
Perpetual Exploration in Anonymous Synchronous
Networks with a Byzantine Black Hole
Adri Bhattacharya #

Indian Institute of Technology Guwahati, Assam, India

Pritam Goswami #

Sister Nivedita University, Kolkata, India

Evangelos Bampas #

Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400
Orsay, France

Partha Sarathi Mandal #

Indian Institute of Technology Guwahati, Assam, India

Abstract
In this paper, we investigate the following question:

“How can a group of initially co-located mobile agents perpetually explore an unknown graph,
when one stationary node occasionally behaves maliciously, under the control of an adversary?”

This malicious node is termed as “Byzantine black hole (BBH)” and at any given round it may
choose to destroy all visiting agents, or none of them. While investigating this question, we found
out that this subtle power turns out to drastically undermine even basic exploration strategies which
have been proposed in the context of a classical, always active, black hole.

We study this perpetual exploration problem in the presence of at most one BBH, without initial
knowledge of the network size. Since the underlying graph may be 1-connected, perpetual exploration
of the entire graph may be infeasible. Accordingly, we define two variants of the problem, termed as
PerpExploration-BBH and PerpExploration-BBH-Home. In the former, the agents are tasked
to perform perpetual exploration of at least one component, obtained after the exclusion of the BBH.
In the latter, the agents are tasked to perform perpetual exploration of the component which contains
the home node, where agents are initially co-located. Naturally, PerpExploration-BBH-Home
is a special case of PerpExploration-BBH. The mobile agents are controlled by a synchronous
scheduler, and they communicate via face-to-face model of communication.

The main objective in this paper is to determine the minimum number of agents necessary and
sufficient to solve these problems. We first consider the problems in acyclic networks, and we obtain
optimal algorithms that solve PerpExploration-BBH with 4 agents, and PerpExploration-
BBH-Home with 6 agents in trees. The lower bounds hold even in path graphs. In general graphs,
we give a non-trivial lower bound of 2∆ − 1 agents for PerpExploration-BBH, and an upper
bound of 3∆ + 3 agents for PerpExploration-BBH-Home. To the best of our knowledge, this is
the first paper that studies a variant of a black hole in arbitrary networks, without initial topological
knowledge about the network.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Design and analysis of algorithms

Keywords and phrases mobile agents, perpetual exploration, malicious host, Byzantine black hole

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.16

Related Version Full Version: https://arxiv.org/abs/2508.07703

Funding Adri Bhattacharya: Supported by CSIR, Govt. of India, Grant Number: 09/731(0178)/2020-
EMR-I.

Acknowledgements We thank the DISC 2025 reviewers for their careful reading and useful feedback.

© Adri Bhattacharya, Pritam Goswami, Evangelos Bampas, and Partha Sarathi Mandal;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.bhattacharya@iitg.ac.in
https://orcid.org/0000-0003-1517-8779
mailto:pgoswami.cs@gmail.com
https://orcid.org/0000-0002-0546-3894
mailto:bampas@lisn.fr
https://orcid.org/0000-0002-1496-9299
mailto:psm@iitg.ac.in
https://orcid.org/0000-0002-8632-5767
https://doi.org/10.4230/LIPIcs.DISC.2025.16
https://arxiv.org/abs/2508.07703
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

16:2 Perpetual Exploration in Anonymous Synchronous Networks with a BBH

1 Introduction

In distributed mobile agent algorithms, a fundamental task is the collaborative exploration
of a network by a collection of mobile agents. It was introduced and formulated by Shannon
[20] in 1951. Later, the real life applicability of this problem in fields like unmanned search
and rescue, monitoring, network search, etc. has garnered a lot of interest from researchers
across the world which leads them to study this problem in many different settings. Ensuring
the security of agents against threats or breaches is one of the major concerns in the design
of exploration algorithms. Among the various security threats, two types have received the
most attention in the literature of mobile agent algorithms so far. These are threats from
malicious agents [6, 14] and malicious hosts [4, 8, 9]. In this work, we are interested in the
latter. A malicious host in a network is a stationary node that can destroy any incoming
agent without leaving any trace. Dobrev et al. introduced this type of malicious node in
their 2006 paper [9], referring to such malicious hosts as black holes. In this paper, we will
use interchangeably the terms “classical black hole” and “black hole”.

There is extensive literature on Black Hole Search (BHS) problem, that requires locating
the black hole by multiple mobile agents in a network. The BHS problem has been studied
under many different scenarios and under many different communication models ([3, 4, 5,
7, 9, 10, 11]). In all of these above mentioned works, the black hole is considered to be the
classical black hole which always destroys any incoming agent without fail. In this work
we are interested in a more general version of the classical black hole, called Byzantine
Black Hole, or BBH [13]. A BBH has the choice to act, at any given moment, as a black
hole, destroying any data present on that node, or as a non-malicious node. Moreover, it
is assumed that the initial position of the agents is safe. Note that the BHS problem does
not have an exact equivalent under the Byzantine black hole assumption. Indeed, if the
BBH always acts as an non-malicious node, then it can never be detected by any algorithm.
Thus, in this work, our goal is not to locate the Byzantine black hole (BBH), but rather to
perpetually explore the network despite its presence. Note that, if all agents are initially
co-located and the BBH is a cut-vertex of the network, then it becomes impossible to visit
every vertex, as the BBH can block access by behaving as a black hole. Consequently, in this
work, we modify the exploration problem to focus on perpetually exploring one connected
component of the graph, among the connected components which would be obtained if
the BBH and all its incident edges was removed from the network. In [13], the problem
was first introduced as PerpExploration-BBH for a ring network, where it was studied
under various communication models and also under any initial deployment. In this work, in
addition to investigating PerpExploration-BBH, we focus on a variant in which agents are
required to perpetually explore specifically the connected component that includes their initial
position, referred to as the home. We call this variant PerpExploration-BBH-Home.
PerpExploration-BBH-Home is particularly relevant in practical scenarios where the
starting vertex serves as a central base, for example to aggregate the information collected by
individual agents or as a charging station for energy-constrained agents. Therefore, during
perpetual exploration, it is essential to ensure that the component being explored by the
agents includes their home. Note that the two variants are equivalent if the BBH is not a
cut vertex.

1.1 Related work
Exploration of underlying topology by mobile agents in presence of a malicious host (also
termed as black hole) has been well studied in literature. This problem, also known as black
hole search or BHS problem was first introduced by Dobrev et al. [9]. Detailed surveys of

A. Bhattacharya, P. Goswami, E. Bampas, and P. S. Mandal 16:3

the problems related to black holes can be found in [16, 17, 19]. Královič and Miklík [15, 18]
were the first to introduce some variants of the classical black hole, among which the gray
hole, a Byzantine version of the black hole (controlled by the adversary) with the ability, in
each round, to behave either as a regular node or as a black hole. They considered the model,
in which each agents are controlled by an asynchronous scheduler, where the underlying
network is a ring with each node containing a whiteboard (i.e., each node can store some
data, with which the agents can communicate among themselves). In this model, one of the
problems they solved is Periodic Data Retrieval in presence of a gray hole with 9 agents.
Later, Bampas et al. [1] improved the results significantly under the same model. For the
gray hole case, they obtained an optimal periodic data retrieval strategy with 4 agents. It
may be noted that BBH behavior coincides with the “gray hole” considered in these papers.
Moreover, periodic data retrieval is similar to perpetual exploration, as the main source of
difficulty lies in periodically visiting all non-malicious nodes in order to collect the generated
data. Goswami et al. [13] first studied the perpetual exploration problem in presence of
BBH (i.e., PerpExploration-BBH) in ring networks, where the agents are controlled by a
synchronous scheduler. They studied this problem under different communication models
(i.e., face-to-face, pebble and whiteboard, where face-to-face is the weakest and whiteboard
is the strongest model of communication), for different initial positions of the agents, i.e.,
for the case when the agents are initially co-located and for the case when they are initially
scattered. Specifically for the case where the agents communicate face-to-face and they are
initially co-located at a node, they obtained an upper bound of 5 agents and a lower bound
of 3 agents for PerpExploration-BBH.

1.2 Our contributions
We study the PerpExploration-BBH and PerpExploration-BBH-Home problems
in specific topologies and in arbitrary synchronous connected networks with at most one
BBH under the face-to-face communication model (i.e., two agents can only communicate
if both of them are on the same node). To the best of our knowledge, all previous papers
in the literature which study variants of the classical black hole, do so assuming that the
underlying network is a ring. Our primary optimization objective is the number of agents
required to solve these problems.

For tree networks, we provide a tight bound on the number of agents for both problems.
Specifically, we show that 4 agents are necessary and sufficient for PerpExploration-BBH
in trees, and that 6 agents are necessary and sufficient for PerpExploration-BBH-Home
in trees. Our algorithms work without initial knowledge of the size n of the network. However,
knowledge of n would not reduce the number of agents, as our lower bounds do not assume
that n is unknown. Note that our 4-agent PerpExploration-BBH algorithm can be used
to directly improve the 5-agent algorithm for rings, with knowledge of the network size, given
in [13] in the same model (face-to-face communication, initially co-located agents).

To simplify the presentation, we present these results for path networks, and then we
explain how to adapt the algorithms to work in trees with the same number of agents.

In the case of general network topologies, we propose an algorithm that solves the problem
PerpExploration-BBH-Home, hence also PerpExploration-BBH, with 3∆ + 3 agents,
where ∆ is the maximum degree of the graph, without knowledge of the size of the graph.

In terms of lower bounds, we first show that, if the BBH behaves as a classical black hole
(i.e., if it is activated in every round), then at least ∆ + 1 agents are necessary for perpetual
exploration, even with knowledge of n. In the underlying graph used in this proof, the BBH
is not a cut vertex, hence the lower bound holds even for PerpExploration-BBH. This

DISC 2025

16:4 Perpetual Exploration in Anonymous Synchronous Networks with a BBH

can be seen as an analogue, in our model, of the well-known ∆ + 1 lower bound for black
hole search in asynchronous networks [8]. In passing, under the same assumption of the
BBH behaving as a classical black hole, we discuss an algorithm that performs perpetual
exploration with only ∆ + 2 agents, without knowledge of n.

We then use the full power of the Byzantine black hole to prove a stronger, and more
technical, lower bound of 2∆ − 1 agents. In this last lower bound, the structure and, indeed,
the size of the graph is decided dynamically based on the actions of the algorithm. Hence,
the fact that agents do not have initial knowledge of n is crucial in this proof. In this case,
the BBH may be a cut vertex, but the adversarial strategy that we define in the proof never
allows any agents to visit any other component than the one containing the home node.
Therefore, this lower bound also carries over to PerpExploration-BBH.

The above results are the first bounds to be obtained for a more powerful variant of a black
hole, for general graphs, under the assumption that the agents have no initial topological
knowledge about the network.

Several technical details and proofs are omitted due to lack of space, and they can be
found in the full version of the paper.

2 Model and basic definitions

The agents operate in a simple, undirected, connected port-labeled graph G = (V, E, λ),
where λ =

(
λv

)
v∈V

is a collection of port-labeling functions λv : Ev → {1, . . . , δv}, where Ev

is the set of edges incident to node v and δv is the degree of v. We denote by n the number
of nodes and by ∆ the maximum degree of G.

An algorithm is modeled as a deterministic Turing machine. Agents are modeled as
instances of an algorithm (i.e., copies of the corresponding deterministic Turing machine)
which move in G. Each agent is initially provided with a unique identifier.

The execution of the system proceeds in synchronous rounds. In each round, each agent
receives as input the degree of its current node, the local port number through which it
arrived at its current node, i.e. λv({u, v}) if it just arrived at node v by traversing edge {u, v},
or 0 if it did not move in the last round, and the configurations of all agents present at its
current node. It then computes the local port label of the edge that it wishes to traverse
next (or 0 if it does not wish to move). All agents are activated, compute their next move,
and perform their moves in simultaneous steps within a round. We assume that all local
computations take the same amount of time and that edge traversals are instantaneous.

Note that we will only consider initial configurations in which all agents are co-located
on a node called “the home”. In this setting, the set of unique agent identifiers becomes
common knowledge in the very first round.

At most one of the nodes b ∈ V is a Byzantine black hole. In each round, the adversary
may choose to activate the black hole. If the black hole is activated, then it destroys all agents
that started the round at b, as well as all agents that choose to move to b in that round.
The agents have no information on the position of the Byzantine black hole, except that it is
not located at the home node. Furthermore, the agents do not have initial knowledge of the
size of the graph.

2.1 Problem definition
We define the Perpetual Exploration problem with initially co-located agents in the
presence of a Byzantine black hole, hereafter denoted PerpExploration-BBH, as the
problem of perpetually exploring at least one of the connected components resulting from
the removal of the Byzantine black hole from the graph. If the graph does not contain a
Byzantine black hole, then the entire graph must be perpetually explored.

https://arxiv.org/abs/2508.07703

A. Bhattacharya, P. Goswami, E. Bampas, and P. S. Mandal 16:5

If, in particular, the perpetually explored component must be the component containing
the home, then the corresponding problem is denoted as PerpExploration-BBH-Home.

▶ Definition 1. An instance of the PerpExploration-BBH problem is a tuple ⟨G, k, h, b⟩,
where G = (V, E, λ) is a connected port-labeled graph, k ≥ 1 is the number of agents starting
on the home h ∈ V , and b ∈ (V \ {h}) ∪ {⊥} is the node that contains the Byzantine black
hole. If b = ⊥, then G does not contain a Byzantine black hole.

For the following definitions, fix a PerpExploration-BBH instance I = ⟨G, k, h, b⟩,
where G = (V, E, λ), and let A be an algorithm.

▶ Definition 2. We say that an execution of A on I perpetually explores a subgraph H of G

if every node of H is visited by some agent infinitely often.

▶ Definition 3. Let C1, C2, . . . , Ct be the connected components of the graph G − b, resulting
from the removal of b and all its incident edges from G. If b = ⊥, then t = 1 and C1 ≡ G.
Without loss of generality, let h ∈ C1.

We say that A solves PerpExploration-BBH on I, if for every execution starting
from the initial configuration in which k agents are co-located at node h, at least one of the
components C1, C2, . . . , Ct is perpetually explored.

We say that A solves PerpExploration-BBH-Home on I, if for every execution starting
from the initial configuration in which k agents are co-located at node h, the component C1
(containing the home) is perpetually explored.

Finally, we say that A solves PerpExploration-BBH with k0 agents if it solves the
problem on any instance with k ≥ k0 agents (similarly for PerpExploration-BBH-
Home). Note that any algorithm that solves PerpExploration-BBH-Home also solves
PerpExploration-BBH.

3 Perpetual exploration in path and tree networks

In this section, our main aim is to establish the following two theorems, giving the optimal
number of agents that solve PerpExploration-BBH and PerpExploration-BBH-Home
in path graphs.

▶ Theorem 4. 4 agents are necessary and sufficient to solve PerpExploration-BBH in
path graphs, without initial knowledge of the size of the graph.

▶ Theorem 5. 6 agents are necessary and sufficient to solve PerpExploration-BBH-Home
in path graphs, without initial knowledge of the size of the graph.

For the necessity part, we prove that there exists no algorithm solving PerpExploration-
BBH (resp. PerpExploration-BBH-Home) with 3 agents (resp. 5 agents), even assuming
knowledge of the size of the graph. For the sufficiency part of Theorem 5, we provide an
algorithm, which we call Path_PerpExplore-BBH-Home, solving PerpExploration-
BBH-Home with 6 initially co-located agents, even when the size of the path is unknown to
the agents. Thereafter, we modify this algorithm to solve PerpExploration-BBH with 4
initially co-located agents, thus establishing the sufficiency part of Theorem 4.

In Section 3.1, we give a brief sketch of the approach we have used to prove the lower
bounds on the number of agents. Then, in Section 3.2, we describe the algorithms.

DISC 2025

16:6 Perpetual Exploration in Anonymous Synchronous Networks with a BBH

3.1 Lower bounds in paths
▶ Theorem 6. At least 4 agents are necessary to solve PerpExploration-BBH in all path
graphs with n ≥ 9 nodes, even assuming initial knowledge of the size of the graph.

In order to prove Theorem 6, we establish, in a series of lemmas, several different types
of configurations from which the adversary can force an algorithm to fail, by destroying all
agents or by failing to entirely perpetually explore any component. Omitting a lot of details,
these configurations are as follows:

If one agent remains alive, and at least two BBH locations are consistent with the history
of the agent up to that time, then the algorithm fails.
If two agents remain alive on the same side of the path of at least three potential BBH
locations, then the algorithm fails. Also, if two agents remain alive on either side of at
least three potential BBH locations, then the algorithm fails.
If three agents remain alive on the same side of at least eight potential BBH locations, of
which at least the first three are consecutive nodes in the path, then the algorithm fails.

Theorem 6 then follows by observing that, in the initial configuration with three co-located
agents, all nodes apart from the home node are potential BBH positions.

▶ Theorem 7. At least 6 agents are necessary to solve PerpExploration-BBH-Home in
all path graphs with n ≥ 145 nodes, even assuming initial knowledge of the size of the graph.

The first element of the proof of Theorem 7 is that at least one agent must remain at the
home node up to at least the destruction of the first agent by the BBH (actually, up to the
time of destruction of the first agent plus the time it would take for that information to arrive
at the home node), otherwise the adversary can trap all agents in the wrong component, i.e.,
the one not containing the home node.

Then, very informally, we argue that, no matter how the algorithm divides the 5 available
agents into a group of exploring agents that must go arbitrarily far from the home node, and
a group of waiting agents that must wait at the home node, either the number of exploring
agents is not enough for them to explore arbitrarily far from the home node and, at the same
time, be able to detect exactly the BBH position if it is activated, or the number of waiting
agents is not enough to allow them to recover the information of the exact BBH position
from one of the remaining exploring agents that has been stranded on the other side of the
BBH.

3.2 Description of Algorithm Path_PerpExplore-BBH-Home
Here we first describe the algorithm, assuming that the BBH does not intervene and destroy
any agent. Then we describe how the agents behave after the BBH destroys at least one
agent (i.e., the BBH intervenes).

We call this algorithm Path_PerpExplore-BBH-Home. Let ⟨P, 6, h, b⟩ be an instance
of PerpExploration-BBH-Home, where P = (V, E, λ) is a port-labeled path. Per
Definition 3, all agents are initially co-located at h (the home node). To simplify the
presentation, we assume that h is an extremity of the path. Our algorithm works with 6
agents. Initially, among them the four least ID agents will start exploring P , while the other
two agents will wait at h, for the return of the other agents. We first describe the movement
of the four least ID agents say, a0, a1, a2 and a3, on P . Based on their movement, they
identify their role as follows: a0 as F , a1 as I2, a2 as I1 and a3 as L. The identities F , I2,
I1 and L are denoted as Follower, Intermediate2, Intermediate1 and Leader, respectively.
The exploration is performed by these four agents in two steps, in the first step, they form a

A. Bhattacharya, P. Goswami, E. Bampas, and P. S. Mandal 16:7

particular pattern on P . Then in the second step, they move collaboratively in such a way
that the pattern is translated from the previous node to the next node in five rounds. Since
the agents do not have the knowledge of n, where |V | = n, they do the exploration of P , in
log n phases, and then this repeats. In the i-th phase, the four agents start exploring P by
continuously translating the pattern to the next node, starting from h, and moves up to a
distance of 2i from h. Next, it starts exploring backwards in a similar manner, until they
reach h. It may be observed that, any phase after j−th phase (where 2j ≥ n), the agents
behave in a similar manner, as they behaved in j−th phase, i.e., they move up to 2j distance
from h, and then start exploring backwards in a similar manner, until each agent reaches h.
Note that, this can be done with agents having O(log n) bits of memory, in order to store
the current phase number.

We now describe how the set of four agents, i.e., L, I1, I2 and F create and translate the
pattern to the next node.

Creating pattern. L, I1, I2 and F takes part in this step from the very first round of any
phase, starting from h. In the first round, L, I1 and I2 moves to the next node. Then in the
next round only I2 returns back to home to meet with F . Note that, in this configuration
the agents L, I1, I2 and F are at two adjacent nodes while F and I2 are together and L

and I1 are together on the same node. We call this particular configuration the pattern. We
name the exact procedure as Make_Pattern.

Translating pattern. After the pattern is formed in first two rounds of a phase, the agents
translate the pattern to the next node until the agent L reaches either at one end of the
path graph P , or, reaches a node at a distance 2i from h in the i-th phase. Let, v0, v1, v2
be three consecutive nodes on P , where, suppose L and I1 is on v1 and F and I2 is on v0.
This translation of the pattern makes sure that after 5 consecutive rounds L and I1 is on v2
and F and I2 is on v1, thus translating the pattern by one node. We call these 5 consecutive
rounds where the pattern translates starting from a set of 2 adjacent nodes, say v0, v1, to
the next two adjacent nodes, say v1, v2, a sub-phase in the current phase. The description
of the 5 consecutive rounds i.e., a sub-phase without the intervention of the BBH at b (such
that b ∈ {v0, v1, v2}) are as follows.
Round 1: L moves to v2 from v1.
Round 2: I2 moves to v1 from v0 and L moves to v1 back from v2.
Round 3: I2 moves back to v0 from v1 to meet with F . Also, L moves back to v2 from v1.
Round 4: F and I2 moves to v1 from v0 together.
Round 5: I1 moves to v2 from v1 to meet with L.
So after completion of round 5 the pattern is translated from nodes v0, v1 to v1, v2. The
pictorial description of the translate pattern is explained in Fig. 1.

Now, suppose v2 is the node upto which the pattern was supposed to translate at the
current phase (or, it can be the end of the path graph also). So, when L visits v2 for the first
time, in round 1 of some sub-phase it knows that it has reached the end of the path graph
for the current phase. Then in the same sub-phase at round 2 it conveys this information to
I2 and I1. In round 3 of the same sub-phase, F gets that information from I2. So at the end
of the current sub-phase all agents has the information that they have explored either one
end of the path graph or the node upto which they were supposed to explore in the current
phase. In this case, they interchange the roles as follows: the agent which was previously
had role L changes role to F , the agent having role F changes it to L, I1 changes role to
I2 and I2 changes role to I1 (refer to Fig. 2). Then from the next sub-phase onwards they

DISC 2025

16:8 Perpetual Exploration in Anonymous Synchronous Networks with a BBH

vj vj+1 vj+2 vj+3

vj vj+1 vj+2 vj+3

vj vj+1 vj+2 vj+3

vj vj+1 vj+2 vj+3

vj vj+1 vj+2 vj+3

vj vj+1 vj+2 vj+3

F, I2 I1, L

F, I2 I1 L

F I2, I1, L

F, I2 I1 L

F, I2, I1 L

F, I2 I1, L

Round-0

Round-1

Round-2

Round-3

Round-4

Round-5

Figure 1 Depicts translating pattern steps.

vj vj+1 vj+2

vj vj+1 vj+2

vj vj+1 vj+2

vj vj+1 vj+2

vj vj+1 vj+2

vj vj+1 vj+2

F, I2 I1, L

F, I2 I1 L

F I2, I1, L

F, I2 I1 L

F, I2, I1 L

F, I2I1, L

Round-0

Round-1

Round-2

Round-3

Round-4

Round-5

Figure 2 Depicts the step-wise interchange
of roles, when the agents reach the end of the
path graph, while performing translate pattern.

start translating the pattern towards h. It may be noted that, once L (previously F) reaches
h in round 1 of a sub-phase, it conveys this information to the remaining agents in similar
manner as described above. So, at round 5 of this current sub-phase, F (previously L) and
I2 (previously I1) also reaches h, and meets with L (previously F) and I1 (previously I2).
We name the exact procedure as Translate_Pattern.

Intervention by the BBH. Now we describe the behaviour of the agents while the BBH
kills at least one exploring agent during create pattern or, during translate pattern. We first
claim that, however the BBH intervenes while the four agents are executing creating pattern
or translating pattern, there must exists at least one agent, say Aalive which knows the exact
location of the BBH. The justification of the claim is immediate if we do case by case studies
fixing a BBH position and the round it is intervening with the agents. This can be during
creating pattern or in a particular sub-phase of translating pattern. Now, there can be two
cases:
Case-I: Let Aalive ∈ C1 (C1 being the connected component of G − b that contains h) then

it can perpetually explore every vertex in C1 satisfying the requirement.
Case-II: Let Aalive ∈ C2 (C2 being the connected component of G − b such that h /∈ C2).

In this case Aalive places itself to the adjacent node of the BBH on C2. Let Ti be the
maximum time, required for the 4 agents (i.e., L, I1, I2 and F) to return back to h in
i−th phase if BBH does not intervene. Let us denote the aing agents at h, i.e., a4, a5
as F1, F2. Starting from the i-th phase, they wait for Ti rounds for the other agents to
return. Now, if the set of agents L, I1, I2 and F fail to return back to home within Ti

rounds in phase, i, the agents F1 and F2 starts moving cautiously. In the cautious move,
first F1 visits the next node and in the next round, returns back to the previous node
to meet with F2, that was waiting there for F1. If F1 fails to return then F2 knows the
exact location of b, which is the next node F1 visited. In this case, F2 remains in the
component of h, hence can explore it perpetually. Otherwise, if F1 returns back to F2,
then in the next round both of them moves together to the next node.

It may be noted that, Aalive knows which phase is currently going on and so it knows the
exact round at which F1 and F2 starts moving cautiously. Also, it knows the exact round
at which F1 first visits b, say at round r. Aalive waits till round r − 1, and at round r it

A. Bhattacharya, P. Goswami, E. Bampas, and P. S. Mandal 16:9

h BBH

r0

r0 + 1

r0 + 2

r1

vj+1 vj+3

r1 + 1

r1 + 2

r1 + 3

r1 + 4

r1 + 5

h BBH

r0

r0 + 1

r0 + 2

r1

vj+1 vj+3

r1 + 1

r1 + 2

r1 + 3

r1 + 4

r1 + 5

F2 F1 F I2 I1 L

Detection of BBH Position

BBH Activation Round

Figure 3 Represents the time diagram, in which at least one among F1 and F2 detects b, and
perpetually explores the path graph.

moves to b. Now at round r, if adversary activates b, it destroys both F1 and Aalive then,
F1 fails to return back to F2 in the next round. This way, F2 knows the exact location of b,
while it remains in C1. So it can explore C1 by itself perpetually. The right figure in Fig. 3,
represents the case where L detects b at round r0 + 2, and waits till round r1 + 3. In the
meantime, at round r1 (where r1 = r′

0 + Ti, r′
0 < r0 and r′

0 is the first round of phase i), F1
and F2 starts moving cautiously. Notably, along this movement, at round r1 + 4, F1 visits b,
and at the same time L as well visits b from vj+3. The adversary activates b, and both gets
destroyed. So, at round r1 + 5, F2 finds failure of F1’s return and understands the next node
to be b, while it is present in C1. Accordingly, it perpetually explores C1.

On the other hand, if at round r, adversary doesn’t activate b, then F1 meets with Aalive

and knows that they are located on the inactivated b. In this case they move back to C1
and starts exploring the component C1, avoiding b. The left figure in Fig. 3 explores this
case, where L detects the position of b at round r0 + 2, and stays at vj+3 until r1 + 3, then
at round r1 + 4, when F1 is also scheduled to visit b, L also decides to visit b. But, in this
situation, the adversary does not activate b at round r1 + 4, so both F1 and L meets, gets
the knowledge from L that they are on b. In the next round, they move to vj+1 which is a
node in C1, where they meet F2 and shares this information. After which, they perpetually
explore C1.

The correctness of the algorithm follows from the description of the algorithm and the
case by case study of all possible interventions by the BBH. We have thus established the
sufficiency part of Theorem 5.

▶ Note 8. It may be noted that, our algorithm Path_PerpExplore-BBH-Home, without
F1 and F2, is sufficient to solve PerpExploration-BBH. It is because, if Aalive in Ci

(i ∈ {1, 2}) after one intervention by the BBH, it can perpetually explore Ci without any
help from F1 and F2 as it knows the exact location of the BBH. This proves the sufficiency
part of Theorem 4.

▶ Remark 9. Note that our 4-agent PerpExploration-BBH algorithm for paths directly
improves the 5-agent algorithm for rings with knowledge of the network size, given in [13],
in the face-to-face model with initially co-located agents. Indeed, the 4-agent pattern can

DISC 2025

16:10 Perpetual Exploration in Anonymous Synchronous Networks with a BBH

keep moving around the ring as if in a path graph. Naturally, it will never reach a node of
degree 1. If and when the BBH destroys an agent, then, as we showed, at least one agent
remains alive and knows the position of the BBH. As the agent knows the size of the ring in
this case, it can perform perpetual exploration of the non-malicious ring nodes, without ever
visiting the BBH.

3.2.1 Modification of the path algorithms to work in trees
We modify the algorithms for path graphs of Section 3.2 to work for trees, with the same
number of agents. The algorithms for trees work by translating the pattern from one node
to another by following the k − Increasing-DFS [12] algorithm up to a certain number of
nodes in a certain phase.

4 Perpetual exploration in general graphs

In this section, we establish upper and lower bounds on the optimal number of agents required
to solve Perpetual Exploration in arbitrary graphs with a BBH, without any initial knowledge
about the graph. In particular, we give a lower bound of 2∆−1 agents for PerpExploration-
BBH (Theorem 10 below), which carries over directly to PerpExploration-BBH-Home,
and an algorithm for PerpExploration-BBH-Home using 3∆ + 3 agents (Theorem 12
below), which also solves PerpExploration-BBH.

We give a brief sketch of the lower bound proof in Section 4.1, and we present the
algorithm in Section 4.2.

4.1 Lower bound in general graphs
For the lower bound, we construct a particular class of graphs in which any algorithm using
2∆ − 2 agents or less must fail.

▶ Theorem 10. For every ∆ ≥ 4, there exists a class of graphs G with maximum degree ∆,
such that any algorithm using at most 2∆ − 2 agents, with no initial knowledge about the
graph, fails to solve PerpExploration-BBH in at least one of the graphs in G.

Proof sketch. For a fixed ∆ ≥ 4, we construct the corresponding graph class G by taking an
underlying path P, consisting of two types of vertices {vi : 1 ≤ i ≤ ∆} and, for each i ≤ ∆,
the nodes {ui

j : 1 ≤ j ≤ li}, where li ≥ 1. The nodes {ui
j} form a subpath of length li + 1

connecting vi to vi+1. The nodes vi (for ∈ {1, 2, . . . , ∆ − 1}) are special along P, because
they are connected to the BBH b either directly or via a new node wi. Every node of P, as
well as b, now completes its degree up to ∆ by connecting to at most ∆ − 1 trees of height 2
(see example in Figure 4). Every node wi completes its degree up to ∆ by connecting to
∆ − 2 new nodes.

Note that, to reach b from a vertex of the form ui
j , it is required to visit either vi or vi+1.

In the example of Figure 4, we have ∆ = 4, l1 = l2 = 2 and l3 = 1, so in P there are two
vertices u1

1, u1
2 between v1 and v2, two vertices u2

1, u2
2 between v2 and v3, and one vertex u3

1
between v3 and v4. In addition, v2 is directly connected to b (or BBH) whereas v1 and v3
are connected to b via a path of length 2.

Given an algorithm A which claims to solve PerpExploration-BBH with 2∆ − 2
co-located agents, the adversary returns a port-labeled graph G = (V, E, λ) ∈ G in which A
fails, by choosing the lengths li and the connection between vi and b (direct or through wi).
A high-level idea of the proof is as follows. First, it can be ensured that, A must instruct at

A. Bhattacharya, P. Goswami, E. Bampas, and P. S. Mandal 16:11

v1 v2 v3 v4

BBH

u1
1 u1

2 u2
1 u2

2 u3
1

z
w1

w3

Figure 4 An example graph of the class G, used in the proof of Theorem 10.

least one agent to visit a node which is at 2 hop distance from vi, for all i ∈ {1, 2, . . . , ∆ − 1}.
Let the agent which first visits a node which is at 2 hop distance from vi, starts from vi at
time ti. Case-1: Now, based on A, if at ti, at least 2 agents are instructed to move from vi

along the same port, then the adversary chooses a graph from G, such that vi is connected to
b, and returns a port labeling, such that at ti + 1, these agents reach b. Case-2: Otherwise,
the adversary chooses a graph from G such that, either vi is connected to b or there exists
an intermediate vertex wi connecting vi with b. In this case also, the adversary returns the
port labeling such that, the agent must move to b (or wi) at ti + 1 and to some vertex z (or
b) at t′

i (where t′
i > ti + 1).

In addition, the graph chosen by the adversary sets the distance between vi−1 and vi in a
way to ensure that, within the time interval [ti, t′

i], no agent from any vα (α ∈ {0, 1, . . . , i−1})
attempts to visit b. So, for Case-1, two agents directly gets destroyed. For Case-2, after
the first agent is destroyed, remaining agents do not understand which among the next 2
nodes from vi is b. Now, for A to succeed, at least one other agent from vi gets destroyed, at
some round t′′

i . This shows that from each vi, for all i ∈ {1, 2, . . . , ∆ − 1} at least 2 agents
each, are destroyed. Thus, A fails. ◀

4.2 Description of Algorithm Graph_PerpExplore-BBH-Home
Here we discuss the algorithm, termed as Graph_PerpExplore-BBH-Home that solves
PerpExploration-BBH-Home on a general graph, G = (V, E, λ). We will show that
our algorithm requires at most 3∆ + 3 agents. Let ⟨G, 3∆ + 3, h, b⟩ be an instance of the
problem PerpExploration-BBH-Home, where G = (V, E, λ) is a simple port-labeled graph.
The structure of our algorithm depends upon four separate algorithms Translate_Pattern
along with Make_Pattern (discussed in Section 3.2), Explore (explained in this section)
and BFS-Tree-Construction [2]. So, before going in to details of our algorithm that
solves PerpExploration-BBH-Home, we recall the idea of BFS-Tree-Construction.

An agent starts from a node h ∈ V (also termed as home), where among all nodes
in G, only h is marked. The agent performs breadth-first search (BFS) traversal, while
constructing a BFS tree rooted at h. The agent maintains a set of edge-labeled paths, P =
{Pv : edge labeled shortest path from h to v, ∀v ∈ V such that the agent has visited v}
while executing the algorithm. During its traversal, whenever the agent visits a node w from
a node u, then to check whether the node w already belongs to the current BFS tree of G

constructed yet, it traverses each stored edge labeled paths in the set P from w one after the
other, to find if one among them takes it to the marked node h. If yes, then it adds to its
map a cross-edge (u, w). Otherwise, it adds to the already constructed BFS tree, the node
w, accordingly P = P ∪ Pw is updated. The underlying data structure of Root_Paths [2]
is used to perform these processes. This strategy guarantees as per Proposition 9 of [2], that
BFS-Tree-Construction algorithm constructs a map of G, in presence of a marked node,
within O(n3∆) steps and using O(n∆ log n) memory, where |V | = n and ∆ is the maximum
degree in G.

DISC 2025

16:12 Perpetual Exploration in Anonymous Synchronous Networks with a BBH

In our algorithm, we use k agents (in Theorem 12, it is shown that k = 3∆ + 3 agents
are sufficient), where they are initially co-located at a node h ∈ V , which is termed as home.
Initially, at the start our algorithm asks the agents to divide in to three groups, namely,
Marker, SG and LG0, where SG (or smaller group) contains the least four ID agents, the
highest ID agent among all k agents, denoted as Marker stays at h (hence h acts as a marked
node), and the remaining k − 5 agents are denoted as LG0 (or larger group). During the
execution of our algorithm, if at least one member of LG0 detects one port leading to the
BBH from one of its neighbor, in that case at least one member of LG0 settles down at that
node, acting as an anchor blocking that port which leads to the BBH, and then some of the
remaining members of LG0 forms LG1. In general, if at least one member of LGi detects the
port leading to the BBH from one of its neighbors, then again at least one member settles
down at that node acting as an anchor to block that port leading to the BBH, and some of
the remaining members of LGi forms LGi+1, such that |LGi+1| <|LGi|. It may be noted that,
a member of LGi only settles at a node v (say) acting as an anchor, only if no other anchor
is already present at v. Also, only if a member of LGi settles as an anchor, then only some of
the members of LGi forms LGi+1.

In addition to the groups LG0 and SG, the Marker agent permanently remains at h. In
a high-level the goal of our Graph_PerpExplore-BBH-Home algorithm is to create
a situation, where eventually at least one agent blocks, each port of C1 that leads to the
BBH (where C1, C2, . . . , Ct are the connected components of G − b, such that h ∈ C1), we
term these blocking agents as anchors, whereas the remaining alive agents must perpetually
explore at least C1.

Initially from h, the members of SG start their movement, and the members of LG0 stays
at h until they find that, none of the members of SG reach h after a certain number of rounds.
Next, we explain one after the other how both these groups move in G.

Movement of SG. The members (or agents) in SG works in phases, where in each phase
the movement of these agents are based on the algorithms Make_Pattern and Trans-
late_Pattern (both of these algorithms are described in Section 3.2). Irrespective of
which, the node that they choose to visit during making pattern or translating pattern is
based on the underlying algorithm BFS-Tree-Construction.

More specifically, the i-th phase (for some i > 0) is divided in two sub-phases: i1-th
phase and i2-th phase. In the i1-th phase, the members of SG makes at most 2i translations,
while executing the underlying algorithm BFS-Tree-Construction. Next, in the i2-th
phase, irrespective of their position after the end of i1-th phase, they start translating back
to reach h. After they reach h during the i2-th phase, they start (i + 1)-th phase (which
has again, (i + 1)1 and (i + 1)2 sub-phase). Note that, while executing i1-th phase, if the
members of SG reach h, in that case they continue executing i1-th phase. We already know
as per Section 3.2, each translation using Translate_Pattern requires 5 rounds and for
creating the pattern using Make_Pattern it requires 2 rounds. This concludes that, it
requires at most Tij = 5 · 2i + 2 rounds to complete ij-th phase, for each i > 0 and j ∈ {1, 2}.

If at any point, along their traversal, the adversary activates the BBH, such that it
interrupts the movement of SG. In that scenario, at least one member of SG must remain
alive, exactly knowing the position of the BBH from its current node (refer to the discussion
of Intervention by the BBH in Section 3.2). The agent (or agents) which knows the
exact location of the BBH, stays at the node adjacent to the BBH, such that from its current
node, it knows the exact port that leads to the BBH, or in other words they act as anchors
with respect to one port, leading to the BBH. In particular, let us suppose, the agent holds
the adjacent node of BBH, with respect to port α from BBH, then this agent is termed as
Anchor(α).

A. Bhattacharya, P. Goswami, E. Bampas, and P. S. Mandal 16:13

Ei
1, E

i
2, E

i
3 Ei

1

Ei
2, E

i
3

Ei
1

Ei
2

Ei
3

Ei
1

Ei
2, E

i
3

Ei
1, E

i
2

Ei
3

Ei
1

Ei
2, E

i
3

Ei
1

Ei
2

Ei
3

Ei
1

Ei
2, E

i
3

Ei
1, E

i
2, E

i
3

Round-r Round-(r + 1) Round-(r + 2) Round-(r + 3) Round-(r + 4)

Round-(r + 5) Round-(r + 6) Round-(r + 7) Round-(r + 8)

u

v

w1 w2

u u u u

u u u u

v v v v

vvvv

w1 w1 w1 w1

w1 w1 w1 w1

w2 w2 w2 w2

w2 w2 w2 w2

Ei
1, E

i
2, E

i
3

Round-(r + 9)

u

v

w1 w2

Figure 5 Depicts the round-wise execution of Explore(v) from u by the explorer agents of LGi,
for some i ≥ 0 on the neighbors w1 and w2 of v.

Movement of LG0. These group members stay at h with Marker, until the members of SG
are returning back to h in the i2-th phase, for each i > 0. If all members of SG do not reach
h, in the i2-th phase, i.e., within Ti2 rounds since the start of i2-th phase, then the members
of LG0 start their movement.

Starting from h, the underlying movement of the members of LG0 is similar to BFS-
Tree-Construction, but while moving from one node to another they do not execute
neither Make_Pattern nor Translate_Pattern, unlike the members of SG. In this
case, if all members of LG0 are currently at a node u ∈ V , then three lowest ID members of
LG0 become the explorers, they are termed as E0

1 , E0
2 and E0

3 in increasing order of their IDs,
respectively. If based on the BFS-Tree-Construction, the next neighbor to be visited by
the members of LG0 is v, where v ∈ N(u), then the following procedure is performed by the
explorers of LG0, before LG0 finally decides to visit v.

Suppose at round r (for some r > 0), LG0 members reach u, then at round r + 1 both
E0

2 and E0
3 members reach v. Next at round r + 2, E0

3 traverses to the first neighbor of v

and returns to v at round r + 3. At round r + 4, E0
2 travels to u from v and meets E0

1 and
then at round r + 5 it returns back to v. This process iterates for each neighbor of v, and
finally after each neighbor of v is visited by E0

3 , at round r + 4 · (δv − 1) + 1 both E0
2 and E0

3
returns back to u. And in the subsequent round each members of LG0 visit v. The whole
process performed by E0

1 , E0
2 and E0

3 from u is termed as Explore(v), where v symbolizes
the node at which the members of LG0 choose to visit from a neighbor node u. After the
completion of Explore(v), each member of LG0 (including the explorers) visit v from u. A
pictorial description is explained in Fig. 5.

It may be noted that, if the members of LG0 at the node u, according to the BFS-Tree-
Construction algorithm, are slated to visit the neighboring node v, then before executing
Explore(v), the members of LG0 checks if there exists an anchor agent blocking that port
which leads to v. If that is the case, then LG0 avoids visiting v from u, and chooses the next
neighbor, if such a neighbor exists and no anchor agent is blocking that edge. If no such
neighbor exists from u to be chosen by LG0 members, then they backtrack to the parent node
of u, and start iterating the same process.

From the above discussion we can have the following remark.
▶ Remark 11. If at some round t, the explorer agents of LGi (i.e., Ei

1, Ei
2 and Ei

3), are
exploring a two length path, say P = u → v → w, from u, then all members of LGi agrees on
P at t. This is due to the fact that the agents while executing Explore(v) from u must
follow the path u → v first. Now from v, Ei

3 chooses the next port in a particular pre-decided

DISC 2025

16:14 Perpetual Exploration in Anonymous Synchronous Networks with a BBH

order (excluding the port through which it entered v). So, whenever it returns back to v to
meet Ei

2 after visiting a node w, Ei
2 knows which port it last visited and which port it will

chose next and relay that information back to other agents of LGi on u. So, after Ei
2 returns

back to v again from u when Ei
3 starts visiting the next port, all other agents know about it.

During the execution of Explore(v) from u, the agent E0
3 can face one of the following

situations:
It can find an anchor agent at v, acting as Anchor(β), for some β ∈ {1, . . . , δv}. In that
case, during its current execution of Explore(v), E0

3 does not visit the neighbor of v

with respect to the port β.
It can find an anchor agent at a neighbor w (say) of v, acting as Anchor(β′), where
β′ ∈ {1, . . . , δw}. If the port connecting w to v is also β′, then E0

3 understands v is the
BBH, and accordingly tries to return to u, along the path w → v → u, and if it is able to
reach to u, then it acts as an anchor at u, with respect to the edge (u, v). On the other
hand, if port connecting w to v is not β′, then E0

3 continues its execution of Explore(v).

The agent E0
2 during the execution of Explore(v), can encounter one of the following

situations, and accordingly we discuss the consequences that arise due to the situations
encountered.

It can find an anchor agent at v where the anchor agent is not E0
3 , in which case it

continues to execute Explore(v).
It can find an anchor agent at v and finds the anchor agent to be E0

3 . In this case, E0
2

returns back to u, where LG1 is formed, where LG1 = LG0 \ {E0
3}. Next, the members of

LG1 start executing the same algorithm from u, with new explorers as E1
1 , E1

2 and E1
3 .

E0
2 can find that E0

3 fails to return to v from a node w (say), where w ∈ N(v). In this
case, E0

2 understands w to be the BBH, and it visits u in the next round to inform this to
remaining members of LG0 in the next round, and then returns back to v, and becomes
Anchor(β), where β ∈ {1, . . . , δv} and β is the port for (v, w). On the other hand, LG0
after receiving this information from E0

2 , transforms to LG1 (where LG1 = LG0 \ {E0
2 , E0

3})
and starts executing the same algorithm, with E1

1 , E1
2 and E1

3 as new explorers.

Lastly, during the execution of Explore(v) the agent E0
1 can face the following situation.

E0
2 fails to return from v, in this situation E0

1 becomes Anchor(β) at u, where β is the
port connecting u to v. Moreover, the remaining members of LG0, i.e., LG0 \ {E0

1 , E0
2 , E0

3}
forms LG1 and they start executing the same algorithm from u, with new explorers,
namely, E1

1 , E1
2 and E1

3 , respectively.

For each E0
1 , E0

2 and E0
3 , if they do not face any of the situations discussed above, then

they continue to execute Explore(v).
A pictorial explanation of two scenarios, of how an anchor settles at neighbor nodes of

BBH is explained in Fig. 6.

Correctness. In order to prove the correctness of the algorithm Graph_PerpExplore-
BBH-Home, we give a brief sketch of the proof of the following theorem.

▶ Theorem 12. Algorithm Graph_PerpExplore-BBH-Home solves PerpExploration-
BBH-Home in arbitrary graphs with 3∆ + 3 agents, having O(n∆ log n) memory, without
initial knowledge about the graph.

Proof sketch. We first show that if b (i.e., BBH) never destroys any agent then the problem
PerpExploration-BBH-Home is solved only by the four agents in SG (follows from
the correctness of BFS-Tree-Construction). On the otherhand if BBH destroys any

A. Bhattacharya, P. Goswami, E. Bampas, and P. S. Mandal 16:15

u v w(BBH) u v w(BBH)

r

r + 1

r + 3

r

r + 1

r + 2

r + 4

r + 2

r + 3

Ei
1 Ei

2 Ei
3

(i) (ii)

r + 4

Node anchored by an anchor agent

Movement along this edge is banned

Figure 6 Depicts the time diagram of Explore(v) of LGi along a specific path P = u → v → w,
where v = b, in which w contains an anchor agent for the edge (v, w). In (i), it depicts even if b is
not activated, an explorer agent settles as an anchor at u for the edge (u, v). In (ii), it depicts that
activation of b destroys both Ei

2 and Ei
3, then an explorer Ei

1 gets settled as anchor at u for (u, v).

agent, then we prove that there exists an agent from SG acting as an anchor at a node in
N(b), where N(b) indicates the neighbors of b. The node can be either in C1 or Cj , where
G − b = C1 ∪ · · · ∪ Ct for some t ≥ 1 and home ∈ C1 and j ̸= 1. Now if we assume, BBH
destroys at least one agent then, we define a set U of nodes in G, where U ⊆ N(b) ∩ C1 such
that no vertex in U contains an anchor. A node u ∈ U ceases to exist in U , whenever an
agent visits u and blocks the edge (u, b), by becoming an anchor. We show that during the
execution of our algorithm, U eventually becomes empty. In addition to that, we also show
that, the agents in LGi (for some i ≥ 0) never visit a node which is not in C1. By LGi visiting a
node, we mean to say that all agents are located at that node simultaneously. This concludes
that, all neighbors in C1 of b, gets anchored by an anchor agent. So, eventually all the agents,
which are neither an anchor nor a Marker, can perpetually explore C1. Also, to set up an
anchor at each neighbor of b, at most 2 agents are destroyed. So, this shows that 3(∆ − 1)
agents are required to anchor each neighbor of C1 by the members of LGi (for any i ≥ 0).
So, in total 3∆ + 3 agents are sufficient to execute Graph_PerpExplore-BBH-Home,
including Marker, 4 agents in SG0, and one agent which is neither a Marker nor an anchor, i.e.,
the one which perpetually explores C1. Moreover, to execute BFS-Tree-Construction as
stated in [2, Proposition 9], each agent requires O(n∆ log n) memory. This concludes the
proof. ◀

4.3 Perpetual exploration in presence of a black hole

In the special case in which the Byzantine black hole is activated in each round, i.e., behaves
as a classical black hole, we show that the optimal number of agents for perpetual exploration
(we call this problem PerpExploration-BH) drops drastically to between ∆ + 1 and ∆ + 2
agents.

The lower bound holds even with initial knowledge of n, and even if we assume that
agents have knowledge of the structure of the graph, minus the position of the black hole
and the local port labelings at nodes. This can be seen as an analogue, in our model, of the
well-known ∆ + 1 lower bound for black hole search in asynchronous networks [8].

DISC 2025

16:16 Perpetual Exploration in Anonymous Synchronous Networks with a BBH

Details of the proof and a discussion of the algorithm that solves the problem with ∆ + 2
agents can be found in the full version.

5 Conclusion

We gave the first non-trivial upper and lower bounds on the optimal number of agents for
perpetual exploration, in presence of at most one Byzantine black hole in general, unknown
graphs.

One noteworthy point, as regards the related problem of pinpointing the location of the
malicious node, is that all our algorithms have the property that, even in an execution in
which the Byzantine black hole destroys only one agent, all remaining agents manage to
determine exactly the position of the malicious node, at least within the component which
ends up being perpetually explored. By contrast, this is not the case for the algorithms
proposed in [13] for PerpExploration-BBH in ring networks, as the adversary can time
a single activation of the Byzantine black hole, destroying at least one agent, so that the
remaining agents manage to perpetually explore the ring, but without ever being able to
disambiguate which one of two candidate nodes is the actual malicious node.

A few natural open problems remain. First, close the important gap between 2∆ − 1
and 3∆ + 3 for the optimal number of agents required for PerpExploration-BBH and
PerpExploration-BBH-Home, in general graphs. Second, note that our general graph
lower bound of 2∆ − 1 holds only for graphs of maximum degree at least 4 (Theorem 10).
Could there be a 4-agent algorithm for graphs of maximum degree 3? Third, in the special
case of a black hole (or, equivalently, if we assume that the Byzantine black hole is activated in
each round), close the gap between ∆ + 1 and ∆ + 2 agents. Fourth, our 4-agent algorithm in
paths induced a direct improvement of the optimal number of agents for perpetual exploration
in a ring with known n, under the face-to-face communication model, from 5 agents (which
was shown in [13]) to 4 agents. However, it is still unknown whether the optimal number of
agents is 3 or 4 in this case.

Finally, it would be interesting to consider stronger or weaker variants of the Byzantine
black hole, and explore the tradeoffs between the power of the malicious node and the optimal
number of agents for perpetual exploration. Orthogonally to this question, one can consider
different agent communication models or an asynchronous scheduler.

References

1 Evangelos Bampas, Nikos Leonardos, Euripides Markou, Aris Pagourtzis, and Matoula Petrolia.
Improved periodic data retrieval in asynchronous rings with a faulty host. Theor. Comput.
Sci., 608:231–254, 2015. doi:10.1016/J.TCS.2015.09.019.

2 Jérémie Chalopin, Shantanu Das, and Adrian Kosowski. Constructing a map of an anonymous
graph: Applications of universal sequences. In Principles of Distributed Systems: 14th
International Conference, OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010. Proceedings
14, pages 119–134. Springer, 2010. doi:10.1007/978-3-642-17653-1_10.

3 Jurek Czyzowicz, Dariusz Kowalski, Euripides Markou, and Andrzej Pelc. Complexity of
searching for a black hole. Fundamenta Informaticae, 71(2-3):229–242, 2006. URL: http:
//content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-05.

4 Jurek Czyzowicz, Dariusz Kowalski, Euripides Markou, and Andrzej Pelc. Searching for a black
hole in synchronous tree networks. Combinatorics, Probability and Computing, 16(4):595–619,
2007. doi:10.1017/S0963548306008133.

https://doi.org/10.1016/J.TCS.2015.09.019
https://doi.org/10.1007/978-3-642-17653-1_10
http://content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-05
http://content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-05
https://doi.org/10.1017/S0963548306008133

A. Bhattacharya, P. Goswami, E. Bampas, and P. S. Mandal 16:17

5 Giuseppe Antonio Di Luna, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Black hole
search in dynamic rings. In 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS), pages 987–997. IEEE, 2021. doi:10.1109/ICDCS51616.2021.00098.

6 Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite mischief. ACM Trans.
Algorithms, 11(1):1:1–1:28, 2014. doi:10.1145/2629656.

7 Stefan Dobrev, Paola Flocchini, Rastislav Královič, and Nicola Santoro. Exploring an unknown
dangerous graph using tokens. Theoretical Computer Science, 472:28–45, 2013. doi:10.1016/
J.TCS.2012.11.022.

8 Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Searching for a black
hole in arbitrary networks: optimal mobile agents protocols. Distributed Comput., 19(1):1–35,
2006. doi:10.1007/S00446-006-0154-Y.

9 Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Mobile search
for a black hole in an anonymous ring. Algorithmica, 48:67–90, 2007. doi:10.1007/
S00453-006-1232-Z.

10 Stefan Dobrev, Nicola Santoro, and Wei Shi. Locating a black hole in an un-oriented ring
using tokens: The case of scattered agents. In European Conference on Parallel Processing,
pages 608–617. Springer, 2007. doi:10.1007/978-3-540-74466-5_64.

11 Paola Flocchini, David Ilcinkas, and Nicola Santoro. Ping pong in dangerous graphs: Op-
timal black hole search with pebbles. Algorithmica, 62:1006–1033, 2012. doi:10.1007/
S00453-011-9496-3.

12 Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph exploration
by a finite automaton. Theoretical Computer Science, 345(2-3):331–344, 2005. doi:10.1016/
J.TCS.2005.07.014.

13 Pritam Goswami, Adri Bhattacharya, Raja Das, and Partha Sarathi Mandal. Perpetual
exploration of a ring in presence of byzantine black hole. In Silvia Bonomi, Letterio Galletta,
Etienne Rivière, and Valerio Schiavoni, editors, 28th International Conference on Principles
of Distributed Systems, OPODIS 2024, December 11-13, 2024, Lucca, Italy, volume 324 of
LIPIcs, pages 17:1–17:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:
10.4230/LIPICS.OPODIS.2024.17.

14 Wayne A Jansen. Intrusion detection with mobile agents. Computer Communications,
25(15):1392–1401, 2002. doi:10.1016/S0140-3664(02)00040-3.

15 Rastislav Královic and Stanislav Miklík. Periodic data retrieval problem in rings containing a
malicious host. In Boaz Patt-Shamir and Tínaz Ekim, editors, Structural Information and
Communication Complexity, 17th International Colloquium, SIROCCO 2010, Sirince, Turkey,
June 7-11, 2010. Proceedings, volume 6058 of Lecture Notes in Computer Science, pages
157–167. Springer, 2010. doi:10.1007/978-3-642-13284-1_13.

16 Euripides Markou. Identifying hostile nodes in networks using mobile agents. Bull. EATCS,
108:93–129, 2012. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/52.

17 Euripides Markou and Wei Shi. Dangerous graphs. In Paola Flocchini, Giuseppe Prencipe,
and Nicola Santoro, editors, Distributed Computing by Mobile Entities, Current Research in
Moving and Computing, volume 11340 of Lecture Notes in Computer Science, pages 455–515.
Springer, 2019. doi:10.1007/978-3-030-11072-7_18.

18 Stanislav Miklík. Exploration in faulty networks. PhD thesis, Comenius University, Bratislava,
2010.

19 Mengfei Peng, Wei Shi, Jean-Pierre Corriveau, Richard Pazzi, and Yang Wang. Black hole
search in computer networks: State-of-the-art, challenges and future directions. Journal of
Parallel and Distributed Computing, 88:1–15, 2016. doi:10.1016/J.JPDC.2015.10.006.

20 Claude E Shannon. Presentation of a maze-solving machine. Claude Elwood Shannon Collected
Papers, pages 681–687, 1993.

DISC 2025

https://doi.org/10.1109/ICDCS51616.2021.00098
https://doi.org/10.1145/2629656
https://doi.org/10.1016/J.TCS.2012.11.022
https://doi.org/10.1016/J.TCS.2012.11.022
https://doi.org/10.1007/S00446-006-0154-Y
https://doi.org/10.1007/S00453-006-1232-Z
https://doi.org/10.1007/S00453-006-1232-Z
https://doi.org/10.1007/978-3-540-74466-5_64
https://doi.org/10.1007/S00453-011-9496-3
https://doi.org/10.1007/S00453-011-9496-3
https://doi.org/10.1016/J.TCS.2005.07.014
https://doi.org/10.1016/J.TCS.2005.07.014
https://doi.org/10.4230/LIPICS.OPODIS.2024.17
https://doi.org/10.4230/LIPICS.OPODIS.2024.17
https://doi.org/10.1016/S0140-3664(02)00040-3
https://doi.org/10.1007/978-3-642-13284-1_13
http://eatcs.org/beatcs/index.php/beatcs/article/view/52
https://doi.org/10.1007/978-3-030-11072-7_18
https://doi.org/10.1016/J.JPDC.2015.10.006

	1 Introduction
	1.1 Related work
	1.2 Our contributions

	2 Model and basic definitions
	2.1 Problem definition

	3 Perpetual exploration in path and tree networks
	3.1 Lower bounds in paths
	3.2 Description of Algorithm Path_PerpExplore-BBH-Home
	3.2.1 Modification of the path algorithms to work in trees

	4 Perpetual exploration in general graphs
	4.1 Lower bound in general graphs
	4.2 Description of Algorithm Graph_PerpExplore-BBH-Home
	4.3 Perpetual exploration in presence of a black hole

	5 Conclusion

