Complexity Landscape for Local Certification
Nicolas Bousquet =
CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, F-69622 Villeurbanne, France

Laurent Feuilloley &
CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, F-69622 Villeurbanne, France

Sébastien Zeitoun &
CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, F-69622 Villeurbanne, France

—— Abstract

An impressive recent line of work has charted the complexity landscape of distributed graph
algorithms. For many settings, it has been determined which time complexities exist, and which do
not (in the sense that no local problem could have an optimal algorithm with that complexity). In
this paper, we initiate the study of the landscape for space complezity of distributed graph algorithms.
More precisely, we focus on the local certification setting, where a prover assigns certificates to nodes
to certify a property, and where the space complexity is measured by the size of the certificates.

Already for anonymous paths and cycles, we unveil a surprising landscape:

There is a gap between complexity O(1) and O(loglogn) in paths. This is the first gap established

in local certification.

There exists a property that has complexity O(loglogn) in paths, a regime that was not known

to exist for a natural property.

There is a gap between complexity O(1) and ©(logn) in cycles, hence a gap that is exponentially

larger than for paths.

We then generalize our result for paths to the class of trees. Namely, we show that there is a
gap between complexity O(1) and ©(loglogd) in trees, where d is the diameter. We finally describe
some settings where there are no gaps at all.

To prove our results we develop a new toolkit, based on various results of automata theory and
arithmetic, which is of independent interest.

2012 ACM Subject Classification Theory of computation — Distributed algorithms

Keywords and phrases Local certification, proof-labeling schemes, locally checkable proofs, space
complexity, distributed graph algorithms, complexity gap

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.18
Related Version Full Version: https://arxiv.org/abs/2505.20915 [14]

Funding This work is supported by the ANR grant ENEDISC (ANR-24-CE48-7768).

Acknowledgements The authors would like to thank Thomas Colcombet for answering our questions

about Chrobak normal form, and the reviewers for useful comments.

1 Introduction

1.1 Approach
Time complexity landscapes for distributed graph algorithms

For distributed graph algorithms, the most classic measure of complexity is time, measured
by the number of rounds before output. One of the most fruitful research programs on
this topic has been the one of charting the complexity landscape [42]. That is, instead of
considering specific problems and asking for their time complexity, a long series of papers

© Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun;
37 licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 18; pp. 18:1-18:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.bousquet@cnrs.fr
https://orcid.org/0000-0003-0170-0503
mailto:laurent.feuilloley@cnrs.fr
https://orcid.org/0000-0002-3994-0898
mailto:sebastien.zeitoun@univ-lyon1.fr
https://orcid.org/0009-0003-2675-8581
https://doi.org/10.4230/LIPIcs.DISC.2025.18
https://arxiv.org/abs/2505.20915
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

18:2

Complexity Landscape for Local Certification

have answered the following question: given a complexity function, is there a problem with
that complexity? In this paper, we aim at starting the analogue research program for the
space complexity of distributed graph algorithms.

Let us mention some elements about the time complexity landscape, in order to draw
analogies with our setting later. For the sake of simplicity, we only discuss deterministic com-
plexity of locally checkable labelings (LCLs) in bounded degree graphs in the LOCAL model.
Before 2016, there were a few of classic complexities: O(1) for very simple tasks, ©(log™ n) for
tasks that could be reduced to coloring, and O(n) for global problems (throughout the paper,
n refers to the number of nodes in the graph). Then, several seminal papers established
that some problems have complexity ©(logn) [15, 21], and that there is no problem whose
complexity strictly lies between O(log™n) and O(logn) [21]. This gap sharply contrasts
with classic computational theory where the time hierarchy theorem prevents the existence
of such gaps [38]. It was also proved that in some intervals infinitely many complexities
exist [6, 7, 19, 22], but not any complexity function had a corresponding problem. A key
strategy in this research area is to understand the landscape for specific classes of networks
such as paths [3], grids [16], trees [4, 5, 6], minor-closed graphs [20], etc. In this paper, we
will follow a similar approach: characterizing which space complexities are possible depending
on the structure of the network.

New direction: A landscape approach to space

The space used by distributed algorithms is much less studied than the time, especially if we
restrict to distributed graph algorithms. Some models where space is a well-studied measure
are population protocols [2], massively parallel computing (MPC) [39] and models similar
to Stone Age [26], but they are not relevant to our approach, either because they differ too
much from distributed graph computing (having one-to-one communication or a centralized
component) or because they fix the space complexity to constant. As far as we know, the
only major line of research considering space complexity for distributed graph algorithms is
self-stabilization, and more specifically the state model, where the nodes update their states
by reading the states of their neighbors [1, 25]. In that model, the algorithm has to cope
with transient faults, and consequently it is common to design algorithms (at least implicitly)
with two components : one that builds a solution and one that checks the solution, and can
reset the system if needed. Local certification was introduced to study specifically the space
needed for the checking phase, by abstracting the computation of the solution into an oracle,
and this is our focus today.

Informally, a local certification of a property is an assignment of labels to the nodes of
the graph, such that the nodes can collectively check the correctness of a given property by
inspecting the labels in their neighborhoods. This notion is known under different names,
depending on the specific model considered: proof-labeling scheme [40], locally checkable
proofs [36], non-deterministic local decision [33], etc. We will formally define our model in
Section 2, and refer to [27] for an introduction to the notion. The (space) complexity of a
certification is the maximum size of the label given to a node, and it is known to be basically
equal to the space complexity of self-stabilizing algorithms.! Finally, since local certification
is about decision problems, it is now standard to focus on checking graph properties (instead
of solutions to graph problems), and to refer to the set of correct graphs as a language.

L There are some fine prints to this statement, that we will discuss later, in Section 1.4.

N. Bousquet, L. Feuilloley, and S. Zeitoun

In local certification, the situation is similar to the pre-2016 situation for the time
complexity as described above. That is, there are a few well-established complexity regimes —
O(1), ©(logn), ©(n) and ©(n?) — but no solid explanation as of why these are so common.
But unlike for distributed time complexity (for LCLs on trees), we can prove that for a wide
range of complexities, there exists a problem with that complexity.

» Theorem 1. For general graphs with identifiers, for any non-decreasing function f(n) in
Q(logn) and O(n?), there exists a property that can be certified with O(f(n)) bits, but not in
o(f(n)) bits.

The proof (deferred to Appendix A) follows a standard construction of [36]. The graphs
satisfying the property are the ones made of two copies of a graph H, linked by a path. The
graph H is chosen so that it can be encoded on f(n) bits, and a certification consists in
giving this encoding to all nodes, so that every node knows H. It is known that this encoding
can be checked locally when identifiers are given, hence we get the O(f(n)) upper bound. A
counting argument allows to prove a matching lower bound [36].

At first sight, Theorem 1 gives a trivial answer to our question about the complexity
landscape of local certification. But it relies crucially on several assumptions. First, in the
upper bound it is necessary to have unique identifiers to avoid being fooled by symmetries
at the checking phase. Also, because of the identifiers and because the value of n needs to
be certified, Q(logn) bits are needed. Finally, to make the counting argument of the lower
bound work, one cannot restrict too much the graphs in which to apply this theorem. This
rises the three following questions that we tackle in this paper.

» Question 2. What happens for complezities in o(logn)?

In other words, is the Q(logn) a limitation of the proof technique, or could there be a
gap between constant and ©(logn), as the current state of our knowledge suggests?

» Question 3. What about anonymous networks?

This is especially relevant in conjunction with the previous question, since a unique
identifier cannot be encoded in a certificate of o(logn) bits. Note that even beyond that
regime, the impact of the identifiers on local decision is a well-studied topic [31, 30, 32, 29].

» Question 4. What about structured graphs, like paths, cycles and trees?

In the spirit of the work made on the distributed time complexity landscape, we would
like to understand local certification on restricted graph classes, in which counting arguments
do not apply, or only partially.

1.2 Main results

We start with a simple setting: anonymous paths without input labels. In this setting, a
path is characterized by its length, and a language is defined by a set of authorized lengths.
Naturally, we assume that the nodes do not have the knowledge of n (otherwise the problem
is trivial). Given O(logn) bits, we can recognize any language. This is because the prover
can certify the exact length of the path, by giving to every node its distance to a chosen
endpoint as a certificate. The nodes can then check locally the correctness of this counter,
and the last node can check whether the length belongs to the authorized sizes. On the other
hand, with a constant number of bits, we can encode properties like “the path has length
k mod m”, via counters modulo m (where m is a constant). To build a language whose

18:3

DISC 2025

18:4

Complexity Landscape for Local Certification

complexity would be strictly between these regimes, it is tempting to consider properties of
the form: “the path has length k modulo f(n)” for arbitrary function f, and for which a
counter would use log f(n) bits. Unfortunately, the nodes are unable to check that the f(n)
is correct, since they do not have access to n. This obstacle does not seem easy to bypass
and, it is reasonable to conjecture that there is a gap between O(1) and ©(logn). We do
establish the existence of a gap, but it only goes up to ©(loglogn).

» Theorem 5. Let ¢ > 1 and N € N. Let P be a property on paths that can be certified
with certificates of size s(n) := LW%J for allm > N. Then, P can also be certified with

constant-size certificates.

This is the first gap established in local certification. At first, this loglogn looks like an
artifact of the proof but, surprisingly, it is not! We next prove that there exists a language for
which the optimal certificate size is ©(loglogn). (Given the previous theorem, it is sufficient
to prove that this language can be certified with O(loglogn) bits but not with O(1) bits.)

» Theorem 6. There exist properties on paths that can be certified with certificates of size
O(loglogn), but not with certificates of size O(1).

It is the first time that this regime appears in the area of local certification (here under
the promise that the graph is a path). The language we use is the set of paths whose length
is not a product of consecutive primes; we will come back to it.

Now, moving on to cycles, there is a second surprise. We expect to see the same landscape
in paths and cycles, but the intermediate regime actually disappears in cycles, and there is a
gap between O(1) and ©(logn).

» Theorem 7. Let ¢ > 12 and N € N. Let P be a property on cycles that can be certified

with certificates of size s(n) := Vog J for every integer n = N. Then, P can also be certified

c
with constant-size certificates.

Finally, we study the case of trees, where the picture is more complex, as it depends on the
exact setting considered. In some settings, we can prove that there is no gap (any reasonable
function corresponds to the optimal certificate size for a language), and in some other
cases, the gap from paths persists. These settings depend on three parameters: (1) whether
we consider certificate size as a function of the number of nodes n or of the diameter d,
(2) whether the nodes can only see what is at distance 1 or at larger distance (in other words
the verification radius is 1 or larger), and (3) whether the maximum degree is bounded or
not. We establish a classification of these different settings. In particular, we prove that the
gap for paths is generalized to arbitrary trees, when parameterized by the diameter, and the
verification radius is 1.

» Theorem 8. Let ¢ > 2 and D € N. Let P be a property in trees (of unbounded degree) that
can be certified using s(d) := {%J bits for all d > D (where d is the diameter). Then,

P can also be certified with constant-size certificates.

We then show that two assumptions in Theorem 8 are optimal. Namely, we prove in
Theorem 9 that we can not hope for a gap in n instead of d in trees (even in caterpillars,
that is, paths with leafs attached), and we establish in Theorem 10 that it is essential that
the vertices are able to see only at distance only 1, because there is no more gap if the
verification radius r is at least 2 (again, even in caterpillars).

N. Bousquet, L. Feuilloley, and S. Zeitoun

» Theorem 9. Let f : N — R be a non-decreasing function such that lim,_, . f(n) = +oo
and for all integers 1 < s < t we have f(t)— f(s) < logt—logs. Then, there exists a property
on caterpillars (of unbounded degree) that can be certified with certificates of size O(f(n))
and not with certificates of size o(f(n)).

» Theorem 10. Let r > 1. Let f : N — N be a non-decreasing function such that
lim,, 400 f(n) = 400 and for all integers 1 < s < t we have f(t) — f(s) < logt—logs. Then,
if the vertices can see at distance r, there exists a property on caterpillars (of unbounded
degree) that can be certified with certificates of size O(f(d)) and not with certificates of
size o(f(d)), where d is the diameter.

Note that the condition on f(t) — f(s) only ask for a function which is sublogarithmic
and whose growth is sublogarithmic, to avoid arbitrarily long plateaus followed by big jumps.
This condition is satisfied by all the usual functions (y/logn, loglogn, log” n, etc.).

All the results mentioned so far are in the anonymous setting. We also explore the impact
of identifiers and of the knowledge of n on this landscape, but we delay this discussion for
now.

1.3 Main techniques
Automata and arithmetic perspectives

To give an overview of our techniques, let us start by describing two perspectives on constant
size certification in anonymous paths. As said earlier, a basic building block is to certify with
a counter that the length is equal to ¢ mod k for some constant < and k. One can see this
behavior as a run in an automaton with & states inducing a cycle whose initial state being
0 mod k and the final state being ¢ mod k. More generally, any constant size certification
can be turned into a finite state automaton. There are various ways to do it, but basically,
it consists in having states describing (pairs of) certificates, and transitions that connect
states that would be accepted by the local verifier. The existence of an accepting run in the
automaton is equivalent to the existence of a certificate assignment making the local verifier
accept (see Section 3.1 for a more detailed explanation). (Also see [28], and also [23] for a
similar perspective in the context of local problems.) Another point of view is the one of
arithmetic. Intuitively, a set of lengths of anonymous paths that are accepted by a constant
size certification corresponds to a combination of congruence relations (in other words, such
a set is equal to the union of arithmetic progressions up to some point). This point of view
allows, for example, to derive that the set of lengths of anonymous paths having a given
constant size certification is eventually periodic.

Now, moving on to non-constant certifications, we need to introduce a non-uniform
automata model. Indeed, since larger paths imply that we can use larger certificates, it also
means larger automata. For each certificate size i, we will have an automaton A;, and we will
require that an incorrect instance is rejected by all these automata, while a correct instance
is accepted by at least one (small enough) A;. If a property has non-constant complexity,
then it means that we will need arbitrarily large automata. If there exists a certification

of size s(n), then for any instance of length n, the automaton A,y will have to accept.

Now from the arithmetic perspective, there is an equivalence between having non-constant
complexity and the fact that the set of correct lengths is not eventually periodic.

18:5

DISC 2025

18:6

Complexity Landscape for Local Certification

Establishing gaps in paths and trees

To establish a gap between constant size and ©(loglogn) size in paths, the reasoning is the
following.2 Consider a language S that does not have a constant size certification. For an
arbitrary i, we focus on the paths of S that are recognized by A; but not by A, ..., A;_1
(assume this is non-empty, which is the case for infinitely many ¢). This set is itself recognized
by an automata: the intersection of A; with the complement of the union of Ay, ..., A; 1.
Studying the state complexity of this new automaton (which we do not discuss here) leads
us to the fact that it must accept a path of length at most 22°. Finally, this upper bound on
the minimum length for which some certificate size is needed translates into a lower bound
constraint for the optimal complexity, and the double exponential translates into the double
logarithm of the theorem.

This proof can be generalized without much modification to labeled paths (that is, paths
with inputs) and to larger verification radius (see the full version [14]). This is pretty
straightforward, given the previous proof: we use classic automata instead of unary automata,
and a slightly different transformation from certification to automata. On the contrary, the
proof that gives the right constants for Theorem 5 utilizes Chrobak normal form for unary
automata (see full version), and does not generalize easily to the labeled case.

The proof of the analogous gap in trees (Theorem 8), is based on the same insights, but
is much more involved. Basically, we adapt our automata to walk in the tree, reading the
pending subtrees as labels. Two challenges are that a given tree can be read in many different
ways, and that the alphabet is infinite. We argue that the complexity will be captured by
the walks that follow a maximum path in the tree, and that the intersection, complement
and union that are used in the proof are not harmed by the infinite alphabet.

The log log n language

We now turn our attention to Theorem 6, which establishes the existence of a language with
optimal certification size O(loglogn) in anonymous unlabeled paths. Let us start by giving
some intuition about how we came to this result. Intuitively, having optimal certificates
of size ©(loglogn) means that certificates of size k allow to differentiate between correct
and incorrect instances of size order 22°. When we implement simple counters modulo some
constant using k bits, the modulo is of order 2¥, hence we can distinguish between correct
and incorrect instances of size 2 but not more, in the sense that ¢ and g+ 2* will be classified
in the same category. Hence we need to do an “exponential jump” in terms of distinguishing
capability. We now make two observations. First, given a set of pairs (r;, m;);<¢, the fact that
the path length is not equal to r; mod m; for some ¢ < £ can be certified with certificates of
size O(max; log(m;)). Indeed, since it is sufficient to prove that one of the modulo equation
is not satisfied, we can simply give explicitly m; in all the certificates, in addition to the
counter modulo m;. Second, using the Chinese remainder theorem, for any two numbers a
and b, there must exist an integer m exponentially smaller than max(a, b) such that a £ b
mod m. This makes the existence of a ©(loglogn) language believable, but making it into a
real construction is another kettle of fish. We end up considering the language of the path
whose length is not the product of consecutive primes. The scheme consists in certifying
that either there is a gap or a repetition in the sequence of primes, via adequate counters, or
there is an inconsistency between the largest prime used and what the length of the path is
equal to, modulo a well-chosen (small) integer.

2 Actually this proof gives worse constants than the ones of Theorem 5, but it is the one that generalizes
to other settings.

N. Bousquet, L. Feuilloley, and S. Zeitoun

The case of cycles

Theorem 7 states that in cycles there is a gap between constant and logarithmic certification
size. This is in sharp contrast with the case of paths, which is surprising given the similarity
of the two structures. At a very intuitive level, the difference stems from the fact that the
only congruence that we can check in cycles are of the form 0 mod m, and not arbitrary 4
mod m. Indeed, in a path, it is easy to have one endpoint checking counter value zero and
the other checking counter value ¢, while in cycles there are no endpoints. The natural way
to simulate the endpoints is to designate a specific vertex v in the cycle to check that the

counter starts at 0 from one side and reaches i from the other side, but this is not robust.

Indeed there could be more than one designated vertices and still all nodes could accept if
each segment is ¢+ mod m. This breaks the congruence, except if ¢ = 0. This restriction in
the congruences prevents us from using the arithmetic tools of the proof of Theorem 6.

Let us now sketch the proof of the gap between certificates of size O(1) and O(logn)
in cycles. We again use an automata-like point of view, but we need to adapt it to work
without starting and ending nodes. We consider a sequence of directed certificate graphs?
(G});. Here, a cycle C with certificates of size i (¢1,...,¢,) is accepted by G; if and only if
(c1,¢2),(ca,c3), -+, (cn,c1) is a closed walk in G;. For the proof, we consider the first length
ny that is accepted by the k-th graph Gy (corresponding to certificates of size k), but not
by smaller ones. Now, if the certificate size is in o(logn), this walk is much longer than the
size of Gy, and therefore it has a lot of cycles. We define a notion of elementary cycle of
the graph, and decompose this walk as a linear combination of elementary cycles. If d is
the greatest common divisor of these elementary cycles, then ng = d x ¢, for some ¢q. We
consider a set of numbers of the form p x d, such that (1) p is prime, (2) p x d < ny and (3)
p X d is still much larger than the size of G. By a generalization of Bézout’s identity, (3)
implies that all these numbers are accepted by G hence they belong to the language. But
since they are smaller than ng, by minimality, they must be recognized by smaller graphs
too. We argue by pigeon-hole principle that there must exist one graph Gy, k' < k that
has two walks of lengths p;d and pod that intersect. Then by concatenating portions of the
two walks, we can prove that Gy actually accepts all the cycles of size ap1d + bpad. Finally,
using again a generalization of Bézout’s identity we can prove that the cycle of length ny is
also recognized by G}/, which contradicts the minimality of k.

“No gap” results

We also establish that for several settings there is no gap in the complexity, that is, for any
well-behaved function f, there exists a property that has certificates of size O(f(n)) but not
o(f(n)).

Let us sketch the technique of the upper bound for the setting of Theorem 10: restricting

to caterpillars, using certificates whose size is a function of d, with verification radius 2.

Given a function f, we define a sequence of integers (by), such that the k-th term is roughly
f~t(logk). The correct instances are of the following form: a path of length by, for some
k, such that the i-th node has i leaves, and except for the first one, which has by leaves
instead of 1. A compact way to certify these instances is to give k to every node. The nodes
in the middle check the growth of the number of attached leaves (thanks to their radius 2
verification) and the endpoints check that they have by leaves. The diameter is by, and the
number of bits used is log k& which is basically f(d).

3 We consider “graphs” and not “automata” here since we have no initial or accepting states, a sequence
of certificate only gives us a walk in the graph of pairs of certificates.

18:7

DISC 2025

18:8

Complexity Landscape for Local Certification

1.4 Discussions and open problems

Before we move on to the technical parts, let us discuss open problems and future directions.

Full understanding of paths. For paths, we do not know what happens between 0 (loglogn)
and ©(logn). By sparsifying the set of primes considered in the loglogn language (Theo-
rem 6), we can get languages for which the natural upper bound can be positioned in between
these two regimes, but Theorem 5 does not provide a matching lower bound anymore, hence
we cannot prove that there is no gap.

» Open problem 11. Is there a gap between ©(loglogn) and O(logn) in paths?

To solve this question, it would good to get a better understanding of the O(loglogn)
regime, or even a characterization. (For now, we just have one example of a property in this
regime.)

General graphs. For general graphs, we prove in the full version that if the radius is larger
than 1, then there is no gap. For radius 1, it is unclear whether we should expect the same
gap as for trees or not. Our automata-related tools seem too weak to tackle this case (the
generalization from trees to graphs in automata theory is notoriously intricate).

» Open problem 12. Is there a gap between O(1) and ©(loglogd) for general graphs? For
bounded degree graphs?

The role of identifiers and of the knowledge of n. Our main results are for the anonymous
setting, where the nodes do not have the knowledge of n. In the full version, we explore
several settings with identifiers or (approximate) knowledge of n. We can for example prove
that a very sharp estimate of n allows to break the loglogn barrier of Theorem 5, while
arbitrarily large identifiers do not help. It is still very unclear how these different assumptions
affect the complexity landscape.

Extensions to self-stabilizing algorithms: back space complexity in algorithms. We
described in the introduction our wish to chart the space landscape of distributed graph
algorithms, and as a first step we focused on local certification. A natural next step is to
transfer our results to self-stabilizing algorithms. As mentioned earlier, the two are tightly
connected, since the space used for silent self-stabilization is basically captured by the space
needed to certify the solution correctness [10]. Actually, [10] implements a transformation
from a local certification to a self-stabilizing algorithm, that does require an additive O(logn)
for the memory of the algorithm in comparison to the local certification size. This is usually
harmless, but in the setting of this paper, which focuses on sublogarithmic regime, the result
is unusable. The restricted topology might allow to shave the additional logarithmic term.

» Open problem 13. Are the optimal certificate size and the optimal memory of a self-
stabilizing algorithm asymptotically equal in restricted topologies (paths, cycles, trees), even
in the sublogarithmic regime?

When it comes to transferring the sub-log-logarithmic gap for trees to (silent) self-
stabilizing algorithms, it would actually be enough to understand whether labelings accepted
by tree automata (which are equivalent to monadic second-order on trees) can be built in
constant space in a self-stabilizing manner. Incidentally, understanding when one can make
this transfer while keeping polynomial time is also a very intriguing question (see [9] for a
discussion).

N. Bousquet, L. Feuilloley, and S. Zeitoun

Different landscapes. Theorem 1 establishes that for any super-logarithmic complexity f
there exists a property that requires exactly that complexity. But the construction is very
unnatural, since the nodes need to know the function f, and the instances are extremely
specific. Hence the following question.

» Open problem 14. Are there super-logarithmic gaps in the complexity of natural properties,
for a reasonable definition of “natural”? What about monadic second-order (MSO) properties?

It is known that there are properties for which the optimal certification size is O(n), for
example having diameter 3 [18, 12] and also ©(n?) [36]. As far as we know the only works
about what happens in between are [11] and [41], that have established that for forbidden
subgraphs, there are many polynomial complexities, when using verification radius 2.

We mention MSO properties in the open problem because they have received a considerable
amount of attention in recent years in local certification [8, 24, 28, 35, 34], and capture many
classic properties and problems through logic.

Finally, another research direction is to chart landscapes for other parameters. For
example, [13] explored the certification complexity as a function of the maximum degree.

1.5 Organization of the conference version

For this conference version, we focus on the results on paths and cycles, which allows to give
most of the insights within the page limit. Some of the proofs of the lemmas and claims are
deferred to the appendix. The proof of our more involved results as well as discussions of the
knowledge on n and the identifier assumptions only appear in the full version [14].

2 Model and definitions

2.1 Graphs

All the graphs we consider are finite, simple, loopless, connected, and undirected. For
completeness, let us recall several basic graph definitions. Let G be a graph. We denote its
set of vertices (resp. edges) by V(G) (resp. by E(G)), or simply by V (resp. by E) if G is
clear from the context. Let u,v € V(G). The distance between u and v, denoted by d(u,v),
is the smallest number of edges in a path from u to v. The diameter of G is the largest
distance between any two vertices. If G is a path, its length is its number of vertices (or
equivalently, its diameter plus one). We say that G is a caterpillar if, when removing all the
degree-1 vertices in G, the resulting graph is a path, called the central path of G (which is
induced by the set of all vertices of degree at least two in G).

2.2 Local certification

Let G = (V, E) be a graph. We will sometimes assume that the vertices of G are equipped
with unique identifiers and/or with inputs. An identifier assignment for G is an injective
mapping from V to some set I (the set of identifiers) and an input function is a mapping
from V to some set L (the set of labels). If G is equipped with identifiers, we say that we
are in the locally checkable proof model, else we say that we are in the anonymous model. If
the vertices of G have inputs, we say that G is labeled. Finally, let C' be a non-empty set. A
certificate assignment of G with certificates in C' is a mapping ¢: V — C.

Let » > 1 and ¢ be a certificate assignment for G. Let u € V. The view of u at distance r
consists in:

18:9

DISC 2025

18:10

Complexity Landscape for Local Certification

all the vertices at distance at most r from u, and all the edges having at least one endpoint
at distance at most r — 1,

the restriction of ¢ to these vertices,

the restriction of the identifier assignment (if any) and of the input function (if any) to
these vertices.

A wverification algorithm (at distance r) is a function taking as input the view at distance r
of a vertex, and outputting a decision, accept or reject. In all this paper, if r is not mentioned
in a statement of a result, it is by default equal to 1. When we will consider settings where
r > 2, it will always be explicitly written.

Let C be a class of (possibly labeled) graphs and P be a property on graphs in C. Note
that if we consider labeled graphs, the fact that a graph G € C satisfies the property P does
not depend only on the structure of G: it depends also on its input function. In other words,
it is possible that a graph G € C satisfies P and that another graph G’ € C with the same
structure as G but with a different input function does not satisfy P. Let s : N — N. We
say that there exists a certification scheme for P with certificates of size s if there exists a
verification algorithm such that the two following conditions are satisfied:

(Completeness) For every n-vertex graph G € C that satisfies P, and for every identifier

assignment of G (if we are in the locally checkable proof model), there exists a certificate

assignment in {0, ...,2°(") — 1} such that the verification of every vertex accepts (we say
that the graph is globally accepted).

(Soundness) For every graph G € C that does not satisfy P, for every identifier assignment

of G (if we are in the locally checkable proof model), for every k € N and every certificate

assignment in {0,...,2% — 1}, at least one vertex rejects.

Let us emphasize that, if G does not satisfy P, then for any assignment of certificates
of any size, at least one vertex rejects. Let us also point out the fact that in a certification
scheme for a property P in some class C (in this paper, we will for instance consider the
cases where C is the class of paths, of cycles, of trees...), the vertices have the promise that
the graph belongs to C. In other words, the certification scheme depends on the property P
and on the class C, and we are not concerned by the output of the verification procedure of
the vertices in graphs that do not belong to C.

3 Gap between O(1) and O(loglogn) in paths
The goal of this section is to prove the following result:

» Theorem 15. Let ¢ > 2 and N € N. Let P be a property on paths that can be certified
with certificates of size s(n) := {%J for alln > N. Then, P can also be certified with

constant-size certificates.

Note that the constant c is larger here than in Theorem 5. We prove the stronger version
in the full version.

3.1 Preliminary: automata point of view

For every property P on paths, we can associate a subsets S of integers such that a path is
accepted if and only if its length is in S. The property P is equivalent to S and in the rest
of the proof, we will completely forget the property P and only focus on S. For every k € N,
let us denote by C the set of certificates of size k, and by Sj the set of lengths of the paths
that are accepted with certificates in Cr. We have: S = (J, o Sk-

N. Bousquet, L. Feuilloley, and S. Zeitoun

The set Sy is a regular language that is accepted with the following nondeterministic
finite automaton Ay over a unary alphabet. The set of states is the set of pairs of certificates
of size k plus two additional states, i and f, that is: C¥ U {i, f}. There is a single initial
state which is ¢ and a single final state which is f. The transitions are the following:

for every ¢1,co € Cj, we put a transition between states i and (c1,cq) if a vertex of

degree 1 that has certificate ¢; and has a neighbor with certificate ¢y accepts;

for every c1,ca, c3 € Ck, we put a transition between states (cl, ¢2) and (co, 03) if a vertex

of degree 2 that has certificate co and has two neighbors with certificates ¢; and c3

accepts;

for every c1,c0 € Cf, we put a transition between states (c¢1,c2) and f if a vertex of

degree 1 that has certificate co and has a neighbor with certificate ¢; accepts;

if there exists ¢ € C) such that an isolated vertex with certificate ¢ accepts, we put a

transition from i to f.

Let us give an example to make things more concrete. Assume that we want to certify
that the length of a path is divisible by 3. There is an easy way to do it by using three
certificates 0, 1, and 2. The prover fixes an endpoint u and for every vertex v, the certificate
it gives to v is d(u,v) mod 3. Then, every vertex v checks that one of the two following
conditions is satisfied:

v has degree 1, has certificate 0 or 2, and its neighbor has certificate 1, or

v has degree 2, and the set of certificates of v and its two neighbors is {0,1,2}.

The automaton corresponding to these certificates is represented on Figure 1.

B

K eap

Figure 1 The automaton corresponding to the certificates used to certify that the length of a path
is divisible by 3. The states corresponding to the tuples (0,0), (1,1) and (2,2) are not represented
because they have no incoming nor outgoing transitions. The final state is the state f.

» Lemma 16. For every t € N, a path on t vertices is accepted with certificates of size k if
and only if there exists an accepting run of length t (i.e., going through t transitions) in Ay.

The intuition behind this lemma has been given earlier and the formal proof is in the full
version.
3.2 Proof via state complexity

» Lemma 17. Let X be a (possibly infinite) alphabet, and let Ly, Ly C X* be two languages
over ¥ recognized by nondeterministic finite automata A and B, having n4 and ng states
respectively. Then:

18:11

DISC 2025

18:12

Complexity Landscape for Local Certification

L4 U Lpg can be recognized by an automaton having n4 + np states
LN Lp can be recognized by an automaton having nang states
L4 can be recognized by an automaton having 2"A states

These statements are folklore, see the full version for explanations.

Proof of Theorem 15. Using the notations introduced previously, the automaton Ay has
M, := 22 + 2 states and recognizes Sy. Let P be a property that can not be recognized
with constant-size certificates. Then, the set X C N containing all the integers k£ € N such
that Sk Z ;s Si is infinite (this set X contains all the integers k such that there exists
a path that can be accepted with certificates of size k but not with smaller size). For k € X
let ng be the smallest integer in Sy \ Uigk_1 S;i. Let k € X be such that ny > N (such an
integer k € X exists because X is infinite and for all distinct k, k" € X we have ny, # ny).
Since ny € Sy, and ny ¢ S; for i < k, we have s(ny) > k. By Lemma 17, Uigk_1 S;
can be recognized by an automaton that has Zi:ll M; < 2%F states. Thus, by Lemma 17,
Uigk_1 S; can be recognized by an automaton that has at most 22%" states. Again by
Lemma 17, Sg \ Uigk_1 S; can be recognized by an automaton having at most My, - 22*"
states. Since ny is the smallest integer in Sy \ Ui<k_1 S;, it is at most equal to the number

of states of this automaton, so it follows that ny < M - 22*" < 92" Finally we get
s(ng) =k > loglog%_l, and the result follows. <

4 A property with optimal size ©(loglogn) in unlabeled paths

The goal of this Section is to prove the following theorem.

» Theorem 6. There exist properties on paths that can be certified with certificates of size
O(loglogn), but not with certificates of size O(1).

Before proving Theorem 6, let us show the following result:

» Lemma 18. Let m,t € N and m > 2. Certifying that the length a path on n vertices
satisfies n =t mod m can be done with certificates of size O(logm).

The proof of this statement can be found in the full version of the paper.

» Remark 19. For every m,t € N with m > 2, we can also certify that the length n of a
path satisfies n # ¢t mod m with certificates of size O(log m), with the same proof (just by
replacing Distance[u] = ¢ by Distance[u] # t at the end). In particular, with certificates of
size O(logm), we can certify that m divides n, or that m does not divide n.

Finally, let us introduce some notations and give some useful properties. For every k > 1,
let us denote by py the k-th prime number (i.e. p; = 2,ps = 3,p3 = 5...), and let a; be the
product of the k first prime numbers: aj, := Hle p;. Let S C N be the set {ay | k > 1}.

» Lemma 20. [37] We have p = O(klogk) and aj = 2Flesk+o(1)),

» Lemma 21. There exists ¢ > 0 such that, for every even integer n > 2, there exists
k < clogn such that py, divides n and px41 does not divide n.

Proof. Let n be an even integer and let k be the smallest integer such that py divides n and
pr+1 does not divide n (which exists because n is divisible by p; = 2). Then, n is divisible
by ag, so ar < n. Using Claim 20, we get 2F108k(1+o(1) < 50 klog k(14 0(1)) < logn, and
the result follows. <

N. Bousquet, L. Feuilloley, and S. Zeitoun

» Lemma 22. Let 1 < s <t. There exists m < [logt] such that s ¢ mod m.

Proof. By contradiction, assume that for all m < [logt], we have s =¢ mod m. Then, by
the Chinese remainder theorem, we get s =t mod p, where p is the least common multiple

of 1,2,...,[logt]. It is well-known that this least common multiple is at least ¢, so we
have 1 < s <t < p. Together with s =t mod p, this implies s = ¢, which contradicts the
assumption s < t. <

» Proposition 23. Let n > 1, and ¢ be the constant of Lemma 21. Then, n ¢ S if and only

if at least one of the three following conditions is satisfied:

1. nis odd, or

2. there exists 1 < £ < k < clogn such that pp does not divide n and py, divides n, or

3. there exists 1 < k < clogn and 1 < m < [logn] such that py divides n, py+1 does not
divide n and n #Z ax mod m.

Proof. First, assume that one of the three conditions is satisfied. If condition 1. holds, n
is odd, so n ¢ S because S contains only even integers. If condition 2. holds, then n ¢ S
because all the integers in S which are divisible by pj are also divisible by p, for all ¢ < k. If
condition 3. holds, then n ¢ S, because the only integer in S which is divisible by p; and
not by px41 is ag.

Conversely, assume that n ¢ S, and let us show that at least one of the three conditions is
satisfied. Assume that conditions 1. and 2. are not satisfied, and let us show that condition 3.
holds. Since condition 1. is not satisfied, n is even, so by Lemma 21, there exists k& < clogn
such that py divides n and piy1 does not divide n. Since condition 2. is not satisfied,
n is divisible by ag, so ar < n (this inequality is strict because, by assumption, n ¢ S).
Finally, by Lemma 22, there exists m < [logn| such that n Z ax mod m, so condition 3. is
satisfied. |

Note that the third item is used to avoid accepting numbers with some prime used twice.
It is tempting to check this condition directly instead of using our indirect check. But in
general this would use integers that are too large, for example in the case where n = ¢ with
q a prime number.

We are now able to prove Theorem 6.

Proof of Theorem 6. Recall that we assume that the input graph is a path P. Let P be
the property of being a path whose length is not in S. First, observe that P cannot be
certified with constant-size certificates. Indeed, properties on paths that can be certified
with constant size-certificates are paths whose length is in a set that is eventually periodic
(the most simple proof for it uses Chrobak normal form, see the full version), and the set S
is not. Now, let us show that P can be certified with certificates of size O(loglogn).

Let n > 1. If n ¢ S, the prover certifies that at least one of the three conditions of
Proposition 23 is satisfied. More precisely:

if n is odd, the prover certifies it. By Lemma 18, this needs O(1) bits.

if there exists 1 < ¢ < k < clogn such that p; divides n and py does not divide n, the

prover writes k and ¢ in the certificate of each vertex, and certifies that p; divides n

and that py; does not divide n. Since k < clogn and p; = O(klogk), by Lemma 18 and

Remark 19, this needs O(loglogn) bits.

if there exists 1 < k < clogn and 1 < m < [logn] such that py divides n, pr4+1 does

not divide n and n # ar mod m, the prover writes k and m in the certificate, certifies

that py divides n, pr41 does not divides n and that n # ar mod m. By Lemma 18 and

Remark 19, this needs O(loglogn) bits.

18:13

DISC 2025

18:14

Complexity Landscape for Local Certification

The verification of the vertices just consists in checking that the condition given by the
prover is indeed satisfied, with the verification procedure of Lemma 18. Note that the vertices
do not need to check the bounds on k£ and m for conditions 2. and 3., because if condition 2.
or 3. is satisfied with larger k or m, it also implies that n ¢ S (and then P € P and P can
be also accepted with certificates of size O(loglogn)). These bounds on k and m are only
useful to get an upper bound on the size of the certificates. |

5 Gap between O(1) and ©(logn) in cycles

In this section we prove the following theorem.

» Theorem 7. Let ¢ > 12 and N € N. Let P be a property on cycles that can be certified
with certificates of size s(n) := LIO%J for every integer n = N. Then, P can also be certified

with constant-size certificates.

5.1 Preliminaries on number theory and walks in graphs

Let us give some results from number theory on which we will rely. First, let us recall the
prime number theorem:

» Theorem 24 (Prime Number Theorem). For n € N, let w(n) be the number of prime
numbers in {1,...,n}. Then:

From Theorem 24, we can deduce the immediate following corollary:

» Corollary 25. Let ¢ > 12. For every n € N, let w.(n) be the number of prime numbers p
such that 24711 < p < on(e/2-2) Then, there exists ng € N such that for all n > ng,
me(n) > n22".

Proof. For every n € N, we have m.(n) = m(2(¢/2=2) — z(2***+1). Since ¢ > 12, by
Theorem 24, we have 7(2*"+1) = o(7(27(¢/2=2)). Thus, 7.(n) ~ 7(2"(¢/2=2)). By applying
again the prime number theorem, we get 7.(n) ~ 2¢/2=2) /(n(c/2 — 2)). Thus, n2?" =
o(m.(n)), and the result follows. <

Finally, let us give the following generalization of Bézout’s identity that will be useful in
the proof of Theorem 7:

» Lemma 26 ([17]). Let ¢y,...,¢; be positive integers. Let m := max(fy,...,0) and
d := ged(ly,...,4;). Then, for every integer n > m? which is divisible by d, there exists
non-negative integers a,...a; such that 2;;1 ail; =n.

We now move on to some definitions about walks in graphs. A closed walk in Gy is a
directed path that begins and ends in the same vertex (it is allowed to pass through the same
vertex or the same edge multiple times). The length of a closed walk is its number of edges.
A closed walk that does not pass through the same vertex twice (except for the starting
and ending vertices which are the same) is called an elementary cycle. If C and C’ are two
directed closed walks, we say that C’ is a closed subwalk of C if a subsequence of vertices in
C is equal to C’. See Figure 2 for an example. Note that the length of an elementary closed
walk in G, is at most equal to the number of vertices of G, which is 22%.

N. Bousquet, L. Feuilloley, and S. Zeitoun

Figure 2 In this directed graph, ADEDEF A is a closed walk of length 6, which is not an
elementary cycle. The closed walks FAGF and CDEFABC are elementary cycles and have length 3
and 6 respectively. Moreover, FAGF is a subwalk of DEFAGFAD.

5.2 Proof of Theorem 7

All this subsection is devoted to the proof of Theorem 7. The proofs of the claims can be
found in Appendix B.

Let ¢ > 12 and N € N. Let S be the set of lengths of cycles in P. Assume by contradiction
that there exists a property P such that, for every integer n > N satisfying P, the cycle of
length n is accepted with certificates of size s(n), where s(n) < LIO%J, and that a constant
number of certificates are not sufficient to certify P.

For every k > 1, let C be the set of certificates of size k, and let Sy be the subset of S
corresponding to the cycles accepted with certificates in C. Note that |C)| = 2*, and that
we have S = J,cn Sk. Let G = (Vi, Ey) be the directed graph where Vj, := C’z and for all
a,b, c € Cy, there is an edge in Fy between (a,b) and (b, ¢) if and only if a degree-2 vertex
with certificate b has a neighbor with certificate a and another neighbor with certificate ¢
accepts (and there are no other edges in Fy, that is there is no edge between (a,b) and (c, d)
if b # ¢). The directed graph Gy has 22* vertices.

> Claim 27. For every integer n > 3, n € Sy if and only there exists a closed walk of
length n in Gy.

By Corollary 25, there exists ko € N such that for all k > ko, 7.(k) > k22.

Since S is not accepted with a constant number of certificates, the set X C N of integers
k € N such that S ¢ Ungk S; is infinite. For k € X, let n; be the smallest integer
Sk \ U1<i<k S;. Finally, let us fix an integer integer k € X, such that k > kg and ny, > N
(such an integer k € X exists because X is infinite and for all distinct k, k" € X we have
Nk # Nk

> Claim 28. We have nj > 2¢°.

Since ny € Sk, by Claim 27, there is a closed walk of length nj; in Gi. Let us consider
the strongly connected component G, of Gy containing this closed walk. Let ¢ be the number
of elementary cycles in G; that we denote by Ci,...,Cs, and let ¢q,...,¢; be their lengths.
Let d = ged(fy, ..., 4;). We have d < 22%, because we have ¢; < 22% for every i € {1,...,t}
(since Gy, has size 22%).

> Claim 29. Let C be a closed walk in G;, and let ¢ be its length. There exists by,...,b; € N
such that £ = Zle b;l;. Thus, d divides £. In particular, d divides ny.

> Claim 30. Let m € N be such that d divides m, and m > 2***!. Then, there exists a
closed walk in G}, of length m. Thus, m € Sk.

18:15

DISC 2025

18:16

Complexity Landscape for Local Certification

Let us now combine these arguments to prove Theorem 7. Before giving the technical
details, let us explain the intuition. Let us denote by d the d := gcd of all the lengths of
cycles in Sj,. Since G, has size 22¢, Lemma 30 ensures that all the cycles of length r - d are
in P when r is large enough (but small compared to ny). Thus there exist many prime
numbers p such that pd are in P and pd < ni. By definition of ny, at least two of them
can be certified with the same set of bits and we can obtain a contradiction. Let us now
formalize the argument.

Recall that k is an integer such that k > kg and ng > N. Let p be a prime number such
that 24%+1 < p < 2%(¢/2-2) By Claim 30, we have pd € Sj,. Moreover, since p < 2k(¢/2-2)
and d < 22%, we have pd < 2F¢/2, that is, pd < /7y using Claim 28. Since ny, is the smallest
integer in Sk\U1<i<k S;, we have pd € U1<i<k S;. Forevery i € {1,...,k—1}, let X; be the
set of prime numbers p € {24+ 1, ... 2k(¢/2=2)} quch that pd € S;. Since there are 7. (k)
prime numbers in {241 +1,... 2k(¢/2=2)1 and we have 7.(k) > k22*, by the pigeonhole
principle there exists i < k such that |X;| > 2%*. Let us fix this index i.

For every p € X;, since pd € S;, there exists a closed walk C?) of length pd in G;.
Since | X;| > 2%%, and since G; has 22/ vertices and i < k, again by the pigeonhole principle
there exist p,q¢ € X; such that C?® and C@ have a vertex in common. Since C®) has
length pd, C(9 has length ¢d, and these two cycles have a vertex in common, for every
a,b € N| there exists a closed walk of length apd + bgd in G; (obtained by starting from a
vertex u € C?) N C9, taking a times C(?) and then b times C(9)). Thus, for every a,b € N,
apd + bqd € S;.

Finally, since ged(pd, ¢d) = d (because p and ¢ are two distinct prime numbers), since
pd, gd < \/ny, and since ny, is divisible by d by Claim 29, we can apply Lemma 26 which
states that there exists a,b € N such that apd 4+ bpd = ny. So ny € S;, which a contradiction,
because by assumption ny € Si \ U1<i<k S;. This concludes the proof of Theorem 7.

6 A property with optimal size ©(logn) in cycles

Let us finish this short version of the paper with a property that can be certified with O(log n)
bits but not with constant-size certificates, to show that the gap stated in Theorem 7 is
optimal. The proof is in Appendix C

» Proposition 31. Certifying that the length of a cycle is not a power of 2 can be done with
certificates of size O(logn) but not with certificates of size O(1).

—— References

1 Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to Dis-
tributed Self-Stabilizing Algorithms. Morgan & Claypool Publishers, 2019. doi:10.2200/
SO00908ED1V01Y201903DCT015.

2 James Aspnes and Eric Ruppert. An introduction to population protocols. Bull. FATCS,
93:98-117, 2007.

3 Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mika¢l Rabie, and Jukka
Suomela. The distributed complexity of locally checkable problems on paths is decidable.
In Peter Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, PODC 2019, pages 262—271. ACM, 2019. doi:10.1145/
3293611.3331606.

4 Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studeny, and Jukka
Suomela. Efficient classification of locally checkable problems in regular trees. In Christian

https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.1145/3293611.3331606
https://doi.org/10.1145/3293611.3331606

N. Bousquet, L. Feuilloley, and S. Zeitoun

10

11

12

13

14

15

16

17

18

19

20

Scheideler, editor, $6th International Symposium on Distributed Computing, DISC 2022,
volume 246 of LIPIcs, pages 8:1-8:19, 2022. doi:10.4230/LIPICS.DISC.2022.8.

Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studeny, Jukka Suomela,
and Aleksandr Tereshchenko. Locally checkable problems in rooted trees. Distributed Comput.,
36(3):277-311, 2023. doi:10.1007/S00446-022-00435-9.

Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost global
problems in the LOCAL model. Distributed Comput., 34(4):259-281, 2021. doi:10.1007/
S00446-020-00375-2.

Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempidinen, Dennis Olivetti, and
Jukka Suomela. New classes of distributed time complexity. In Ilias Diakonikolas, David
Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, pages 1307-1318. ACM, 2018. doi:
10.1145/3188745.3188860.

Dan Alden Baterisna and Yi-Jun Chang. Optimal local certification on graphs of bounded
pathwidth. CoRR, abs/2502.00676, 2025. doi:10.48550/arXiv.2502.00676.

Lélia Blin, Swan Dubois, and Laurent Feuilloley. Silent MST approximation for tiny memory. In
Stéphane Devismes and Neeraj Mittal, editors, Stabilization, Safety, and Security of Distributed
Systems - 22nd International Symposium, SSS 2020, volume 12514, pages 118-132. Springer,
2020. doi:10.1007/978-3-030-64348-5_10.

Lélia Blin, Pierre Fraigniaud, and Boaz Patt-Shamir. On proof-labeling schemes versus silent
self-stabilizing algorithms. In Stabilization, Safety, and Security of Distributed Systems -
16th International Symposium, SSS 2014, volume 8756, pages 18-32, 2014. doi:10.1007/
978-3-319-11764-5_2.

Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, and Sébastien Zeitoun. Local

certification of forbidden subgraphs. CoRR, abs/2402.12148, 2024. doi:10.48550/arXiv.

2402.12148.

Nicolas Bousquet, Louis Esperet, Laurent Feuilloley, and Sébastien Zeitoun. Renaming in
distributed certification. CoRR, abs/2409.15404, 2024. doi:10.48550/arXiv.2409.15404.
Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun. Local certification of local
properties: Tight bounds, trade-offs and new parameters. In 41st International Symposium on
Theoretical Aspects of Computer Science, STACS 202/, volume 289 of LIPIcs, pages 21:1-21:18,
2024. doi:10.4230/LIPICS.STACS.2024.21.

Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun. Complexity landscape for local
certification. CoRR, abs/2505.20915, 2025. doi:10.48550/arXiv.2505.20915.

Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempidinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed lovész local lemma.
In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, pages 479-488. ACM, 2016. doi:10.1145/2897518.2897570.

Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempidinen, Patric R. J.
Ostergard, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemyslaw Uznanski.
LCL problems on grids. In Elad Michael Schiller and Alexander A. Schwarzmann, editors,
Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017,
pages 101-110. ACM, 2017. doi:10.1145/3087801.3087833.

Alfred Brauer. On a problem of partitions. American Journal of Mathematics, 64(1):299-312,
1942.

Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. Theor.
Comput. Sci., 811:112-124, 2020. doi:10.1016/J.TCS.2018.08.020.

Yi-Jun Chang. The complexity landscape of distributed locally checkable problems on trees.
In Hagit Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020,
volume 179 of LIPIcs, pages 18:1-18:17, 2020. doi:10.4230/LIPICS.DISC.2020.18.

Yi-Jun Chang. The distributed complexity of locally checkable labeling problems beyond
paths and trees. In 15th Innovations in Theoretical Computer Science Conference, ITCS 2024,

18:17

DISC 2025

https://doi.org/10.4230/LIPICS.DISC.2022.8
https://doi.org/10.1007/S00446-022-00435-9
https://doi.org/10.1007/S00446-020-00375-2
https://doi.org/10.1007/S00446-020-00375-2
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.48550/arXiv.2502.00676
https://doi.org/10.1007/978-3-030-64348-5_10
https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.48550/arXiv.2402.12148
https://doi.org/10.48550/arXiv.2402.12148
https://doi.org/10.48550/arXiv.2409.15404
https://doi.org/10.4230/LIPICS.STACS.2024.21
https://doi.org/10.48550/arXiv.2505.20915
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1016/J.TCS.2018.08.020
https://doi.org/10.4230/LIPICS.DISC.2020.18

18:18

Complexity Landscape for Local Certification

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

January 80 to February 2, 2024, Berkeley, CA, USA, volume 287 of LIPIcs, pages 26:1-26:25,
2024. doi:10.4230/LIPICS.ITCS.2024.26.

Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between random-
ized and deterministic complexity in the LOCAL model. SIAM J. Comput., 48(1):122-143,
2019. doi:10.1137/17M1117537.

Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. STAM J.
Comput., 48(1):33-69, 2019. doi:10.1137/17M1157957.

Yi-Jun Chang, Jan Studeny, and Jukka Suomela. Distributed graph problems through an
automata-theoretic lens. Theor. Comput. Sci., 951:113710, 2023. doi:10.1016/J.TCS.2023.
113710.

Linda Cook, Eun Jung Kim, and Tomas Masarik. A tight meta-theorem for LOCAL certification
of msoy properties within bounded treewidth graphs. CoRR, abs/2503.19671, 2025. doi:
10.48550/arXiv.2503.19671.

Shlomi Dolev. Self-Stabilization. MIT Press, 2000. URL: http://www.cs.bgu.ac.il/
%7Edolev/book/book.html.

Yuval Emek and Roger Wattenhofer. Stone age distributed computing. In Panagiota Fatourou
and Gadi Taubenfeld, editors, ACM Symposium on Principles of Distributed Computing,
PODC ’18, Montreal, QC, Canada, July 22-24, 2013, pages 137-146. ACM, 2013. doi:
10.1145/2484239.2484244.

Laurent Feuilloley. Introduction to local certification. Discret. Math. Theor. Comput. Sci.,
23(3), 2021. doi:10.46298/DMTCS . 6280.

Laurent Feuilloley, Nicolas Bousquet, and Théo Pierron. What can be certified compactly?
compact local certification of MSO properties in tree-like graphs. In PODC ’22: ACM
Symposium on Principles of Distributed Computing, pages 131-140. ACM, 2022. doi:10.1145/
3519270.3538416.

Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision. Bull. EATCS, 119,
2016. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/411.

Pierre Fraigniaud, Mika Go66s, Amos Korman, and Jukka Suomela. What can be decided
locally without identifiers? In ACM Symposium on Principles of Distributed Computing, pages
157-165. ACM, 2013. doi:10.1145/2484239.2484264.

Pierre Fraigniaud, Magnus M. Halldérsson, and Amos Korman. On the impact of identifiers on
local decision. In Principles of Distributed Systems, 16th International Conference, OPODIS
2012, volume 7702, pages 224-238. Springer, 2012. doi:10.1007/978-3-642-35476-2_16.
Pierre Fraigniaud, Juho Hirvonen, and Jukka Suomela. Node labels in local decision. Theor.
Comput. Sci., 751:61-73, 2018. doi:10.1016/J.TCS.2017.01.011.

Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local
distributed computing. J. ACM, 60(5):35:1-35:26, 2013. doi:10.1145/2499228.

Pierre Fraigniaud, Frédéric Mazoit, Pedro Montealegre, Ivan Rapaport, and loan Todinca. Dis-
tributed certification for classes of dense graphs. In Rotem Oshman, editor, 87th International
Symposium on Distributed Computing, DISC 2023, volume 281 of LIPIcs, pages 20:1-20:17,
2023. doi:10.4230/LIPICS.DISC.2023.20.

Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. A meta-
theorem for distributed certification. Algorithmica, 86(2):585-612, 2024. doi:10.1007/
S00453-023-01185-1.

Mika Go66s and Jukka Suomela. Locally checkable proofs in distributed computing. Theory
Comput., 12(1):1-33, 2016. doi:10.4086/T0C.2016.V012A019.

Godfrey Harold Hardy and Edward Maitland Wright. An introduction to the theory of numbers.
Oxford university press, 1979.

Juris Hartmanis and Richard E Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117:285-306, 1965.

https://doi.org/10.4230/LIPICS.ITCS.2024.26
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1157957
https://doi.org/10.1016/J.TCS.2023.113710
https://doi.org/10.1016/J.TCS.2023.113710
https://doi.org/10.48550/arXiv.2503.19671
https://doi.org/10.48550/arXiv.2503.19671
http://www.cs.bgu.ac.il/%7Edolev/book/book.html
http://www.cs.bgu.ac.il/%7Edolev/book/book.html
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.46298/DMTCS.6280
https://doi.org/10.1145/3519270.3538416
https://doi.org/10.1145/3519270.3538416
http://eatcs.org/beatcs/index.php/beatcs/article/view/411
https://doi.org/10.1145/2484239.2484264
https://doi.org/10.1007/978-3-642-35476-2_16
https://doi.org/10.1016/J.TCS.2017.01.011
https://doi.org/10.1145/2499228
https://doi.org/10.4230/LIPICS.DISC.2023.20
https://doi.org/10.1007/S00453-023-01185-1
https://doi.org/10.1007/S00453-023-01185-1
https://doi.org/10.4086/TOC.2016.V012A019

N. Bousquet, L. Feuilloley, and S. Zeitoun

39 Sungjin Im, Ravi Kumar, Silvio Lattanzi, Benjamin Moseley, and Sergei Vassilvitskii. Massively

parallel computation: Algorithms and applications. Found. Trends Optim., 5(4):340-417, 2023.

doi:10.1561/2400000025.

40 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Comput.,
22(4):2157233, 2010. doi:10.1007/S00446-010-0095-3.

41 Masayuki Miyamoto. Distributed complexity of py-freeness: Decision and certification. CoRR,
abs/2410.20353, 2024. doi:10.48550/arXiv.2410.20353.

42 Jukka Suomela. Landscape of locality (invited talk). In Susanne Albers, editor, 17th
Scandinavian Symposium and Workshops on Algorithm Theory, SWAT, volume 162 of
LIPIcs, pages 2:1-2:1. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2020. doi:
10.4230/LIPICS.SWAT.2020.2.

A No gap above logn in general graphs with identifiers

We establish that there is no gap in the local certification complexity in general graphs with
identifiers in the Q(logn) regime. The proof follows the same route as the proof of the ©(n?)
bound for non-trivial automorphism in [36] .

» Theorem 1. For general graphs with identifiers, for any non-decreasing function f(n) in
Qlogn) and O(n?), there exists a property that can be certified with O(f(n)) bits, but not in

o(f(n)) bits.

Since the proof is a rather direct adaptation of the one of [36] and is not central in this
paper, we use a more sketchy style than for our other proofs.

Proof. Fix some function f in Q(logn) and O(n?) consider the following language. A graph
is in the language if it is made of two copies of a graph H on 4/ f(n) nodes,where an arbitrary
node is linked to its copy by a path of length n — 24/ f(n). A certification for this language is

the following. On a correct instance, every node is given the following pieces of information.

1. Its part of the certification of the size n of the graph, via a spanning tree (see [27]).

2. The adjacency matrix of H.

3. The identifier assignment restricted to the copies of H.

4. TIts parts of two spanning trees, pointing to the two nodes that belong both to a copy of
H and to the path.

Every node checks the following.

1. Ttem 1 and 4 above are consistent (again see [27]).

2. If its identifier appears in the list of Item 3, it checks that its neighborhood in the graph
is consistent with the neighborhood in H as described by the certificates; except if it is
the root of a spanning tree of Item 4, in which case it should have exactly one additional
neighbor.

3. If its identifier does not appear in the certificates it should have degree 2.

The correctness is follows from [36], where the same scheme is used except that the
central path has constant length (and therefore the identifiers of the nodes on the path can
be given to all nodes without overhead).

The spanning tree certifying the number of nodes can be encoded in O(logn) bits, the

2
adjacency matrices use O ((f(n)) > = O(f(n)) bits, and the identifier assignment uses

24/ f(n)logn bits. Hence in total O(f(n)) bits in the regime of the theorem.

Again the lower bound is very similar to the one of [36]. Basically, if we were to use
o(f(n)) bits, by pigeon-hole principle, there would be two different correct instances of the
same size n, for which the same certificates would be used on one edge of the path. Then

18:19

DISC 2025

https://doi.org/10.1561/2400000025
https://doi.org/10.1007/S00446-010-0095-3
https://doi.org/10.48550/arXiv.2410.20353
https://doi.org/10.4230/LIPICS.SWAT.2020.2
https://doi.org/10.4230/LIPICS.SWAT.2020.2

18:20

Complexity Landscape for Local Certification

we could consider the graph where we take the right part from one instance and the left
part from the other (with their accepting certificates), gluing on the edge with identical
certificates. This new graph would be accepted, but it is not in our language since the graphs
at the end of the path are different. A contradiction. <

B Missing proofs for the gap between O(1) and ©(logn) in cycles

In this appendix section, we restate and prove the claim of Section 5 for which the proof was
missing.

> Claim 27. For every integer n > 3, n € Sy if and only there exists a closed walk of
length n in Gy.

Proof. If n € S, there exists an assignment of certificates cy,...,c, to the vertices of a
n-vertex cycle such that every vertex accepts. For every i € {1,...,n}, since the vertex with
certificate ¢; accepts and has two neighbors with certificates ¢;—; and ¢; 41 (where i — 1 and
i+ 1 are taken modulo n), by definition there is an edge in Gy from (¢;—1,¢;) to (¢, ciy1).
So this gives an closed walk of length n in Gi. Conversely, if there exists a closed walk
(c1,¢2),(c2,¢3),...,(Cn,c1) in G, by definition all the vertices of the cycle of length n with
certificates cy,...,c, accept, so n € Sy. <

> Claim 28. We have ny, > 2°F.

Proof. By definition of s(ng), we have ny € Sy, . Since ng € Si.\ U1<i<k S;, it follows that

s(ng) = k. Moreover, by assumption, s(ny) < Fog%J So ny, = 2¢F, <

> Claim 29. Let C be a closed walk in Gj, and let ¢ be its length. There exists b1,...,b; € N
such that ¢ = Z§=1 b;l;. Thus, d divides £. In particular, d divides ny.

Proof. Let us prove this result by induction on the length of C. The base case includes all
elementary cycles: if C is an elementary cycle, there exists j € {1,...,t} such that ¢ = ¢;,
so the result is trivially true. Assume now that C is not an elementary cycle, and consider
the shortest closed subwalk C’ of C. Then, C’ is an elementary cycle (otherwise it would
not be the shortest subwalk of C), so C' € {Cy,...,C:} and its length is equal to ¢; for some
j€{1,...,t}. Let us denote by C\ C’ the closed walk obtained by removing from C the steps
of C'. The length of C\ C’" is ¢ — ¢;. Finally, apply the induction hypothesis to the closed walk
C\ (', to obtain integers by,...,b; € N such that £ —¢; = Zle b;¢;. The result follows. <

> Claim 30. Let m € N be such that d divides m, and m > 94k+1 Then, there exists a
closed walk in Q,’€ of length m. Thus, m € Sj.

Proof. First, we construct greedily a closed walk Cp in G;, that passes through all the vertices
of G}, (it exists, because Gj, is strongly connected). For every u,v € V(G},), the shortest
directed path from u to v has length at most the number of vertices of G, which is 22%.
Thus, there exists a closed walk Cy of length £y < (22%)2 = 2% that passes through all
the vertices. By Claim 29, d divides £y, so d divides m — £y. Furthermore, m — £y > 2%%.
Since we have maxigigt £ < 22% we can apply Lemma 26 to get the existence of integers
ai,...,a; € N such that m — fy = 22:1 a;¢;. Finally, to construct a closed walk in G}, of
length m = {4y + 22:1 a;l;, we attach a; times the elementary cycle C; to the closed walk
Co for every i € {1,...,t} (this is possible, because Cy passes through all the vertices). By
Claim 27, we have m € Sj. <

N. Bousquet, L. Feuilloley, and S. Zeitoun

C Proof of a property with optimal size ©(logn) in cycles

Let us restate the result and prove it.

» Proposition 32. Certifying that the length of a cycle is not a power of 2 can be done with
certificates of size O(logn) but not with certificates of size O(1).

Proof. Let C be a cycle of length n, let u € V(C') and let P be the path obtained from C
by deleting one edge adjacent to u. To certify that n ¢ {2* k € N}, the prover writes in
the certificate of every vertex v € V(C) the tuple (d,¢) where d > 3 is an odd integer that
divides n, and 4 is the distance from u to v in P modulo d. Every vertex checks that, if
its certificate is (d, %) then its two neighbors have certificates (d,i —1 mod d) and (d,i + 1
mod d), and that d is indeed odd. Such a certificate has size O(logn). This scheme is
correct: indeed, if all the vertices accept, the length of the cycle should be divisible by d
(and conversely, with the certificates described above, all the vertices will accept if the cycle
has length divisible by d).

Now, assume by contradiction that certifying that the length n of a cycle is not a power of 2
can be done with certificates of constant size k (or equivalently, that 2% distinct certificates are
sufficient). Let p be an odd prime number such that p > 2*. Let us consider an assignment
of certificates to the vertices of a cycle C' of length p such that all the vertices accept. Let
us number the vertices of C' in clockwise order starting from an arbitrary vertex, and for

every i € {0,...,n — 1}, let u; be the i-th vertex in this numbering, and ¢; be its certificate.

By the pigeonhole principle, there exists 0 < ¢ < j < n — 1 such that (¢;,ci11) = (¢j,¢j41)
(where j + 1 is taken modulo n). If j =i + 1, then a vertex with certificate ¢; accepts with
two neighbors having certificate ¢;. Thus, in this case, any cycle is accepted (by giving
the certificate ¢; to all the vertices) which is a contradiction. FElse, let ¢; := j — i and
Uy :=p—j+i. Wehavet1,0, € {1,...,p—1} and ¢; + {5 = p. Since p is prime, we get
ged(lq, f2) = 1. Moreover, for any aj,as € N, a cycle of size a11 + aols is accepted. Indeed,
by cutting such a cycle in a; portions of length ¢; and ay portions of length £5, giving the
certificates ¢;,...,cj—1 to the vertices in portions of size ¢; and c;,...,cn—1,¢c0,...,Ci—1 to
the vertices in portions of length ¢5, all the vertices accept because they have the same view
as a vertex which accepts in C. Using Lemma 26, all the the cycles of length m > p? are
accepted, which is a contradiction because the cycles whose length is a power of 2 greater
than p? should not be accepted. |

18:21

DISC 2025

	1 Introduction
	1.1 Approach
	1.2 Main results
	1.3 Main techniques
	1.4 Discussions and open problems
	1.5 Organization of the conference version

	2 Model and definitions
	2.1 Graphs
	2.2 Local certification

	3 Gap between O(1) and Theta(log log n) in paths
	3.1 Preliminary: automata point of view
	3.2 Proof via state complexity

	4 A property with optimal size Theta(log log n) in unlabeled paths
	5 Gap between O(1) and Theta(log n) in cycles
	5.1 Preliminaries on number theory and walks in graphs
	5.2 Proof of Theorem 7

	6 A property with optimal size Theta(log n) in cycles
	A No gap above log n in general graphs with identifiers
	B Missing proofs for the gap between O(1) and Theta(log n) in cycles
	C Proof of a property with optimal size Theta(log n) in cycles

