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Abstract
Sharding is a technique to speed up transaction processing in blockchains, where the n processing
nodes in the blockchain are divided into s disjoint groups (shards) that can process transactions in
parallel. We study dynamic scheduling problems on a shard graph Gs where transactions arrive
online over time and are not known in advance. Each transaction may access at most k shards, and
we denote by d the worst distance between a transaction and its accessing (destination) shards (the
parameter d is unknown to the shards). To handle different values of d, we assume a locality sensitive
decomposition of Gs into clusters of shards, where every cluster has a leader shard that schedules
transactions for the cluster. We first examine the simpler case of the stateless model, where leaders
are not aware of the current state of the transaction accounts, and we prove a O(d log2 s ·min{k,

√
s})

competitive ratio for latency. We then consider the stateful model, where leader shards gather the
current state of accounts, and we prove a O(log s · min{k,

√
s} + log2 s) competitive ratio for latency.

Each leader calculates the schedule in polynomial time for each transaction that it processes. We
show that for any ϵ > 0, approximating the optimal schedule within a (min{k,

√
s})1−ϵ factor is

NP-hard. Hence, our bound for the stateful model is within a poly-log factor from the best possibly
achievable. To the best of our knowledge, this is the first work to establish provably efficient dynamic
scheduling algorithms for blockchain sharding systems.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms; Theory of
computation → Scheduling algorithms

Keywords and phrases Blockchain, Blockchain Sharding, Dynamic Transaction Scheduling

Digital Object Identifier 10.4230/LIPIcs.DISC.2025.2

Related Version Extended Version: https://arxiv.org/abs/2508.07472 [4]

Funding This paper is supported by NSF grant CNS-2131538.

1 Introduction

Blockchains are known for their special features, such as fault tolerance, transparency, non-
repudiation, immutability, and security, and have been used in various applications and
domains [16]. However, a drawback of blockchains is that the size of the blockchain network
may impact the latency and throughput of transaction processing. To append a new block in
a blockchain network, the participating nodes reach consensus, which is a time and energy-
consuming process [2]. Moreover, each node is required to process and store all transactions,
which leads to scalability issues in the blockchain system. Sharding protocols have been
proposed to address the scalability and performance issues of blockchains [15, 21, 11, 1], which
divide the overall blockchain network into smaller groups of nodes called shards that allow
for processing transactions in parallel. In the sharded blockchain, independent transactions
are processed and committed in multiple shards concurrently, which improves the blockchain
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system’s throughput. However, most of the existing sharding protocols [15, 13, 21, 1] do not
provide formal analysis for the scheduling time complexity (i.e. how fast the transactions
can be processed).

We consider a blockchain system consisting of n nodes, which are further divided into s

shards, where each shard consists of n/s nodes. Shards are connected in a graph network Gs

with a diameter D, and each shard holds a subset of the objects (transaction accounts). We
assume that transactions are distributed across the shards, and each transaction accesses at
most k accounts. A transaction Ti initially is in one of the shards, which is called the home
shard for Ti. For simplicity, we consider each shard has one transaction at a time, and when
that transaction gets processed (either commit or abort), a new transaction will be generated
at the home shard. Similar to other sharding systems [11, 1, 2], each transaction Ti is split
into subtransactions, where each subtransaction accesses an account. A subtransaction of
Ti is sent to the destination shard that holds the respective account. We assume that the
maximum distance between the home shard of a transaction and the respective destination
shards in Gs is at most d ≤ D. (The parameter d is not known to the system.)

All home shards process transactions concurrently. A problem occurs when conflicting
transactions try to access the same account simultaneously. In such a case, the conflict
prohibits the transactions from being committed concurrently and forces them to serialize [2].
Our proposed scheduling algorithms coordinate the home shards and destination shards
to process the transactions (and respective subtransactions) in a conflict-free manner in
polynomial time. Each destination shard maintains a local blockchain of the subtransactions
that are sent to it. The global blockchain can be constructed (if needed) by combining the
local blockchains at the shards [1].

We consider online dynamic transaction scheduling problem instances where transactions
are not known a priori. Moreover, transactions may arrive online and continuously over
time, which are generated by electronic devices or some crypto app that resides on shards.
Our proposed schedulers determine the time step for each transaction Ti ∈ T to process
and commit. The execution of our scheduling algorithm is partially synchronous, where
communication delay is upper bounded by a system parameter. The goal of a scheduling
algorithm is to efficiently process all transactions while minimizing the total execution time
(makespan). Unlike previous sharding approaches [11, 13, 21], our scheduling algorithms are
lock-free, namely, they do not require locking mechanisms for concurrency control.

We use the notion of competitive ratio [8] to determine the performance of our scheduling
algorithms. The competitive ratio typically measures how well a given online algorithm
performs compared to the best possible offline algorithm for a specific sequence of operations.
However, in our model, the transactions generated in the future depend on the execution
history. Hence, we define the competitive ratio to capture the volatile transaction history.

Contributions. To our knowledge, this is the first work to present provably efficient online
transaction scheduling algorithms for blockchain sharding systems. We summarize our
contributions as follows (also see Table 1):

Stateless Scheduling Model: We first provide transaction scheduling algorithms for
the stateless model, where a leader shard that is responsible for coordinating transaction
execution, does not require knowledge of the current state of the accessed accounts. In
this model, we provide two scheduling algorithms:

Single-Leader Scheduler: In this scheduling algorithm, one of the shards acts
as the leader and all other shards send their transaction information to this leader,
which determines the global transaction schedule. Our algorithm works in a partially
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synchronous communication model, but for the sake of performance analysis purposes,
we assume a synchronous model. Let the shard network be represented as a general
graph Gs, where each transaction accesses at most k objects (shards). The maximum
distance between home shards, accessed shards, and leader is denoted with d. Then,
the single-leader scheduler achieves an O(d ·min{k,

√
s}) competitive ratio with respect

to the optimal scheduler. In the special case where Gs is a clique with unit distances
(i.e., d = 1), the competitive ratio becomes O(min{k,

√
s}).

Multi-Leader Scheduler: A drawback of the single-leader case is that the distance
d involves also the position of the leader. On the other hand, in the multi-leader case,
d only involves distances between home and respective destination shards. In this
scheduler, multiple leaders process the transactions, which distribute the scheduling
load among multiple shards. The multi-leader approach allows for a better adaptation
to the value d without requiring knowledge of d and without involving distances
to the leaders in the definition of d. This approach uses a hierarchical clustering
technique [10] to cluster the shard network, which enables the independent scheduling
and commitment of transactions within different clusters. This scheduler achieves a
competitive ratio of O(d log2 s · min{k,

√
s}).

Stateful Scheduling Model: We next consider a stateful model where the leader shard
requires knowledge of the account states. Namely, a leader shard receives the transactions
from the home shards (where transactions are initially generated), and then the leader
shard first gathers the current state of the accounts from their corresponding account
shards before scheduling and pre-committing the transactions. After receiving the state,
the leader pre-commits the transactions locally and forwards the pre-committed batch to
the destination shards. In this model, the single-leader scheduler achieves a competitive
ratio of O(min{k,

√
s}) and the multi-leader scheduler achieves a competitive ratio of

O(log s · min{k,
√

s} + log2 s). Note that these competitive ratios do not depend on d (in
contrast to the stateless model), which is the benefit of the stateful approach.
Approximation Hardness: We also show that for any ϵ > 0, obtaining competitive ratio
(min{k,

√
s})1−ϵ is NP-hard. Hence, our bound for the stateful single-leader scheduler is

asymptotically the best we can achieve in polynomial time, and the bound for the stateful
multi-leader scheduler is within a poly-log factor of the best achievable.
Safety and Liveness Analysis: We formally analyze the correctness of our proposed
schedulers by proving both safety and liveness for the single-leader and multi-leader
algorithms.

Paper Organization. The rest of this paper is structured as follows. Section 2 provides
related works. Section 3 describes the preliminaries for this study and the sharding model.
Section 4 presents a stateless scheduling model with single-leader and multi-leader scheduling
algorithms. In Section 5, we provide the stateful single-leader and multi-leader scheduling
algorithms. Finally, we give our conclusions in Section 6. Due to space limitations, some
proofs are deferred to the appendix, while additional correctness analyses (safety and liveness)
of our algorithms are provided in the extended version available on arxiv [4].

2 Related Work

To solve the scalability issue of blockchain, various sharding protocols [15, 21, 11, 17, 20, 6]
have been proposed. These protocols have shown promising enhancements in the transaction
throughput of blockchain by processing transactions in parallel in multiple shards. However,
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Table 1 Comparison of our proposed online transaction scheduling algorithm’s competitive ratio
with related works [2, 3, 14]. The used notations are as follows: s represents a total number of shards,
k denotes the maximum number of shards (objects) accessed by each transaction, d denotes the
worst distance between any transaction (home shard) and its accessed objects (destination shard), b

denotes the burstiness and c′
1 represents some positive constant. (Note that the bounds in [2] are

the actual transaction latencies).

Proposed Results Related works

Stateless Model Stateful Model In [2] In [3, 14]

Problem Dynamic Transaction Dynamic Transaction Dynamic Transaction Batch Transaction

Focus Performance Perofrmance Stability Performance

Single Leader O
(
d · min{k,

√
s}

)
O

(
min{k,

√
s}

)
36bd · min{k, ⌈

√
s⌉} O

(
kd)

Multi-Leader O
(
d log2 s · min{k,

√
s}

)
O

(
log s · min{k,

√
s} + log2 s

)
2 · c′

1bd log2 s · min{k, ⌈
√

s⌉} O
(
kd · log d log s

)
Com. Model Partial-synchronous Partial-synchronous Synchronous Synchronous

none of these protocols have specifically explored the theoretical analysis of online transaction
scheduling problems in a sharding environment. To process transactions in parallel in the
sharding model, some research work [13, 11] has used two-phase locking for concurrency
control. However, locks are expensive because when one process locks shared data for
reading/writing, all other processes attempting to access the same data set are blocked until
the lock is released, which lowers system throughput. Moreover, locks, if not handled and
released properly, may cause deadlocks. Our scheduling algorithms do not use locks, as
concurrency control is managed by scheduling non-conflicting transactions in parallel. In [1]
the authors propose lockless blockchain sharding using multi-version concurrency control.
However, they lack a performance analysis, and they do not explore the benefits of locality
and optimization techniques for transaction scheduling.

In a recent work [2] (see Table 1), the authors provide a stability analysis of blockchain
sharding considering adversarial transaction generation. Their focus is on stability, not on
performance, where they want to maintain a bounded pending transaction queue size and
latency. They consider adversarial transaction generation, where at any time interval of
duration t, the number of generated transactions using any object is bounded by ρt + b,
where ρ ≤ 1 is the transaction injection rate per unit time and b > 0 is a burstiness injection
parameter. They consider stateless scheduling model, and for the single leader scheduler
where the shards are connected in the clique graph with unit distance they provide the
stable transaction rate ρ ≤ max{ 1

18k , 1
⌈18
√

s⌉}, for which they show the number of pending
transactions at any round is at most 4bs (which is the upper bound on queue size in each
shard), and the latency of transactions is bounded by 36b · min{k, ⌈

√
s⌉}, If this single leader

scheduler is considered in the general graph where the transaction and its accessing object
are d far away, then their latency becomes 36bd · min{k, ⌈

√
s⌉}. Similarly, for a multi-leader

scheduler, they provide a stable transaction injection rate ρ ≤ 1
c′

1d log2 s
· max{ 1

k , 1√
s
}, where

c′1 is some positive constant. For this scheduling algorithm, they show the upper bound
on queue size as 4bs, and transaction latency as 2 · c′1bd log2 s · min{k, ⌈

√
s⌉}. However,

they consider a synchronous communication model, which is not practical in blockchain,
and they also do not provide a theoretical analysis of the optimal approximation for the
scheduling algorithm, and they only consider a stateless scheduling model. All their latency
bounds depend on the burstiness parameter b, which can be arbitrarily large, as it expresses
a transaction injection burst of arbitrary size in any given time interval. On the other hand,
our system models do not depend on any burstiness parameter, as we adopt a transaction
injection model tuned for performance analysis.
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In [3, 14] (see Table 1), the authors presented batch scheduling algorithms (for a given
set of transactions) while they did not consider dynamic transaction generation. Moreover,
their provided bounds are not tight even for batch processing. Furthermore, their algorithms
work on a synchronous communication model, which might not be applicable in a real-
world distributed blockchain network. The authors in [14] only consider single leader
algorithms and have worse performance complexity bounds than [3] by a factor of log D,
resulting in a complexity of O(kd · log D) whereas [3] achieves O(kd) approximation for batch
transactions. Here, we provide efficient scheduling algorithms with theoretical analysis for
dynamic transaction processing in a blockchain sharding system that works in the partially
synchronous communication model.

Several works have been conducted on transaction scheduling in shared memory multi-
core systems, distributed systems, and transactional memory [7, 8]. In [5, 18, 19], the
authors explored transaction scheduling in distributed transactional memory systems aimed
to achieve better performance bounds with low communication costs. In [7] they provide
offline scheduling for transactional memory, where each transaction attempts to access an
object, and once it obtains the object, it executes the transaction. In another work [8],
the authors extended their analysis from offline to online scheduling for the transactional
memory in a synchronous communication model. However, these works do not address
transaction scheduling problems in the context of blockchain sharding. This is because, in
the transactional memory model, the considered system models assume that objects are
mobile, and once a transaction obtains the object, it immediately executes the transaction.
In contrast, in blockchain sharding, an object is static in a shard, and there is a confirmation
scheme to confirm and commit each subtransaction consistently in the respective shard.

3 Technical Preliminaries

3.1 Blockchain Sharding Model
We consider a blockchain sharding model similar to [11, 1, 2, 3], consisting of n nodes which
are partitioned into s shards S1, S2, . . . , Ss such that Si ⊆ {1, . . . , n}, for i ̸= j, Si ∩ Sj = ∅,
n =

∑
i |Si|, and ni = |Si| denotes the number of nodes in shard Si. Let Gs = (V, E, w)

denote a weighed graph of shards, where V = {S1, S2, . . . , Ss}, the edges E correspond to the
connections between the shards, and the weight function w represents the distance between
the shards. The graph Gs is complete, since each pair of shards can communicate directly,
but the weights of the edges may be non-uniform.

Each shard maintains a local blockchain (which is part of the global blockchain) according
to its local accounts and the subtransactions it receives and commits. We use fi to represent
the number of Byzantine nodes in shard Si. To guarantee consensus on the current state
of the local blockchain, we assume that every shard executes the PBFT [9] or a similar
consensus algorithm. In order to achieve Byzantine fault tolerance, we assume each shard Si

consists of ni > 3fi nodes.
We assume that shards communicate with each other via message passing [11], and here,

we are not focusing on optimizing the message size. We adopt the cluster-sending protocol
described in [12] and Byshard [11], where shards run consensus (e.g., the PBFT [9] consensus
algorithm within the shard) before sending a message. For communication between shards
S1 and S2, a set A1 ⊆ S1 of f1 + 1 nodes in S1 and a set A2 ⊆ S2 of f2 + 1 nodes in S2 are
chosen (where fi is the number of faulty nodes in shard Si). Each node in A1 is instructed to
broadcast the message to all nodes in A2. Thus, at least one non-faulty node in S1 will send

DISC 2025
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the correct message value to a non-faulty node in S2. (Actually, A1 needs to have size 2f1 + 1
to distinguish the correct message.) We consider a partial-synchronous communication model,
where sending messages for transactions to their accessing shards has a bounded delay.

Suppose we have a set of shared accounts O (which we also call objects). Similar to
previous works in [11, 1, 2], we assume that each shard is responsible for a specific subset of
the shared objects (accounts). To be more specific, O is split into disjoint subsets O1, . . . , Os,
where the set of accounts under the control of shard Si is represented by Oi. Every shard Si

keeps track of local subtransactions that use its corresponding objects in Oi.

3.2 Transactions and Subtransactions

Similar to the works in [11, 2, 3], we consider transactions {T1, T2, . . .} that are distributed
across different shards. Suppose that transaction Ti is generated in a node vTi within the
system, then the home shard of Ti is the shard containing vTi

. In this work, we consider
transactions that are continuously generated over time. For simplicity and to attain a
performance analysis, we assume that each home shard contains at most one transaction at
any moment of time, and after the transaction gets processed (either commits or aborts), a
new transaction is generated on that home shard.

Similar to work in [11, 1, 2], we define a transaction Ti as a group of subtransactions
Ti,a1 , . . . , Ti,aj

. Each subtransaction Ti,al
accesses objects only in Oal

and is associated
with shard Sal

. Therefore, each subtransaction Ti,al
has a respective destination shard Sal

.
The home shard sends the transaction Ti to the leader shard Sℓ, which is responsible for
processing transaction Ti. Then the leader shard of Ti sends subtransaction Ti,al

to shard
Sal

for processing, where it is appended to the local blockchain of Sal
. The subtransactions

within a transaction Ti are independent, meaning they do not conflict and can be processed
concurrently. An example of transactions and subtransactions is deferred to Appendix A.1.

3.3 Stateless and Stateful Scheduling Models

We define two scheduling models to schedule and process the transactions, the stateless and
stateful models, which we describe as follows.

Stateless Scheduling Model. Let’s suppose there is a designated leader shard Sℓ that
coordinates the scheduling and processing of transactions. In this model, the leader shard Sℓ

does not maintain the current state of accounts accessed by the transactions [2, 3, 11]. Upon
receiving transactions, Sℓ constructs (or extends) a transaction conflict graph and colors the
graph using an incremental greedy vertex coloring algorithm to determine the commit order
for each transaction. Then the leader Sℓ splits each transaction into subtransactions based
on accessed accounts and sends them to the corresponding destination shards that hold the
relevant account states. Each destination shard maintains the scheduled subtransactions
queue schdq and it picks one color subtransaction from the head of schdq, validates the
sub-transactions (e.g., checking account balances) and sends a commit or abort vote to the
leader. After collecting all votes for a transaction, the leader sends a final decision to each
destination shard, which either commits or aborts the subtransactions according to the
message received from the leader shard.

For example, suppose Sℓ receives transactions T1, T2, T3, each accessing accounts a, b, c,
located in shards Sa, Sb, Sc respectively (see Figure 1 (a)). The leader constructs a conflict
graph GTℓ

and applies a greedy vertex coloring algorithm to define a commit order. It then
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Figure 1 Illustration of Stateless (a) and Stateful (b) Scheduling Models.

splits transactions into sub-transactions:

T1 → {T1,a, T1,b, T1,c}, T2 → {T2,a, T2,b, T2,c}, T3 → {T3,a, T3,b, T3,c}

Each destination shard queues the received sub-transactions in a schedule queue schdq

according to the commit order received from Sℓ, and it processes one color subtransaction
at a time. This means Sa picks T1,a, Sb picks T1,b and Sc picks T1,c from head of their
queues, check the validity and condition of the subtransaction (such as account balance)
and send either commit or abort votes to the leader shard. Then the transaction Ti and its
subtransactions (T1,a, T1,b and T1,c) are committed or aborted based on the final decision
received from the leader shard. Next, each destination shard processes the next color
subtransactions, for instance T2,a, from Sa, T2,b from Sb, and T2,c from Sc (see Figure 1 (a)),
and this process repeats.

Stateful Scheduling Model. In the stateful model, the home shard where a transaction
is initially generated sends its transaction information to the leader shard Sℓ. Then the
leader shard Sℓ stores these transactions (i.e. T1, T2, T3) in its pending transaction queue
PQℓ. Then, the leader shard identifies accounts accessed by transactions and requests their
state from corresponding shards Sa, Sb, Sc. In other words, before processing the transac-
tions, the leader collects the current state of all accessed accounts from the corresponding
destination shards. Once the account states are gathered, the leader constructs a conflict
graph on which it applies the incremental greedy vertex coloring algorithm. Then the leader
shard performs local pre-commit for valid transactions (e.g., T1, T3) and aborts invalid
transactions (e.g., T2). After that, Sℓ creates the pre-committed sub-transaction batches:
Sa : {T1,a, T3,a}, Sb : {T1,b, T3,b}, Sc : {T1,c, T3,c} for each destination shard Sa, Sb, Sc.
Then these pre-committed batches are sent to the respective destination shards. Since the
transactions have already been validated, each destination shard can directly commit and
append the received pre-committed order to its local blockchain without further interaction
with the leader.

The main difference between the stateless and stateful model is that the stateful model
requires the leader to be updated about account states which are at remote shards, while the
stateless model does not require leader to be informed about remote accounts.

DISC 2025
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3.4 Conflicts and Competitive Ratio
Two transactions conflict if they attempt to access the same account, and at least one of the
two updates the account. The subtransactions are processed sequentially at each destination
shard. For this reason, we extend the notion of conflict to all transactions that access account
in the same destination shard.

▶ Definition 1 (Conflict). Transactions Ti and Tj are said to conflict if they access accounts
on the same destination shard Sk and at least one of these transactions writes (updates) the
account in Sk.

Transactions that conflict should be processed in a sequential manner to guarantee atomic
object update. In such a case, their respective subtransactions should be serialized in the
exact same order in every involved shards. To resolve the conflict between two transactions
Ti and Tj while accessing the same destination shard Sk, a scheduler must schedule them
one after another in such a way that Ti commits before Tj or vice versa. To perform the
schedule, we use a conflict graph such that the nodes are transactions, and an edge represents
a conflict between two transactions.

We continue with the definition of competitive ratio for our scheduling models. The
definition below is an adaptation of the competitive ratio used in dynamic execution in
software transactional memory [8]. Since the future transactions depend on the past execution,
we define the competitive ratio based on any set of transactions that may appear at any
moment of time. Consider a transaction schedule S. Let Tt denote the set of all pending
transactions (that have not committed or aborted) at time t. Let t′ > t denote the time such
that all transactions in Tt finalize (commit or abort). Let τ∗ denote the optimal time duration
to finalize (commit or abort) all the transactions in Tt if they were the only transactions in the
system, processed as a batch. The approximation ratio for S at time t is rS(t) = (t′ − t)/τ∗.
The competitive ratio for S is rS = supt rS(t).

▶ Definition 2 (Algorithm Competitive Ratio). For online scheduling algorithm A, the
competitive ratio rA is the maximum competitive ratio over all possible schedules S that it
produces, rA = supS∈S rS. (We also say that A is rA-competitive.)

4 Stateless Scheduler

In this section, we consider the stateless sharding model [1, 2, 11], where the leader shard is
responsible for coordinating transaction processing and does not gather the current state of
account information (see Section 3.3). We present two transaction scheduling algorithms:
the Single-Leader Scheduler and the Multi-Leader Scheduler.

4.1 Stateless Single-Leader Scheduler
In this section, we describe and analyze the Stateless Single-Leader Scheduler, which operates
under a partially synchronous communication model. We assume a designated leader shard
Sℓ responsible for determining the transaction schedule. All shards send their transactions
to the leader shard, which builds a transaction conflict graph and applies an incremental
greedy vertex coloring algorithm to determine a schedule.

The algorithm follows an event-driven approach to schedule and process the transactions.
When a new transaction Ti is generated at its home shard Si, then the home shard tags
the current timestamp to the transaction Ti and sends the transaction to the leader shard
Sℓ. Upon receiving Ti, the leader adds it to the local transaction set Tℓ and extends the
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Algorithm 1 Stateless Single Leader Scheduler.
1 txn: transaction; txns: transactions; subTxn: subtransaction; subTxns: subtransactions;
2 Ti: txn, Ti,j : subTxn of Ti for shard Sj , Tℓ: Set of txns maintained by leader shard Sℓ; is_busy:

processing flag (initially false at each shard); Each shard Sj maintains a lexicographically ordered
scheduled queue schdq for subtransactions;

3 Upon generation of a new txn Ti at home shard Si

4 Si tags local timestamp (ts) to Ti and send it to the leader shard Sℓ;

5 Upon receiving new txn Ti at leader shard Sℓ

6 Sℓ adds Ti to txns set Tℓ and extend transaction conflict graph GTℓ
with Ti;

7 If any colored txn Tx exists with ts(Tx) > ts(Ti), cancel its color, prioritize Ti, and send cancel
message for Tx to corresponding destination shards;

8 Run incremental greedy coloring on GTℓ
without altering already scheduled (colored) old txns;

9 Split each newly colored Ti into subtxns Ti,j and send to respective destination shard Sj ;

10 Upon receiving subtransaction Ti,j at each destination shard Sj

11 Append Ti,j in schdq and order (sort) schqd lexicographically according to color;
12 if is_busy == false then
13 Set is_busy = true;
14 Let Ti,j ← head of schdq ; If Ti,j is valid and local conditions satisfied, it sends commit vote to

leader shard Sℓ; Otherwise, it sends abort vote to Sℓ;

15 Upon receiving votes for txn Ti at leader shard Sℓ

16 If any abort vote receive for Ti then it sends confirmed abort to all corresponding Sj of Ti; else if all
received votes are commit votes, then it sends confirmed commit to corresponding Sj ;

17 Remove Ti from Tℓ and GTℓ
and send outcome(committed or aborted) to home shard of Ti;

18 Upon receiving confirmation for subtxn Ti,j at each destination shard Sj

19 If the confirmed commit is received, then it commit Ti,j and append to its local blockchain;
20 Otherwise, if confirmed abort message received then it abort Ti,j ;
21 If schdq is not empty, it start to process next subTxn from schdq , else it set is_busy = false;

22 Upon receiving cancel message for Tx,j at destination shard Sj

23 Remove Tx,j from schdq ; a new color will be received later for Tx,j from leader shard Sℓ;

24 Upon receiving outcome of Ti at home shard Si

25 Generate next transaction and repeat process;

conflict graph GTℓ
with this new transaction (Ti). If Ti is older than any already-colored but

uncommitted transactions (say Tx), the leader cancels the color of those newer transactions,
notifies the relevant shards, and reprocesses them later. This ensures older transactions
are prioritized, avoiding starvation. The leader then runs an incremental greedy vertex
coloring algorithm [8] to assign colors to all newly received transactions, without modifying
the colors of already scheduled old transactions. This ensures that the processing time of
already scheduled transactions is not affected by newly generated transactions. Note that
a newer transaction might receive a lower color than an older one because the new one
does not conflict with any other transaction (except one old transaction), while the old
transaction conflicts with others as well. To prevent this and ensure a fair execution order,
we assign each new transaction a color no lower than the smallest color among pending
old transactions. This approach guarantees progress because at each time step, the lowest
possible color will increase over time. After coloring and determining the schedule, each
transaction is then split into subtransactions Ti,j based on the destination shards it accesses,
and these subtransactions are sent to the corresponding shards Sj for processing.

Each destination shard Sj maintains a local scheduled queue schdq (consisting of sub-
transactions that have been scheduled but not yet committed) and appends incoming
subtransactions into schdq, which stores subtransactions in the order of their assigned color.
To handle partial synchrony, each destination shard Sj uses a busy flag to track whether it is
currently processing (in-transit and not committed yet) a subtransaction. If the shard is not
busy, it picks one subtransaction from the head of the queue and validates it (e.g., checking
conditions like account balance). If the subtransaction is valid, the shard Sj sends a commit
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vote to the leader Sℓ; otherwise, it sends an abort vote. Once the leader shard receives votes
from all relevant destination shards for a transaction Ti, it decides whether the transaction
should be committed or aborted. If all subtransactions vote to commit, the leader sends a
confirmed commit to each destination shard; otherwise, if any one of the shard send an abort
vote, it sends a confirmed abort. After the decision, the transaction Ti is removed from the
conflict graph GTℓ

and the transaction set Tℓ, and the outcome (committed or aborted) is
sent to the home shard of Ti.

Upon receiving the confirmed decision, each destination shard either commits the sub-
transaction by appending it to the local blockchain or aborts it. If the scheduled queue is
not empty, the shard continues processing the next subtransaction. If the queue becomes
empty, the shard marks itself as not busy. Finally, upon receiving the outcome from the
leader, the home shard generates a new transaction and repeats the process. This single
leader scheduling approach ensures conflict-free execution while preserving consistency and
fairness in transaction processing across shards.

Performance Analysis of Single-Leader Scheduler (Algorithm 1). Our proposed scheduling
algorithm works on a partial-synchronous communication model; for the sake of performance
analysis only, we consider the synchronous communication mode. In the following, we analyze
the time units required to process transactions by Algorithm 1. We are focusing on the
time period after the leader shard has determined the schedule for the transactions. In the
synchronous case, a time unit is the time to send a message along an edge of unit weight. In
the single-leader case, d is sensitive to the position of the leader and d denotes the maximum
distance between any of the involved shards (home, destination shards, leader shard). In the
multi-leader case, the distance to the leaders is not included in the definition of d.

▶ Theorem 3. [General Graph] In the General graph, where the transactions, their accessing
objects, and the leader are at most d distance away from each other, Algorithm 1 has
O(d · min{k,

√
s}) competitive ratio.

Proof. Consider a set of transactions T generated at or before time t that are still pending
(neither committed nor aborted) at time t. Let GT denote the conflict graph for T , where
two transactions conflict if they have a common destination shard. Since we use greedy
coloring to color GT , the number of distinct colors assigned to the transactions in T depends
only on the coloring of GT , and not on the colors of the transactions that have been finalized
(committed or aborted) before t. (This holds since transactions in T may use smaller colors
of transactions committed before t.)

Let li denote the number of transactions in T that use objects in shard Si. Let l = max li.
We have that l is a lower bound on the time that it takes to finalize (commit or abort) the
transactions in T , since at least l subtransactions need to serialize in a destination shard.

First, consider the case where k ≤
√

s. We have that each transaction conflicts with at
most kl other transactions. Hence GT can be colored with at most kl+1 colors. The distance
between a transaction (home shard) and its accessing objects(destination shards) is at most
d away, and to commit subtransactions after being scheduled, Algorithm 1 takes 3 steps of
interactions (for each color) between the leader shard and the destination shard. This means
each color corresponds to the 3d time units. Thus, it takes at most (kl + 1)3d = O(kld) time
units to confirm and commit the transactions. Hence, for transactions T , the approximation
of their finalization time is O(kld/l) = O(kd).

Next, consider the case k >
√

s. We can write T ′ = A ∪ B, where A are the transactions
which access at most

√
s destination shards, while B are the transactions which access

more than
√

s destination shards. Each transaction in A conflicts with at most l
√

s other
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transactions. Hence, the transactions in A need at most l
√

s + 1 distinct colors. The
transactions in B can be serialized, requiring at most |B| distinct colors. Hence, the conflict
graph GT can be colored with at most l

√
s + 1 + |B| colors, which implies a schedule of

length O(d(l
√

s + |B|)) steps to finalize the transactions T . Since each transaction in B

accesses more than
√

s shards, there is a shard accessed by more than (|B|
√

s)/s = |B|/
√

s

transactions. Thus, l > |B|/
√

s. Hence, for transactions T , the approximation of their
finalization time is O(d(l

√
s + |B|)/l) = O(d

√
s + d|B|/l) = O(d

√
s + d

√
s) = O(d

√
s).

Therefore, combining the approximations for the cases k ≤
√

s and k >
√

s, we have that
the combined approximation for the finalization time for T is O(d · min{k,

√
s}). Since t is

chosen arbitrarily, we have that the competitive ratio of Algorithm 1 is O(d ·min{k,
√

s}). ◀

Suppose that shards are connected in a clique graph with unit distance, where every
shard is connected to every other shard with unit distance. So in this case d = 1. Then from
Theorem 3, Algorithm 1 has an O(min{k,

√
s}) competitive ratio for a clique graph with

unit distance. Thus, we have:

▶ Corollary 4 (Unit Distance Clique). Algorithm 1 has an O(min{k,
√

s}) competitive ratio
for a clique graph with unit distance.

We continue to show that it is an NP-hard problem to approximate the optimal transaction
schedule. Thus, the provided bound in Corollary 4, is the best we can do with a polynomial
time scheduling algorithm. The result below applies to both the stateful and stateless model.

▶ Theorem 5. For all ϵ > 0, it is an NP-hard problem to produce a transaction schedule
that achieves a competitive ratio (min{k,

√
s})1−ϵ.

The proof of Theorem 5 is deferred to Appendix A.3.

4.2 Multi-Leader Scheduler
This section provides the multi-leader scheduler where multiple leaders schedule and process
the transactions, distribute the congestion, and load across different leaders. The multi-leader
approach allows adaptation to the value d without requiring knowledge of d. Also, here the
value d depends only on the maximum distance between the home and destination shards
(without involving distances to the leaders). Therefore, the value of d captures better the
locality of the transactions, and the resulting schedule allows for shorter messages between
home and destination shards. The concepts that we introduce for this algorithm will play a
key role for the development of the stateless multi-leader algorithm.

4.2.1 Shard Clustering
In the multi-leader scheduler, shards are distributed across the network, and the distance
between the home shard of the transaction and its accessing objects (destination shards)
ranges from 1 to D, where D is the diameter of the shard graph. Let us suppose shards
graph Gs constructed with s shards, where the weights of edges between shards denote
the distances between them. We consider that Gs is known to all the shards. We define
z-neighborhood of shard Si as the set of shards within a distance of at most z from Si.
Moreover, the 0-neighborhood of shard Si is the Si itself.

We consider that our multi-leader scheduling algorithm uses a hierarchical decomposition
of Gs which is known to all the shards and calculated before the algorithm starts. This shard
clustering (graph decomposition) is based on the clustering techniques in [10] and which
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were later used in [18, 8, 2]. We divide the shard graph Gs into the hierarchy of clusters
with H1 = ⌈log D⌉ + 1 layers (logarithms are in base 2), and a layer is a set of clusters, and
a cluster is a set of shards. Layer q, where 0 ≤ q < H1, is a sparse cover of Gs such that:
(i) Every cluster of layer q has (strong) diameter of at most O(2q log s). (ii) Every shard
participates in no more than O(log s) different clusters at layer q. (iii) For each shard Si

there exists a cluster at layer q which contains the (2q − 1)-neighborhood of Si within that
cluster.

For each layer q, the sparse cover construction in [10] is actually obtained as a collection
of H2 = O(log s) partitions of Gs. These H2 partitions are ordered as sub-layers of layer q

labeled from 0 to H2 − 1. A shard might participate in all H2 sub-layers but potentially
belongs to a different cluster at each sub-layer. At least one of these H2 clusters at layer q

contains the whole 2q − 1 neighborhood of Si.
In each cluster at layer q, a leader shard Sℓ is specifically designated such that the leader’s

(2q − 1)-neighborhood is in that cluster. As we give an idea of layers and sub-layers, we define
the concept of height as a tuple h = (h1, h2), where h1 denotes the layer and h2 denotes the
sub-layer. Similar to [18, 8, 2], heights follow lexicographic order.

The home cluster for each transaction Ti is defined as follows: suppose Si is the home
shard of Ti, and z is the maximum distance from Si to the destination shards that will be
accessed by Ti; the home cluster of Ti is the lowest-layer (and lowest sub-layer) cluster in the
hierarchy that contains z-neighborhood of Si. Each home cluster consists of one dedicated
leader shard, which will handle all the transactions that have their home shard in that cluster
(i.e., transaction information will be sent from the home shard to the cluster leader shard to
determine the schedule). An example of hierarchical clustering is presented in Appendix A.4.

4.2.2 Stateless Multi-Leader Scheduler
We consider a hierarchical clustering of the shard graph Gs, which is assumed to be globally
known by all shards. Each cluster C in this hierarchy is characterized by a unique height (q, r)
which corresponds to its layer q and sublayer r, and each cluster C has its designated leader
shard Sℓ. The leader shard is responsible for scheduling and coordinating the processing of
all transactions whose home cluster is C. Each home shard Si maintains a local timestamp
ts to tag newly generated transactions. Additionally, each destination shard Sj maintains a
local scheduling queue schdq and lexicographically orders for the incoming subtransactions
using the tuple (ts, q, r, color), where color is an integer assigned to the transaction by the
leader shard Sℓ through vertex coloring. Algorithm 2 invokes Algorithm 1 in each cluster C

to process their transactions.
Algorithm 2 works in a partially synchronous model and follows an event-driven execution

by message passing. When a new transaction Ti is generated at its home shard Si, then the
home shard Si determines the lowest cluster C at height (q, r) that includes both Si and all
of the destination shards accessed by Ti. Moreover, the transaction is tagged with its local
timestamp ts, along with the cluster identifiers q and r, and is then sent to the cluster’s
leader shard Sℓ.

Upon receiving new transaction(s) Ti, the leader shard Sℓ of cluster C invokes Algorithm 1
to process their transactions, where leader shard Sℓ adds Ti to the transaction set TC of
cluster C and updates the corresponding transaction conflict graph GTC

to incorporate
the new transaction Ti. Then the leader shard uses an incremental greedy vertex coloring
algorithm [8] to assign a color only to the newly received transaction without affecting already
colored (scheduled) transactions. Once colored, the transaction is split into subtransactions
Ti,j , and sent to the respective destination shard Sj .
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Algorithm 2 Stateless Multi-Leader Scheduler.
1 Assume all shards know a hierarchical cluster decomposition of Gs;
2 Each cluster C is associated with a unique height (q, r) and has a designated leader shard Sℓ;
3 Each shard Sj maintains a lexicographically ordered queue schdq for subtransactions;
4 Upon generation of a new transaction Ti at home shard Si

5 Si tags a local timestamp (ts) to Ti and identifies the destination shards accessed by Ti;
6 Si selects the lowest cluster C with height (q, r) that contains Ti and all its destination shards;
7 Si sends Ti to the leader shard Sℓ of cluster C;

8 Upon receiving transaction Ti at the leader shard Sℓ of cluster C
9 The leader shard Sℓ of each cluster C invokes Algorithm 1 to schedule and process their transactions.

This means each cluster C invokes Algorithm 1 to process their transactions;
10 // Since multiple clusters process their transactions concurrently, each with its own leader,

destination shards may receive subtransactions from different clusters simultaneously.

11 To handle subtransactions from multiple clusters (leaders):
12 Each destination shard Sj maintains a scheduled subtransactions queue schdq ordered

lexicographically by the tuple (ts, q, r, color). The additional parameters (ts, q, r) reflect the
hierarchical cluster heights (layers and sublayers) in the shard graph Gs;

13 Each destination shard Sj processes their subtransactions from the head of schdq following the
rules in Algorithm 1, with the modified ordering criteria;

Since multiple leader shards process their transactions concurrently by invoking the
Algorithm 1, destination shards may receive the subtransactions from different clusters
simultaneously. To handle this, we modify the parameters and processing technique of
Algorithm 1 as follows: each destination shard Sj maintains a scheduled subtransactions
queue schqd, which is ordered lexicographically by the tuple (ts, q, r, color). The additional
parameters (ts, q, r) denote the timestamp ts, and hierarchical cluster heights (layers q

and sublayers r) in the shard graph Gs. Moreover, each destination shard Sj processes its
subtransactions from the head of schdq following the steps in Algorithm 1 with the modified
ordering criteria.

Additionally, if the destination shard is busy and receives a new subtransaction Ti′,j such
that ts(Ti′,j) < ts(Ti,j) in lexicographic order, this means Ti′,j has a higher priority where Ti,j

is the currently processed (but not committed) subtransaction, then the shard give priority
to Ti′,j by sending an ignore Ti,j message to its leader, indicating that a higher-priority
transaction (subtransaction Ti′,j) should proceed first. Then, when the leader receives an
ignore Ti,j message for a subtransaction Ti,j and the decision for Ti has not yet been made
(i.e., not all votes have been received), the leader discards the vote from Sj and replies with
an ignored Ti,j message to the destination shard Sj . If the decision has already been made
(i.e, confirm commit or confirm abort) by the leader shard, then no further action is taken
for particular subtransaction Ti,j at the leader shard Sℓ. After the destination shard Sj

receives an ignored message for Ti,j , then it reinserts Ti,j into the scheduled queue, reorders
the queue lexicographically, and resumes processing from the head.

Finally, when the home shard Si receives the final outcome of its transaction Ti, it
generates a new transaction and sends it to the corresponding cluster leader shard, and the
process repeats. This multi-leader scheduling framework ensures conflict-free and consistent
execution by leveraging lexicographic ordering over the tuple (ts, q, r, color), and maintains
the fairness and parallelism across shards in the presence of partial synchrony.

Performance Analysis of Stateless Multi-Leader Scheduler. The multi-leader scheduler
is the extended version of the single-leader scheduler (Algorithm 3) while introducing an
additional overhead cost due to its shard (hierarchical) clustering structure and comes from
the layers and sublayers of the clusters.
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▶ Theorem 6. In Multi-leader scheduler (Algorithm 2), where the transactions and their
accessing objects are at most d distance away from each other, Algorithm 2 has O(d log2 s ·
min{k,

√
s}) competitive ratio.

The proof of Theorem 6 is deferred to Appendix A.6.

5 Stateful Scheduler

In this scheduler model, the leader shard gathers all of the transactions and the current
states of the accessing accounts and pre-commits the transactions at the leader. After
that, the leader creates the pre-committed subtransactions batch and sends that batch to
the respective destination shard, where each destination shard reaches a consensus on the
received subtransaction order and adds it to their local blockchain. We provide two stateful
scheduling algorithms, one with a single leader and the other with multiple leaders.

5.1 Stateful Single-Leader Scheduler
We present and analyze the stateful single-leader scheduler, where one of the shards is
considered as the leader Sℓ, which is responsible for scheduling and processing all the
transactions.

When a new transaction Ti is generated at its home shard Si, Si sends Ti to the leader
shard Sℓ. Upon receipt, Sℓ appends Ti to its local pending queue PQℓ. Scheduling event is
triggered periodically, either every 4λ time units or upon processing transactions associated
with λ distinct colors. Here, λ denotes the worst-case communication delay between any two
shards, which is at most the diameter of the shard communication graph Gs. The 4λ bound
accounts for the communication delays involved in acquiring state information from remote
shards and completing the pre-commitment phase and sending the pre-committing batch to
the destination shard.

When the scheduling event is triggered, the leader shard moves its pending transactions
from PQℓ into the scheduling transaction set Tℓ and identifies the set of accounts Ov accessed
by transactions which are in Tℓ. If any account state Oj ∈ Ov is not locally available at
Sℓ, it determines the responsible destination shard Sj for each such account, and sends
batched account state requests to the corresponding shards. If all required states are already
available in Sℓ, an internal State-Ready (i.e. already available locally) event is triggered
immediately.

Upon receiving a state request, each destination shard Sj responds with the current
state of the requested accounts (e.g., balances). Then, once all necessary account states are
collected at Sℓ, it extends the conflict graph GTℓ

by incorporating the new transactions in
Tℓ Then the leader shard Sℓ runs the incremental greedy vertex coloring algorithm [8] on
GTℓ

and assigns at most ζ colors without altering the coloring of previously scheduled old
transactions.

The leader then iteratively processes transactions color by color. For each color group
ζc, Sℓ verifies transaction conditions (e.g., sufficient balance) using the up-to-date account
state it gathers. Transactions that are valid and conditions are satisfied are pre-committed,
while invalid ones are aborted. Then Sℓ splits each pre-committed transaction Ti into
subtransactions Ti,j based on its accessed shards. These subtransactions are appended to a
corresponding pre-commit batch PrecommitSubTxnBatch(Sj) for each destination shard Sj .
After processing a transaction, it is removed from Tℓ and GTℓ

, and the outcome (committed or
aborted) is reported back to the transaction’s home shard Si to initiate the next transaction.
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Algorithm 3 Steteful Single Leader Scheduler.
1 Sℓ: Leader shard; P Qℓ: Pending txns queue in leader shard;
2 Tℓ: Set of scheduled txns maintained by leader; GTℓ

: Conflict txn graph on Tℓ;
3 λ: worst communication delay between any two shards due to partial-synchrony;
4 P recommitSubT xnBatch(Sj): Precommitted subtransactions batch for shard Sj ;
5 Upon generation of a new txn Ti at home shard Si

6 Si sends Ti to the leader shard Sℓ;

7 Upon receiving new txn Ti at leader shard Sℓ

8 Sℓ appends Ti to P Qℓ;
9 if Sℓ waits for 4λ time unit or Sℓ proceed λ number of scheduled colors then

10 // Trigger scheduling event
11 Move txns from P Qℓ to Tℓ; Identify set of accessed accounts Ov by txns in Tℓ;
12 if Current state of any account Oj ∈ Ov is not locally available at Sℓ then
13 For each Oj , determine the responsible shard Sj and create request batch for each Sj ;
14 Send batched account state request to each destination shard Sj ;
15 else
16 Sℓ has all accounts state, so trigger internal state-ready event (see below);

17 Upon receiving a batched account state request at destination shard Sj

18 Respond to leader shard Sℓ with current states of all requested accounts;

19 Upon receiving account states from each Sj , or already available locally at Sℓ

20 Sℓ extend txn conflict graph GTℓ
with new txns in Tℓ and runs incremental greedy vertex coloring

algorithm on GTℓ
using ζ colors without altering already scheduled old txns;

21 foreach color ζc ∈ ζ do
22 Pre-commit or abort txns Ti ∈ ζc by checking txn condition and account state;
23 If Ti is pre-committed, split Ti into subTxns and create (append) pre-committed subtxns batch

order P recommitSubT xnBatch(Sj) for each destination shard Sj ;
24 Remove Ti from Tℓ and GTℓ

. Send the outcome(committed/aborted) to home shard of Ti;
25 // Track processed color
26 if processed λ number of colors then
27 break;

28 Sℓ sends P recommitSubT xnBatch(Sj) to corresponding destination shard Sj parallelly and start to
process next batch;

29 Upon receiving precommitted batch P recommitSubT xnBatch(Sj) at each Sj

30 Reach consensus on P recommitSubT xnBatch(Sj) and append batch to the local blockchain;

The pre-commitment phase terminates once λ colors are processed, after which Sℓ

dispatches all PrecommitSubTxnBatch(Sj) batches to their respective destination shards
in parallel. Each destination shard Sj then reaches consensus on the order of subtransactions
in the received batch and appends them to its local blockchain. The leader shard Sℓ, then
waits and proceeds to the next scheduling batch.

Performance Analysis of Stateful Single-Leader Scheduler. In the following, we analyze
the time unit required to process transactions by Algorithm 3. We focus on the special
case where the maximum distance between the transactions, their accessing objects, and
the leader is at most d, and at least one transaction accesses objects at a distance Ω(d).
This special case is useful for the analysis of the multi-leader case. We are focusing on the
time period after the leader shard has determined the schedule for the transactions. This is
because the scheduling and committing steps are executed in parallel.

▶ Theorem 7. [General Graph] In the General graph, where the transactions, their accessing
objects, and the leader are at most d distance away from each other, and at least one
transaction is Ω(d) distance from the accessing shards, Algorithm 3 has O(min{k,

√
s})

competitive ratio.

The proof of Theorem 7 is deferred to Appendix A.7.
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5.2 Stateful Multi-Leader Scheduler

We present a stateful multi-leader scheduler in which multiple leader shards are responsible for
scheduling and processing transactions. In the single-leader algorithm, the value d includes the
distance to the leader, but in the multi-leader, d does not include the relative distance to the
leader. This allows the multi-leader algorithm to capture better the locality of transactions,
allowing for shorter distance messages between the involved home and destination shards.

The system assumes a hierarchical cluster decomposition [10] of the shard graph Gs,
which is globally known to all shards. Each cluster C(q, r) in the hierarchy is associated with
a leader shard Sℓ, a pending transaction queue PQℓ, a scheduled transaction set Tℓ, and a
transaction conflict graph GTℓ

. The parameter λC denotes the worst-case communication
delay between any two shards within the cluster C, which arises from the assumption of a
partially synchronous communication model.

In multi-leader scheduling Algorithm 4 (see in Appendix A.9), when a transaction Ti is
generated at its home shard Si, the shard identifies the lowest cluster C(q, r) that contains
all the shards accessed by Ti, and then forwards Ti to the leader shard Sℓ of of cluster C.
The leader shard Sℓ appends the received transaction to its pending queue PQℓ. Periodically,
the leader checks if either 4λC time units have elapsed since the last scheduling event or if
λC colors of scheduled transactions have been processed by Sℓ. If either condition is met and
the leader holds the scheduleControl, it invokes the single-leader scheduler (Algorithm 3)
on its local structures (PQℓ, Tℓ, GTℓ

, λC) to process transactions.

The scheduling control, denoted by the boolean flag scheduleControl, determines which
cluster can perform scheduling operations at a given time unit. The control flows hierarchically
between parent and child clusters. A parent cluster of C is any cluster at a higher level in
the hierarchy (with height (q′, r′) > (q, r)) that shares at least one shard with C. Similarly,
a child cluster of C is a lower-level cluster (with height (q′′, r′′) < (q, r)) that overlaps
with C. Clusters may have multiple parents and children. If C is at the bottom-most
level (height (0, 0)), initially it has scheduleControl. Otherwise, it must request control
from all its children. Once all children respond the scheduleControl, the leader Sℓ sets
scheduleControl to true and proceeds with the scheduling.

After executing the single-leader scheduler, if the parent cluster C ′ requests control, the
leader transfers scheduleControl to the parent and sets it to false locally. If instead a child
cluster C ′′ has made a request, the control is passed down to the child. If there are no
remaining transactions to process, the control is also passed downward to allow lower-level
clusters to schedule pending transactions. If the leader does not have scheduleControl
when scheduling should occur, it sends a control request to the current holder (parent or
child). Additionally, if C receives a control request from a parent C ′ while not holding
control, it forwards the request to its children. Once all children respond positively, it passes
control up to C ′. This hierarchical and event-driven mechanism ensures coordinated and
conflict-free scheduling across multiple levels of the cluster hierarchy.

▶ Theorem 8. In Multi-leader scheduler (Algorithm 4), where the transactions and their
accessing objects are at most d distance away from each other, Algorithm 4 has O(log s ·
min{k,

√
s} + log2 s) competitive ratio.

The proof of Theorem 8 is deferred to Appendix A.8.
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6 Conclusion

We presented efficient scheduling algorithms for processing dynamic transactions in block-
chain sharding systems. Our proposed framework operates under a partially synchronous
communication model, which realistically captures the behavior of many real-world blockchain
environments. We introduced both stateless and stateful scheduling models, each of which
includes single-leader and multi-leader algorithms for transaction scheduling and processing.
For these algorithms, we provided competitive ratios relative to an optimal scheduler and
established both upper and lower bounds on the scheduling delay.

For future work, we plan to explore efficient inter-shard communication mechanisms,
particularly under conditions of network congestion where communication links have bounded
capacity. We also aim to conduct extensive simulations and real-world experiments to evaluate
the practical performance of our proposed protocols.
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A Appendix

A.1 Example of Transaction and Subtransactions
Suppose transaction T1 is: “Transfer 100 coins from account A to account B”. Let us assume
that the accounts of A and B reside on different shards Sa and Sb, respectively. T1 splits
into the following subtransactions:

T1,a in Sa: Condition: Check if account A has at least 100 coins.
Action: Deduct 100 coins from account A.
T1,b in Sb: Action: Add 100 coins to account B.

A.2 Correctness Analysis of Stateless Single-Leader Scheduler
Our proposed scheduling algorithm works on a partial-synchronous communication model;
for the sake of analysis only, we consider the synchronous communication mode.

▶ Lemma 9 (Safety). If two transactions conflict with each other in Algorithm 1, then they
will commit in different time slots, and the local chain produced by Algorithm 1 ensures
blockchain serialization.

Proof. We prove this by induction (analyzing) the execution of Algorithm 1, where each
home shard sends its transaction to the leader shard (Line 4), and the leader shard constructs
the transaction conflict graph GTℓ

(Line 6). Then the leader used the incremental greedy
vertex coloring algorithm [8] on the conflict graph GTℓ

(Line 8). As conflicting transactions
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share an edge in GTℓ
, they are assigned different colors and are processed in different time

slots, which provides the valid commit order. Moreover, each color corresponds to a unique
serialization time slot. The leader shard splits the transaction into subtransactions and
sends them to the destination shard after coloring (see Line 9), then each destination shard
keeps that ordering in the schedule queue (schdq) and process subtransactions one by one
according to the color they get (see Line 11-14), which guarantees the consistent schedule
order in each shard. Moreover, the leader shard coordinates to commit the subtransactions
in each destination shard, which ensures the consistent commitment (see Line 16-17). As the
subtransactions are committed according to the color they receive, and each color corresponds
to a globally consistent time slot, this provides global serialization. ◀

▶ Lemma 10 (Liveness). Algorithm 1 guarantees that every generated transaction will
eventually be either committed or aborted.

Proof. We prove liveness by induction, showing that every transaction Ti is either committed
or aborted in finite time. Each new transaction Ti is sent to a leader shard Sℓ (Line 4), which
adds it to the set Tℓ and the conflict graph GTℓ

. If Ti is older than any already colored but
not committed transaction Tx, the algorithm cancels the color of Tx and re-colors the graph
(Line 7). Coloring is performed incrementally (Line 8) and preserves the colors of previously
scheduled transactions. Thus, older transactions are always prioritized, and no transaction is
indefinitely prevented from being scheduled due to newer ones. Note that a newer transaction
might receive a lower color than an older one because the new one does not conflict with any
other transaction (except one old transaction), while the old transaction conflicts with others
as well. To prevent this and ensure a fair execution order, we assign each new transaction
a color no lower than the smallest color among pending old transactions. This approach
guarantees progress because at each time step, the lowest possible color will increase over
time.

Moreover, once Ti is colored, its subtransactions are sent to the respective destination
shards (Line 9), where they are placed into a queue schdq sorted by color (Line 11). Each
shard processes one color group at a time, controlled by a busy flag. After finishing one
subtransaction (commit or abort), the shard proceeds to the next one in the queue. Since every
color is eventually dequeued, and subtransactions are processed in order, every scheduled
subtransaction is eventually processed. Thus, every transaction is either committed or
aborted in a finite time, and this proves the liveness. ◀

▶ Corollary 11. From Lemma 9 and Lemma 10, Algorithm 1 ensures the safety and liveness
of the transactions.

A.3 Proof of Theorem 5
Proof. We will use a reduction from vertex coloring. For all ϵ > 0, the problem of approxim-
ating the chromatic number of a graph with n nodes within a factor n1−ϵ is NP-hard [22].

Consider an instance of vertex coloring on a graph H = (VH , EH) with n nodes. We can
transform the vertex coloring instance H to a scheduling problem instance on a graph shard
Gs with s = |EH | shards, such that Gs is a synchronous clique with unit distances between
the shards. Furthermore, each edge of EH corresponds to a unique node of Gs.

Let T be a set of n transactions, all generated concurrently at time t = 0, such that
each node vi ∈ VH is mapped to transaction Ti ∈ T . For each edge (vi, vj) ∈ EH we create
a conflict between respective transactions Ti and Tj by making the transactions access a
common object in the unique shard of Gs that corresponds to edge (vi, vj). Let GT be the
respective conflict graph for the transactions T . The conflict graph GT is isomorphic to H.
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Figure 2 Simple example of cluster decomposition of shard graph Gs.

A correct execution schedule for T (which gives a valid serialization of the transactions
in T ) can be represented as a DAG where nodes are transactions and transaction Ti points
to Tj if they conflict and Ti executes first in the respective common destination shard with
Tj . Then, a layering of the DAG nodes starting from source nodes provides a unique time
step for each transaction, so that conflicting transactions receive different time steps. Thus,
an execution schedule of the transactions in T gives a valid vertex coloring of the nodes in
GT which provides a valid coloring for H. The best length of the transaction schedule given
from the DAG, is equal to the number of colors that can be assigned to H.

Since |EH | ≤ n(n − 1)/2, we have that s = O(n2). Each transaction conflicts with at
most k ≤ n − 1 other transactions. Therefore, given k and s, we can create the reduction
from graph coloring for n = min(k,

√
s). Consequently, the NP-hardness of the scheduling

problem in Gs follows from the NP-hardness of the reduced graph coloring problem with
n = min(k,

√
s). ◀

A.4 Example of Hierarchical Clustering
Figure 2 shows an example of hierarchical clustering, assuming shards are connected as if
they are in a line, where edges in the line have low weights and edges not in the line have
large weights. (We omit the sublayers to simplify the example.) Transaction T1 resides in
shard S3 and has home cluster x at layer 1. The reason for the home cluster x selection is
that T1 accesses an object in S3 and S4, and both of them are in cluster x, and x is the
lowest layer cluster including S3 and S4. Similarly, suppose transaction T2, which resides in
S5, has home cluster y at layer 2, because T2 accesses an object in S5 and S8, and y is the
lowest layer cluster that includes both S5 and S8. Similarly, T3 has home cluster z at layer 3.

A.5 Correctness Analysis of Stateless Multi-Leader Scheduler
▶ Lemma 12 (Safety). If two transactions conflict with each other in Algorithm 2, then
they will commit in different time slots, and the local chain produced by Algorithm 2 ensures
blockchain serialization.

The proof of Lemma 12 is available in arxiv [4]

▶ Lemma 13 (Liveness). Algorithm 2 guarantees that every generated transaction will
eventually be committed or aborted.

The proof of Lemma 13 is available in arxiv [4].
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▶ Corollary 14. From Lemma 12 and Lemma 13, Algorithm 2 ensures the safety and liveness
of the transactions.

A.6 Proof of Theorem 6
Proof. In the multi-layer scheduler, we need to consider the transactions from all layers and
sublayers of the clusters. Suppose q′ is the topmost layer accessed by any transaction where
the diameter of the cluster on that layer is at most dq′ .

Consider the destination shard Sj , and we have only subtransactions from one leader
shard of cluster layer q where the distance between the transaction and its accessing shard
is at most dq, and it has maximum competitive ratio denoted by τq = O(dq · min{k,

√
s})

(from Theorem 3) than any other cluster. Therefore the destination shard Sj needs to
process subtransactions from all layers 0, . . . , q′ and from sublayers 0, . . . , H2 − 1, and those
transactions are processed according to their assigned order.

As discussed in Section 4.2.1, a cluster at layer q has a diameter at most O(2q log s). Thus
dq = O(2q log s) = c2q log s, for some positive constant c. This implies

∑q′

q=0 dq ≤ 2dq′ . Thus,
the competitive ratio of Algorithm 2 considering transactions from all layers and sublayers
at destination shard Sj is at most:

τtotal ≤
q′∑

q=0

H2−1∑
r=0

τq ≤
q′∑

q=0

H2−1∑
r=0

O(dq · min{k,
√

s}) ≤ O(dq′H2 · min{k,
√

s}) . (1)

We can replace H2 = O(log s) and dq′ = O(d log s) (see Section 4.2.1), then Equation 1
becomes:

O(d log2 s · min{k,
√

s}) . ◀

The correctness analysis of stateful single leader and multi-leader scheduler is available in
arxiv [4].

A.7 Proof of Theorem 7
Proof. This proof follows the same arguments discussed in the proof of Theorem 3. Consider
a set of transactions T generated at or before time t that are still pending (neither committed
nor aborted) at time t. Let GT denote the conflict graph for T , where two transactions
conflict if they have a common destination shard. Let li denote the number of transactions
in T that use objects in shard Si. Let l = max li. Moreover, from the definition of d, at
least one transaction is d distance away from the destination shard or leader. So we have
that Ω(l + d) is a lower bound on the time that it takes to finalize (commit or abort) the
transactions in T , since at least l subtransactions need to serialize in a destination shard,
and at least one transaction is d distance away.

First, consider the case where k ≤
√

s. We have that each transaction conflicts with at
most kl other transactions. Hence GT can be colored with at most kl + 1 colors.

Algorithm 3 schedules and commits transactions in batches. For each batch, the leader
shard performs the following steps: first, it gathers the state of accessed accounts, takes
at most 2d time units (request and receive each takes at most d time units). After pre-
committing, the leader sends the pre-commit batch to destination shards, which takes d time
units. Additionally, destination shards reach consensus on the received batch within 1 time
unit. Hence, the total delay per batch is at most 3d + 1.
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Since the algorithm uses at most kl + 1 colors (batches), the total finalization time is at
most: kl + 1 + 3d + 2 = O(kl + d).

Next, consider the case k >
√

s. Following the same reasoning above and from Theorem 3,
we get O(l

√
s + d) time to finalize the transactions T .

Overall, Algorithm 3 requires O(l · min{k,
√

s} + d) time units to finalize the transactions.
Since Ω(l + d) is a lower bound, we have that the approximation factor of the schedule for T
is O(min{k,

√
s}).

Since t is chosen arbitrarily, we have that the competitive ratio of Algorithm 3 is
O(min{k,

√
s}). ◀

A.8 Proof of Theorem 8
Proof. Similar to Theorem 6, consider the destination shard Sj , as discussed in the proof of
Theorem 7, if we have only subtransactions from one leader shard of cluster layer q where the
distance between the transaction and its accessing shard is at most dq, then the time to process
transactions is O(l · min{k,

√
s} + dq) or equivalently at most c1(l · min{k,

√
s} + dq) time

for some positive constant c1. Suppose q′ is the maximum layer accessed by any transaction
where the diameter of the cluster on that layer is at most dq′ . Then the destination shard Sj

needs to process subtransactions from all layers 0, . . . , q′ and from sublayers 0, . . . , H2 − 1,
and those transactions are processed according to their assigned order.

As discussed in Section 4.2.1, a cluster at layer q has a diameter at most O(2q log s).
Thus dq = O(2q log s) = c2q log s, for some positive constant c. This implies

∑q′

q=0 dq ≤ 2dq′ .
Thus, the total time unit required by Algorithm 4 to process all the transactions from all
layer and sublayers at destination shard Sj is at most:

τtotal ≤
q′∑

q=0

H2−1∑
r=0

c1(l · min{k,
√

s} + dq) ≤ c1lH2 · min{k,
√

s} + 2c1dq′H2 . (2)

We can replace H2 = c2 log s as we have O(log s) sublayers (see Section 4.2.1) and
dq′ = c3d log s, where c2 and c3 are some positive constants, then Equation 2 becomes:

c1l · c2 log s · min{k,
√

s} + 2c1 · c3d log s · c2 log s => O(l log s · min{k,
√

s} + d log2 s) .

As discussed in Theorem 7, Ω(l + d) is a lower bound. Thus, we have that the competitive
ratio of Algorithm 4 as O(log s · min{k,

√
s} + log2 s). ◀

A.9 Pseudocode of Stateful Multi-Leader Scheduler
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Algorithm 4 Stateful Multi-Leader Scheduler.
1 Each shard knows the hierarchical cluster decomposition of Gs;
2 Each cluster C(q, r) has: leader shard Sℓ, txn queue P Qℓ, scheduled txns Tℓ, conflict graph GTℓ

;
3 λC : worst communication delay between any two shards in cluster C due to partial-synchrony;
4 scheduleControl: Boolean flag indicating whether the cluster currently holds scheduling control;
5 Upon generation of new txn Ti at home shard Si

6 Si determines the lowest cluster C(q, r) which includes Ti and its accessing shards. Then Si sends Ti

to leader shard Sℓ of C(q, r);

7 Upon receiving txn(s) Ti at leader shard Sℓ of C(q, r)
8 Sℓ appends Ti to its pending transactions queue P Qℓ;
9 if Sℓ waits for 4λC time unit or Sℓ proceed λC number of previous scheduled colors then

10 if scheduleControl == True then
11 // Invoke single-leader scheduling logic
12 Run Single-Leader Scheduler (Algorithm 3) with (P Qℓ, Tℓ, GTℓ

, λC );
13 // If Algorithm 3 break after process λC number of scheduled colors then check and do

following:
14 if parent cluster C′ requests control then
15 Send scheduleControl to the parent and set scheduleControl← False;
16 else if children clusters C′′ request control then
17 Send scheduleControl to children and set scheduleControl← False;
18 else if C(q, r) doesn’t have remaining transactions to schedule then
19 Send scheduleControl down to children and set scheduleControl← False;

20 else
21 Send request to current scheduleControl holder (e.g., child or parent cluster);

22 Upon receiving scheduleControl at leader Sℓ of C(q, r)
23 if Sℓ previously requested scheduledControl to process its txns then
24 Set scheduleControl← True and trigger internal event (see above on line 9-12);
25 else
26 Send scheduleControl to parent or child clusters according to the request it gets;
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