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—— Abstract

Sharding is a technique to speed up transaction processing in blockchains, where the n processing
nodes in the blockchain are divided into s disjoint groups (shards) that can process transactions in
parallel. We study dynamic scheduling problems on a shard graph Gs where transactions arrive
online over time and are not known in advance. Each transaction may access at most k shards, and
we denote by d the worst distance between a transaction and its accessing (destination) shards (the
parameter d is unknown to the shards). To handle different values of d, we assume a locality sensitive
decomposition of G5 into clusters of shards, where every cluster has a leader shard that schedules
transactions for the cluster. We first examine the simpler case of the stateless model, where leaders
are not aware of the current state of the transaction accounts, and we prove a O(dlog? s-min{k, \/s})
competitive ratio for latency. We then consider the stateful model, where leader shards gather the
current state of accounts, and we prove a O(log s - min{k, \/s} +log® s) competitive ratio for latency.
Each leader calculates the schedule in polynomial time for each transaction that it processes. We
show that for any ¢ > 0, approximating the optimal schedule within a (min{k,/s})*~¢ factor is
NP-hard. Hence, our bound for the stateful model is within a poly-log factor from the best possibly
achievable. To the best of our knowledge, this is the first work to establish provably efficient dynamic
scheduling algorithms for blockchain sharding systems.
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1 Introduction

Blockchains are known for their special features, such as fault tolerance, transparency, non-
repudiation, immutability, and security, and have been used in various applications and
domains [16]. However, a drawback of blockchains is that the size of the blockchain network
may impact the latency and throughput of transaction processing. To append a new block in
a blockchain network, the participating nodes reach consensus, which is a time and energy-
consuming process [2]. Moreover, each node is required to process and store all transactions,
which leads to scalability issues in the blockchain system. Sharding protocols have been
proposed to address the scalability and performance issues of blockchains [15, 21, 11, 1], which
divide the overall blockchain network into smaller groups of nodes called shards that allow
for processing transactions in parallel. In the sharded blockchain, independent transactions
are processed and committed in multiple shards concurrently, which improves the blockchain
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system’s throughput. However, most of the existing sharding protocols [15, 13, 21, 1] do not
provide formal analysis for the scheduling time complexity (i.e. how fast the transactions
can be processed).

We consider a blockchain system consisting of n nodes, which are further divided into s
shards, where each shard consists of n/s nodes. Shards are connected in a graph network G
with a diameter D, and each shard holds a subset of the objects (transaction accounts). We
assume that transactions are distributed across the shards, and each transaction accesses at
most k£ accounts. A transaction T; initially is in one of the shards, which is called the home
shard for T;. For simplicity, we consider each shard has one transaction at a time, and when
that transaction gets processed (either commit or abort), a new transaction will be generated
at the home shard. Similar to other sharding systems [11, 1, 2], each transaction 7; is split
into subtransactions, where each subtransaction accesses an account. A subtransaction of
T; is sent to the destination shard that holds the respective account. We assume that the
maximum distance between the home shard of a transaction and the respective destination
shards in G is at most d < D. (The parameter d is not known to the system.)

All home shards process transactions concurrently. A problem occurs when conflicting
transactions try to access the same account simultaneously. In such a case, the conflict
prohibits the transactions from being committed concurrently and forces them to serialize [2].
Our proposed scheduling algorithms coordinate the home shards and destination shards
to process the transactions (and respective subtransactions) in a conflict-free manner in
polynomial time. Each destination shard maintains a local blockchain of the subtransactions
that are sent to it. The global blockchain can be constructed (if needed) by combining the
local blockchains at the shards [1].

We consider online dynamic transaction scheduling problem instances where transactions
are not known a priori. Moreover, transactions may arrive online and continuously over
time, which are generated by electronic devices or some crypto app that resides on shards.
Our proposed schedulers determine the time step for each transaction T; € T to process
and commit. The execution of our scheduling algorithm is partially synchronous, where
communication delay is upper bounded by a system parameter. The goal of a scheduling
algorithm is to efficiently process all transactions while minimizing the total execution time
(makespan). Unlike previous sharding approaches [11, 13, 21], our scheduling algorithms are
lock-free, namely, they do not require locking mechanisms for concurrency control.

We use the notion of competitive ratio [8] to determine the performance of our scheduling
algorithms. The competitive ratio typically measures how well a given online algorithm
performs compared to the best possible offline algorithm for a specific sequence of operations.
However, in our model, the transactions generated in the future depend on the execution
history. Hence, we define the competitive ratio to capture the volatile transaction history.

Contributions. To our knowledge, this is the first work to present provably efficient online
transaction scheduling algorithms for blockchain sharding systems. We summarize our
contributions as follows (also see Table 1):
Stateless Scheduling Model: We first provide transaction scheduling algorithms for
the stateless model, where a leader shard that is responsible for coordinating transaction
execution, does not require knowledge of the current state of the accessed accounts. In
this model, we provide two scheduling algorithms:
Single-Leader Scheduler: In this scheduling algorithm, one of the shards acts
as the leader and all other shards send their transaction information to this leader,
which determines the global transaction schedule. Our algorithm works in a partially
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synchronous communication model, but for the sake of performance analysis purposes,
we assume a synchronous model. Let the shard network be represented as a general
graph G, where each transaction accesses at most k objects (shards). The maximum
distance between home shards, accessed shards, and leader is denoted with d. Then,
the single-leader scheduler achieves an O(d-min{k, /s}) competitive ratio with respect
to the optimal scheduler. In the special case where G is a clique with unit distances
(i.e., d = 1), the competitive ratio becomes O(min{k,/s}).
Multi-Leader Scheduler: A drawback of the single-leader case is that the distance
d involves also the position of the leader. On the other hand, in the multi-leader case,
d only involves distances between home and respective destination shards. In this
scheduler, multiple leaders process the transactions, which distribute the scheduling
load among multiple shards. The multi-leader approach allows for a better adaptation
to the value d without requiring knowledge of d and without involving distances
to the leaders in the definition of d. This approach uses a hierarchical clustering
technique [10] to cluster the shard network, which enables the independent scheduling
and commitment of transactions within different clusters. This scheduler achieves a
competitive ratio of O(dlog® s - min{k, /s}).
Stateful Scheduling Model: We next consider a stateful model where the leader shard
requires knowledge of the account states. Namely, a leader shard receives the transactions
from the home shards (where transactions are initially generated), and then the leader
shard first gathers the current state of the accounts from their corresponding account
shards before scheduling and pre-committing the transactions. After receiving the state,
the leader pre-commits the transactions locally and forwards the pre-committed batch to
the destination shards. In this model, the single-leader scheduler achieves a competitive
ratio of O(min{k,+/s}) and the multi-leader scheduler achieves a competitive ratio of
O(log s - min{k, \/s} + log® s). Note that these competitive ratios do not depend on d (in
contrast to the stateless model), which is the benefit of the stateful approach.
Approximation Hardness: We also show that for any € > 0, obtaining competitive ratio
(min{k, /s})!7¢ is NP-hard. Hence, our bound for the stateful single-leader scheduler is
asymptotically the best we can achieve in polynomial time, and the bound for the stateful
multi-leader scheduler is within a poly-log factor of the best achievable.
Safety and Liveness Analysis: We formally analyze the correctness of our proposed
schedulers by proving both safety and liveness for the single-leader and multi-leader
algorithms.

Paper Organization. The rest of this paper is structured as follows. Section 2 provides
related works. Section 3 describes the preliminaries for this study and the sharding model.
Section 4 presents a stateless scheduling model with single-leader and multi-leader scheduling
algorithms. In Section 5, we provide the stateful single-leader and multi-leader scheduling
algorithms. Finally, we give our conclusions in Section 6. Due to space limitations, some
proofs are deferred to the appendix, while additional correctness analyses (safety and liveness)
of our algorithms are provided in the extended version available on arxiv [4].

2 Related Work

To solve the scalability issue of blockchain, various sharding protocols [15, 21, 11, 17, 20, 6]
have been proposed. These protocols have shown promising enhancements in the transaction
throughput of blockchain by processing transactions in parallel in multiple shards. However,
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Table 1 Comparison of our proposed online transaction scheduling algorithm’s competitive ratio
with related works [2, 3, 14]. The used notations are as follows: s represents a total number of shards,
k denotes the maximum number of shards (objects) accessed by each transaction, d denotes the
worst distance between any transaction (home shard) and its accessed objects (destination shard), b
denotes the burstiness and ¢} represents some positive constant. (Note that the bounds in [2] are
the actual transaction latencies).

Proposed Results Related works
Stateless Model Stateful Model In [2] In [3, 14]
Problem Dynamic Transaction Dynamic Transaction Dynamic Transaction Batch Transaction
Focus Performance Perofrmance Stability Performance
Single Leader O(d - min{k, \/g}) O( min{k, \/5}) 36bd - min{k, [/s]} O(kd)
Multi-Leader O(dlog‘2 s - min{k, \/5}) O( log s - min{k, \/s} + log? s) 2. cibdlog? s - min{k, [/s]} O(kd -log dlog s)
Com. Model Partial-synchronous Partial-synchronous Synchronous Synchronous

none of these protocols have specifically explored the theoretical analysis of online transaction
scheduling problems in a sharding environment. To process transactions in parallel in the
sharding model, some research work [13, 11] has used two-phase locking for concurrency
control. However, locks are expensive because when one process locks shared data for
reading/writing, all other processes attempting to access the same data set are blocked until
the lock is released, which lowers system throughput. Moreover, locks, if not handled and
released properly, may cause deadlocks. Our scheduling algorithms do not use locks, as
concurrency control is managed by scheduling non-conflicting transactions in parallel. In [1]
the authors propose lockless blockchain sharding using multi-version concurrency control.
However, they lack a performance analysis, and they do not explore the benefits of locality
and optimization techniques for transaction scheduling.

In a recent work [2] (see Table 1), the authors provide a stability analysis of blockchain
sharding considering adversarial transaction generation. Their focus is on stability, not on
performance, where they want to maintain a bounded pending transaction queue size and
latency. They consider adversarial transaction generation, where at any time interval of
duration ¢, the number of generated transactions using any object is bounded by pt + b,
where p < 1 is the transaction injection rate per unit time and b > 0 is a burstiness injection
parameter. They consider stateless scheduling model, and for the single leader scheduler
where the shards are connected in the clique graph with unit distance they provide the
stable transaction rate p < max{lgik, ﬁ}, for which they show the number of pending
transactions at any round is at most 4bs (which is the upper bound on queue size in each
shard), and the latency of transactions is bounded by 36b - min{k, [1/s]}, If this single leader
scheduler is considered in the general graph where the transaction and its accessing object
are d far away, then their latency becomes 36bd - min{k, [/s]}. Similarly, for a multi-leader

scheduler, they provide a stable transaction injection rate p < . max{%, %}, where

¢} is some positive constant. For this scheduling algorithm, they show the upper bound
on queue size as 4bs, and transaction latency as 2 - ¢jbdlog® s - min{k, [/5]}. However,
they consider a synchronous communication model, which is not practical in blockchain,
and they also do not provide a theoretical analysis of the optimal approximation for the
scheduling algorithm, and they only consider a stateless scheduling model. All their latency
bounds depend on the burstiness parameter b, which can be arbitrarily large, as it expresses
a transaction injection burst of arbitrary size in any given time interval. On the other hand,
our system models do not depend on any burstiness parameter, as we adopt a transaction
injection model tuned for performance analysis.
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In [3, 14] (see Table 1), the authors presented batch scheduling algorithms (for a given
set of transactions) while they did not consider dynamic transaction generation. Moreover,
their provided bounds are not tight even for batch processing. Furthermore, their algorithms
work on a synchronous communication model, which might not be applicable in a real-
world distributed blockchain network. The authors in [14] only consider single leader
algorithms and have worse performance complexity bounds than [3] by a factor of log D,
resulting in a complexity of O(kd-log D) whereas [3] achieves O(kd) approximation for batch
transactions. Here, we provide efficient scheduling algorithms with theoretical analysis for
dynamic transaction processing in a blockchain sharding system that works in the partially
synchronous communication model.

Several works have been conducted on transaction scheduling in shared memory multi-
core systems, distributed systems, and transactional memory [7, 8]. In [5, 18, 19], the
authors explored transaction scheduling in distributed transactional memory systems aimed
to achieve better performance bounds with low communication costs. In [7] they provide
offline scheduling for transactional memory, where each transaction attempts to access an
object, and once it obtains the object, it executes the transaction. In another work [8],
the authors extended their analysis from offline to online scheduling for the transactional
memory in a synchronous communication model. However, these works do not address
transaction scheduling problems in the context of blockchain sharding. This is because, in
the transactional memory model, the considered system models assume that objects are
mobile, and once a transaction obtains the object, it immediately executes the transaction.
In contrast, in blockchain sharding, an object is static in a shard, and there is a confirmation
scheme to confirm and commit each subtransaction consistently in the respective shard.

3 Technical Preliminaries

3.1 Blockchain Sharding Model

We consider a blockchain sharding model similar to [11, 1, 2, 3], consisting of n nodes which
are partitioned into s shards Si,Ss,...,Ss such that S; C {1,...,n}, for i # j, S; N.S; =0,
n=>_,|5i|, and n; = |S;| denotes the number of nodes in shard S;. Let G5, = (V, E,w)
denote a weighed graph of shards, where V' = {57, 55, ...,Ss}, the edges F correspond to the
connections between the shards, and the weight function w represents the distance between
the shards. The graph G, is complete, since each pair of shards can communicate directly,
but the weights of the edges may be non-uniform.

Each shard maintains a local blockchain (which is part of the global blockchain) according
to its local accounts and the subtransactions it receives and commits. We use f; to represent
the number of Byzantine nodes in shard S;. To guarantee consensus on the current state
of the local blockchain, we assume that every shard executes the PBFT [9] or a similar
consensus algorithm. In order to achieve Byzantine fault tolerance, we assume each shard S;
consists of n; > 3 f; nodes.

We assume that shards communicate with each other via message passing [11], and here,
we are not focusing on optimizing the message size. We adopt the cluster-sending protocol
described in [12] and Byshard [11], where shards run consensus (e.g., the PBFT [9] consensus
algorithm within the shard) before sending a message. For communication between shards
S1 and Ss, a set A3 C S1 of fi + 1 nodes in Sy and a set Ay C Sy of fo + 1 nodes in Sy are
chosen (where f; is the number of faulty nodes in shard S;). Each node in A; is instructed to
broadcast the message to all nodes in As. Thus, at least one non-faulty node in S; will send
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the correct message value to a non-faulty node in So. (Actually, A; needs to have size 2f; +1
to distinguish the correct message.) We consider a partial-synchronous communication model,
where sending messages for transactions to their accessing shards has a bounded delay.

Suppose we have a set of shared accounts O (which we also call objects). Similar to
previous works in [11, 1, 2], we assume that each shard is responsible for a specific subset of
the shared objects (accounts). To be more specific, O is split into disjoint subsets O4, ..., O,
where the set of accounts under the control of shard S; is represented by O;. Every shard S;
keeps track of local subtransactions that use its corresponding objects in O;.

3.2 Transactions and Subtransactions

Similar to the works in [11, 2, 3], we consider transactions {11, T5,...} that are distributed
across different shards. Suppose that transaction T is generated in a node vy, within the
system, then the home shard of T; is the shard containing vr,. In this work, we consider
transactions that are continuously generated over time. For simplicity and to attain a
performance analysis, we assume that each home shard contains at most one transaction at
any moment of time, and after the transaction gets processed (either commits or aborts), a
new transaction is generated on that home shard.

Similar to work in [11, 1, 2], we define a transaction T; as a group of subtransactions
Tiars--+5T;a;- Each subtransaction T;,, accesses objects only in O,, and is associated
with shard S,,. Therefore, each subtransaction T; ,, has a respective destination shard S,,.
The home shard sends the transaction T; to the leader shard Sy, which is responsible for
processing transaction 7;. Then the leader shard of T; sends subtransaction T; 4, to shard
S, for processing, where it is appended to the local blockchain of S,,. The subtransactions
within a transaction T; are independent, meaning they do not conflict and can be processed
concurrently. An example of transactions and subtransactions is deferred to Appendix A.1.

3.3 Stateless and Stateful Scheduling Models

We define two scheduling models to schedule and process the transactions, the stateless and
stateful models, which we describe as follows.

Stateless Scheduling Model. Let’s suppose there is a designated leader shard Sy that
coordinates the scheduling and processing of transactions. In this model, the leader shard S,
does not maintain the current state of accounts accessed by the transactions [2, 3, 11]. Upon
receiving transactions, Sy constructs (or extends) a transaction conflict graph and colors the
graph using an incremental greedy vertex coloring algorithm to determine the commit order
for each transaction. Then the leader Sy splits each transaction into subtransactions based
on accessed accounts and sends them to the corresponding destination shards that hold the
relevant account states. Each destination shard maintains the scheduled subtransactions
queue schgq and it picks one color subtransaction from the head of schq,, validates the
sub-transactions (e.g., checking account balances) and sends a commit or abort vote to the
leader. After collecting all votes for a transaction, the leader sends a final decision to each
destination shard, which either commits or aborts the subtransactions according to the
message received from the leader shard.

For example, suppose Sy receives transactions 77, Ts, T3, each accessing accounts a, b, ¢,
located in shards S,, Sy, S. respectively (see Figure 1 (a)). The leader constructs a conflict
graph G'7, and applies a greedy vertex coloring algorithm to define a commit order. It then
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Collect S, finali
Confirmation for T4 Ty, Ty, T3 ¢ finalize txns
and send batch
S, )
S
O *
ot
g sy
\>  SchsubTxns o
5.l TMoa[fue[Tur] .. |
Send scheduled Vote Decide Commit/Abort Requestaccount Response Pre-commit/abort Commit
subtxns Current state
(a) Stateless Scheduling Model (b) Stateful Scheduling Model

Figure 1 Illustration of Stateless (a) and Stateful (b) Scheduling Models.

splits transactions into sub-transactions:
Ty =T Tip, Trch, To = {20, Top Toc}, T3 = {130, T30, T3}

Each destination shard queues the received sub-transactions in a schedule queue schgq
according to the commit order received from Sy, and it processes one color subtransaction
at a time. This means S, picks 11 4, Sp picks 114 and S. picks Ti . from head of their
queues, check the validity and condition of the subtransaction (such as account balance)
and send either commit or abort votes to the leader shard. Then the transaction 7; and its
subtransactions (714,71 and T4 ) are committed or aborted based on the final decision
received from the leader shard. Next, each destination shard processes the next color
subtransactions, for instance T5 4, from S, Top from Sp, and Ts . from S, (see Figure 1 (a)),
and this process repeats.

Stateful Scheduling Model. 1In the stateful model, the home shard where a transaction
is initially generated sends its transaction information to the leader shard Sy. Then the
leader shard Sy stores these transactions (i.e. T1,75,7T3) in its pending transaction queue
PQy. Then, the leader shard identifies accounts accessed by transactions and requests their
state from corresponding shards S, Sp, Sc. In other words, before processing the transac-
tions, the leader collects the current state of all accessed accounts from the corresponding
destination shards. Once the account states are gathered, the leader constructs a conflict
graph on which it applies the incremental greedy vertex coloring algorithm. Then the leader
shard performs local pre-commit for valid transactions (e.g., T1, T5) and aborts invalid
transactions (e.g., Tz). After that, Sy creates the pre-committed sub-transaction batches:
Se :{T1,0, T340}, Sv:{T1p:Tap}, Sec:{Thc Ts,.} for each destination shard Sy, Sp, Se.
Then these pre-committed batches are sent to the respective destination shards. Since the
transactions have already been validated, each destination shard can directly commit and
append the received pre-committed order to its local blockchain without further interaction
with the leader.

The main difference between the stateless and stateful model is that the stateful model
requires the leader to be updated about account states which are at remote shards, while the
stateless model does not require leader to be informed about remote accounts.
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3.4 Conflicts and Competitive Ratio

Two transactions conflict if they attempt to access the same account, and at least one of the
two updates the account. The subtransactions are processed sequentially at each destination
shard. For this reason, we extend the notion of conflict to all transactions that access account
in the same destination shard.

» Definition 1 (Conflict). Transactions T; and T; are said to conflict if they access accounts
on the same destination shard Sy and at least one of these transactions writes (updates) the
account in Sk.

Transactions that conflict should be processed in a sequential manner to guarantee atomic
object update. In such a case, their respective subtransactions should be serialized in the
exact same order in every involved shards. To resolve the conflict between two transactions
T; and T; while accessing the same destination shard Sj, a scheduler must schedule them
one after another in such a way that 7; commits before T} or vice versa. To perform the
schedule, we use a conflict graph such that the nodes are transactions, and an edge represents
a conflict between two transactions.

We continue with the definition of competitive ratio for our scheduling models. The
definition below is an adaptation of the competitive ratio used in dynamic execution in
software transactional memory [8]. Since the future transactions depend on the past execution,
we define the competitive ratio based on any set of transactions that may appear at any
moment of time. Consider a transaction schedule S. Let 7; denote the set of all pending
transactions (that have not committed or aborted) at time ¢. Let ¢’ > t denote the time such
that all transactions in 7; finalize (commit or abort). Let 7* denote the optimal time duration
to finalize (commit or abort) all the transactions in 7; if they were the only transactions in the
system, processed as a batch. The approximation ratio for S at time ¢ is rg(¢) = (¢’ —t)/7*.
The competitive ratio for S is rg = sup, rg(t).

» Definition 2 (Algorithm Competitive Ratio). For online scheduling algorithm A, the
competitive ratio r 4 is the maximum competitive ratio over all possible schedules S that it
produces, 74 = supges r's. (We also say that A is r 4-competitive.)

4  Stateless Scheduler

In this section, we consider the stateless sharding model [1, 2, 11], where the leader shard is
responsible for coordinating transaction processing and does not gather the current state of
account information (see Section 3.3). We present two transaction scheduling algorithms:
the Single-Leader Scheduler and the Multi-Leader Scheduler.

4.1 Stateless Single-Leader Scheduler

In this section, we describe and analyze the Stateless Single-Leader Scheduler, which operates
under a partially synchronous communication model. We assume a designated leader shard
S¢ responsible for determining the transaction schedule. All shards send their transactions
to the leader shard, which builds a transaction conflict graph and applies an incremental
greedy vertex coloring algorithm to determine a schedule.

The algorithm follows an event-driven approach to schedule and process the transactions.
When a new transaction 7T; is generated at its home shard S;, then the home shard tags
the current timestamp to the transaction 7; and sends the transaction to the leader shard
Se¢. Upon receiving T;, the leader adds it to the local transaction set T, and extends the
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Algorithm 1 STATELESS SINGLE LEADER SCHEDULER.

1 txn: transaction; txns: transactions; subTxn: subtransaction; subTxns: subtransactions;

2 Tj: txn, T; ;: subTxn of T; for shard S;, T;: Set of txns maintained by leader shard Sy; is_busy:
processing flag (initially false at each shard); Each shard S; maintains a lexicographically ordered
scheduled queue schq, for subtransactions;

3 Upon generation of a new txn T; at home shard S;
4 L S; tags local timestamp (ts) to T; and send it to the leader shard Sy;

5 Upon receiving new txn 7; at leader shard S,

S¢ adds T; to txns set Ty and extend transaction conflict graph G, with Tj;

If any colored txn T, exists with ts(T) > ts(T;), cancel its color, prioritize T;, and send cancel
message for T, to corresponding destination shards;

8 Run incremental greedy coloring on G'7, without altering already scheduled (colored) old txns;

Split each newly colored T; into subtxns T} ; and send to respective destination shard Sj;

10 Upon receiving subtransaction T; ; at each destination shard S;

11 Append T; ; in schgq and order (sort) schqq lexicographically according to color;

12 if is_ busy == false then

13 Set is__busy = true;

14 Let T;,; < head of schag; If T; ; is valid and local conditions satisfied, it sends commit vote to

leader shard Sp; Otherwise, it sends abort vote to Sy;

15 Upon receiving votes for txn 7T; at leader shard S,

16 If any abort vote receive for T; then it sends confirmed abort to all corresponding S; of T;; else if all
received votes are commit votes, then it sends confirmed commit to corresponding S;;
17 Remove T; from Ty and G, and send outcome(committed or aborted) to home shard of Tj;

18 Upon receiving confirmation for subtxn T; ; at each destination shard S

19 If the confirmed commit is received, then it commit T; ; and append to its local blockchain;
20 Otherwise, if confirmed abort message received then it abort Tj ;;
21 | If schaq is not empty, it start to process next subTxn from schay, else it set is_busy = false;

22 Upon receiving cancel message for T, ; at destination shard S;
23 L Remove Ty ; from schqq; a new color will be received later for T, ; from leader shard Sy;

24 Upon receiving outcome of 7; at home shard S;
25 L Generate next transaction and repeat process;

conflict graph G, with this new transaction (73). If T; is older than any already-colored but
uncommitted transactions (say 7)), the leader cancels the color of those newer transactions,
notifies the relevant shards, and reprocesses them later. This ensures older transactions
are prioritized, avoiding starvation. The leader then runs an incremental greedy vertex
coloring algorithm [8] to assign colors to all newly received transactions, without modifying
the colors of already scheduled old transactions. This ensures that the processing time of
already scheduled transactions is not affected by newly generated transactions. Note that
a newer transaction might receive a lower color than an older one because the new one
does not conflict with any other transaction (except one old transaction), while the old
transaction conflicts with others as well. To prevent this and ensure a fair execution order,
we assign each new transaction a color no lower than the smallest color among pending
old transactions. This approach guarantees progress because at each time step, the lowest
possible color will increase over time. After coloring and determining the schedule, each
transaction is then split into subtransactions T; ; based on the destination shards it accesses,
and these subtransactions are sent to the corresponding shards S; for processing.

Each destination shard S; maintains a local scheduled queue schy, (consisting of sub-
transactions that have been scheduled but not yet committed) and appends incoming
subtransactions into schqq, which stores subtransactions in the order of their assigned color.
To handle partial synchrony, each destination shard S; uses a busy flag to track whether it is
currently processing (in-transit and not committed yet) a subtransaction. If the shard is not
busy, it picks one subtransaction from the head of the queue and validates it (e.g., checking
conditions like account balance). If the subtransaction is valid, the shard S; sends a commit
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vote to the leader Sy; otherwise, it sends an abort vote. Once the leader shard receives votes
from all relevant destination shards for a transaction T;, it decides whether the transaction
should be committed or aborted. If all subtransactions vote to commit, the leader sends a
confirmed commit to each destination shard; otherwise, if any one of the shard send an abort
vote, it sends a confirmed abort. After the decision, the transaction T; is removed from the
conflict graph G7, and the transaction set Ty, and the outcome (committed or aborted) is
sent to the home shard of T;.

Upon receiving the confirmed decision, each destination shard either commits the sub-
transaction by appending it to the local blockchain or aborts it. If the scheduled queue is
not empty, the shard continues processing the next subtransaction. If the queue becomes
empty, the shard marks itself as not busy. Finally, upon receiving the outcome from the
leader, the home shard generates a new transaction and repeats the process. This single
leader scheduling approach ensures conflict-free execution while preserving consistency and
fairness in transaction processing across shards.

Performance Analysis of Single-Leader Scheduler (Algorithm 1). Our proposed scheduling
algorithm works on a partial-synchronous communication model; for the sake of performance
analysis only, we consider the synchronous communication mode. In the following, we analyze
the time units required to process transactions by Algorithm 1. We are focusing on the
time period after the leader shard has determined the schedule for the transactions. In the
synchronous case, a time unit is the time to send a message along an edge of unit weight. In
the single-leader case, d is sensitive to the position of the leader and d denotes the maximum
distance between any of the involved shards (home, destination shards, leader shard). In the
multi-leader case, the distance to the leaders is not included in the definition of d.

» Theorem 3. [General Graph] In the General graph, where the transactions, their accessing
objects, and the leader are at most d distance away from each other, Algorithm 1 has
O(d - min{k, /s}) competitive ratio.

Proof. Consider a set of transactions T generated at or before time ¢ that are still pending
(neither committed nor aborted) at time t. Let G denote the conflict graph for 7, where
two transactions conflict if they have a common destination shard. Since we use greedy
coloring to color G7, the number of distinct colors assigned to the transactions in 7 depends
only on the coloring of G, and not on the colors of the transactions that have been finalized
(committed or aborted) before ¢. (This holds since transactions in 7 may use smaller colors
of transactions committed before ¢.)

Let [; denote the number of transactions in 7 that use objects in shard S;. Let [ = maxI;.
We have that [ is a lower bound on the time that it takes to finalize (commit or abort) the
transactions in 7, since at least [ subtransactions need to serialize in a destination shard.

First, consider the case where k < \/s. We have that each transaction conflicts with at
most kl other transactions. Hence G can be colored with at most kIl +1 colors. The distance
between a transaction (home shard) and its accessing objects(destination shards) is at most
d away, and to commit subtransactions after being scheduled, Algorithm 1 takes 3 steps of
interactions (for each color) between the leader shard and the destination shard. This means
each color corresponds to the 3d time units. Thus, it takes at most (kI + 1)3d = O(kld) time
units to confirm and commit the transactions. Hence, for transactions 7, the approximation
of their finalization time is O(kld/l) = O(kd).

Next, consider the case k > /s. We can write 7/ = AU B, where A are the transactions
which access at most /s destination shards, while B are the transactions which access
more than /s destination shards. Each transaction in A conflicts with at most [1/s other
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transactions. Hence, the transactions in A need at most [\/s + 1 distinct colors. The
transactions in B can be serialized, requiring at most |B| distinct colors. Hence, the conflict
graph Gr can be colored with at most I4/s + 1 + | B| colors, which implies a schedule of
length O(d(ly/s + |B])) steps to finalize the transactions 7. Since each transaction in B
accesses more than /s shards, there is a shard accessed by more than (|B|y/s)/s = |B|/v/s
transactions. Thus, [ > |B|/+/s. Hence, for transactions 7, the approximation of their
finalization time is O(d(l\/s + |B|)/l) = O(dv/s + d|B|/l) = O(d\/s + d\/s) = O(dv/s).
Therefore, combining the approximations for the cases k < /s and k > /s, we have that
the combined approximation for the finalization time for 7 is O(d - min{k, \/s}). Since ¢ is
chosen arbitrarily, we have that the competitive ratio of Algorithm 1 is O(d-min{k, /s}). <

Suppose that shards are connected in a clique graph with unit distance, where every
shard is connected to every other shard with unit distance. So in this case d = 1. Then from
Theorem 3, Algorithm 1 has an O(min{k,+/s}) competitive ratio for a clique graph with
unit distance. Thus, we have:

» Corollary 4 (Unit Distance Clique). Algorithm 1 has an O(min{k,/s}) competitive ratio
for a clique graph with unit distance.

We continue to show that it is an NP-hard problem to approximate the optimal transaction
schedule. Thus, the provided bound in Corollary 4, is the best we can do with a polynomial

time scheduling algorithm. The result below applies to both the stateful and stateless model.

» Theorem 5. For all € > 0, it is an NP-hard problem to produce a transaction schedule
that achieves a competitive ratio (min{k, /s})1 €.

The proof of Theorem 5 is deferred to Appendix A.3.

4.2 Multi-Leader Scheduler

This section provides the multi-leader scheduler where multiple leaders schedule and process
the transactions, distribute the congestion, and load across different leaders. The multi-leader
approach allows adaptation to the value d without requiring knowledge of d. Also, here the
value d depends only on the maximum distance between the home and destination shards
(without involving distances to the leaders). Therefore, the value of d captures better the
locality of the transactions, and the resulting schedule allows for shorter messages between
home and destination shards. The concepts that we introduce for this algorithm will play a
key role for the development of the stateless multi-leader algorithm.

4.2.1 Shard Clustering

In the multi-leader scheduler, shards are distributed across the network, and the distance
between the home shard of the transaction and its accessing objects (destination shards)
ranges from 1 to D, where D is the diameter of the shard graph. Let us suppose shards
graph G constructed with s shards, where the weights of edges between shards denote
the distances between them. We consider that G is known to all the shards. We define

z-neighborhood of shard S; as the set of shards within a distance of at most z from S;.

Moreover, the 0-neighborhood of shard S; is the .S; itself.

We consider that our multi-leader scheduling algorithm uses a hierarchical decomposition
of G5 which is known to all the shards and calculated before the algorithm starts. This shard
clustering (graph decomposition) is based on the clustering techniques in [10] and which
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were later used in [18, 8, 2]. We divide the shard graph G, into the hierarchy of clusters
with Hy = [log D] + 1 layers (logarithms are in base 2), and a layer is a set of clusters, and
a cluster is a set of shards. Layer ¢, where 0 < ¢ < Hj, is a sparse cover of G, such that:
(i) Every cluster of layer ¢ has (strong) diameter of at most O(2%log ). (ii) Every shard
participates in no more than O(log s) different clusters at layer ¢. (iii) For each shard S;
there exists a cluster at layer ¢ which contains the (27 — 1)-neighborhood of S; within that
cluster.

For each layer g, the sparse cover construction in [10] is actually obtained as a collection
of Hy = O(log s) partitions of G. These Hy partitions are ordered as sub-layers of layer ¢
labeled from 0 to Hy — 1. A shard might participate in all Hy sub-layers but potentially
belongs to a different cluster at each sub-layer. At least one of these Hs clusters at layer ¢
contains the whole 29 — 1 neighborhood of S;.

In each cluster at layer g, a leader shard Sy is specifically designated such that the leader’s
(29 — 1)-neighborhood is in that cluster. As we give an idea of layers and sub-layers, we define
the concept of height as a tuple h = (hq, hy), where hy denotes the layer and hs denotes the
sub-layer. Similar to [18, 8, 2], heights follow lexicographic order.

The home cluster for each transaction T; is defined as follows: suppose S; is the home
shard of T;, and z is the maximum distance from S; to the destination shards that will be
accessed by T;; the home cluster of T; is the lowest-layer (and lowest sub-layer) cluster in the
hierarchy that contains z-neighborhood of S;. Each home cluster consists of one dedicated
leader shard, which will handle all the transactions that have their home shard in that cluster
(i.e., transaction information will be sent from the home shard to the cluster leader shard to
determine the schedule). An example of hierarchical clustering is presented in Appendix A .4.

4.2.2 Stateless Multi-Leader Scheduler

We consider a hierarchical clustering of the shard graph G, which is assumed to be globally
known by all shards. Each cluster C'in this hierarchy is characterized by a unique height (g, r)
which corresponds to its layer ¢ and sublayer r, and each cluster C' has its designated leader
shard Sy. The leader shard is responsible for scheduling and coordinating the processing of
all transactions whose home cluster is C'. Each home shard S; maintains a local timestamp
ts to tag newly generated transactions. Additionally, each destination shard S; maintains a
local scheduling queue schqq and lexicographically orders for the incoming subtransactions
using the tuple (¢s, g, r, color), where color is an integer assigned to the transaction by the
leader shard Sy through vertex coloring. Algorithm 2 invokes Algorithm 1 in each cluster C
to process their transactions.

Algorithm 2 works in a partially synchronous model and follows an event-driven execution
by message passing. When a new transaction 7T; is generated at its home shard S;, then the
home shard S; determines the lowest cluster C' at height (g,r) that includes both S; and all
of the destination shards accessed by T;. Moreover, the transaction is tagged with its local
timestamp ts, along with the cluster identifiers ¢ and r, and is then sent to the cluster’s
leader shard Sy.

Upon receiving new transaction(s) T;, the leader shard Sy of cluster C' invokes Algorithm 1
to process their transactions, where leader shard S, adds T; to the transaction set 7¢ of
cluster C' and updates the corresponding transaction conflict graph G, to incorporate
the new transaction T;. Then the leader shard uses an incremental greedy vertex coloring
algorithm [8] to assign a color only to the newly received transaction without affecting already
colored (scheduled) transactions. Once colored, the transaction is split into subtransactions
T; j, and sent to the respective destination shard S;.
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Algorithm 2 STATELESS MULTI-LEADER SCHEDULER.

1 Assume all shards know a hierarchical cluster decomposition of Gy;
2 Each cluster C is associated with a unique height (g, r) and has a designated leader shard Spg;
3 Each shard S; maintains a lexicographically ordered queue schgq for subtransactions;

4 Upon generation of a new transaction 7; at home shard S;

5 S; tags a local timestamp (ts) to T; and identifies the destination shards accessed by T;;

6 S; selects the lowest cluster C with height (g, r) that contains T; and all its destination shards;

7 S; sends T; to the leader shard Sy of cluster C;

8 Upon receiving transaction 7; at the leader shard S, of cluster C

9 The leader shard Sy of each cluster C invokes Algorithm 1 to schedule and process their transactions.
This means each cluster C invokes Algorithm 1 to process their transactions;

10 // Since multiple clusters process their transactions concurrently, each with its own leader,

destination shards may receive subtransactions from different clusters simultaneously.
11 To handle subtransactions from multiple clusters (leaders):
12 Each destination shard S; maintains a scheduled subtransactions queue schgyq ordered

lexicographically by the tuple (s, g, r, color). The additional parameters (ts, g, ) reflect the
hierarchical cluster heights (layers and sublayers) in the shard graph Gg;

13 Each destination shard S; processes their subtransactions from the head of schqq following the
rules in Algorithm 1, with the modified ordering criteria;

Since multiple leader shards process their transactions concurrently by invoking the
Algorithm 1, destination shards may receive the subtransactions from different clusters
simultaneously. To handle this, we modify the parameters and processing technique of
Algorithm 1 as follows: each destination shard .S; maintains a scheduled subtransactions
queue schyq, which is ordered lexicographically by the tuple (¢s, g, r, color). The additional
parameters (ts,q,r) denote the timestamp ts, and hierarchical cluster heights (layers ¢
and sublayers 7) in the shard graph G5. Moreover, each destination shard S; processes its
subtransactions from the head of schq, following the steps in Algorithm 1 with the modified
ordering criteria.

Additionally, if the destination shard is busy and receives a new subtransaction T} ; such
that ts(Ty ;) < ts(T; ;) in lexicographic order, this means T} ; has a higher priority where T; ;
is the currently processed (but not committed) subtransaction, then the shard give priority
to Ty ; by sending an ignore T; ; message to its leader, indicating that a higher-priority
transaction (subtransaction T} ;) should proceed first. Then, when the leader receives an
ignore T; ; message for a subtransaction 7; ; and the decision for T; has not yet been made
(i.e., not all votes have been received), the leader discards the vote from S; and replies with
an ignored T; ; message to the destination shard S;. If the decision has already been made
(i.e, confirm commit or confirm abort) by the leader shard, then no further action is taken
for particular subtransaction 7;; at the leader shard S,. After the destination shard S;
receives an ignored message for T; ;, then it reinserts 7; ; into the scheduled queue, reorders
the queue lexicographically, and resumes processing from the head.

Finally, when the home shard S; receives the final outcome of its transaction T;, it
generates a new transaction and sends it to the corresponding cluster leader shard, and the
process repeats. This multi-leader scheduling framework ensures conflict-free and consistent
execution by leveraging lexicographic ordering over the tuple (¢s, g, r, color), and maintains
the fairness and parallelism across shards in the presence of partial synchrony.

Performance Analysis of Stateless Multi-Leader Scheduler. The multi-leader scheduler
is the extended version of the single-leader scheduler (Algorithm 3) while introducing an
additional overhead cost due to its shard (hierarchical) clustering structure and comes from
the layers and sublayers of the clusters.
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» Theorem 6. In Multi-leader scheduler (Algorithm 2), where the transactions and their
accessing objects are at most d distance away from each other, Algorithm 2 has O(d log?s -
min{k, \/s}) competitive ratio.

The proof of Theorem 6 is deferred to Appendix A.6.

5 Stateful Scheduler

In this scheduler model, the leader shard gathers all of the transactions and the current
states of the accessing accounts and pre-commits the transactions at the leader. After
that, the leader creates the pre-committed subtransactions batch and sends that batch to
the respective destination shard, where each destination shard reaches a consensus on the
received subtransaction order and adds it to their local blockchain. We provide two stateful
scheduling algorithms, one with a single leader and the other with multiple leaders.

5.1 Stateful Single-Leader Scheduler

We present and analyze the stateful single-leader scheduler, where one of the shards is
considered as the leader Sy, which is responsible for scheduling and processing all the
transactions.

When a new transaction T; is generated at its home shard S;, S; sends T; to the leader
shard S;. Upon receipt, Sy appends T; to its local pending queue PQ),. Scheduling event is
triggered periodically, either every 4\ time units or upon processing transactions associated
with A distinct colors. Here, A denotes the worst-case communication delay between any two
shards, which is at most the diameter of the shard communication graph G. The 4\ bound
accounts for the communication delays involved in acquiring state information from remote
shards and completing the pre-commitment phase and sending the pre-committing batch to
the destination shard.

When the scheduling event is triggered, the leader shard moves its pending transactions
from PQy into the scheduling transaction set T, and identifies the set of accounts O, accessed
by transactions which are in T,. If any account state O; € O, is not locally available at
S¢, it determines the responsible destination shard S; for each such account, and sends
batched account state requests to the corresponding shards. If all required states are already
available in Sy, an internal STATE-READY (i.e. already available locally) event is triggered
immediately.

Upon receiving a state request, each destination shard S; responds with the current
state of the requested accounts (e.g., balances). Then, once all necessary account states are
collected at Sy, it extends the conflict graph G'7, by incorporating the new transactions in
Te Then the leader shard Sy runs the incremental greedy vertex coloring algorithm [8] on
G'7, and assigns at most ¢ colors without altering the coloring of previously scheduled old
transactions.

The leader then iteratively processes transactions color by color. For each color group
Ce, Sy verifies transaction conditions (e.g., sufficient balance) using the up-to-date account
state it gathers. Transactions that are valid and conditions are satisfied are pre-committed,
while invalid ones are aborted. Then S, splits each pre-committed transaction T; into
subtransactions T; ; based on its accessed shards. These subtransactions are appended to a
corresponding pre-commit batch PrecommitSubTznBatch(S;) for each destination shard S,.
After processing a transaction, it is removed from 7; and G7,, and the outcome (committed or
aborted) is reported back to the transaction’s home shard S; to initiate the next transaction.
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Algorithm 3 STETEFUL SINGLE LEADER SCHEDULER.

1 Sy: Leader shard; PQg: Pending txns queue in leader shard;

2 Ty: Set of scheduled txns maintained by leader; GTZ: Conflict txn graph on Tp;

3 A: worst communication delay between any two shards due to partial-synchrony;
a4 PrecommitSubTxznBatch(Sj): Precommitted subtransactions batch for shard S;;

5 Upon generation of a new txn 7; at home shard S;
6 L S; sends T; to the leader shard Sy;

7 Upon receiving new txn 7T; at leader shard S,

8 S¢ appends T; to PQy;

9 if Sy waits for 4\ time unit or Sy proceed A number of scheduled colors then

10 // Trigger scheduling event

11 Move txns from PQ, to Tg; Identify set of accessed accounts O, by txns in Ty;

12 if Current state of any account O; € O, is not locally available at Sy then

13 For each Oj, determine the responsible shard S; and create request batch for each Sj;
14 Send batched account state request to each destination shard Sj;

15 else

16 L S¢ has all accounts state, so trigger internal state-ready event (see below);

17 Upon receiving a batched account state request at destination shard S;
18 L Respond to leader shard S, with current states of all requested accounts;

19 Upon receiving account states from each S;, or already available locally at S,

20 S¢ extend txn conflict graph G, with new txns in Te and runs incremental greedy vertex coloring
algorithm on GT[. using ¢ colors without altering already scheduled old txns;

21 foreach color (. € ¢ do

22 Pre-commit or abort txns T; € (. by checking txn condition and account state;

23 If T; is pre-committed, split T; into subTxns and create (append) pre-committed subtxns batch

order PrecommitSubTxnBatch(S;) for each destination shard Sj;

24 Remove T; from Ty and G,. Send the outcome(committed/aborted) to home shard of T;;

25 // Track processed color

26 if processed A number of colors then

27 | break;

28 S¢ sends PrecommitSubTaxnBatch(S;) to corresponding destination shard S; parallelly and start to
process next batch;

29 Upon receiving precommitted batch PrecommitSubTaznBatch(S;) at each S;
30 L Reach consensus on PrecommitSubTznBatch(S;) and append batch to the local blockchain;

The pre-commitment phase terminates once A colors are processed, after which Sy
dispatches all PrecommitSubTznBatch(S;) batches to their respective destination shards
in parallel. Each destination shard S; then reaches consensus on the order of subtransactions
in the received batch and appends them to its local blockchain. The leader shard Sy, then
waits and proceeds to the next scheduling batch.

Performance Analysis of Stateful Single-Leader Scheduler. In the following, we analyze
the time unit required to process transactions by Algorithm 3. We focus on the special
case where the maximum distance between the transactions, their accessing objects, and

the leader is at most d, and at least one transaction accesses objects at a distance Q(d).

This special case is useful for the analysis of the multi-leader case. We are focusing on the
time period after the leader shard has determined the schedule for the transactions. This is
because the scheduling and committing steps are executed in parallel.

» Theorem 7. [General Graph] In the General graph, where the transactions, their accessing
objects, and the leader are at most d distance away from each other, and at least one
transaction is Q(d) distance from the accessing shards, Algorithm 8 has O(min{k, /s})
competitive ratio.

The proof of Theorem 7 is deferred to Appendix A.7.
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5.2 Stateful Multi-Leader Scheduler

We present a stateful multi-leader scheduler in which multiple leader shards are responsible for
scheduling and processing transactions. In the single-leader algorithm, the value d includes the
distance to the leader, but in the multi-leader, d does not include the relative distance to the
leader. This allows the multi-leader algorithm to capture better the locality of transactions,
allowing for shorter distance messages between the involved home and destination shards.

The system assumes a hierarchical cluster decomposition [10] of the shard graph Gj,
which is globally known to all shards. Each cluster C(gq, ) in the hierarchy is associated with
a leader shard Sy, a pending transaction queue PQy, a scheduled transaction set 7;, and a
transaction conflict graph G7,. The parameter Ac denotes the worst-case communication
delay between any two shards within the cluster C', which arises from the assumption of a
partially synchronous communication model.

In multi-leader scheduling Algorithm 4 (see in Appendix A.9), when a transaction T; is
generated at its home shard S;, the shard identifies the lowest cluster C(g,r) that contains
all the shards accessed by T;, and then forwards T; to the leader shard Sy of of cluster C.
The leader shard Sy appends the received transaction to its pending queue PQ,. Periodically,
the leader checks if either 4\¢ time units have elapsed since the last scheduling event or if
A¢ colors of scheduled transactions have been processed by Sy. If either condition is met and
the leader holds the scheduleControl, it invokes the single-leader scheduler (Algorithm 3)
on its local structures (PQy, T¢e, GT,, Ac') to process transactions.

The scheduling control, denoted by the boolean flag scheduleControl, determines which
cluster can perform scheduling operations at a given time unit. The control flows hierarchically
between parent and child clusters. A parent cluster of C' is any cluster at a higher level in
the hierarchy (with height (¢’,7") > (¢, 7)) that shares at least one shard with C. Similarly,
a child cluster of C is a lower-level cluster (with height (¢”,7") < (¢,7)) that overlaps
with C'. Clusters may have multiple parents and children. If C is at the bottom-most
level (height (0,0)), initially it has scheduleControl. Otherwise, it must request control
from all its children. Once all children respond the scheduleControl, the leader S, sets
scheduleControl to true and proceeds with the scheduling.

After executing the single-leader scheduler, if the parent cluster C’ requests control, the
leader transfers scheduleControl to the parent and sets it to false locally. If instead a child
cluster C” has made a request, the control is passed down to the child. If there are no
remaining transactions to process, the control is also passed downward to allow lower-level
clusters to schedule pending transactions. If the leader does not have scheduleControl
when scheduling should occur, it sends a control request to the current holder (parent or
child). Additionally, if C' receives a control request from a parent ¢’ while not holding
control, it forwards the request to its children. Once all children respond positively, it passes
control up to C’. This hierarchical and event-driven mechanism ensures coordinated and
conflict-free scheduling across multiple levels of the cluster hierarchy.

» Theorem 8. In Multi-leader scheduler (Algorithm /), where the transactions and their
accessing objects are at most d distance away from each other, Algorithm 4 has O(logs -
min{k, \/s} + log? s) competitive ratio.

The proof of Theorem 8 is deferred to Appendix A.8.
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6 Conclusion

We presented efficient scheduling algorithms for processing dynamic transactions in block-
chain sharding systems. Our proposed framework operates under a partially synchronous
communication model, which realistically captures the behavior of many real-world blockchain
environments. We introduced both stateless and stateful scheduling models, each of which
includes single-leader and multi-leader algorithms for transaction scheduling and processing.
For these algorithms, we provided competitive ratios relative to an optimal scheduler and
established both upper and lower bounds on the scheduling delay.

For future work, we plan to explore efficient inter-shard communication mechanisms,
particularly under conditions of network congestion where communication links have bounded
capacity. We also aim to conduct extensive simulations and real-world experiments to evaluate
the practical performance of our proposed protocols.
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A Appendix

A.1 Example of Transaction and Subtransactions

Suppose transaction T3 is: “Transfer 100 coins from account A to account B”. Let us assume
that the accounts of A and B reside on different shards S, and Sy, respectively. T splits
into the following subtransactions:

T, in S,: Condition: Check if account A has at least 100 coins.
Action: Deduct 100 coins from account A.
Ty in Sp: Action: Add 100 coins to account B.

A.2 Correctness Analysis of Stateless Single-Leader Scheduler

Our proposed scheduling algorithm works on a partial-synchronous communication model;
for the sake of analysis only, we consider the synchronous communication mode.

» Lemma 9 (Safety). If two transactions conflict with each other in Algorithm 1, then they
will commit in different time slots, and the local chain produced by Algorithm 1 ensures
blockchain serialization.

Proof. We prove this by induction (analyzing) the execution of Algorithm 1, where each
home shard sends its transaction to the leader shard (Line 4), and the leader shard constructs
the transaction conflict graph G7, (Line 6). Then the leader used the incremental greedy
vertex coloring algorithm [8] on the conflict graph G7, (Line 8). As conflicting transactions
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share an edge in G7,, they are assigned different colors and are processed in different time
slots, which provides the valid commit order. Moreover, each color corresponds to a unique
serialization time slot. The leader shard splits the transaction into subtransactions and
sends them to the destination shard after coloring (see Line 9), then each destination shard
keeps that ordering in the schedule queue (schq,) and process subtransactions one by one
according to the color they get (see Line 11-14), which guarantees the consistent schedule
order in each shard. Moreover, the leader shard coordinates to commit the subtransactions
in each destination shard, which ensures the consistent commitment (see Line 16-17). As the
subtransactions are committed according to the color they receive, and each color corresponds
to a globally consistent time slot, this provides global serialization. <

» Lemma 10 (Liveness). Algorithm 1 guarantees that every generated transaction will
eventually be either committed or aborted.

Proof. We prove liveness by induction, showing that every transaction 7; is either committed
or aborted in finite time. Each new transaction 7; is sent to a leader shard Sy (Line 4), which
adds it to the set 7; and the conflict graph G,. If T; is older than any already colored but
not committed transaction 7T, the algorithm cancels the color of T, and re-colors the graph
(Line 7). Coloring is performed incrementally (Line 8) and preserves the colors of previously
scheduled transactions. Thus, older transactions are always prioritized, and no transaction is
indefinitely prevented from being scheduled due to newer ones. Note that a newer transaction
might receive a lower color than an older one because the new one does not conflict with any
other transaction (except one old transaction), while the old transaction conflicts with others
as well. To prevent this and ensure a fair execution order, we assign each new transaction
a color no lower than the smallest color among pending old transactions. This approach
guarantees progress because at each time step, the lowest possible color will increase over
time.

Moreover, once T; is colored, its subtransactions are sent to the respective destination
shards (Line 9), where they are placed into a queue schq, sorted by color (Line 11). Each
shard processes one color group at a time, controlled by a busy flag. After finishing one
subtransaction (commit or abort), the shard proceeds to the next one in the queue. Since every
color is eventually dequeued, and subtransactions are processed in order, every scheduled
subtransaction is eventually processed. Thus, every transaction is either committed or
aborted in a finite time, and this proves the liveness. <

» Corollary 11. From Lemma 9 and Lemma 10, Algorithm 1 ensures the safety and liveness
of the transactions.

A.3 Proof of Theorem 5

Proof. We will use a reduction from vertex coloring. For all € > 0, the problem of approxim-
ating the chromatic number of a graph with n nodes within a factor n'=¢ is NP-hard [22].

Consider an instance of vertex coloring on a graph H = (Vy, Ey) with n nodes. We can
transform the vertex coloring instance H to a scheduling problem instance on a graph shard
G with s = |Eg| shards, such that G is a synchronous clique with unit distances between
the shards. Furthermore, each edge of Fy corresponds to a unique node of Gj.

Let T be a set of n transactions, all generated concurrently at time ¢ = 0, such that
each node v; € Vi is mapped to transaction T; € T. For each edge (v;,v;) € Ey we create
a conflict between respective transactions 7; and T; by making the transactions access a
common object in the unique shard of G that corresponds to edge (v;,v;). Let G be the
respective conflict graph for the transactions 7. The conflict graph G is isomorphic to H.
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Home cluster
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Figure 2 Simple example of cluster decomposition of shard graph Gs.

A correct execution schedule for 7 (which gives a valid serialization of the transactions
in 7)) can be represented as a DAG where nodes are transactions and transaction 7; points
to T} if they conflict and T; executes first in the respective common destination shard with
T;. Then, a layering of the DAG nodes starting from source nodes provides a unique time
step for each transaction, so that conflicting transactions receive different time steps. Thus,
an execution schedule of the transactions in 7 gives a valid vertex coloring of the nodes in
G which provides a valid coloring for H. The best length of the transaction schedule given
from the DAG, is equal to the number of colors that can be assigned to H.

Since |Eg| < n(n —1)/2, we have that s = O(n?). Each transaction conflicts with at
most k < n — 1 other transactions. Therefore, given k and s, we can create the reduction
from graph coloring for n = min(k, \/s). Consequently, the NP-hardness of the scheduling
problem in G4 follows from the NP-hardness of the reduced graph coloring problem with
n = min(k, \/s). <

A.4 Example of Hierarchical Clustering

Figure 2 shows an example of hierarchical clustering, assuming shards are connected as if
they are in a line, where edges in the line have low weights and edges not in the line have
large weights. (We omit the sublayers to simplify the example.) Transaction Tj resides in
shard S3 and has home cluster x at layer 1. The reason for the home cluster x selection is
that T7 accesses an object in S3 and S4, and both of them are in cluster x, and z is the
lowest layer cluster including S5 and Sy. Similarly, suppose transaction 75, which resides in
S5, has home cluster y at layer 2, because T accesses an object in S5 and Sg, and y is the
lowest layer cluster that includes both S5 and Sg. Similarly, T3 has home cluster z at layer 3.

A.5 Correctness Analysis of Stateless Multi-Leader Scheduler

» Lemma 12 (Safety). If two transactions conflict with each other in Algorithm 2, then
they will commit in different time slots, and the local chain produced by Algorithm 2 ensures
blockchain serialization.

The proof of Lemma 12 is available in arxiv [4]

» Lemma 13 (Liveness). Algorithm 2 guarantees that every generated transaction will
eventually be committed or aborted.

The proof of Lemma 13 is available in arxiv [4].
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» Corollary 14. From Lemma 12 and Lemma 13, Algorithm 2 ensures the safety and liveness
of the transactions.

A.6 Proof of Theorem 6

Proof. In the multi-layer scheduler, we need to consider the transactions from all layers and
sublayers of the clusters. Suppose ¢’ is the topmost layer accessed by any transaction where
the diameter of the cluster on that layer is at most dg .

Consider the destination shard S;, and we have only subtransactions from one leader
shard of cluster layer g where the distance between the transaction and its accessing shard
is at most d,, and it has maximum competitive ratio denoted by 7, = O(d, - min{k, \/s})
(from Theorem 3) than any other cluster. Therefore the destination shard S; needs to
process subtransactions from all layers 0,...,q" and from sublayers 0, ..., Ho — 1, and those
transactions are processed according to their assigned order.

As discussed in Section 4.2.1, a cluster at layer ¢ has a diameter at most O(2%1og s). Thus
d, = O(291og s) = c2%1og s, for some positive constant ¢. This implies ZZ/:O dg < 2dg. Thus,
the competitive ratio of Algorithm 2 considering transactions from all layers and sublayers
at destination shard S; is at most:

q Hy—1 q Hz—1
Ttotal S Z Z Tq S Z Z O(dq : min{k7 \/g}) S O(dq’HQ : mln{kv \/g}) . (1)
q=0 r=0 q=0 r=0

We can replace Hy = O(log s) and dy = O(dlog s) (see Section 4.2.1), then Equation 1
becomes:

O(dlog® s - min{k,/s}) . <

The correctness analysis of stateful single leader and multi-leader scheduler is available in
arxiv [4].

A.7 Proof of Theorem 7

Proof. This proof follows the same arguments discussed in the proof of Theorem 3. Consider
a set of transactions 7 generated at or before time ¢ that are still pending (neither committed
nor aborted) at time ¢. Let G denote the conflict graph for 7, where two transactions
conflict if they have a common destination shard. Let [; denote the number of transactions
in 7 that use objects in shard S;. Let [ = max[;. Moreover, from the definition of d, at
least one transaction is d distance away from the destination shard or leader. So we have
that Q(I + d) is a lower bound on the time that it takes to finalize (commit or abort) the
transactions in T, since at least [ subtransactions need to serialize in a destination shard,
and at least one transaction is d distance away.

First, consider the case where k < 1/s. We have that each transaction conflicts with at
most kl other transactions. Hence G can be colored with at most kl 4+ 1 colors.

Algorithm 3 schedules and commits transactions in batches. For each batch, the leader
shard performs the following steps: first, it gathers the state of accessed accounts, takes
at most 2d time units (request and receive each takes at most d time units). After pre-
committing, the leader sends the pre-commit batch to destination shards, which takes d time
units. Additionally, destination shards reach consensus on the received batch within 1 time
unit. Hence, the total delay per batch is at most 3d + 1.
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Since the algorithm uses at most kI 4+ 1 colors (batches), the total finalization time is at
most: kl + 14 3d+ 2= O(kl + d).

Next, consider the case k > +/s. Following the same reasoning above and from Theorem 3,
we get O(ly/s + d) time to finalize the transactions 7.

Overall, Algorithm 3 requires O(l - min{k, \/s} + d) time units to finalize the transactions.
Since Q(I 4 d) is a lower bound, we have that the approximation factor of the schedule for T
is O(min{k,/s}).

Since t is chosen arbitrarily, we have that the competitive ratio of Algorithm 3 is

O(min{k,/s}). <

A.8 Proof of Theorem 8

Proof. Similar to Theorem 6, consider the destination shard S;, as discussed in the proof of
Theorem 7, if we have only subtransactions from one leader shard of cluster layer ¢ where the
distance between the transaction and its accessing shard is at most dy, then the time to process
transactions is O(l - min{k, \/s} + d,) or equivalently at most ¢; (! - min{k, /s} + d,) time
for some positive constant ¢;. Suppose ¢’ is the maximum layer accessed by any transaction
where the diameter of the cluster on that layer is at most dqs. Then the destination shard S}
needs to process subtransactions from all layers 0, ..., ¢ and from sublayers 0, ..., Ho — 1,
and those transactions are processed according to their assigned order.

As discussed in Section 4.2.1, a cluster at layer ¢ has a diameter at most O(29log s).
Thus d, = O(271og s) = ¢291og s, for some positive constant c¢. This implies ZZI:O dy <2dg.
Thus, the total time unit required by Algorithm 4 to process all the transactions from all
layer and sublayers at destination shard S; is at most:

q" Hz—1
Tiotal < Z Z c1(L- min{k,/s} + dy) < c1lHy - min{k,\/s} + 2c1dy Hs (2)

q=0 r=0

We can replace Hy = c3logs as we have O(logs) sublayers (see Section 4.2.1) and
dg = czdlog s, where cy and c3 are some positive constants, then Equation 2 becomes:

c1l - calog s - min{k,\/s} + 2¢; - csdlogs - cologs => O(llog s - min{k,/s} 4+ dlog®s) .

As discussed in Theorem 7, (I 4 d) is a lower bound. Thus, we have that the competitive
ratio of Algorithm 4 as O(log s - min{k, \/s} + log” s). <

A.9 Pseudocode of Stateful Multi-Leader Scheduler
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Algorithm 4 STATEFUL MULTI-LEADER SCHEDULER.

1 Each shard knows the hierarchical cluster decomposition of Gg;

2 Each cluster C(q, r) has: leader shard Sg, txn queue PQy, scheduled txns 7, conflict graph Gr1,;

3 A¢: worst communication delay between any two shards in cluster C' due to partial-synchrony;

4 scheduleControl: Boolean flag indicating whether the cluster currently holds scheduling control,;

5 Upon generation of new txn 7; at home shard S;

6 S; determines the lowest cluster C(q, r) which includes T; and its accessing shards. Then S; sends T;
to leader shard S, of C(q,7);

7 Upon receiving txn(s) T; at leader shard S, of C(q,r)

8 Se¢ appends T; to its pending transactions queue PQy;
9 if Sy waits for 4A¢ time unit or Sy proceed Ac number of previous scheduled colors then
10 if scheduleControl == True then
11 // Invoke single-leader scheduling logic
12 Run Single-Leader Scheduler (Algorithm 3) with (PQg, Te, G1,, Ac);
13 // If Algorithm 3 break after process Ac number of scheduled colors then check and do
following:
14 if parent cluster C' requests control then
15 L Send scheduleControl to the parent and set scheduleControl <— False;
16 else if children clusters C'"' request control then
17 L Send scheduleControl to children and set scheduleControl <— False;
18 else if C(q,r) doesn’t have remaining transactions to schedule then
19 L Send scheduleControl down to children and set scheduleControl +— False;
20 else
21 L Send request to current scheduleControl holder (e.g., child or parent cluster);
22 Upon receiving scheduleControl at leader S, of C(q, )
23 if Sy previously requested scheduledControl to process its tzns then
24 L Set scheduleControl < True and trigger internal event (see above on line 9-12);
25 else
26 L Send scheduleControl to parent or child clusters according to the request it gets;
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