating values (see Section 3.3 for more details).

Next, we show that ASO can be implemented on top of LA with no additional overhead.

3.3 From LA to ASO

To implement a SWMR ASO on top of LA, we build upon the transformation algorithm
introduced in [23]. We consider a partially ordered set L∗ of (m + n)-vectors (recall that m

is the size of the ASO vector and n is the number of nodes), defined as follows.
A vector position ℓ ∈ 1, . . . , m is defined as a tuple (w, v) ∈ Rℓ, where v is an element of

a value set V equipped with a total order ≤V , and w ∈ N is the number of write operations
on position ℓ. A total order on Rℓ is defined in the natural way: for any two tuples
(w1, v1) ≤Rℓ (w2, v2) ≡ (w1 < w2)∨ (w1 = w2 ∧ v1 ≤V v2). For each process i = 1, . . . , n, the
vector position m + i stores the number of snapshot operations executed by i.

The lattice L∗ of (m+n)-position vectors is then the composition R1× . . .×Rm×Nn. The
partial order⊑∗ on L∗ is then naturally defined as the compositions of <R1 × . . .× <Rm × ≤n.
The composed join operator ⊔∗ is the composition of max operators, one for each position in
the (m + n)-position vectors. The construction implies a join semi-lattice [23].

In Algorithm 1, we show how to implement an SWMR atomic snapshot on top of LA
defined over the semi-lattice (L∗,⊑∗,⊔∗). For simplicity, we assume that m = n, i.e., the
size of the array is the total number of nodes, and that each node i has a dedicated register i

where it can write. Elements of L∗ are then 2n-vectors.
When a node i calls update(i,v), it increments its local writing sequence number w and

proposes a 2n-vector with (w, v) in position i and initial values in all other positions to
the LA object. The vector learned from this proposal is ignored. When the node i calls
snapshot(), it increments its local reading sequence number r proposes a 2n-vector with r in
position n + i and initial values in all other positions to the LA object. The values in the
first n positions of the returned vector is then returned as the snapshot outcome.

Algorithm 1 can be extended to implement a MWMR ASO: to update a position j in
the array, a node first takes a snapshot to get the current state, gets up-to-date sequence
number in position j and proposes its value with a higher sequence number. With this
modification, the update operation takes two LA operations instead of one. We refer the
reader to [23] for further details.

▶ Theorem 2. Algorithm 1 implements ASO.

Proof. See Appendix A. ◀

DISC 2025



15:6 Asynchronous Latency and Fast Atomic Snapshot

Algorithm 1 LA→ SWMR ASO conversion.
1: Distributed objects:
2: LA instance on (L∗,⊑∗,⊔∗)

3: upon startup
4: w ← 0
5: r ← 0
6: operation update(i, v)
7: w ← w + 1
8: V ← 2n-vector with (w, v) in position i and initial values in all other positions
9: LA.Propose(V )

10: operation snapshot()
11: r ← r + 1
12: V ← 2n-vector with r in position n + i and initial values in all other positions
13: return (LA.Propose(V ))[1..n]

4 LA Protocol

In Algorithm 2, we describe our protocol for solving LA. To guarantee amortized constant
complexity, the protocol relies on two basic mechanisms, employed separately in earlier
work [17, 23]. First, when a node receives a request (e.g., a value from the application), it
first adds the request to a buffer (MPool) and then relays it before starting a proposal. This
ensures that “idle” nodes also help in committing the request. Second, the node relays every
learned value so that nodes that are “stuck” can adopt values from other nodes.

4.1 Overview

The protocol is based on helping: every node tries to commit every proposed value it is aware
of. As long as the node has active proposals that are not yet committed, it buffers newly
arriving proposals in the local variable MPool. Intuitively, in the worst case, an LA.Propose
operation has to wait until one of the concurrently invoked LA.Propose operations complete.
Once this happens, the currently buffered value is put in the local dictionary Pending and
shared with the other nodes (lines 31 and 32) via a PROPOSE message. In turn, the other
nodes relay the message to each other (line 38). The dictionary maps a value to the number
of times it is “supported” by the nodes (using PROPOSE messages). Once a value v in the
dictionary assembles a quorum of n−f of ⟨PROPOSE, v⟩ messages, i.e., Pending[v] ≥ n−f

(line 39), the value is added to the Validated variable. Once every value currently stored
in Pending is in Validated (line 41), the operation completes with Validated as the learned
value. As the final element of the helping mechanism, each process broadcasts every value it
learns (lines 45 and 51), ensuring that processes that might otherwise remain “stuck” can
complete their current proposal.

In summary, the algorithm relies on four main ideas: 1) buffering incoming requests when
already proposing, 2) sharing every received proposal so all processes are quickly aware of
active ones, 3) initiating a new proposal only after all currently seen proposals have been
validated, and 4) broadcasting learned values to help other processes make progress.
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Message Complexity. The protocol is comprised of three all-to-all communication phases:
processes send and relay requests at lines 23 and 27, proposals at lines 32 and 38, and accepted
values at lines 45 and 51. The total number of messages is therefore O(n2). However, a value
in a PROPOSE message can include up to n distinct requests, and a value in a ACCEPT
message may have arbitrary size. Therefore, in the extended version [11], we present a refined
protocol description in which processes exchange O(n2) messages per individual request. This
efficiency is achieved by relaying only the differences between current and previously received
proposals and the learned values in phases 2 and 3, thus eliminating redundant messages
with the same requests.

Algorithm 2 Long-Lived LA: code for node x.
14: upon Startup
15: MPool, Proposing, Validated, Learned ←⊥
16: Pending ← ∅

17: operation Propose(v)
18: SendRequest(v)
19: wait until v ⊑ Learned
20: return Learned

21: operation SendRequest(v)
22: MPool ← MPool ⊔ v
23: send ⟨REQUEST, v⟩ to every other node

24: upon Receive ⟨REQUEST, v⟩ from a node
25: if v ̸⊑ MPool ⊔ Proposing ⊔ Learned then
26: MPool ← MPool ⊔ v
27: send ⟨REQUEST, v⟩ to every other node

28: upon event (MPool ̸=⊥) ∧ (Proposing =⊥)
29: Proposing ← MPool
30: MPool ←⊥
31: Pending[Proposing]← 1
32: send ⟨PROPOSE, Proposing⟩ to every other node

33: upon Receive ⟨PROPOSE, v⟩ from a node
34: if v ∈ Pending.keys() then
35: Pending[v] + +
36: else
37: Pending[v]← 1
38: send ⟨PROPOSE, v⟩ to every node

39: upon exists v s.t. Pending[v] = n− f
40: Validated ← Validated ⊔ v

41: upon event
⊔

Pending.keys() ⊑ Validated
42: if Learned ⊏ Validated then
43: Learned ← Validated
44: Proposing ←⊥
45: send ⟨ACCEPT, Learned⟩ to every node

46: upon Receive ⟨ACCEPT, w⟩ from a node
47: if (Proposing ⊔ Learned ⊑ w) then
48: Validated ← Validated ⊔ w
49: Learned ← w
50: Proposing ←⊥
51: send ⟨ACCEPT, Learned⟩ to every node

4.2 Correctness
Validity and Stability are immediate. We now proceed with Consistency and Liveness.

DISC 2025
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▶ Lemma 3. If nodes i and j learn, resp., values wi and wj , then wi and wj are comparable.

Proof. Suppose that (wi ̸⊑ wj) ∧ (wj ̸⊑ wi). Then there must exist vi ⊑ wi and vj ⊑ wj

such that vi ̸⊑ wj and vj ̸⊑ wi.
Let Qi (resp. Qj) be the quorum i used to include vi Validated at line 39. Since Qi∩Qj ≠ ∅,

there is a common node x that sent ⟨PROPOSE, vi⟩ to i and ⟨PROPOSE, vj⟩ to j, but
since channels are FIFO, either i received vj or j received vi from x before learning a value,
therefore adding the value to Pending. Suppose it was i that received vj before vi, from the
condition of line 41, i could not have learned wi if vj ̸⊑ Validated. ◀

▶ Lemma 4. If a correct node x sets Proposing = v, x eventually learns a value with v.

Proof. A node x sends a PROPOSE message to every other node whenever it adds a new
value to Pending (line 38). If x is correct, it will receive at least n− f PROPOSE messages
for every value in Pending, adding the value to Validated. Therefore, the condition in line 41
is never satisfied from some point on only if x keeps adding a new value to Pending before
all the current ones are validated.

Since each node proposes only one value at a time (until it learns a value, lines 28, 44, 50),
for x to indefinitely add new values to Pending, there must be at least one other node that
keeps learning values and proposing new ones. Without loss of generality, let y be one such
node. Since faulty nodes eventually crash and stop taking steps, y must be correct. Every
time y learns a new value w it sends ⟨ACCEPT, w⟩ to x, and because channels are FIFO, x

receives the ACCEPT message before the new value proposed by y. Eventually (because x

sent its proposal to y), one of the received values w contains x′s Proposing and the condition
on line 46 is satisfied, x then learns w. ◀

▶ Lemma 5. If a correct node calls Propose(v), it eventually sets Proposing = v′, v ⊑ v′.

Proof. Let a correct node x call Propose(v), x then includes v in MPool (line 22). If x is not
currently proposing, that is, the current value of Proposing is ⊥, then it meets the condition
in line 28 and immediately sets Proposing = MPool. Otherwise, by Lemma 4, it eventually
learns a value and sets Proposing =⊥ in lines 44 and 50, thus meeting the condition in line 28
and setting Proposing = MPool. ◀

Lemmas 3, 4 and 5 imply:

▶ Theorem 6. Algorithm 2 implements Generalized Lattice Agreement.

▶ Corollary 7. Algorithms 1 and 2 implement Atomic Snapshot.

4.3 Time Metric
We now define the latency metric we are going to use in evaluating time complexity. Our
metric is inspired by the metric proposed by Abraham et al. [2] (which in turn rephrases the
original metric by Canetti and Rabin [13]). The distinguishing feature of our approach is that
it also applies to long-lived executions and executions with holes (illustrated in Figure 1).5

Algorithm 3 describes the iterative method that assigns rounds to events in an execution.
We give an informal description of the metric below.

5 In Section 6, we show that the three metrics are equivalent in “hole-free” executions.
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Figure 1 Example of round assignment using IRA. Arrows represent message transmissions and
the number below an event corresponds to its round. A “hole” in communication appears betwen
events e3 and e5.

▶ Definition 8 (Iterative Round Assignment - Informal). Algorithm 3 assigns round 0 to the
initial event, and defines the end of round i as the last event that receives a message sent in
round i − 1. In addition, if there are no more messages to be received (or in transit), the
event inherits the round number of its immediate predecessor.

Algorithm 3 Iterative Round Assignment (IRA).
52: e∗

0 := e0
53: e0 is assigned round 0
54: r := 0
55: for i=1... do
56: if ei does not receive a message then
57: ei is assigned round r
58: else
59: Let ej be the oldest event from which ei receives a message
60: Let r′ be the round assigned to ej (r′ ≤ r)
61: Let e′ be the most recent event among e∗

r′ and ej

62: All events after e′ and up to ei receive round r′ + 1
63: e∗

r′+1 := ei

64: r = r′ + 1

▶ Definition 9 (IRA - Arbitrary Events). To measure the latency between two events ei and
ej, we assign rounds according to Algorithm 3, starting from ei, with all events up to and
including ei receiving round 0. The latency between ei and ej is then given by the round
assigned to ej.

We say that an application request (or simply request, when there is no ambiguity)
completes once the receiving node learns a value which includes the request. For a specific
node i, we are interested in measuring the latency between the event eC in which i receives
a value v from the application software, and an event eR, in which i learns a value w with v.

4.4 Time Complexity of Algorithm 2
We define latency as the number of rounds spanning between the moment a correct process
receives an application call and the moment it returns from the operation. In evaluating the
latency of our protocol, we consider two types of executions: (1) the fault-free case, when all
processes are correct, and (2) the worst-case, when only a majority of processes are correct.

A snapshot operation op precedes another operation op′ if the response event of op
happens before the call event for op′. Two operations are said to be concurrent if none
precedes the other. For ASO protocols, we analyze latency in fault-free runs of an operation
op in two distinct scenarios: (a) without contention, i.e., when no other operation overlaps
in time with op, and (b) with contention, i.e., when there might be an arbitrary number of
concurrent operations.

DISC 2025



15:10 Asynchronous Latency and Fast Atomic Snapshot

Garg et al. [19] use the notion of amortized time complexity, i.e., the average operation
latency taken over a large number of operations in an execution. In some protocols, including
ours, the latency of an operation is only affected by the number of faulty processes whose
messages are received during the operation’s interval (we call these processes active-faulty).
Intuitively, faulty processes take a finite amount of steps, so in these protocols a failure can
only affect a finite number of operations. In this paper, we also distinguish ASO protocols
with constant time complexity. In Appendix B, we establish the optimality of our protocol
under no-contention and prove the following results:
▶ Theorem 10. An operation completes in at most 2 rounds in fault-free runs w/o contention.

Consider an execution of our algorithm, and let F (|F | ≤ f) be its set of faulty processes.
▶ Theorem 11. An operation op takes at most 8 rounds to complete if, during its interval,
no correct node receives a message from a faulty one.

We say that there are k active faulty nodes during an operation op if, in between the call
and return events for op, a message is received from a total of k distinct faulty nodes.
▶ Theorem 12. An operation op takes O(k) rounds to complete, where k is the number of
active faulty nodes during op.
▶ Corollary 13. Algorithms 1 and 2 together have an amortized time complexity of 8 rounds.

5 Measuring Latency of ASO Protocols

We conclude the paper with an overview of time complexity of earlier LA and ASO proto-
cols [17, 16, 21, 18, 19]. We highlight certain gaps in their latency analyses and discuss the
ways to fix them. Formalities and proofs can be found in the full version [11].

The First Message-Passing LA Protocol. Faleiro et al. [17] came up with the first LA
implementation for asynchronous message-passing systems. They use the metric of [6] to
measure latency and conclude that it takes O(n) rounds to output from a lattice agreement
operation in their protocol.

We show the somewhat surprising result that this protocol has constant latency of 16
rounds in fault-free runs. The upper bound holds as long as no message from faulty processes
is received during the interval of the operation, implying that their LA protocol has constant
amortized time complexity. We conjecture that the protocol has O(k) worst-case latency,
where k is the number of actual failures in the execution.

The First Direct ASO Implementation. Delporte et al. [16] is the first paper to directly
implement ASO in message passing systems, instead of using an atomic register implementa-
tion [6] and the shared-memory snapshot construction [3].

In fault-free runs without contention, the latency of their protocol is only 2 rounds. In
fault-free runs with contention, we support the claim of a bound of O(n) rounds from [19].

ASO with SCD-Broadcast. Imbs et al. [21] introduce the abstraction of Set Constrained
Delivery Broadcast (SCD − Broadcast), and show that it allows for implementing LA
and ASO with no complexity overhead. In their complexity analysis, they assume bounded
message delays and show that the latency of their ASO algorithm in faulty-free and contention-
free runs is 2 rounds. We show that an operation of their resulting ASO algorithm can take
Ω(n) rounds in fault-free runs with contention. We conjecture that this bound is tight, and
so the time complexity of their ASO protocol is Θ(n).
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A Generic ASO Algorithm. Garg et al. [18, 19] give a generic construction for atomic
snapshot which uses any one-shot LA protocol as a building block (with constant latency
overhead). The protocol thus inherits the asymptotic complexity of the underlying LA
algorithm. They also provide a protocol for one-shot LA with 2 rounds latency in fault-free
runs (using [13]’s metric). Their protocol requires 2 rounds of communication plus two
lattice agreement invocations in the good case w/o contention and three lattice invocations
with contention, making it at least 6 and 8 message delays, respectively.

For the worst-case latency analysis, they assume an additional requirement over com-
munication channels: if a process executes send(m), sending m to a correct process, then
m is eventually received (even if the sender is faulty). Using this assumption, they show a
worst-case latency of O(

√
f) for their LA protocol.

In this paper, we assume a weaker channel that only guarantees delivery of messages
among correct processes. We show that under this model, the LA protocol of [18] has an
execution that takes Ω(f) rounds. We conjecture the upper bound of their protocol to be
O(f), and also that when using the stronger assumption, both our (Section 4) and [21]’s
protocol have O(

√
f) worst-case latency.

The generic ASO construction may also be combined with the one-shot LA protocol
presented in [27], which has worst-case latency of O(log f), providing an object whose update
and snapshot operations take O(log f) in both fault-free fault-prone executions. For the sake
of completeness, we also provide the time complexity analysis for the one-shot LA protocols
from [17] and [21] in the full version [11].

6 Comparative Analysis of Time Measurement Metrics

In this section, we recall metrics used in the literature [6, 13, 2, 24] for measuring time in
asynchronous systems. We exhibit executions where the metrics by Attiya et al. [6] and
Canetti and Rabin [13] yield arbitrary results due to the presence of holes – “periods of
silence” during which no messages are in transit – which are common in long-lived protocols.
We show that in a subset of executions without holes, which we refer to as covered executions,
these metrics align with the one proposed by Abraham et al. [2]. This is not surprising, as
these metrics were designed for distributed tasks, which assume finite hole-free executions.
We also recall Lamport’s longest causal chain metric [24] and show that it is not suitable for
comparing the ASO protocols we consider here.

Next, we show that the metric from [2] diverges from [6] and [13] when naïvely applied
to measure time between arbitrary events. We then show that, after employing our refined
method from Section 4.3 (Definition 9), they match when measuring rounds between arbitrary
events in covered executions. Finally, we show that both our metric and that of [2] yield
equivalent results in cases where [2] is applicable.

Altogether, we establish that our metric generalizes [2] and aligns with classical metrics [6,
13] when applied to distributed tasks. A summary of the comparative analysis is presented
in Table 2. Proofs are provided in the extended version [11].

6.1 Definitions
Timed Executions. We assume a global clock, not accessible to the nodes. A timed
event e is a pair (t, e) in which t is a non-negative real number, we also say that e is
a time assignment of e. A timed execution is an alternating sequence C0e1C1 . . . where
e1 = (t1, e1), e2 = (t2, e2), . . . , where events e1, e2, . . . are equipped with monotonically
increasing times t1, t2, . . .:
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Table 2 Comparison between asynchronous time metrics. Metrics that are timed make use of
time assignments to determine the number of rounds between events. We compare each metric
against CR, evaluating the number of rounds resulting from applying them over entire (covered)
executions and between arbitrary events. Blue stands for “good” features and red – for “bad” ones.
The equivalence of NTR to CR holds as long as one uses Definition 9.

Timed Equivalent to CR
(Covered Executions)

Equivalent to CR
(Arbitrary Events)

Admits
Holes

CR [13] Yes - - No
Round [6, 9] Yes Yes Yes No

NTR [2] No Yes Yes No
LCC [25] No No No Yes

IRA No Yes Yes Yes

1. tm > tl whenever m > l;
2. tl →∞ as l→∞.6

A time assignment of E is a timed execution E in which every event ei in E is matched
with a timed event (ti, ei) in E and the sequences of configurations in E and E are the same.
Notice that an execution allows for infinitely many time assignments.

Let m be a message sent in el and received in em, the delay of m is then defined as tm− tl.
For a finite timed execution E = C0e1...elCl, we define tstart(E) = t1, tend(E) = tl (we use
tstart and tend when there is no ambiguity) and duration(E) = tend − tstart.

In the subsequent discussion, given an execution E, let T (E) denote the set of all timed
executions E based on E.

Time Metrics. It is conventional to measure the execution time by the number of com-
munication rounds, typically calculated using the “longest message delay.” These metrics
can be applied to both executions and timed executions. The first metric we consider is
defined in Definition 14 [6]. When applied to timed executions, this metric assumes a known
upper bound on message delays, which can be normalized to one time unit without loss of
generality. To apply this metric to an execution, we consider the maximum duration of all
possible timed executions that adhere to the upper-bound communication constraint.

▶ Definition 14 (Round metric). Given a timed execution E, in which the maximum message
delay is bounded by one unit of time, E takes duration(E) rounds.

By extension, an execution E takes supE∈T (E) duration(E) rounds.

In the metric proposed by Attiya and Welch [9, 10], the time assignments are scaled so
that the maximum message delay is always 1, thus, the metric produces the same results for
executions as Definition 14. A more general metric introduced by Canetti and Rabin [13]
captures the time complexity of any finite execution. Let E be a timed execution, and let δE

be the maximum message delay in it. Then E takes duration(E)/δE CR rounds.

▶ Definition 15 (CR metric). A finite execution E takes supE∈T (E) duration(E)/δE rounds,
where δE is the maximum message delay of each corresponding timed execution.

6 We require this property to avoid the case where a never-terminating execution has a finite time duration.
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Figure 2 Example of an execution with 2 rounds in the Round, CR and NTR metrics.

▶ Example 16. Figure 2 shows an execution with four events, where we assign a delay of δ

to the message exchanges (e1, e3) and (e2, e4), and a delay of δ − ϵ (ϵ > 0) to (e1, e2). By
making ϵ arbitrarily small, the number of rounds in this execution converges to 2 in the CR
metric. The same result is obtained in the Round metric by setting δ = 1.

Recently, Abraham et al. [2] proposed an approach that can be applied to executions
without relying on time assignments. We call this metric non-timed rounds (NTR):

▶ Definition 17 (NTR metric). Given an execution E, each event in E is assigned a round
number as follows:

The first event e0 is assigned round 0. We also write e∗
0 = e0;

For any r ≥ 1, let e∗
r be the last event where a message of round r − 1 is delivered. All

events after e∗
r−1 until (and including) event e∗

r are in round r.
The number of rounds in E is the round assigned to its last event.

▶ Example 18. Coming back to Figure 2, if we assign a round to each event based on
Definition 17 then e1 gets round 0, e2 and e3 get round 1 and e4 is assigned round 2. The
execution has therefore 2 rounds according to NTR.

Lamport [25] proposed a metric for latency based on the causal chain of messages. The
Longest Causal Chain (LCC) was used to show best-case latency of protocols such as
consensus [25] and Crusader Agreement [1].

▶ Definition 19 (Longest Causal Chain). Let e be an event in E and M the set of messages
received by e, then e is assigned round k + 1, where k is the maximum round of an event
originating a message in M . If M = ∅, then k = 0. The number of rounds in an execution
becomes the highest round assigned to one of its events.

This metric, however, diverges from CR and NTR.

▶ Example 20 (Reliable Broadcast). In the reliable broadcast primitive [12], a dedicated
source broadcasts a message and, if the source is correct, then all correct nodes should deliver
the message. Furthermore, if a correct process delivers a message, then every correct process
eventually delivers it. The following protocol satisfies this property:

When the source invokes broadcast(m), it delivers m and sends it to everyone;
When a process receives m for the first time, it delivers m and sends it to everyone.

In Figure 3, we depict an execution of this protocol with four processes: p1, p2, p3 and
p4. Here, p1 is the source and broadcasts m, the message is received by p2 which then sends
m to everyone. Process p3 receives m from p2 before receiving it from p1, and finally, p4
receives m from p1 in the last event. This execution has 2 LCC rounds, while having 1
round according to CR and NTR.
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Figure 3 Example of a reliable broadcast protocol execution.

(a) Execution with undefined δ
E

. (b) Execution where the number
of rounds is unbounded according
to Round and CR.

(c) Covered execution.

Figure 4 Examples of non-covered and covered executions.

Example 20 shows that the LCC metric diverges from the others in cases where a fast
exchange of messages happens in the interval of one slow message. This is the case for several
ASO protocols in the literature (including ours) which heavily rely on relaying values to
speed up the validation phase, making the metric unsuitable for our use case. On the other
hand, CR and NTR provide equivalent results in covered executions, described next.7

6.2 Covered Executions and Holes

Consider an execution E = C0e1C1...elCl illustrated in Figure 4a where no process receives
a message from another process, i.e., events may add messages to the buffer but no event
removes a message from it. δE is not defined in any time assignment E.

Now consider an execution E′ = C0e1C1...elCl...emCm in which:
A message m is sent in e1 and received in el;
A message m′ is sent in el+1 and received in em;
No message from e1...el is received in el+1...em.

In this example, illustrated in Figure 4b with 5 events, δE′ exists for any time assignment
of E′, but we can still assign an arbitrary time difference to el and el+1 without affecting
δE′ , which results in the number of CR rounds to be unbounded.

The two executions in the examples above have events whose time difference is unrelated
to message delays. By consequence, the duration of these executions can grow irrespective of
any bound imposed by message exchanges. Similarly, in Figure 4b, since there is no message
being received in e3e4e5 from e1e2, there is no round assignment defined when using NTR
to e3, e4 and e4.

We then restrict the analysis of these metrics to executions that are covered. Formally:

7 The Round and CR metrics also provide equivalent results in covered executions [11].
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Figure 5 An execution in which there are 2 CR rounds between e2 and e4. However, the
difference of the rounds assigned to e2 and e4 using NTR is 1.

▶ Definition 21 (Covered Execution). A hole in an execution is a pair (el, el+1) in which
no event in el+1... receives a message from ...el, in other words, there are no message hops
among the two sequence of events. An execution is covered iff it has no holes.

Abraham et al. [2] introduce NTR as an equivalent to CR, however, no formal proof is
provided. The next result corroborates this claim in covered executions. Later in Example 24,
we show that using NTR naively to measure time between events may not match CR.

▶ Theorem 22. A finite covered execution E has k CR rounds iff it has ⌈k⌉ NTR rounds.

6.3 Time Between Arbitrary Events
In long-lived executions (such as those of atomic snapshot algorithms) we are interested in
measuring time between two events, for instance, between an application call and response.
Definition 15 can easily be adapted to measure the number of rounds between two events as
follows:

▶ Definition 23 (Generalized CR metric). Let E be an execution, let T (E) denote the set of
all timed executions E based on E, and δE - the maximum message delay in E. Let ei and
ej (j > i) be events in E, and ti and tj time assignments in E for them respectively. Then
we say that in between ei and ej there are: supE∈T (E)(tj − ti)/δE CR rounds.

An appealing way of defining time between two events ei and ej using a non-timed metric
is to assign rounds according to NTR, and then take the difference of rounds assigned to ei

and ej . As illustrated in Example 24, this definition can diverge from generalized CR.

▶ Example 24. Consider the execution shown in Figure 5. We can assign times to e1,
e3 and e4 such that the two message hops have delay of δ. Now consider the number of
rounds between e2 and e4, since we can assign a time for e2 that is arbitrarily close to e1’s
assignment, there are 2 CR rounds between e2 and e4. However, the round assignments
using NTR to e2 and e4 are 1 and 2 respectively, so simply taking the difference between
them leads to a value that diverges from CR.

We then give the following definition, using the approach described in Section 4.3:

▶ Definition 25 (Generalized NTR). Given an execution E, let ei and ej (j > i) be events
in E. The number of rounds between ei and ej is given by the round assigned to ej according
to the following:

All events up to (and including) ei are assigned round 0. We also write e∗
0 = ei;

For any r ≥ 1, let e∗
r be the last event where a message of round r − 1 is delivered. All

events after e∗
r−1 until (and including) event e∗

r are in round r.

▶ Theorem 26. Let E be a covered execution and ei and ej (j > i) be events of E. There
are k rounds in between ei and ej according to CR (Definition 23) iff there are ⌈k⌉ rounds
in between them according to NTR (Definition 25).
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6.4 Relating IRA to NTR
▶ Theorem 27. Let E be a finite covered execution and suppose that all events of E are
assigned rounds according to IRA after all iterations of the algorithm. It holds that:

1. Round 0 is composed only of e0 (the initial event).
2. The final event of round i + 1 is the last event to receive a message from round i.

▶ Corollary 28. IRA and NTR assign the same rounds to events in covered executions.
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A Linearizability of Algorithm 1

The history of an execution E is the subsequence of E consisting of invocations and responses
of ASO operations (update and snapshot). A history is sequential if each of its invocations
is followed by a matching response. An execution is linearizable if, to each of its operation
(update or snapshot, except, possibly, for incomplete ones), we can assign an indivisible point
within its interval (called a linearization point), so that the operations put in the order of
its linearizaton points constitute a legal sequential history of ASO (called a linearization),
i.e., every snapshot operation returns a vector where every position contains the last value
written to it (using an update operation), or the initial value if there are no such prior
updates. Equivalently, a linearizable execution E with history H should have a linearization
S, a legal sequential history that (1) no node can locally distinguish a completion of H and
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S and (2) S respect the real-time order of H, i.e., if operation op completes before operation
op′ in H, then op′ cannot precede op in S.

We show that every execution of Algorithm 1 is linearizable. Consider an execution of
Algorithm 1, let H be its history. Every operation (snapshot or update) is associated with
a unique sequence number and performs a Propose operation on the LA object. If there is
an LA.Propose operation that returns (w, v) in position i, by Validity of LA, there is an
operation update(i, v) executed by node i with sequence number w that started before the
LA.Propose completed and invoked a LA.. In this case, we say that the update operation is
successful. Notice that by Validity of LA, the update must have invoked LA.Propose with a
vector containing (w, v) in position i.

Now we order complete snapshot operations and complete successful update operations
in the order of the values returned by their LA.Propose operations (by Consistency of LA,
these values are totally ordered. As each of these LA.Propose returns a value containing
its unique sequence number (Stability of LA) , this order respects the real-time order of
H. A successful update operation performed by node i with (w, v) in position i that has no
complete LA.Propose is placed right before the first snapshot whose LA.Propose returns this
value. By construction, the resulting sequential history is legal and locally indistinguishable
from a completion of H.

Finally, Liveness implies that every operation invoked by a correct process eventually
completes.

B Time Complexity of Algorithm 2

We establish the optimality of our protocol under no-contention. A protocol implementing
LA tolerates k faults if it satisfies all the properties of Definition 1 in every execution with
at most k faulty processes.

▶ Theorem 29. Let P be a distributed protocol that implements LA and tolerates at least
one faulty process. Then, there exists a fault-free run of P in which an LA operation requires
at least two rounds of communication to complete without contention.

Proof. Consider an operation op initiated by node x, with call event eC and response event
eR. Suppose op completes in at most one round in fault-free, contention-free executions.

We first show that there exists an execution E = e1, . . . , eC , . . . , eR such that:
x is the only process to take a step in eR,
no message sent by x in eC , . . . , eR is received by any other process before eR.

If multiple processes perform steps in the same event e, we can conceptually “split” e

into a sequence of events e1, e2, . . ., where each process takes the step in its own dedicated
event. Since their steps are independent, these split events are indistinguishable from the
original e from each process’s perspective. This reasoning also applies to eR.

Now, assume for the sake of contradiction that in every fault-free, contention-free execution
containing both eC and eR, there exists some process y ̸= x that receives a message m–sent
by x in the interval eC , . . . , eR–before eR occurs.

Let eM denote the event where y receives m. We define rounds from eC ’s perspective:
all events up to eC are in round 0,
round 1 ends at the last event eL that receives a message originating in round 0.

If m is sent after eC , then we can construct E so that all messages from round 0 are
received before m. This ensures that eM occurs after eL, meaning eM is in round 2. Since eR
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occurs after eM , it too is assigned round 2–contradicting our assumption that op completes
in one round.

If instead m is sent in eC , we can again construct the execution so that all round 0
messages are received before or at the same time as m, making eM = eL. Since eR occurs
after eM , it is again assigned to round 2–a contradiction.

These contradictions hold regardless of whether op is concurrent with any other operation.
Hence, such an execution E must exist. Now consider an extension E′ of E where all messages
sent by x after (and including) eC are indefinitely delayed, while messages from other nodes
are not.

Suppose a node z invokes a new operation op′ after eR, making op′ non-concurrent with
op. Since protocol P tolerates at least one faulty process, and x appears to have crashed in
E′, node z must eventually complete op′ without any process receiving any messages from x.

Let v and w be the value proposed and the value learned by x in op, and let v′ and w′

be the corresponding values for z in op′. By Validity, we know v ⊑ w, and by Consistency,
we know w ⊑ w′, hence v ⊑ w′.

However, since no process receives a message from x since eC , no one could have known
about v, contradicting the requirement that w′ must contain v.

Finally, after op′ completes, we can allow all delayed messages from x to be received,
making all processes correct in the final execution E′. This completes the proof. ◀

▶ Theorem 30. An operation completes in at most 2 rounds in fault-free runs w/o contention.

Proof. Consider a contention-free request with call event eC and return event eR invoked by
a node i. There are no call events for other nodes between eC and eR, but some messages
from previous proposals may still be in transit.

Suppose v is the value to be proposed for the application call. If i is not proposing (has
Proposing =⊥) when it receives v, then it directly sends ⟨PROPOSE, v⟩ to everyone. Let
eP be the last event in which a process receives ⟨PROPOSE, v⟩ from i, then every process
also sends ⟨PROPOSE, v⟩ by at most eP . Now take eF as the final event in which a process
receives ⟨PROPOSE, v⟩ in the execution, and eS as the corresponding sending event. It
must be that eS happens between eC and (potentially including) eP . Also, because the
channels are FIFO, every previous proposal must have been validated before eF , and i will
learn a value containing v by at most eF . Let eC be assigned round 0, then eP happens at
most in round 1. As a consequence, eS is assigned either 0 or 1, thus eF can be assigned at
most round 2. Then, by the end of round 2, i already has v validated.

Now suppose that i is proposing when it receives v, so it still has a value v′ in Pending
that is not validated, w.l.o.g. assume that v′ is the only one. This value must be from a call
that already finished, and the corresponding node sent ⟨ACCEPT, w⟩ containing v′ before
eC . Consider two pairs of events: (eA, e′

A) and (eC , e′
C). In the first pair, eA is the event

where ⟨ACCEPT, w⟩ was first sent, and e′
A is the last event in which ⟨ACCEPT, w⟩ is

received from eA. In the second, eC is the usual application call event and e′
C is the last

event in which ⟨REQUEST, v⟩ is received from i. There are two cases to consider: 1) e′
A

happens before e′
C and 2) e′

C happens before e′
A.

If it is the first case, then at the moment e′
C happens, every node was already able to

propose v (since there was no other value to be learned). Take the last event eL in which a
⟨PROPOSE, v⟩ (or a value containing v) is received, and eS as the corresponding sending
event, it follows that i validates v by at most eL and can learn a value containing it. Let
eC be assigned round 0, e′

C and eS can be assigned at most round 1, and since eL receives
a message from eS , it can be assigned at most round 2. If it is the second case, then all
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nodes received ⟨REQUEST, v⟩ and put v in MPool before e′
A. Every node proposes v by at

most e′
A (since they can adopt w and stop any current proposal). Let eL be the last event in

which a process receives a proposal for v and eS it’s corresponding sending event, similarly
to the above cases, eS happens between eC and e′

A. Now, let eA and eC be assigned round 0.
eS can be assigned at most round 1 (eS happens before or at e′

A) and eL at most 2, which
concludes the proof. ◀

▶ Lemma 31. Consider an event in which a correct node sends ⟨PROPOSE, v⟩ and the
first event in which a correct node learns a value including v. If no correct node receives a
message from a faulty one between these two events, then there are at most 3 rounds between
them.

Proof. A message sent by a correct node is received by every correct node in the execution,
and since correct nodes do not receive messages from faulty ones in the interval we are
analyzing, we can consider only events originated from correct nodes. Therefore, we only
refer to correct nodes in the following.

Let x be the node sending ⟨PROPOSE, v⟩, eP be the corresponding event and e′
P the

last event a node receives ⟨PROPOSE, v⟩ from x. Because x also sends ⟨REQUEST, v⟩,
by e′

P every node received the request and must be proposing. Any value learned after e′
P

contains v since all nodes have v in Pending.
Now, at the configuration just after applying e′

P , let V be the set in which w ∈ V satisfies:
there exists a (correct) node where w is in Pending but is not yet validated. Consider a
value w ∈ V that is the last whose ⟨PROPOSE, w⟩ is received by any node, where e′

L is
the event in which ⟨PROPOSE, w⟩ is last received and eL the corresponding sending event.
It follows that some node learns a value containing v by at most e′

L.
Next, take the first event eF in which a node sent ⟨PROPOSE, w⟩, and e′

F the event in
which the last ⟨PROPOSE, w⟩ from eF is received. Note that eL happens at most at e′

F

and eF at most at e′
P . Let eP be assigned round 0, then e′

P (and thus eF ) can be assigned
at most round 1, e′

F (and thus eL) at most 2 and lastly, e′
L can be assigned at most round 3.

Therefore, there are at most 3 rounds between a propose and the first learn event for v. ◀

▶ Theorem 32. An operation op takes at most 8 rounds to complete if, during its interval,
no correct node receives a message from a faulty one.

Proof. Let v be the value received from the application call for op, e be the event in which
node i proposes v (or a value containing v) and e′ the event in which a value including v is
learned for the first time. From Lemma 31, there are at most 3 rounds between e and e′.
Since the node that learns v sends ⟨ACCEPT, v⟩ to everyone, i receives and adopts it in
one extra round. We conclude that in at most 4 rounds every correct node can learn v.

If i is already proposing a value when it receives a call for v, it sends ⟨REQUEST, v⟩ to
everyone and put it in MPool, so it is proposed next. Let eP be the event in which i initiated
its previous proposal to v, and consider the worst case where the application call eC with v

happens just after eP . From eP to the event in which i learns its previous proposal e′
P (and

thus starts proposing v), there are at most 4 rounds, and from e′
P to the learning event of v

there are also at most 4 rounds. Therefore, the operation completes in at most 8 rounds. ◀

▶ Theorem 33. An operation op takes O(k) rounds to complete, where k is the number of
active faulty nodes during op.

Proof. We show that an operation op in Algorithm 2 takes O(k) rounds to complete, where
k is the number of active faulty nodes during op.
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Messages from and to faulty nodes may not arrive, however, a message sent by (and to)
a faulty node at round r is received at most by round r + 1. Moreover, since channels are
FIFO, when a node i receives a message from another node j, i must also have received all
previous messages j sent to i, irrespective of them being correct or faulty.

If a correct node receives ⟨PROPOSE, v′⟩ (even from a faulty node) in round r, every
correct node will have v′ added to Pending by the end of round r + 1, and will have v′

validated by the end of round r + 2. Also, faulty nodes wait for its current proposal to finish
before starting a new one, in which case they send an ACCEPT message for the last learned
value before sending the new proposal.

We say that a node introduces a new value w during the operation if it is the first node
to send a ⟨PROPOSE, w⟩ for w in the interval of the operation. A node can introduce a
new value coming from an internal source, i.e., the value was buffered and proposed when
the node had already finished its previous proposal, or from an external source, i.e., after
receiving a proposal originated from another node before the operation started.

Let v be the value received from the application call for op and eC (as well as all previous
events) be assigned round 0. If there are no active faulty nodes, a correct node learns a value
containing v by at most round 7 (by Lemma 31, here, we include the time v can remain
buffered). Also by the end of round 5, every correct node has sent a PROPOSE message
for v and has v validated by the end of round 6 (including buffering time, a correct node
proposes v in round 4 at the latest). By that point, all correct nodes are waiting for their
proposals to complete and, therefore, cannot introduce a value from an internal source. In
order to delay a correct node from leaning a value containing v by round 7, every correct
node should receive a new value in a PROPOSE message before, which is added to Pending
but is not validated. Using a simple inductive argument, 2k + 1 new proposals originated
from faulty nodes are necessary to delay a correct node from learning a value from round 7
to round 7 + 2k.

Suppose that there is an execution where it takes 8 + 2k + 1 rounds for node i to complete
an operation. But there are only k active faulty nodes, which means that at least k + 1 extra
proposals were introduced by active faulty nodes.

Let f0 be an active faulty node that introduced more than one of the 2k + 1 values that
delayed the operation (assuming w.l.o.g. that there are exactly 2k + 1 new proposals). Let w

and w′ be the first and the second values introduced by f0 respectively. If w′ was received by
f0 from an internal source, f0 should have finished its previous proposal (and learned a value
containing w) before proposing w′. But because w was one of the values that delayed the
operation, and since channels are FIFO, f0 needs to add v to Pending before validating w

(at least a majority of correct nodes sent a PROPOSE for v before sending a PROPOSE
for w). f0 then learns a value containing v and sends ACCEPT with that value to everyone.
The ACCEPT message is received by correct processes before ⟨PROPOSE, w′⟩, and they
would be able to adopt it.

So f0 must have received ⟨PROPOSE, w′⟩ from an external source at most by round 1,
which means it issued proposals for w′ that can be received by at most round 2. We can
also conclude that at least k + 1 values were introduced by active faulty nodes from external
sources. Now let wk+1 be the (k + 1)th such value used to delay correct nodes from learning
v. The earliest round wk+1 can delay is 7 + k, which means that by round 7 + k all correct
nodes already sent a propose for wk+1, but by the end of round 5 + k no correct node has
done it (otherwise wk+1 would have been validated in round 7 + k by every correct process).
Take the first active faulty node f1 from which a correct node received ⟨PROPOSE, wk+1⟩.
Since the earliest this message is received is in round 6 + k, the earliest it could be sent is
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in round 5 + k, so f1 first received ⟨PROPOSE, wk+1⟩ from another distinct active faulty
node, f2, which sent it in round 4 + k the earliest. But wk+1 was introduced from an external
source and it needs to be received by a faulty node at round 1. Following the chain above,
for the node fk+6 to receive it in round 1, there would be necessary a chain of k + 6 active
nodes, although there are only k.

Therefore, an operation takes less than 8 + 2k + 1 rounds to complete. ◀
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