
Robust Predicate and Function Computation in
Continuous Chemical Reaction Networks
Kim Calabrese #

University of California–Davis, CA, USA

David Doty # Ñ

University of California–Davis, CA, USA

Mina Latifi # Ñ

University of California–Davis, CA, USA

Abstract

We initiate the study of “rate-constant-independent” computation of Boolean predicates (decision
problems) and numerical functions in the continuous model of chemical reaction networks (CRNs),
which model the amount of a chemical species as a nonnegative, real-valued concentration, representing
an average count per unit volume. Real-valued numerical functions have previously been studied [20],
finding that exactly the continuous, piecewise rational linear (meaning linear with rational slopes)
functions f : Rk

>0 → R>0 can be computed stably (a.k.a., rate-independently), meaning roughly that
the CRN gets the answer correct no matter the rate at which reactions occur. For example the
reactions X1 → Y and X2 + Y → ∅, starting with inputs X1 ≥ X2, converge to output Y having
concentration equal to the initial difference of inputs X1 − X2, no matter the relative rate at which
each reaction proceeds.

We first show that, contrary to the case of real-valued functions, continuous CRNs are severely
limited in the Boolean predicates they can stably decide, reporting a yes/no answer based only on
which inputs are 0 or positive, but not on the exact positive value of any input.

This limitation motivates a slightly relaxed notion of rate-independent computation in CRNs
that we call robust computation. The standard mass-action rate model is used, in which each reaction
(e.g., A + B

k→ C) is assigned a rate (A · B · k in this example) equal to the product of its reactant
concentrations and its rate constant k. We say the computation is correct in this model if it converges
to the correct output for any positive choice of rate constants. This adversary is weaker than the
adversary defining stable computation, the latter being able to run reactions at rates that are not
those of mass-action for any choice of rate constants (e.g., the stable adversary may deactivate a
reaction temporarily, even if all reactants are positive).

We show that CRNs can robustly decide every predicate that is a finite Boolean combination of
threshold predicates, where a threshold predicate is defined by taking a rational weighted sum of the
inputs x ∈ Rk

≥0 and comparing to a constant, answering the question “Is
∑k

i=1 wi · x(i) > h?”, for
rational weights wi and real threshold h. Turning to function computation, we show that CRNs can
robustly compute any piecewise affine function with rational coefficients, where threshold predicates
determine which affine piece to evaluate for a given input x.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases chemical reaction networks, analog computation, mean-field limit

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.19

Related Version Full Version: https://arxiv.org/abs/2506.06590 [18]

Funding Kim Calabrese: NSF awards 2211793, 1900931.
David Doty: NSF awards 2211793, 1900931 and DoE award DE-SC0024467.
Mina Latifi: NSF awards 2211793, 1900931 and DoE award DE-SC0024467.

© Kim Calabrese, David Doty, and Mina Latifi;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 19; pp. 19:1–19:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ebcalabrese@ucdavis.edu
https://orcid.org/0009-0005-8144-2808
mailto:doty@ucdavis.edu
https://web.cs.ucdavis.edu/~doty/
https://orcid.org/0000-0002-3922-172X
mailto:milatifi@ucdavis.edu
https://www.linkedin.com/in/mina-latifi/
https://orcid.org/0009-0002-0116-0519
https://doi.org/10.4230/LIPIcs.DISC.2025.19
https://arxiv.org/abs/2506.06590
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

19:2 K. Calabrese, D. Doty, and M. Latifi

1 Introduction

A chemical reaction network (CRN) is a model of reactions among abstract chemical species,
such as the reaction X + Y →Z, which indicates that if an X and a Y molecule collide,
they can stick together to form a dimer called Z. Since the 19th century [29,39], this model
has been used to describe and predict the behavior of naturally occurring chemicals. It
was not until the 21st century, however, that the model was repurposed as a programming
language [35] for describing the desired behavior of synthetically engineering chemicals such
as DNA strand displacement systems, both in theory [36] and practice [22,38].

CRNs are related to a distributed computing model known as population protocols [5],
describing anonymous finite-state agents (molecules) that interact (react) asynchronously
in pairs (bimolecular reactions), changing state (chemical species) in response. Formally,
a population protocol is a CRN in which each reaction has exactly two reactants (inputs)
and two products (outputs), with unit rate constants (constant multiplier on a reaction
rate; see below for definitions.) A population protocol is defined by a transition function
δ : Λ × Λ → Λ × Λ, where for A,B,C,D ∈ Λ, δ(A,B) = (C,D) is the same as saying the
CRN has a reaction A+B → C +D. Although population protocols are a special case of
CRNs, nevertheless many computations achievable with more general CRNs can be simulated
exactly by population protocols, and conversely most impossibility results on population
protocols also apply to the more general CRN model.

Discrete (a.k.a., stochastic) CRNs model the amount of each species as a nonnegative
integer representing its exact molecular count [28]. In this model, the state of a CRN is
given by a continuous-time Markov chain [28], where the probability of a reaction such as
2A+B

k→C occurring is proportional to the counts of A and B, as well as the positive rate
constant k ∈ R. Furthermore, reactions can only occur when at least two molecule of A and
one molecule of B is present in the configuration. When the number of molecules is very
large (a typical DNA nanotechnology experiment may involve over a trillion molecules in a 50
µL test tube), CRNs are well-approximated by what is sometimes called the mean-field limit,
the continuous mass-action model, and very commonly “the deterministic model” to contrast
with the stochastic nature of the discrete model. In the continuous model, each species has a
nonnegative, real-valued concentration indicating its average count per unit volume.1 In this
setting a reaction such as A+B

k→ 2C indicates that some real-valued amount of reactants
A and B are converted into product species C, e.g., the reaction could turn 1/3 units of
A, and the same amount of B, into 2/3 units of C. That is, in the continuous model of
CRNs, a reaction encodes the ratio of reactants that are turned into products. This is a
slightly different interpretation of a reaction than in the discrete model, where the same
reaction would be interpreted as “exactly one copy of species A reacts with exactly one
copy of species B to produce exactly two copies of species C”. While the discrete CRN
model has a state that changes at discrete steps, the state of a continuous CRN experiences
continuous time evolution. Each reaction has a rate equal to the product of the reactant
concentrations and rate constant k - k · A · B in this example. The rates define a system
of polynomial ordinary differential equations (ODEs) whose unique solution trajectory2

indicates how species concentrations change over time. The function S(t) which describes

1 This continuous mean-field limit has been explored within population protocols as well [10,15,16].
2 Polynomials are locally Lipschitz, so by the Picard-Lindelöf Theorem, the ODEs have a unique solution;

hence the term “the deterministic model”.

K. Calabrese, D. Doty, and M. Latifi 19:3

the concentration of species S at time t is defined by an ODE for S(t), where a reaction
in which S appears as a product contributes a positive term to dS/dt and a negative term
when S is a reactant; see Section 2.2 for a formal definition.3

1.1 Computation with CRNs: Related work
The discrete, integer-valued CRN model has been far more extensively studied for its
computational abilities than the continuous model, so we briefly review what is known in
this setting. The two most studied types of computation are Boolean-valued predicates
ϕ : Nk → {0, 1} [6, 9] and numeric functions f : Nk → N [21, 25]. We designate special
input species X1, . . . , Xk whose initial counts represent the inputs to ϕ or f . These may be
the only species present initially (“leaderless” CRNs [5,9,25]), or there may be additional
species present initially with counts independent of the inputs (“leader-driven” [7,21]). For a
function f : Nk → N, the count of a special “output” species Y represents the output of f .
For a predicate ϕ : Nk → {0, 1}, some species are designated as “yes” voters and some as
“no” voters; the CRN’s output is undefined if voters for both outputs (or neither) are present,
otherwise the output is yes or no depending on which type of voter is present.

Much study has been devoted to stable (a.k.a., rate-independent) computation, which
means intuitively that the CRN generates the correct output no matter in what order reactions
proceed. In the discrete stochastic model, rates influence the probability of choosing among
several competing reactions to be the next reaction to occur, so rate-independent computation
means essentially that, despite the inherent stochasticity of the model, nevertheless the
correct output is generated with probability 1.4 Experimentally, rate constants are often
difficult to control precisely, sometimes with a 10-fold difference in rate constants intended to
be equal [38], whereas reaction stoichiometry (i.e., how many of each reactant is consumed,
and how many of each product is produced) is naturally digital and simpler to engineer
exactly. Furthermore there may be violations of the assumptions justifying typical rate
laws (for example the solution may not be well-mixed) leading to actual reaction rates
deviating from predictions. Whether leaderless or not, exactly the semilinear predicates [6]
and functions [21,25] can be stably computed by discrete CRNs. See [6, 9, 21,25] for formal
definitions of these concepts, which are not required to understand this paper.

In this paper, we study the (naturally deterministic) continuous model, we focus on
the “rate-independent” characterization of stable computation rather than on probability.
Intuitively we want to capture the idea that the CRN generates the correct output “no
matter the reaction rates”. In contrast, if reaction rates are undisturbed and rate constants
can be controlled, then continuous CRNs are Turing universal [27], a consequence of the
surprising computational power of polynomial ODEs [17].

Prior work has completely characterized the real-valued functions f : Rk
≥0 → R≥0 stably

computable by continuous CRNs [20]. This definition of stable computation is based on a
very general notion of reachability, defined formally in Section B.1. A function f is stably
computable by a continuous CRN if and only if it is piecewise rational linear (meaning
a finite union of functions that are linear with rational coefficients, e.g., 4

3x1 − 5x2), and
positive-continuous, meaning intuitively that discontinuities can occur only when some input
xi goes from 0 to positive (Definition B.9); for example the function f(x1, x2) = x1 + x2 if
x2 > 0, and f(x1, x2) = 3x1 if x2 = 0, is positive-continuous but not continuous.

3 We will often write the time derivative of S, dS/dt as S′.
4 There are caveats to this, unnecessary to understand this paper; see [23] for a thorough discussion.

DISC 2025

19:4 K. Calabrese, D. Doty, and M. Latifi

1.2 Our results

An open question from [20] concerns stable computation of real-valued decision problems,
a.k.a., Boolean predicates ϕ : Rk

≥0 → {0, 1}. In contrast to functions, we show that the
stably decidable predicates are severely limited: exactly the detection predicates can be
stably decided (Theorem B.2), those that depend only on whether certain inputs are 0 or
positive (Definition B.1), but not on their exact positive value. This limitation prompts us
to relax the notion of stable computation as suggested by another open question in [20].
We call the concept robust computation, which uses mass-action rate laws (see Section 2.2),
limited compared to the adversarial rates used in stable computation, but requires the CRN
to converge to the correct output for every choice of positive rate constants (Definitions 2.6
and 2.7).

Our first main result (Theorem 3.7) shows that every finite Boolean combination of
threshold predicates (Definition 2.2) is robustly decidable, where a threshold predicate ϕ(x) = 1
if and only if

∑k
i=1 wi · x(i) > h for rational constants wi ∈ Q and real constant h ∈ R.

Intuitively, there are a finite number of hyperplanes, which cut Rk
≥0 into a finite number of

regions, and ϕ(x) depends only on which region x is in. A famous example of a threshold
predicate (which incidentally is not a detection predicate) is majority [1–4,7, 8, 11–14,24,26,
31–33,37] (see Lemma 3.3).

Our second main result (Theorem 3.10) shows that every threshold-piecewise rational
floor-affine function (Definition 2.3) can be stably computed, which are finite unions of
“floor-affine” components fi : Rk

≥0 → R≥0, where a threshold predicate ϕ(x) indicates whether
fi is the correct affine function to use for input x (see Section 3.2). Floor-affine means
negative outputs are replaced with 0 (Definition 2.1, necessary since concentrations are
nonnegative), i.e., fi(x) = max(0, g(x)) for some affine g : Rk

≥0 → R. Compared to stable
function computation [20], such functions can be discontinuous even within the strictly
positive orthant; e.g., f(x1, x2) = x1 + x2 + 2 if x1 < x2 and max(0, x1/3 − x2) if x1 ≥ x2.

Threshold predicates and affine functions allow a constant “offset”, unlike linear functions
studied in [20]. This is because unlike [20], we allow a notion similar to “leaders” in discrete
distributed computing models, called initial context: some non-input species may be present
initially, but their initial concentrations do not depend on the input values. Such initial
context can be used to implement these constant offsets.5 We believe our constructions
extend naturally to the leaderless setting, and would limit threshold predicates to comparing
to h = 0 instead of arbitrary constant h ∈ R, and limit functions to piecewise linear (rather
than affine), but we have not explored this in detail. Note that some functions are computable
with specific rate constants, but are neither stably nor robustly computable; for example
f(x) = 3.5x2 is computable by the reactions 2X 3.5→ 2X + Y and Y

1→ ∅.
The high-level goals of stable and robust computation are the same, which is to formalize

a notion of computation in an adversarial environment where reaction rates may deviate
from standard models. However, robust computation, being based on ODEs in mass-action
kinetics, requires vastly different (and typically more sophisticated) techniques to reason
about. One goal of this paper is to begin establishing general techniques to prove correctness
of such systems. For example, Lemmas 3.1 and 3.2 in Section 3.1 are general lemmas that we
use repeatedly to reason “modularly” when the output of an “upstream” CRN U influences
a “downstream” CRN D in one direction only, i.e., D does not influence U .

5 As noted in [20, Section 6.2], allowing initial context in stable computation leads to replacing “linear”
with “affine” in the characterization.

K. Calabrese, D. Doty, and M. Latifi 19:5

2 Preliminaries

Let N denote the nonnegative integers, Q the rationals, and R the reals. For any set A ⊆ R,
A≥0 = A ∩ [0,∞) and A>0 = A ∩ (0,∞). Given a finite set F and a set S, let SF denote
the set of functions c : F → S. In the case of S = R (resp., N), we view c equivalently
as a real-valued (resp., integer-valued) vector indexed by elements of F . Given a ∈ F , we
write c(a), to denote the real number indexed by a. The notation RF

≥0 is defined similarly
for nonnegative real vectors. For a function of time A : R≥0 → R and c ∈ R ∪ {∞}, we
write A → c to denote limt→∞ A(t) = c; most frequently, A will be a chemical species
concentration, or some function thereof.

▶ Definition 2.1. f : Rk → R is rational affine if for some rational w1, . . . , wk ∈ Q and real
h ∈ R, for all x ∈ Rk, f(x) = h+

∑k
i=1 wi · x(i).6 If h = 0 we say f is rational linear. f is

rational floor-affine if f(x) = max(0, g(x)) for some rational affine g.7

For example, the function f1(x, y, z) =
√

2 + 2x + 2
3y − 3

7z is rational affine while the
function f2(x, y, z) = 1 +

√
2x+

√
3y + 2z is not, although still affine.

The next two definitions capture the class of predicates and functions we show are robustly
computable by continuous CRNs in our main results, Theorems 3.7 and 3.10.

▶ Definition 2.2. ϕ : Rk → {0, 1} is a threshold predicate with rational weights w1, . . . , wk ∈
Q and real threshold h ∈ R if, for all x ∈ Rk

≥0, ϕ(x) = 1 ⇐⇒
∑k

i=1 wi · x(i) > h. We say
ϕ is a multi-threshold predicate if it is a finite Boolean combination of threshold predicates.

For example, the predicate ϕ(x, y, z) = 1 ⇐⇒ x+ 2y + 3z > π is a threshold predicate
with rational weights 1, 2 and 3 and threshold π. If ϕ1, ϕ2 and ϕ3 are each threshold predicates,
then the predicate ψ defined as ψ(x) = (ϕ1(x) ∨ ϕ2(x)) ∧ ϕ3(x) (where ∨ and ∧ denote
logical OR and AND, and ϕ3 is the logical negation of ϕ3) is a multi-threshold predicate.

▶ Definition 2.3. f : Rk
≥0 → R≥0 is threshold-piecewise rational floor-affine if there is

a finite set of rational floor-affine functions f1, . . . , fl : Rk
≥0 → R≥0, known as the affine

components of f , and multi-threshold predicates ϕ1, . . . , ϕl : Rk
≥0 → {0, 1} such that

1. The sets ϕ−1
1 (1), . . . , ϕ−1

l (1) are a partition of Rk
≥0, i.e., for each x ∈ Rk

≥0, ϕi(x) = 1 for
exactly one 1 ≤ i ≤ l.

2. For each i and x ∈ Rk
≥0, if ϕi(x) = 1 then f(x) = fi(x), i.e., ϕi(x) indicates whether fi

is the correct affine component defining f(x).

For example, if f1, f2 : Rk
≥0 → R≥0 are floor-affine functions and ϕ : Rk

≥0 → R≥0 is a
multi-threshold predicate then the function

f(x) =
{
f1(x) If ϕ(x) = 1
f2(x) If ϕ(x) = 1

is a threshold-piecewise rational floor-affine function as both ϕ and its negation ϕ are
multi-threshold predicates, and for any input x exactly one of ϕ(x) and ϕ(x) is 1.

6 It would seem more natural to require h also to be rational, or conversely to allow each wi to be real,
but this distinction is relevant with CRNs: h will come from the initial concentration of some species,
or its negation, whereas the wi’s will come from ratios of integer stoichiometric reaction coefficients.
Similar reasoning applies to Definition 2.2.

7 The significance of rational floor-affine functions is that CRNs can only output nonnegative concentrations;
reactions such as X1 → Y and X2+Y → ∅ technically compute, not the affine function g(x1, x2) = x1−x2,
but the floor-affine function f(x1, x2) = max(0, g(x1, x2)).

DISC 2025

19:6 K. Calabrese, D. Doty, and M. Latifi

2.1 Chemical reaction networks
Throughout this paper, let Λ be a finite set of chemical species. Given S ∈ Λ and state
c ∈ RΛ

≥0, c(S) is the concentration of S in c. For any c ∈ RΛ
≥0, let [c] = {S ∈ Λ | c(S) > 0},

the set of species present in c (a.k.a., the support of c). We write c ≤ c′ to denote that
c(S) ≤ c′(S) for all S ∈ Λ. Given c, c′ ∈ RΛ

≥0, we define the vector component-wise operations
of addition c + c′, subtraction c − c′, and scalar multiplication xc for x ∈ R.

A reaction over Λ is a triple α = (r,p, k) ∈ NΛ ×NΛ ×R>0, such that r ̸= p, specifying the
stoichiometry of the reactants r and products p, and the rate constant k. For instance, given
Λ = {A,B,C,D}, the reaction A+ 2B 6.7→A+ 3C is the triple ((1, 2, 0, 0), (1, 0, 3, 0), 6.7).

A chemical reaction network (CRN) is a pair C = (Λ, R), where Λ is a finite set of
chemical species, and R is a finite set of reactions over Λ. A state of a CRN C = (Λ, R) is a
vector c ∈ RΛ

≥0. Given a state c and reaction α = (r,p, k), we say that α is applicable in c
if [r] ⊆ [c] (i.e., c contains positive concentration of all of the reactants). If no reaction is
applicable in state c, we say c is static.

The next two definitions are “syntactic” preparation for stating how a CRN can compute
a predicate or function; the “semantic” definitions of stable (Definitions B.5 and B.6) and
robust (Definitions 2.6 and 2.7) computation will use these definitions to state under what
conditions a CRN “correctly” computes. The first definition is for Boolean predicates.

▶ Definition 2.4. A chemical reaction decider (CRD) is a tuple D = (Λ, R,Σ,Υyes,Υno, i)
where (Λ, R) is a CRN, Σ ⊆ Λ is the set of input species, Υyes ⊆ Λ is the set of yes voters,
Υno ⊆ Λ\Υyes is the set of no voters, and i ∈ RΛ\Σ

≥0 is the initial context.

Intuitively initial context i refers to fixed initial concentrations for non-input species,
independent of the input value. A CRD’s initial state for predicate input x ∈ Rk

≥0 is then
x + i, where we assume some fixed ordering X1, . . . , Xk of input species to interpret a vector
x ∈ Rk

≥0 as a state x ∈ RΣ
≥0. The next definition is used for computing numeric functions,

identifying a special species Y whose concentration represents output:

▶ Definition 2.5. A chemical reaction computer (CRC) is a tuple C = (Λ, R,Σ, Y, i) where
(Λ, R) is a CRN, Σ ⊆ Λ is the set of input species, and Y is the output species, and i ∈ RΛ\Σ

≥0
is the initial context.

2.2 Robust (rate-constant-independent) computation
Stable computation requires a CRN to work against a very powerful adversary who can
essentially set the rate of each reaction at each time arbitrarily. This means in particular that
the CRN works under a variety of rate laws besides mass-action (defined below). Here we
consider a weaker adversary, one that cannot control the rate law – that will be mass-action
– but that can set the parameters of the rate law, known as rate constants. Crucially, these
are constant with respect to time: the adversary can choose arbitrary positive values for
these rate constants, but sets them to those values at time t = 0, and the rate constants
stay at those values for all future t > 0.8 A CRN robustly computes a function or predicate
if it computes the correct output against this adversary: i.e., if the mass-action rate law
converges to the correct output, no matter which positive rate constants are chosen.

8 If we allowed the adversary to change the rate constants over time, then it could mimic the stable
computation adversary by adjusting rate constants so as to target particular absolute rates at each time.

K. Calabrese, D. Doty, and M. Latifi 19:7

A CRN C = (Λ, R) under the mass-action rate law is governed by a system of poly-
nomial ordinary differential equations (ODEs) that define functions S(t) representing the
concentration of species S at time t. The rate ρt(α) of a reaction α = (r,p, k) at time t is
ρt(α) = k ·

∏
S∈Λ S(t)r(S), i.e., the rate constant times each reactant concentration at time

t. For example, the rate of A + 2B 4.5→C is 4.5 · A(t) · B(t)2. Each reaction α = (r,p, k)
contributes a term ρt(α) · (p(S) − r(S)) to the ODE of each species S that is net produced
or consumed; the term is α’s rate ρt(α) times the net stoichiometry of S in α (positive if S
is net produced by α, e.g., S→ 3S net produces 2 S’s since p(S) − r(S) = 2 and negative if
S is net consumed, e.g., 2S→S net consumes 1 S, i.e., p(S) − r(S) = −1). For example,
the CRN with reactions A+ 2B k1→ 3C and 2C k2→C corresponds to the ODEs

A′(t) = −k1A(t)B(t)2

B′(t) = −2k1A(t)B(t)2

C ′(t) = 3k1A(t)B(t)2 − k2C(t)2

This can be formalized as follows. Given a CRN C = (Λ, R) let A : RΛ
≥0 → RR

≥0 map each
state d of C to the vector A(d) of instantaneous reaction rates in state d, as given by the
mass-action ODEs. With the example reactions above, the state of concentrations d = (1, 2, 0)
would be mapped to the flux vector A(d) = (−4k1,−8k1, 12k1). The first coordinate was
obtained by setting A(t) = 1, B(t) = 2 and C(t) = 0 in the ODE for A′. The second and
third coordinates are obtained similarly by evaluating the ODE for B′ and C ′ respectively.
Define the |Λ| × |R| stoichiometry matrix M such that, for species S ∈ Λ and reaction
α = (r,p) ∈ R, M(S, α) = p(S) − r(S) is the net amount of S produced by α (negative if S
is consumed). For example, if we have the reactions X → Y and X +A → 2X + 3Y , and if

the three rows correspond to A, X, and Y , in that order, then M =

 0 −1
−1 1
1 3

 . The

vector M · A(d) gives the rate at which each species concentration is changing in state d.
Given an initial state c, the mass-action trajectory τ : [0, tmax) → RΛ

≥0 starting at c, is the
solution to the initial value problem

dτ

dt
= M · A(τ (t)), τ (0) = c (1)

where tmax ∈ R≥0 ∪ {∞}.9 That is, τ (t) = (S1(t), S2(t), . . . , S|Λ|(t)) is the vector whose ith
component is the concentration of species Si ∈ Λ at time t. While some CRNs induce ODEs
with solutions that do not exist for all time, mass-action ODEs are locally Lipschitz, implying
that a unique solution to (1) always exists on some interval. We now define what it means
for CRD to decide a predicate in the mass action model with adversarial rate constants.

Intuitively, a CRD robustly decides a predicate ϕ if, for any input x and any choice of
rate constants for the reactions, the induced ODEs (defined by mass action) cause yes voters
to remain positive as t → ∞ while no voters converge to zero if ϕ(x) = 1 and vice-versa if
ϕ(x) = 0.

▶ Definition 2.6 (robustly decide). Let ϕ : Rk
≥0 → {0, 1} be a predicate. We say a CRD

D = (Λ, R,Σ,Υyes,Υno, i) robustly decides (a.k.a., rate-constant-independently decides) ϕ
if, for any choice of strictly positive rate constants and every x ∈ R≥0, the following holds.

9 Although tmax = ∞ for “typical” CRNs, there are pathological CRNs such as 2X → 3X, which diverge
to ∞ in finite time; for instance with X(0) = 1 and unit rate constant, this CRN has the solution
X(t) = 1/(1 − t), which goes to ∞ as t → 1, so tmax = 1 for this CRN.

DISC 2025

19:8 K. Calabrese, D. Doty, and M. Latifi

Let τ be the mass-action trajectory of C, starting at state x + i. If ϕ(x) = 1 (resp. 0), let
ΥC = Υyes (resp. Υno) be the correct voters, and let ΥI = Υno (resp. Υyes) be the incorrect
voters. Define C(t) =

∑
V ∈ΥC

V (t) be the sum of concentrations of correct voters. Then
lim inft→∞ C(t) > 0 and limt→∞ I(t) = 0 for all I ∈ ΥI.

In other words, the CRD deciding ϕ(x) starts with input species concentrations defined
by x, and other initially present species indicated by i (whose initial concentrations are the
same for all inputs x). The CRD proceeds by mass-action dynamics as defined above, and
converges to a state with only correct voters present. Since concentrations are nonnegative,
requiring each individual incorrect voter to converge to 0 is equivalent to requiring their sum
to converge to 0, whereas we do not require any individual correct voter to stay bounded
above 0, only the sum of correct voters,10

We now define what it means for a CRC to robustly compute a real-valued function.

▶ Definition 2.7 (robustly compute). Let f : Rk
≥0 → R≥0. We say a CRC C = (Λ, R,Σ, Y, i)

robustly computes (a.k.a., rate-constant-independently computes) f if, for any choice of
strictly positive rate constants and every x ∈ R≥0, the component Y (t) of C’s mass action
trajectory starting from i + x satisfies limt→∞ Y (t) = f(x).

The full definition of stable computation is given in Section B, based on a formal definition
of reachability in continuous CRNs. The definition intuitively says a CRN can reach from
state x to c if one can run some reactions starting at x and reach to c, without ever running
a reaction when one of its reactants is 0. We say that a CRC stably computes a function f

(or stably decides a predicate ϕ) if, starting from initial state x encoding the input, for any
state c reachable from x, there is a “correct” state o reachable from c (correct meaning the
output in o equals f(x) or ϕ(x)), that is also stable, meaning that every state o′ reachable
from o has the same output as o.

The next definition connects stable and robust computation for some specially structured
CRNs. Intuitively, a CRN is feedforward if there is an ordering of species so that every
reaction producing a species consumes another species earlier in the ordering; formally:

▶ Definition 2.8. A CRN C = (Λ, R) is feedforward if Λ can be ordered Λ = {S1, S2, . . . , Sn}
so that, if for each reaction α = (r,p, k) ∈ R and Sj where p(j) > r(j), there is Si ∈ Λ with
i < j such that p(i) < r(i).

The following was shown in [20, Corollary 4.11] (in different but equivalent terms).

▶ Lemma 2.9. Each feedforward CRC stably computing function f also robustly computes f .

Essentially the same proof shows the following.

▶ Lemma 2.10. Each feedforward CRD stably deciding a predicate ϕ also robustly decides ϕ.

3 Robust computation by continuous CRNs

3.1 Boolean combinations of threshold predicates are robustly decidable
We begin by proving a technical lemma that relates known asymptotic behavior of certain
species to the desired asymptotic behavior of others that depend on them. Intuitively, we
think of p and g as functions of concentration whose asymptotic behavior has already been

10 For example two yes voters could oscillate between 0 and 1, so long as they always sum to at least 0.1.

K. Calabrese, D. Doty, and M. Latifi 19:9

analyzed. In particular, we think of species involved in p and g as belonging to an “upstream”
CRC (or CRD) CU, whose outputs are used in reactions of a “downstream” CRC (or CRD)
CD that influence concentration of species F . These species influence the concentration of
species F , which evolves as f(t). However, f does not affect the concentrations of the species
involved in p and g. Assuming that the ODE describing f is of the form f(t)′ = g(t)−p(t)f(t),
we can use Lemmas 3.1 and 3.2 to reason about asymptotic behavior of f .

▶ Lemma 3.1. Let p, g : R≥0 → R, be differentiable functions, with p(t) > 0 and g(t) ≥ 0 for
all t ∈ R≥0. Let K = g(0)+p(0)f(0)

p(0) be a constant. If f : R → R is differentiable and satisfies
the first order linear ODE f ′(t) = g(t) − p(t)f(t), then for all t ∈ R≥0,

f(t) ≤ g(t)
p(t) +K exp

(
−

∫ t

0
p(s)ds

)
.

This lemma allows us to cleanly demonstrate that the concentration of particular voting
species V converges to zero. In this context, the function p will represent the concentration
of species whose presence causes V to be consumed, and g represents the concentration of
species whose presence causes V to be produced. A common pattern in our correctness
proofs will be to rearrange the mass-action ODEs for an incorrect voting species into a first
order linear ODE, apply Lemma 3.1, and then argue that g(t) converges to zero while p(t)
converges to a positive value (or converges to zero slower than g). Further, the non-negativity
condition of the hypothesis is trivially satisfied as components of the mass action trajectory
are always non-negative, and for some CRNs, strictly positive with suitable initial conditions.
Lemma 3.1 is not applicable if p(t) is not strictly positive, but in this case we can still find a
bound of a similar form.

▶ Lemma 3.2. Let p, g : R≥0 → R be differentiable functions, with p(t) ≥ 0 and g(t) ≥ 0
for all t ∈ R≥0. Let K = g(0)+f(0)(p(0)+1)

p(0)+1 be a constant. If f : R → R is differentiable and
satisfies the first order linear ODE f ′(t) = g(t) − p(t)f(t), then for all t ∈ R≥0,

f(t) ≤ 5g(t)
p(t) + (t2 + 1)−1 +K exp

(
−

∫ t

0
p(s)ds

)
.

Proofs of Lemmas 3.1 and 3.2 are given in [18].
We begin our positive results by showing the majority predicate ϕ : R2 → {0, 1} defined

by ϕ(a, b) = 1 if and only if a > b is robustly decidable. We remark that such a predicate is
in general not a detection predicate, showing that the class of robustly decidable predicates
is strictly larger than the class of stably decidable one.

We first give an example of a CRD that “almost” decides the majority Let D̂ =
(Λ̂, R̂,Σ,Υyes,Υno, î) with Υyes = {Y } and Υno = {N}, with initial state {aA, bB, 1Y }
and i = {1Y }, and reactions

A+N
k1→ A+ Y (2)

B + Y
k2→ B +N (3)

A+B
k3→ ∅ (4)

D̂ both robustly (even stably) decides majority when a ̸= b. Consider the case when
a > b. Intuitively, only reaction (4) decreases the concentrations of A and B, and thus the
concentration of A remains positive (as a− b > 0) while the concentration of B converges to
zero. As a result, (2) will convert all of species N to species Y . Similarly, when a < b as
only concentration of B remains positive (3) converts all of Y to N .

DISC 2025

19:10 K. Calabrese, D. Doty, and M. Latifi

Unfortunately, this CRD is unable to robustly decide majority when a = b. In this
case, reaction (4) decreases both A and B at the same rate, allowing rate constants to
influence the output. The correct output for this case is “no”, but the adversary can choose
k1 = 100, k2 = 5, k3 = 1 so that when A and B approach 0, the rate of reaction (2) will be
greater than reaction (3). Thus the CRD will incorrectly converge to {1Y } and output “yes”.
Note that there exist rate constants under which the correct answer is reached. For example,
when k1 < k2, the CRN converges to the state {1N}.

Since Theorem B.2 implies no CRD can stably decide majority, any modification to D̂ so
that it robustly decides majority must take advantage of mass-action rate laws.

This is why the addition of the auxiliary species C is necessary in Algorithm 3.1. As C
converges to zero asymptotically slower than A, its presence can speed up the production of
N . This use of different asymptotic decays is a powerful tool of mass-action, not available
for stable computation, which explains that a CRD can robustly decide majority but cannot
stably decide it.

Algorithm 1 The following CRD robustly decides the majority predicate ϕ(a, b) = 1 if and only
if a > b. CRD D = (Λ, R, Σ, Υyes, Υno, i) is defined as follows. Let Υyes = {Y } and Υno = {N} be
the yes voter and no voter respectively. Let the initial state be {aA, bB, 1Y, 1C} where {1Y, 1C} is
the initial context i. We add the following reactions:

A+N
k1→ A+ Y (5)

B + Y
k2→ B +N (6)

A+B
k3→ ∅ (7)

C + Y
k4→ C +N (8)

3C k5→ ∅ (9)

▶ Lemma 3.3. The CRD in Algorithm 3.1 robustly decides the majority predicate.

Proof. Here we show that the CRD given in Algorithm 3.1 robustly decides the majority
predicate ϕ(a, b) = 1 if and only if a > b. We consider the following 3 cases separately.

a > b: To argue that we converge to a correct vote, we must show that limt→∞ Y (t) = 1. This
is equivalent to showing limt→∞ N(t) = 0, as Y (t) +N(t) = 1 for all t. We first observe
that the only reactions that change the concentration of species A, B, and C strictly
decrease the concentration of each species. Therefore, as t approaches infinity, the limits
of their concentrations satisfy limt→∞ A(t) = a− b and limt→∞ B(t) = limt→∞ C(t) = 0,
as the initial concentration of A is strictly greater than the concentration of B. 11

We observe the CRC induces this mass-action ODE for the concentration of N : N ′(t) =
−k1A(t)N(t) + k2B(t)Y (t) + k3C(t)Y (t). Using the fact that Y (t) +N(t) = 1, we may
rewrite the ODE in terms of only N(t) and species whose limit is known: N ′(t) +
N(t)(k1A(t) + k2B(t) + k3C(t)) = k2B(t) + k3C(t). We now want to apply Lemma 3.1,
to connect the asymptotic behavior of A,B and C to that of N . To see that this lemma

11 This can also be seen by application of Lemma 2.9. The sub-CRN with reactions A + B → ∅ and
3C → ∅ is feedforward and stably computes f(a, b, c) = a − b when a > b, converging to the static state
{(a − b)A, 0B, 0C}. By Lemma 2.9, this restricted CRN robustly computes a − b.

K. Calabrese, D. Doty, and M. Latifi 19:11

is applicable, we observe that with the initial conditions A(0) = a > 0, the function
A(t) is always positive as it monotonically decreases and approaches a positive limit.
This also implies the lower bound A(t) ≥ a− b, which is positive in this case. Further,
B(t) and C(t) are both non-negative, so we can apply Lemma 3.1 with f(t) = N(t),
p(t) = k1A(t) + k2B(t) + k3C(t) and g(t) = k2B(t) + k3C(t) to obtain the bound

N(t) ≤ k2B(t) + k3C(t)
k1A(t) + k2B(t) + k3C(t) +K exp

(
−

∫ t

0
k1A(s) + k2B(s) + k3C(s)ds

)
≤ k2B(t) + k3C(t)
k1A(t) + k2B(t) + k3C(t) +K exp (−(a− b)k1t)

Since B and C converge to 0 as t approaches infinity, this shows limt→∞ N(t) = 0.
a < b: Symmetric to the previous case.
a = b: We want to show that in this case CRN converges to the static state c = {1N}.
With the initial conditions A(0) = B(0) = a, it can be found that the functions A(t)
and B(t) are equal from their mass action ODEs A′(t) = B′(t) = −A(t)B(t). We can
then derive that the closed form for the concentrations A(t) and B(t) is a

k1t+1 , where
a is the initial concentration of A. Similarly, we can compute that C has closed form
C(t) = 1√

2k3t+1 . We consider the mass action ODE for Y ′(t)

Y ′(t) +
(

2a
k1t+ 1 + 1√

2k3t+ 1

)
Y (t) = a

k1t+ 1

This is a first-order linear ordinary differential equation, so we can find an explicit solution
for Y by way of integrating factor:

Y (t) =
∫ t

0 (as+ 1)a/k1e
√

2k3s+1/k3ds+ 1
(at+ 1)2a/k1e

√
2k3t+1/k3

.

Taking the limit as t → ∞, observe that the numerator and the denominator both
approach ∞ for any positive choice of k1 and k3. Thus,

lim
t→∞

Y (t) = lim
t→∞

Y ′(t) L’Hôpital’s rule

= lim
t→∞

a
k1t+1

2a
k1t+1 + 1√

2k3t+1

= lim
t→∞

a

k1t+ 1 × (k1t+ 1)
√

2k3t+ 1
2a

√
2k3t+ 1 + k1t+ 1

= lim
t→∞

O
(
t3/2)

O (t2) = 0.

Since Y (t) approaches 0 as t → ∞, N(t) approaches 1 as desired. ◀

Next, we show that threshold predicates are robustly decidable by CRDs.

▶ Lemma 3.4. Every threshold predicate is robustly decidable by a continuous CRC.

Proof sketch. A full proof is given in Section A. It works by reducing the problem of
deciding ϕ to that of deciding majority as in Lemma 3.3. For example, to decide whether
2x1 − x2/3 + 5

4x3 > 4, we start with 4B, and we convert positive terms to A and negative
terms to B with the correct rational multipliers: reactions X1 → 2A and 4X3 → 5A for the
positive terms and 3X2 →B for the negative term. The reactions of Lemma 3.3 then properly
decide whether A > B, which, since the above reactions converge to A = 2x1 + 5

4x3 and
B = 4 + x2/3, is true if and only if the threshold predicate 2x1 − x2/3 + 5

4x3 > 4 holds. ◀

DISC 2025

19:12 K. Calabrese, D. Doty, and M. Latifi

We will now show that Boolean combinations of threshold predicates are also robustly
decidable. To show this result, we first prove a lemma that lets us assume CRDs that robustly
compute predicates are of a convenient form: without loss of generality, we can assume that
a CRD has exactly one yes and no voter. Furthermore, both of their concentrations converge
exactly to 1 and 0 as t → ∞.

▶ Lemma 3.5. Let D = (Λ, R,Σ,Υyes,Υno, i) robustly decide the predicate ϕ : Rk
≥0 → {0, 1}.

Then there is a CRD D′ = (Λ′, R′,Σ′, {Y }, {N}, i′) that robustly decides ϕ with exactly one
yes voter species Y and one no voter species N . Furthermore, the concentration of these
voters satisfy Y (t) +N(t) = 1 for all t ∈ R≥0.

Proof sketch. A full proof is given in Section A. For each original yes voter Vy, we add a
reaction Vy +N →Vy + Y , and similarly Vn + Y →Vn +N , to influence the new voters in
the correct direction. ◀

This result shows that Definition 2.6 is equivalent to a model in which we require exactly
one yes voter and no voter. Furthermore, this lemma allows us to insist that correct voting
species do not just remain above zero, but in fact converge to a particular value.

▶ Lemma 3.6. Let ϕ1 : Rk
≥0 → {0, 1} and ϕ2 : Rk

≥0 → {0, 1} be robustly decidable predicates.
Then the following are also robustly decidable: ϕ1, ϕ1 ∧ ϕ2, and ϕ1 ∨ ϕ2.

Proof sketch. A full proof is given in [18]. To decide ϕ1, it is enough to swap the yes and no
voters. To decide ϕ1 ∧ϕ2 or ϕ1 ∨ϕ2 we use the following construction. Similarly to Lemma 3.5,
we add new voter species that are “influenced” by the voters of the CRDs deciding ϕ1 and
ϕ2. The new voters are Vyy, Vny, Vyn, Vnn, where the first subscript represents a vote for ϕ1
and the second subscript a vote for ϕ2. Yes-voters Y for ϕ1 influence the new voters via
Y +Vny →Y +Vyy and Y +Vnn →Y +Vyn and no-voters N influence via N +Vyy →N +Vny
and N + Vyn →N + Vnn. Voters for ϕ2 similarly influence the second subscript. To decide
ϕ1 ∨ ϕ2, let Vyy, Vny, Vyn be the yes voters. To decide ϕ1 ∧ ϕ2, let Vyy be the yes voter. ◀

The following is the first main result of this paper.

▶ Theorem 3.7. Every multi-threshold predicate is robustly decidable by a continuous CRD.

Proof. Immediate from induction on the number of threshold predicates defining the multi-
threshold predicate; Lemma 3.4 is the base case and Lemma 3.6 is the inductive case. ◀

3.2 Piecewise affine functions are robustly computable
The next definition captures the idea that a species S converges because reactions stop
changing S, as opposed to reactions producing S at the same rate other reactions consume S.

▶ Definition 3.8. Consider CRN C = (Λ, R) with initial state x. Recall ρt(α) is the rate of
α ∈ R at time t. We say that from x, a species S ∈ Λ approaches static steady state, if for
every reaction α = (r,p, k) ∈ R such that r(S) ̸= p(S), limt→∞ ρt(α) = 0.

Note that if S approaches static steady state then limt→∞ S(t) exists and is finite. In
other words, although the CRN may not converge to a single state (perhaps some species
oscillate or diverge to ∞), not only does the value of S(t) converge, a stronger condition
holds: the CRN converges to rate 0 of every reaction net producing or net consuming S.
This contrasts dynamic steady state, e.g., for S

1
⇌
1
A, where S approaches a limit, but the

reactions producing/consuming S have positive rate even at steady state (where S = A).

K. Calabrese, D. Doty, and M. Latifi 19:13

▶ Lemma 3.9. Every rational floor-affine function f(x) = max(0, h+
∑k

i=1 wi ·x(i)) is stably
and robustly computable by a continuous feedforward CRC with output species Y , such that
Y approaches static steady state and Y ’s concentration never exceeds h+

∑
i,wi>0 wi · x(i).

Proof. Since all feedforward CRCs that stably compute a function also robustly compute it
(Lemma 2.9), it suffices to define a feedforward CRC stably computing f. Define the CRC
C = (Λ, R,Σ, Y, i), where Σ = {X1, . . . , Xk}, Λ = Σ∪{Y, Y −}, and i and R are defined below.
Let f(x) = max(0, g(x)) be rational floor-affine, with g : Rk

≥0 → R a rational affine function
g(x) = h +

∑k
i=1

ni

di
· x(i), for h ∈ R, d1, . . . , dk ∈ Z, and n1, . . . , nk ∈ Z>0; note we have

written each rational wi as ni

di
. Start with initial context i = {hY } if h > 0 and i = {|h|Y −}

if h ≤ 0. For every i such that di > 0, add reaction niXi → diY to R, and for every i such
that di < 0, add reaction niXi → diY

− to R. Finally we add reaction Y + Y − → ∅. Except
for the last reaction, all reactions are entirely independent – none share a reactant with
another reaction. Since the last reaction does not produce any species, C is feedforward.

From any reachable state, execute reactions of the form niXi → diY and niXi → diY
−

until all inputs are gone. By inspection of the reactions, this means
∑

i,ni>0
ni

di
x(i) amount

of Y has been produced in total by such reactions, and
∑

i,ni<0
ni

di
x(i) amount of Y −

has been produced in total by such reactions. Then run reaction Y + Y − → ∅ until
both reactants are gone. If g(x) > 0 then Y − will be limiting and this will result in∑

i,ni>0
ni

di
x(i) −

∑
i,ni<0

ni

di
x(i) =

∑k
i=1

ni

di
x(i) = g(x) = f(x), and if g(x) ≤ 0 then Y will

go to 0, so C stably computes f(x) = max(0, g(x)).
Since C is feedforward, its steady state is static [20, Lemma 4.8]. Finally, the fact that Y

cannot exceed h+
∑

i,wi>0 wi · x(i) follows from the fact that we start with hY (if h > 0)
and the only reactions producing Y are niXi → diY for i such that ni

di
= wi > 0. ◀

The following is the second main result of this paper.

▶ Theorem 3.10. Every threshold-piecewise rational floor-affine function is robustly comput-
able by a continuous CRC.

Proof. This construction is similar to Lemma 4.4 in [21], though that proof was different
(and simpler), applying to stable computation in the discrete CRN model. For a threshold-
piecewise rational floor-affine function f : Rk

≥0 → R≥0, recall the floor-affine functions
f1, . . . , fl : Rk

≥0 → R≥0 and the multi-threshold predicates ϕ1, . . . , ϕℓ : Rk
≥0 → {0, 1} from

Definition 2.3. We equivalently think of each ϕj as a set Rj = ϕ−1
j (1) that makes ϕj true,

i.e., f partitions the Rk
≥0 into ℓ disjoint regions R1, . . . , Rℓ.

Let j ∈ {1, . . . , ℓ}. By Lemma 3.6 there is a CRD Dj = (ΛD
j , R

D
j ,ΣD

j , {Tj}, {Fj}, iD
j),

robustly deciding ϕj , where we may assume a single yes voter Tj and single no voter Fj

for each by Lemma 3.5. By Lemma 3.9 there is a CRC Cj = (ΛC
j , R

C
j ,ΣC

j , Yj , iC
j) robustly

computing fj . We construct the CRC C = (Λ, R,Σ, Y P , i) to robustly compute f , where
Σ = {X1, . . . , Xk}. We transform the input species from Σ to those of each ΣD

i ,ΣC
i by adding

reactions of the form, for each 1 ≤ i ≤ k, Xi →X1,D
i +X1,C

i + · · · +Xℓ,D
i +Xℓ,C

i (similar to
the construction in the proof of Lemma 3.6).

Ideally we would convert the correct “local” output Yj to the “global” output Y , but
Cj may need to consume Yj ; in fact it provably must do so if computing a non-monotone
function such as x1 − x2. To avoid interfering with Cj ’s computation, we instead modify its
reactions to have additional products that will be used in the conversion. Since we do not
change any reactants, and since the new products are new species not appearing in Cj , these
new products will preserve the kinetics of the CRC Cj , while enabling the constructed CRC
to “read” the output of Cj .12

12 We use a trick known as dual-rail encoding [21, 22]; we use it more like [21] as a handy “intermediate”
proof technique, not as in [20] in which inputs and outputs of CRCs are encoded in dual-rail.

DISC 2025

19:14 K. Calabrese, D. Doty, and M. Latifi

For each reaction net producing p copies of Yj in Cj , for example A+ Yj →B + 3Yj that
net produces 2 Yj , we modify the reaction to also produce p copies of a new species Y P

j :
A+ Yj →B + 3Yj + 2Y P

j . For each reaction net consuming c copies of Yj in Cj , for example
B + 4Yj →Yj that net consumes 3 Yj , we modify the reaction to also produce c copies of a
new species Y C

j : B + 4Yj →Yj + 3Y C
j . This maintains that Yj(t) = Y P

j (t) − Y C
j (t) for all

t. Y P
j “records” the total amount of Yj that has ever been produced by any reaction, and

Y C
j the total amount of Yj that has ever been consumed, so that their difference is the net

amount of Yj produced. If iC
j (Yj) > 0, we also modify i so that i(Y P

j) = ij(Yj), i.e., if Cj

starts with some Yj already “produced”, we want to start with the same amount of Y P
j to

maintain Yj(t) = Y P
j (t) − Y C

j (t). (captured by the multiset term y below)
Let Λ = {Y P , Y C} ∪ Σ ∪

⋃ℓ
j=1 ΛD

j ∪ ΛC
j ∪ {Y P

j , Y C
j }, and i =

∑ℓ
j=1 iD

j + iC
j + y, where

y(Y P
j) = iC

j (Yj) and y(S) = 0 for all other S ∈ Λ.
R includes all reactions from each Cj and Dj , after modifying some as explained above,

and the following reactions for each 1 ≤ j ≤ ℓ:

Tj + Y P
j

kj1→ Tj + Ŷ P
j + Y P (10)

Tj + Y C
j

kj2→ Tj + Ŷ C
j + Y C (11)

Fj + Ŷ P
j

kj3→ FP
j + Y P

j + Y C (12)

Fj + Ŷ C
j

kj4→ FC
j + Y C

j + Y P (13)

Y P + Y C k→ ∅ (14)

We think of the outputs Y P
i , Y C

i produced by Ci as “inactive”, with “active” versions
Ŷ P

i , Ŷ C
i . Then Tj activates them and Fj deactivates them, while maintaining that as much

Y P , Y C is produced as the amount of Ŷ P
j , Ŷ C

j that has been net activated by the voters
Tj , Fj . Furthermore, to ease analysis of the ODEs, we ensure that Y P and Y C do not
influence the reaction rates. For, say, reaction (12) to reverse the effect of reaction (10)
straightforwardly, it would consume Y P as a reactant. However, with dual rail it is equivalent
to produce Y C , simplifying the expression for the rate of (12).

By inspection of reactions (10), (11), (12), (13), (14), as well as the modified reactions of
Cj , one can verify the conservation law that for all t,

ℓ∑
j=1

Ŷ P
j (t) −

ℓ∑
j=1

Ŷ C
j (t) = Y P (t) − Y C(t). (15)

since each reaction changes each side of (15) by the same amount. Similarly, the following
conservation law holds for each 1 ≤ j ≤ ℓ:

Y P
j (t) − Y C

j (t) + Ŷ P
j (t) − Ŷ C

j (t) = Yj(t). (16)

This completes the description of the construction of C.
We now prove that C robustly computes f . Let x ∈ Rk

≥0. Assume without loss of
generality that ϕ1(x) = 1 (thus ϕj(x) = 0 for all j > 1), i.e., that f(x) = f1(x), so that our
goal is to converge to activating all Ŷ P

1 , Ŷ C
1 and deactivating all Ŷ P

j , Ŷ C
j for j > 1. Since each

Dj robustly decides ϕj , limt→∞ T1 = 1, limt→∞ F1 = 0, and for all j > 1, limt→∞ Tj = 0,
limt→∞ Fj = 1.

By the conservation law shown above (15), to demonstrate that limt→∞ Y P (t) = f1(x),
it suffices to show that Ŷ P

1 (t) − Ŷ C
1 (t) approaches f1(x) while Ŷ P

j (t) and Ŷ C
j (t) approach 0

for all j > 1. We first will show that for all j > 1, Ŷ P
j (t) and Ŷ C

j (t) approach 0. For each j,

K. Calabrese, D. Doty, and M. Latifi 19:15

the ODE for Ŷ P
j is given by d

dt Ŷ
P

1 = kj1TjY
P

j − kj3Fj Ŷ
P

j . We apply Lemma 3.2 to obtain
that Ŷ P

j is bounded as

Ŷ P
j ≤

5kj1Tj(t)Y P
j (t)

kj3Fj(t) + (t2 + 1)−1 +Kkj3 exp
(

−
∫ t

0
Fj(s)ds

)
.

By the correctness of Dj , for all j > 1 the concentrations Tj(t) and Fj(t) approach 0 and
1 respectively as t approaches infinity. Further, the function Y P

j (t) is bounded above by
the construction in Lemma 3.9. Hence, the quotient term converges to zero as t approaches
infinity. We also observe that Fj(t) approaching 1 implies that the integral

∫ t

0 Fj(s)ds diverges
as t → ∞, which shows that the exponential term also converges to 0. This demonstrates
that limt→∞ Ŷ P

j (t) = 0, and a similar argument with the ODE for Ŷ C
j (t) shows that

limt→∞ Ŷ C
j (t) = 0 as well. To show that Ŷ P

1 (t) − Ŷ C
1 (t) approaches f1(x), we appeal to the

second conservation law derived (16). Since C1 robustly computes f1, the limit limt→∞ Y1(t) =
f1(x). Hence, to show the result we can show simply show that Y P

j (t) and Y C
j (t) approach zero.

Indeed, the ODE for Y P
j (t) is given by d

dtY
P

1 (t) = k3F1(t)Ŷ P
1 (t) + P1(Λ1, t) − k1T1(t)Y P

1 (t)
where P1(Λ1, t) is a function determined by the production of Y P

1 in the CRC C1. We apply
Lemma 3.2 to the ODE with p(t) = T1(t) and g(t) = F1(t)Ŷ P

1 (t) + P (Λ1, t) to obtain the
bound Y P

1 (t) ≤ k3F1(t)Ŷ P
1 (t)+P1(Λ1,t)

k1T1(t)+(t2+1)−1 + K exp
(

−
∫ t

0 k1T1(s)ds
)
. The construction given in

Lemma 3.9 has Y1 approach a static steady state, so the rate of production P1(Λ1, t) tends
to zero as t → ∞. Furthermore, and duel to the previous case, the correctness of D1 shows
that F1(t) → 0 and T1(t) → 1, so Y P

1 (t) → 0. Similar arguments also demonstrate that
Y C

1 (t) → 0 as well. To complete the result, we note that by inspection of the reactions,
at any time t we have Y P (t) ≥ Y C(t), so reaction (14) causes Y C(t) → 0. Putting it all
together, we have shown the desired limit:

lim
t→∞

Y P (t) = lim
t→∞

 ℓ∑
j=1

Ŷ P
j (t) −

ℓ∑
j=1

Ŷ C
j (t) + Y C(t)


= lim

t→∞

(
Ŷ P

1 (t) − Ŷ C
1 (t)

)
+ lim

t→∞

 ℓ∑
j=2

Ŷ P
j (t) −

ℓ∑
j=2

Ŷ C
j (t)

 + lim
t→∞

Y C(t)

= f1(x) + 0 + 0 = f(x). ◀

4 Conclusion

Motivated by the limitations of stable predicate computation, we investigated the robust
computation of predicates and numerical functions. While we established positive results
on what can be robustly computed, namely multi-threshold predicates (Definition 2.2) and
robustly piecewise floor-affine functions (Definition 2.3), the limitations of robust computation
remains an open question. We conjecture the positive results are tight, i.e., exactly the multi-
threshold predicates and robustly piecewise floor-affine functions are robustly computable.

We have assumed the presence of initial context, for example to help include a positive
amount of some voter species in all of our constructions, which gave the nice invariant that
the sum of voter concentrations is preserved. This choice seems as though it is not strictly
necessary, since our construction could instead generate voter species. We conjecture that
a leaderless model, without initial context, would only restrict threshold predicates to a
constant threshold of 0 and constrain functions to piecewise rational floor-linear functions,
rather than affine.

DISC 2025

19:16 K. Calabrese, D. Doty, and M. Latifi

Another possible extension of this work is employing the so-called dual-rail representa-
tion [20] to accommodate negative values as inputs. This means that a (possibly negative)
value x is represented as the difference between two nonnegative species concentrations
X+ − X−. This is known to slightly reduce the class of stably computable functions
f : Rk → R; such a function is stably computable using the dual-rail representation (for both
inputs and output) if and only if it is piecewise rational linear and continuous.

In the construction given in Theorem 3.10, we employed a technique to modify upstream
CRCs, ensuring controlled composition even when certain reactions within these CRCs
consumed the output species. This structured approach to dependency management could
naturally extend to the broader tricky problem of CRN composition [19,30,34].

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L Rivest. Time-

space trade-offs in population protocols. In Proceedings of the twenty-eighth annual ACM-
SIAM symposium on discrete algorithms, pages 2560–2579. SIAM, 2017. doi:10.1137/1.
9781611974782.169.

2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population
protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2221–2239. SIAM, 2018. doi:10.1137/1.9781611975031.144.

3 Dan Alistarh, Rati Gelashvili, and Milan Vojnović. Fast and exact majority in population
protocols. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
pages 47–56, 2015. doi:10.1145/2767386.2767429.

4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. In Proceedings of the twenty-third annual
ACM symposium on Principles of distributed computing, pages 290–299, 2004. doi:10.1145/
1011767.1011810.

5 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, pages 235–253,
March 2006. doi:10.1007/S00446-005-0138-3.

6 Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are
semilinear. In Proceedings of the twenty-fifth annual ACM symposium on Principles of
distributed computing, pages 292–299, 2006. doi:10.1145/1146381.1146425.

7 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, 21:183–199, 2008. doi:10.1007/S00446-008-0067-Z.

8 Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for fast
robust approximate majority. Distributed Computing, 21(2):87–102, 2008. doi:10.1007/
S00446-008-0059-Z.

9 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007. doi:10.1007/
S00446-007-0040-2.

10 Guillaume Aupy and Olivier Bournez. On the number of binary-minded individuals required
to compute sqrt(1/2). Theoretical Computer Science, 412(22):2262–2267, 2011. doi:10.1016/
j.tcs.2011.01.003.

11 Stav Ben-Nun, Tsvi Kopelowitz, Matan Kraus, and Ely Porat. An o (log3/2 n) parallel time
population protocol for majority with o (log n) states. In Proceedings of the 39th Symposium
on Principles of Distributed Computing, pages 191–199, 2020. doi:10.1145/3382734.3405747.

12 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. A population protocol for exact majority with o (log5/3 n) stabilization time and
θ (log n) states. In 32nd International Symposium on Distributed Computing, DISC 2018,
page 10. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2018.
doi:10.4230/LIPIcs.DISC.2018.10.

https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/S00446-005-0138-3
https://doi.org/10.1145/1146381.1146425
https://doi.org/10.1007/S00446-008-0067-Z
https://doi.org/10.1007/S00446-008-0059-Z
https://doi.org/10.1007/S00446-008-0059-Z
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.1007/S00446-007-0040-2
https://doi.org/10.1016/j.tcs.2011.01.003
https://doi.org/10.1016/j.tcs.2011.01.003
https://doi.org/10.1145/3382734.3405747
https://doi.org/10.4230/LIPIcs.DISC.2018.10

K. Calabrese, D. Doty, and M. Latifi 19:17

13 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. Time-space trade-offs in population protocols for the majority problem. Distributed
Computing, 34(2):91–111, 2021. doi:10.1007/S00446-020-00385-0.

14 Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Brief announcement:
Population protocols for leader election and exact majority with o (log2 n) states and o (log2
n) convergence time. In Proceedings of the ACM Symposium on Principles of Distributed
Computing, pages 451–453, 2017. doi:10.1145/3087801.3087858.

15 Olivier Bournez, Philippe Chassaing, Johanne Cohen, Lucas Gerin, and Xavier Koegler. On
the convergence of population protocols when population goes to infinity. Applied Mathematics
and Computation, 215(4):1340–1350, 2009. doi:10.1016/j.amc.2009.04.056.

16 Olivier Bournez, Pierre Fraigniaud, and Xavier Koegler. Computing with large populations
using interactions. In Mathematical Foundations of Computer Science 2012 - 37th International
Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464,
pages 234–246, 2012. doi:10.1007/978-3-642-32589-2_23.

17 Olivier Bournez, Daniel S Graça, and Amaury Pouly. Polynomial time corresponds to solutions
of polynomial ordinary differential equations of polynomial length. Journal of the ACM
(JACM), 64(6):1–76, 2017. doi:10.1145/3127496.

18 Kim Calabrese, David Doty, and Mina Latifi. Robust predicate and function computation in
continuous chemical reaction networks, 2025. doi:10.48550/arXiv.2506.06590.

19 Cameron Chalk, Niels Kornerup, Wyatt Reeves, and David Soloveichik. Composable rate-
independent computation in continuous chemical reaction networks. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 18(1):250–260, 2019.

20 Ho-Lin Chen, David Doty, Wyatt Reeves, and David Soloveichik. Rate-independent com-
putation in continuous chemical reaction networks. Journal of the ACM, 70(3), May 2023.
doi:10.1145/3590776.

21 Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with
chemical reaction networks. Natural Computing, 13(4):517–534, 2014. Special issue of invited
papers from DNA 2012. doi:10.1007/s11047-013-9393-6.

22 Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
nanotechnology, 8(10):755–762, 2013.

23 Rachel Cummings, David Doty, and David Soloveichik. Probability 1 computation with
chemical reaction networks. Natural Computing, 15(2):245–261, 2016. Special issue of invited
papers from DNA 2014. doi:10.1007/s11047-015-9501-x.

24 David Doty, Mahsa Eftekhari, Leszek Gąsieniec, Eric Severson, Przemyslaw Uznański, and
Grzegorz Stachowiak. A time and space optimal stable population protocol solving exact
majority. In 2021 IEEE 62nd annual symposium on foundations of computer science (FOCS),
pages 1044–1055. IEEE, 2022.

25 David Doty and Monir Hajiaghayi. Leaderless deterministic chemical reaction networks.
Natural Computing, 14(2):213–223, 2015. Preliminary version appeared in DNA 2013. doi:
10.1007/S11047-014-9435-8.

26 Moez Draief and Milan Vojnović. Convergence speed of binary interval consensus. SIAM
Journal on control and Optimization, 50(3):1087–1109, 2012. doi:10.1137/110823018.

27 François Fages, Guillaume Le Guludec, Olivier Bournez, and Amaury Pouly. Strong Turing
completeness of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In Computational Methods in Systems Biology: 15th International Conference,
CMSB 2017, Darmstadt, Germany, September 27–29, 2017, Proceedings 15, pages 108–127.
Springer, 2017. doi:10.1007/978-3-319-67471-1_7.

28 Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

DISC 2025

https://doi.org/10.1007/S00446-020-00385-0
https://doi.org/10.1145/3087801.3087858
https://doi.org/10.1016/j.amc.2009.04.056
https://doi.org/10.1007/978-3-642-32589-2_23
https://doi.org/10.1145/3127496
https://doi.org/10.48550/arXiv.2506.06590
https://doi.org/10.1145/3590776
https://doi.org/10.1007/s11047-013-9393-6
https://doi.org/10.1007/s11047-015-9501-x
https://doi.org/10.1007/S11047-014-9435-8
https://doi.org/10.1007/S11047-014-9435-8
https://doi.org/10.1137/110823018
https://doi.org/10.1007/978-3-319-67471-1_7

19:18 K. Calabrese, D. Doty, and M. Latifi

29 Cato M. Guldberg and Peter Waage. Studies concerning affinity. Forhandlinger: Videnskabs-
Selskabet i Christinia. Norwegian Academy of Science and Letters, 35, 1864. English translation
in [39].

30 Hooman Hashemi, Ben Chugg, and Anne Condon. Composable Computation in Leaderless,
Discrete Chemical Reaction Networks. In DNA 26: 26th International Conference on DNA
Computing and Molecular Programming, volume 174, pages 3:1–3:18, 2020. doi:10.4230/
LIPIcs.DNA.2020.3.

31 George B Mertzios, Sotiris E Nikoletseas, Christoforos L Raptopoulos, and Paul G Spira-
kis. Determining majority in networks with local interactions and very small local memory.
Distributed Computing, 30(1):1–16, 2017. doi:10.1007/S00446-016-0277-8.

32 Yves Mocquard, Emmanuelle Anceaume, James Aspnes, Yann Busnel, and Bruno Sericola.
Counting with population protocols. In 2015 IEEE 14th International Symposium on Network
Computing and Applications, pages 35–42. IEEE, 2015. doi:10.1109/NCA.2015.35.

33 Yves Mocquard, Emmanuelle Anceaume, and Bruno Sericola. Optimal proportion computation
with population protocols. In 2016 IEEE 15th International Symposium on Network Computing
and Applications (NCA), pages 216–223. IEEE, 2016. doi:10.1109/NCA.2016.7778621.

34 Eric E Severson, David Haley, and David Doty. Composable computation in discrete chemical
reaction networks. Distributed Computing, 34(6):437–461, 2021. special issue of invited papers
from PODC 2019. doi:10.1007/S00446-020-00378-Z.

35 David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. natural computing, 7:615–633, 2008. doi:
10.1007/S11047-008-9067-Y.

36 David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010.

37 PG Spirakis, L Gasieniec, Russell Martin, D Hamilton, and G Stachowiac. Deterministic
population protocols for exact majority and plurality. LIPIcs, 70:14–1, 2017. doi:10.4230/
LIPIcs.OPODIS.2016.14.

38 Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, and David Soloveichik. Enzyme-
free nucleic acid dynamical systems. Science, 358(6369):eaal2052, 2017.

39 Peter Waage and Cato Maximilian Gulberg. Studies concerning affinity. Journal of chemical
education, 63(12):1044, 1986. English translation; original paper is [29].

A Proofs for Section 3 (Robust computation by continuous CRNs)

▶ Lemma 3.4. Every threshold predicate is robustly decidable by a continuous CRC.

Proof. Intuitively, this construction translates the threshold problem to a majority problem.
We translate the positive and negative contributions in the weighted sum to concentrations
of species A and B respectively. We then use the reactions from the majority problem to
detect if A > B (with the threshold h added appropriately to either A or B).

Let ϕ : Rk
≥0 → {0, 1} be a threshold predicate. Without loss of generality that we assume

all weights are integers by clearing denominators, so ϕ(x) = 1 ⇐⇒
∑k

i=1 wix(i) > h

with each wi ∈ Z and h ∈ R. We construct the CRD D = (Λ, R,Σ,ΥyesΥno, i) as follows.
Σ = {X1, . . . , Xk}, and Λ is implicitly all species described below. Let Υyes = {Y } and
Υno = {N} be the yes and no voter species respectively. Let the i = {1Y, 1C, |h|AB}, where
AB = A if h > 0 and AB = B otherwise. We then add the following reactions. For any
wp > 0 add reaction Xp →wpA and for any wn < 0 add reaction Xn → |wn|B. We also add
the reactions from the CRD computing majority in Lemma 3.3.

Without loss of generality, we may insist that the threshold value h is zero as the reactions
L → hB and L → |h|A influence the concentration of A and B respectively in the “same
way” as the reactions Xi → wi(A/B) in the sense that the concentration of each Xi species

https://doi.org/10.4230/LIPIcs.DNA.2020.3
https://doi.org/10.4230/LIPIcs.DNA.2020.3
https://doi.org/10.1007/S00446-016-0277-8
https://doi.org/10.1109/NCA.2015.35
https://doi.org/10.1109/NCA.2016.7778621
https://doi.org/10.1007/S00446-020-00378-Z
https://doi.org/10.1007/S11047-008-9067-Y
https://doi.org/10.1007/S11047-008-9067-Y
https://doi.org/10.4230/LIPIcs.OPODIS.2016.14
https://doi.org/10.4230/LIPIcs.OPODIS.2016.14

K. Calabrese, D. Doty, and M. Latifi 19:19

and L have closed form solutions of decaying exponential functions. Let P be the set of all p
for which wp > 0 and let N be the set of all n for which wn < 0. Let a =

∑
p∈P wp · xp and

b =
∑

n∈N |wn| · xn. We consider three cases.

a > b: It suffices to observe that limt→∞ A(t) = a − b and limt→∞ B(t) = 0 since the
restricted CRN that only contains species that change the concentration of A and B is
feed-forward. A similar argument to the one used to prove the a > b case of Lemma 3.3
then shows the result.

a < b: Symmetric to the previous case.
a = b: Our goal is to show that the concentration of species N converges to 1. Equivalently,

we will show that the concentration of the yes voter Y converges to zero as the invariant
Y (t)+N(t) = 1 is held for all t. The following argument will be very similar to the one we
used to prove the correctness of our majority CRD. The CRD induces the following ODE
for the concentration Y (t): Y ′(t) = k1A(t)N(t)−k2B(t)Y (t)−k4C(t)Y (t). Using the fact
that Y (t)+N(t) = 1 we can rewrite this ODE as Y ′(t)+Y (t)[k1A(t)+k2B(t)+k4C(t)] =
k1A(t). From the initial value problem C ′(t) = −C(t)3 with C(0) = 1, we obtain that
a closed form for the concentration of C is C(t) = (2k4t + 1)−1/2. Hence C(t) is
strictly positive, so we can apply Lemma 3.1 to find that Y (t) ≤ k1A(t)

k1A(t)+k2B(t)+k4C(t) +

K exp
(

−
∫ t

0 k1A(s) + k2B(s) + k4C(s)ds
)
. With the observation that B(t) ≥ 0 and

A(t) ≥ 0 for all t ∈ R≥0, and substituting in the closed form for C(t), we obtain the
bound Y (t) ≤ k1A(t)

k4C(t) +K exp
(
−(2k2

4t+ k4))
)
. The exponential term clearly converges

to zero, so to prove the result it suffices to show the quotient term converges to zero. We
observe that the restricted CRN with only reactions that change the concentration of A
and B is the feed-forward CRN:

∀p ∈ P : Xp → wpA

∀n ∈ N : Xn → |wn|B
A+B → ∅

This CRN stably computes the function f(a, b) = min(a−b, 0), which by [20] Corollary 4.11
implies that it robustly computes min(a− b, 0). This shows that limt→∞ A(t) = a− b = 0.
Taking the limit of the quotient, we obtain 0/0, a so-called indeterminate form. Hence,
we may apply L’Hôpital’s rule to obtain the following estimate.

lim
t→∞

k1

k4

A(t)
C(t) = k1

k4
lim

t→∞

A(t)′

C(t)′ = k1

k4
lim

t→∞

∑
p∈P kpXp − k3A(t)B(t)

(2k4t+ 1)−3/2

≤ k1

k4
lim

t→∞

∑
p∈P kpXp

(2k4t+ 1)−3/2

The equation for A′(t) is from its mass action differential equation. Each input species
Xi can be found to have a closed form of wixikie

−kpt, which shows that the quotient
tends to zero as t goes to infinity. Thus, limt→∞ Y (t) = 0 as desired. ◀

▶ Lemma 3.5. Let D = (Λ, R,Σ,Υyes,Υno, i) robustly decide the predicate ϕ : Rk
≥0 → {0, 1}.

Then there is a CRD D′ = (Λ′, R′,Σ′, {Y }, {N}, i′) that robustly decides ϕ with exactly one
yes voter species Y and one no voter species N . Furthermore, the concentration of these
voters satisfy Y (t) +N(t) = 1 for all t ∈ R≥0.

Proof. We construct the CRD D′ as follows: Let Σ′ = Σ, Λ′ = Λ∪{Y,N}. Keep all reactions
from the original CRD, and for each yes voter Vy ∈ Υyes, add the reaction Vy +N

kVy→ Vy + Y.

DISC 2025

19:20 K. Calabrese, D. Doty, and M. Latifi

Additionally, for each no voter Vn ∈ Υno add the reaction Vn + Y
kVn→ Vn + N. Start with

initial context i′ = i + {1Y }.
To show that D′ robustly decides ϕ, we will show that for all x ∈ Rk

≥0 such that ϕ(x) = 1,
the concentration of species Y approaches 1 as t approaches infinity when the initial state is
x + i + {1Y }. The case when ϕ(x) = 0 is a similar argument.

We make the worst-case assumption that the adversary chooses ky = min
Vy∈Υyes

kVy to be the

same (and smallest) rate constant for all reactions of the form Vy +N
kVy→ Vy +Y , and similarly

chooses the rate constant kn = max
Vn∈Υno

kVn for all reactions of the form Vn + Y
kVn→ Vn + N.

This is a safe worst-case assumption, since choosing larger rate constants for reaction
Vy + N

kVy→ Vy + Y , or smaller rate constants for Vn + Y
kVn→ Vn + N would only make the

network converge faster to the correct values. Furthermore, scaling all rate constants in the
system by the same factor modifies only the timescale of the mass-action trajectory of the
ODEs, while preserving its shape and eventual convergence. To simplify the system, we scale
all rate constants by 1/ky, ensuring that ky = 1.

The CRD D′ induces the following ODE for the concentration of the species N : N ′(t) +
N(t)(knVn(t) + kyVy(t)) = knVn(t) We may then apply Lemma 3.2 to obtain the bound
N(t) ≤ 5knVn(t)

knVn(t)+kyVy(t)+(t2+1)−1 + K exp
(

−
∫ t

0 knVn(s) + kyVy(s)ds
)
. By the correctness

of C, the concentration Vy(t) remains strictly positive as t → ∞. Hence, the integral∫ t

0 knVn(s)+kyVy(s) ds diverges to infinity as t → ∞. This demonstrates that the exponential
term tends to zero as t grows large. To see the quotient term goes to zero, the correctness of
C also dictates that Vn(t) → 0 as t → ∞. This shows that N(t) → 0. ◀

B Stable predicate computation by continuous CRNs

In this section, we show that the class of predicates stably decidable by continuous CRNs is
exactly the detection predicates. Intuitively, ϕ : Rk

≥0 → {0, 1} is a detection predicate if it is
a Boolean combination of questions in the form “is initial concentration of species S positive
or not?”. We formalize this notion as follows.

▶ Definition B.1. A predicate ϕ : Rk
≥0 → {0, 1} is a simple detection predicate if there is

a 1 ≤ i ≤ k such that the extension of ϕ (the set ϕ−1(1) of all input vectors that make ϕ
true) is of the form {x ∈ Rk

≥0 | x(i) > 0}. A detection predicate is one expressible as a finite
combination of ANDs, ORs, and NOTs of simple detection predicates.

In other words, a simple detection predicate is defined by a hyperplane (with rational
slopes), with output 1 on one side of the hyperplane and output 0 on the other side and on
the hyperplane itself. A detection predicate ϕ is defined by a finite number of hyperplanes
that partition Rk

≥0 into a finite number of regions, and ϕ is constant within each region.
The following is main result of this section. Each direction is proven separately in

Sections B.2 and B.3 via Lemmas B.8 and B.11.

▶ Theorem B.2. ϕ : Rk
≥0 → {0, 1} is stably decidable by a continuous CRN if and only if ϕ

is a detection predicate.

B.1 Stable (rate-independent) computation
These definitions are taken from [20]; see Section 2.4 of that paper for justification that the
notion of segment-reachability in particular (Definition B.4) is reasonable.

K. Calabrese, D. Doty, and M. Latifi 19:21

▶ Definition B.3. state d is straight-line reachable (aka 1-segment reachable) from state c,
written c →1 d, if (∃u ∈ RR

≥0) c + Mu = d and u(α) > 0 only if reaction α is applicable at
c. In this case write c →1

u d.

Intuitively, by a single segment we mean running the reactions applicable at c at a constant
(possibly 0) rate to get from c to d. In the definition, u(α) represents the flux, or total
amount executed, of reaction α ∈ R.

▶ Definition B.4. Let k ∈ N. state d is k-segment reachable from state c, written c⇝k d, if
(∃b0, . . . ,bk) c = b0 →1 b1 →1 b2 →1 . . . →1 bk, with bk = d. State d is segment-reachable
(or simply reachable) from state c, written c⇝ d, if (∃k ∈ N) c⇝k d.

Often Definition B.4 is used implicitly, when we make statements such as, “Run reaction 1
until X is gone, then run reaction 2 until Y is gone”, which implicitly defines two straight
lines in concentration space.

We now formalize what it means for a CRN to “rate-independently” compute (stably
decide) a predicate ϕ. We define the global output partial function Φ : NΛ 99K {0, 1} as
Φ(x) = 1. If the only voter species with positive concentration in the state x are yes voters,
then Φ(x) = 1. Conversely, if the only voter species with positive concentration are no voters,
Φ(x) = 0. Lastly, if neither of these conditions is met, the output function Φ(x) is undefined.
We say a state o is stable if, for all c such that o⇝ c: Φ(o) = Φ(c).

▶ Definition B.5 (stably decide). Let ϕ : Rk
≥0 → {0, 1} be a predicate. We say a CRD D

stably decides ϕ if, for all x ∈ Rk
≥0, and all c such that x ⇝ c, there exists a stable state

o such that c ⇝ o and Φ(o) = ϕ(x). We say a set A is stably decidable if its indicator
function χA is stably decidable.

▶ Definition B.6 (stably compute). Let f : Rk
≥0 → R be a function. We say a CRC

C = (Λ, R,Σ, {Y }, σ) stably computes f if for all x ∈ Rk
≥0 and all c such that x⇝ c, there

exists a stable state o such that c⇝ o and o(Y) = f(x).

▶ Theorem B.7. A function f : Rk
≥0 → R is stably computable by a continuous CRC if and

only if it is positive-continuous and piecewise rational linear.

A linear function’s graph defines a k-dimensional hyperplane in Rk+1
≥0 that passes through

the origin (i.e., linear but not affine). If a piecewise rational linear function is positive-
continuous, we switch from one linear component fi to another fj only where their hyperplanes
intersect. Thus the question “is linear component fi the correct linear component to apply to
compute f on input x?” is itself a multi-threshold predicates as defined in Definition 2.2, but
with constant h = 0.

B.2 Positive result: All detection predicates are stably decidable by
continuous CRNs

We first show that continuous CRNs can stability decide all detection predicates.

▶ Lemma B.8. Every detection predicate is stably decidable by a continuous CRN.

Proof. To decide the detection predicate ϕ : Rk
≥0 → {0, 1}, we let Σ = {X{1}, X{2}, . . . , X{k}}

and let Λ = {XU | U ⊆ {1, . . . , k}, U ≠ ∅} be the set of species. The set of yes voters Υyes is
the set of all XU such that ϕ(x) = 1 for any x with supp(x) = U (note this is well-defined
since ϕ is a detection predicate; it must have the same output on all x with identical
support) and the set of no voters be each other species. The reactions in the CRN are

DISC 2025

19:22 K. Calabrese, D. Doty, and M. Latifi

XU +XT → XU∪T . This stably decides ϕ, because eventually all species become XU∗ where
U∗ represents the set of species actually present initially. To handle the case of x = 0, start
with initial context of some positive amount of a voter V that votes yes or not based on
whether ϕ(0) = 1, and all other species XU consume V via XU + V →XU . ◀

B.3 Negative result: All stably decidable predicates are detection
predicates

In this section we show that, unlike the case of computing functions f : Rk → R with
numerical output (the focus of [20]), CRNs stably computing predicates are much more
severely limited in computational power. We prove this using the fact, proven in [20], that
such functions f must be positive-continuous, meaning that discontinuities can only occur
when some input coordinate x(i) goes from 0 to positive. (Note the conceptual similarity
to detection predicates, which can change their output only when some input coordinate
x(i) goes from 0 to positive.) We connect this to predicates by showing that any CRN C
stably computing a predicate ϕ can be augmented to stably compute a function σϕ that is
continuous only if the predicate stably computed by C is a detection predicate, proving that
since such functions σϕ must be continuous, then ϕ must be a detection predicate.

We recall the definition of a positive-continuous function from [20]. Intuitively, a positive-
continuous function is only allowed to have discontinuities whenever some input goes from 0
to positive. For example, the function f(x1, x2) = x1 if x2 > 0 and f(x1, x2) = 0 otherwise
is positive continuous though not continuous.

▶ Definition B.9. A function f : Rk
≥0 → R≥0 is positive-continuous, for all U ⊆ {1, . . . , k},

f is continuous on the domain DU =
{

x ∈ Rk
≥0 | x(i) > 0 ⇐⇒ i ∈ U

}
.

To understand the definition, it helps to understand first what the domains DU look like.
In the case k = 2. The domains DU are the origin, the positive x and y axes, and the
set {(x, y) | x, y > 0}. If U = {1}, then DU is the positive x axis as the vectors x ∈ DU

must satisfy x(1) > 0 and x(2) = 0. A positive continuous function is one which must be
continuous inside each domain, but is allowed discontinuities as it moves across boundaries.
If useful, a positive continuous function can be understood as a collection of 2k continuous
functions, each defined on a different piece of the positive orthant.

Given a predicate ϕ : Rk
≥0 → {0, 1}, define the sum characteristic function of ϕ, σϕ :

Rk
≥0 → R≥0 for all x ∈ Rk

≥0 by

σϕ(x) =
{∑k

i=1 x(i) = ∥x∥1 if ϕ(x) = 1
0 if ϕ(x) = 0

▶ Lemma B.10. Let ϕ : Rk
≥0 → {0, 1}. If ϕ’s sum characteristic function σϕ is positive-

continuous, then ϕ is a detection predicate.

Proof. We show the contrapositive, that if ϕ is not a detection predicate, then the induced
σϕ is not positive-continuous. Suppose ϕ is not a detection predicate. Then, for some
U ⊆ {1, . . . , k} the region DU contains points x,y ∈ DU such that ϕ(x) ̸= ϕ(y), as all
detection predicates cannot change their output within a domain DU . Note that this implies
DU ≠ {0}, i.e., U ̸= ∅. Let ℓ denote the straight line connecting x and y in Rk. Such an ℓ

is completely contained in DU , as DU is a convex set. Consider the image of ℓ under σϕ,
denoted σϕ(ℓ) ⊆ R≥0. Since at least one point along ℓ does not satisfy ϕ, we have 0 ∈ σϕ(ℓ).
Furthermore, since x,y ̸= 0, there is ε > 0 such that ∥x∥1 > ε and ∥y∥1 > ε. Since ∥ · ∥1

K. Calabrese, D. Doty, and M. Latifi 19:23

is a linear function, this implies that for all points z ∈ ℓ, ∥z∥1 > ε. Thus, all non-zero
elements of σϕ(ℓ) are greater than ε. This implies 0 is an isolated point of σϕ(ℓ). Since σϕ(ℓ)
contains an isolated point, it is not a connected set. As a continuous function must preserve
connectedness, this implies that σϕ is not continuous on DU , i.e., not positive continuous. ◀

▶ Lemma B.11. If ϕ : Rk
≥0 → {0, 1} is stably decidable by a CRD, then ϕ is a detection

predicate.

Proof. Let D be a CRD stably deciding ϕ. We show how to convert D into a CRC C that
stably computes the sum characteristic function σϕ. Since all functions stably computable
by a CRC are positive-continuous [20], Lemma B.10 implies ϕ is a detection predicate.

For each input species Xi, add the reaction Xi →X ′
i + Y , where X ′

i is the i’th input
species to D. For each yes-voter T in D, add the reaction T + Ŷ →T + Y , and for each
no-voter F , add the reaction F + Y →F + Ŷ .

Let c be a state reached from the initial state x. If any of the input species Xi are present
in c, we apply the reaction Xi →X ′

i + Y until all these species are gone from the state. Once
this is done, the concentrations of Y and Ŷ satisfy [Y] + [Ŷ] =

∑k
i=1 xi. Denote this reached

state by c′. Since D stably decides ϕ, there is a stable state o reachable from c′ in which all
species present are yes-voters if ϕ(x) = 1 and no-voters otherwise. In the former case, we
may apply the reaction T + Ŷ →T + Y to convert all Ŷ to Y . As no voters are present in
the state, it is stable. Furthermore, the concentration of Ŷ is exactly ∥x∥1. If ϕ(x) = 0, then
only no voters are present so running the reaction F + Y →F + Ŷ eventually will remove all
Y , stabilizing on the correct output of 0. ◀

DISC 2025

	1 Introduction
	1.1 Computation with CRNs: Related work
	1.2 Our results

	2 Preliminaries
	2.1 Chemical reaction networks
	2.2 Robust (rate-constant-independent) computation

	3 Robust computation by continuous CRNs
	3.1 Boolean combinations of threshold predicates are robustly decidable
	3.2 Piecewise affine functions are robustly computable

	4 Conclusion
	A Proofs for Section 3 (Robust computation by continuous CRNs)
	B Stable predicate computation by continuous CRNs
	B.1 Stable (rate-independent) computation
	B.2 Positive result: All detection predicates are stably decidable by continuous CRNs
	B.3 Negative result: All stably decidable predicates are detection predicates

