Two for One, One for All: Deterministic
LDC-Based Robust Computation in Congested
Clique

Keren Censor-Hillel &

Technion, Haifa, Israel

Orr Fischer &

Bar-Ilan University, Ramat Gan, Israel

Ran Gelles =

Bar-Ilan University, Ramat Gan, Israel

Pedro Soto =
Virginia Tech, Blacksburg, VA, USA

—— Abstract

We design a deterministic compiler that makes any computation in the Congested Clique model
robust to a constant fraction a@ < 1 of adversarial crash faults. In particular, we show how
a network of n nodes can compute any circuit of depth d, width w, and gate total fan A, in
d [+ %-\ .90(/lognloglosn) 1ounds in such a faulty model. As a corollary, any T-round Congested
Clique algorithm can be compiled into an algorithm that completes in 72rn°™") rounds in this model.

Our compiler obtains resilience to node crashes by coding information across the network, and
its main underlying observation is that we can leverage locally-decodable codes (LDCs) to maintain
a low complexity overhead, as these allow recovering the information needed at each computational
step by querying only small parts of the codeword, instead of retrieving the entire coded message,
which is inherent when using block codes.

The main technical contribution is that because erasures occur in known locations, which
correspond to crashed nodes, we can derandomize classical LDC constructions by deterministically
selecting query sets that avoid sufficiently many erasures. Moreover, when decoding multiple
codewords in parallel, our derandomization load-balances the queries per-node, thereby preventing
congestion and maintaining a low round complexity.

Deterministic decoding of LDCs presents a new challenge: the adversary can target precisely
the (few) nodes that are queried for decoding a certain codeword. We overcome this issue via an
adaptive doubling strategy: if a decoding attempt for a codeword fails, the node doubles the number
of its decoding attempts. We employ a similar doubling technique when the adversary crashes
the decoding node itself, replacing it dynamically with two other non-crashed nodes. By carefully
combining these two doubling processes, we overcome the challenges posed by the combination of a
deterministic LDC with a worst case pattern of crashes.

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases Congested Clique, Fault Tolerance, Error Correction Codes
Digital Object Identifier 10.4230/LIPIcs.DISC.2025.20

Related Version Full Version: https://doi.org/10.48550/arXiv.2508.08740 [§]

Funding Keren Censor-Hillel: is supported in part by the Israel Science Foundation, grant 529/23.
Orr Fischer: is supported in part by the Israel Science Foundation, grant No. 1042/22 and 800/22.
Ran Gelles: supported in part by the United States — Israel Binational Science Foundation (BSF),
grant No. 2020277.

Acknowledgements We would like to thank Merav Parter and Noga Ron-Zewi for helpful discussions.

© Keren Censor-Hillel, Orr Fischer, Ran Gelles, and Pedro Soto;
37 licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).

Editor: Dariusz R. Kowalski; Article No. 20; pp.20:1-20:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ckeren@cs.technion.ac.il
https://orcid.org/0000-0003-4395-5205
mailto:orr.fischer@biu.ac.il
https://orcid.org/0009-0007-4197-015X
mailto:ran.gelles@biu.ac.il
https://orcid.org/0000-0003-3615-3239
mailto:pedrosoto@vt.edu
https://orcid.org/0000-0002-7120-7362
https://doi.org/10.4230/LIPIcs.DISC.2025.20
https://doi.org/10.48550/arXiv.2508.08740
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

20:2

Deterministic LDC—Based Robust Computation in Congested Clique

1 Introduction

Robustness is a crucial component in the design of distributed algorithms, as faults lie at
the heart of distributed computing environments. Thus, addressing various types of failures
has been heavily studied, see, e.g., seminal results covered in classic books on distributed
computing [2,37,44]. In this paper, we focus on node crashes in the Congested Clique model
(introduced by Lotker et al. [36]), in which the computing devices use bandwidth-restricted
point-to-point communication over a complete network graph. So far, despite abundant
research in this model (see related work in Section 1.2), relatively less attention was given to
fault tolerance questions in this useful model [3,15,24,33, 34].

In some settings, such as the Congest model or the work in Congested Clique of [33,34],
if node crashes are allowed then the requirement is that the output of the computation
corresponds only to the inputs of non-crashed nodes. In contrast, Censor-Hillel and Soto [13]
show how to avoid losing any information in the Congested Clique despite node crashes.
They do this by having each node encode its input and the results of any subsequent local
computations using erasure correction codes, split the codewords to pieces and distribute
them to the nodes of the network. Upon a node crash, the other nodes collect the pieces of
the relevant codeword and decode it in order to continue the computation. This approach
implies that any task over a network of n nodes (with the typical setup of O(nlogn) bits of
input per node which we will also work with here) can be computed in O(n) rounds despite
crashes: after each node distributes its inputs in an encoded way, all other nodes gather all the
pieces and reconstruct the entire O(n? logn)-bit input, from which they can locally compute
the output. The work [13] beats this bound for certain tasks whose circuit representation
has good properties. While their work can achieve fast resilient algorithms for well-behaved
circuits, e.g., retain the O(n'/3)-round complexity for matrix multiplication [12] even with
faults, for a general circuit, their resilient algorithm may incur a multiplicative overhead of
n rounds, which is worse than the solution that simply learns the entire encoded input.

In this paper, we provide a compiler that makes Congested Clique algorithms robust to
a constant fraction of node crashes, by computing general circuits faster. This results in a
compiler with a complexity of 72n°(") rounds for a Congested Clique algorithm of 7' rounds,
and thus it beats the O(n)-round solution when T = o(n'/2=°(1)). In the crash model we
consider, node crashes occur at the start of a round, and the adversary may crash up to an
nodes in total throughout the algorithm, for a fault parameter « € [0, 1).

» Theorem 1. Let ALG be any Congested Clique algorithm, such that each node’s input and
randomness string is of size at most 6(n) bits, and that completes in T rounds. Then, for
any o € [0,1), there is an equivalent algorithm ALG' that is resilient to an « fraction of
crashes and completes in T?n°Y) rounds.

A concrete example for an application of Theorem 1 is computing exact single-source-
shortest-paths (SSSP) in weighted undirected graphs. The O(n'/6)-round algorithm of [6]
translates by our compiler to an algorithm that completes in n'/3t°(1) rounds, even if any
an nodes may crash during its execution, for any a < 1.

At the heart of our compiler is a faster deterministic algorithm for computing general
circuits in the faulty model. The following is our main technical contribution.

» Theorem 2. Let C be circuit of depth d, mazx total-fan A, and width w. Then, for any
«a € [0,1) there exists a deterministic Congested Clique algorithm for computing the output

of C in the presence of an crashes, whose round complexity is d - [5 + %] .90(y/lognloglogn)

K. Censor-Hillel, O. Fischer, R. Gelles, and P. Soto

While our transformation also goes through computing circuits, our algorithm differs
from that of [13] in two main aspects, which we discuss next.

The first regards the initialization phase of the resilient algorithm. Note that if the
adversary fails even a single node before the start of the computation, then this node’s input
is lost forever. The solution taken by [13] is promising 1/(1 — &) quiet rounds where no
crashes can happen. These quiet rounds can be used to encode and distribute the nodes
inputs. We take a different approach: we consider the inputs at the start of the computation
as encoded versions of the inputs to the Congested Clique model (similar to Spielman’s coded
computation [45]). Since our robust algorithm is such that the outputs are also encoded in
this manner, we get composability for free — we can simply start another computation after
completing a former one.

Second, instead of using block error correction codes, we use locally decodable codes
(LDCs) [31,46], which allow a node to query only a small number of other nodes in order to
decode only the information it needs for its next local computation. This yields a dramatic
improvement in the round complexity of computing a circuit because of its huge effect on
congestion. Working with LDCs gives rise to new challenges, because decoding an LDC
codeword can be easily targeted by the adversary which can crash so many nodes. The crux
of the proof of Theorem 2 shows how to overcome this, and that in fact it can be implemented
in a deterministic manner.

Theorem 1 is immediately established by combining our robust computation of circuits
in Theorem 2 with the natural conversion of any Congested Clique algorithm to a circuit (see
a formal proof in, e.g., [13]).

» Lemma 3. Let ALG be a Congested Clique algorithm that computes a function f in T
rounds, where the node’s input and randomness strings are of size 6(n) Then, there is a
circuit with depth d = 2T + 1, width w = ©(Tn?), and mazimal gate total fan of A = O(Tn),
whose inputs are all the 5(112) input bits of the nodes and whose outputs are the outputs of
the nodes after running ALG.

1.1 Technical Overview

Our main theorem states that we can robustly compute a circuit C' of depth d and arbitrary
gates, despite a possible (worst-case) crash of an « fraction of the nodes. Towards this end,
the network computes the gates of C, layer by layer, where each node is assigned some of
the gates in each layer in a dynamic manner that adapts to node failures.

As mentioned above, when a node crashes, it can no longer send messages, and thus any
information that was privately held in that node’s memory is lost forever. To be resilient to
crashes and avoid losing important information, we need to store information “in the network”
so that it can be retrieved despite a constant fraction of node crashes. Indeed, [13] used block
error correction codes (ECCs) to encode data and split the resulting codewords across the
network. This way, each piece of information can be retrieved by querying all the nodes for
their part of the codeword; the decoding succeeds even if a constant fraction of the nodes crash,
where the constant depends on the strength of the ECC in use. The drawback is that even if a
single bit of information is needed from a coded string, its entire codeword needs to be decoded.

Our starting point is that we replace block codes with Locally Decodable Codes (LDCs).
Informally, such codes allow decoding specific parts of the message, rather than decoding
the entire message. Furthermore, decoding does not require obtaining the entire (corrupted)
codeword, but rather queries relatively small parts of it (a subpolynomial number of symbols),
while still guaranteeing correct decoding of the desired symbol with a high probability.

20:3

DISC 2025

20:4

Deterministic LDC—Based Robust Computation in Congested Clique

Hence, switching to LDCs benefits our algorithm in the sense that nodes make less queries
in order to retrieve exactly the information they need for the computation. The advantage of
LDCs over standard (i.e., block-codes) ECCs becomes clear when considering the case where
some node is assigned to compute a gate with n inputs, each of which is stored in a different
codeword. With standard ECCs, this means that the node must access all n codewords
and retrieve all information bits, i.e., n? bits, assuming n-bit codewords, which causes high
congestion.

Algorithm Overview. The high-level idea of our robust circuit computation algorithm is as
follows. Consider a circuit C, whose inputs are distributed over the network in an encoded
manner using some LDC code. The network computes C' layer by layer. That is, let gates(1)
be the first layer of gates in C| i.e., all the gates whose inputs are the inputs of C. We first
distribute the tasks of computing these gates across the (non-crashed) nodes so that each
node is assigned roughly the same number of gates to compute. Each node then attempts
to compute all the gates allocated to it. To do this, the node first obtains the inputs for
each gate assigned to it by decoding the corresponding inputs of C, which are stored in the
network using codewords of an LDC. If this information retrieval is successful, the node
computes the outputs of the gates allocated to it, and then “stores” them in the network by
encoding them with an LDC and distributing the codewords to the nodes in the network.
Once the first layer is computed and stored in the network, the nodes continue to compute
the second layer of gates in C, denoted gates(2), which includes all gates whose inputs are
either the inputs of C or the outputs of the gates in the first layer, gates(1). This continues
until all the outputs of C are computed and stored in the network. Naturally, crashes that
occur during the algorithm may prevent the network from completing the computation of a
specific layer and progressing to the next layer, which we discuss next.

Overcoming Crashes |. In our robust circuit computation algorithm, each gate is assigned
to a dedicated node responsible for its computation. If that node crashes, the gates assigned
to it remain uncomputed. A trivial solution is to reassign any uncomputed gate in the current
layer of C' (whose original node is crashed) to a new node that is not crashed. However, the
adversary could then crash this new node and eventually cause a delay of an rounds, which
is extremely expensive. Our strategy is different: when a node crashes, we reassign its gate(s)
to two fresh nodes. If both of those nodes crash, we again double the redundancy, forcing
the adversary to double its effort to keep the gate uncomputed. After at most logn such
iterations, every gate is guaranteed to be computed by at least one live node. This progressive
doubling remains feasible without causing excessive congestion because of two factors: First,
the nodes that do not crash successfully compute and store their assigned gates. These nodes
are now available to take over the gates of the crashed nodes. Second, the adversary cannot
(effectively) corrupt too many nodes in the same round: If the adversary crashes too many
nodes during a short period of time, we call this step overwhelmingly faulty, and simply
restart the computation of this layer with the remaining nodes. While this translates to no
progress, it reduces the adversary’s budget of crashes and hence cannot occur too many times.

Deterministic LDCs and Congestion. The decoding algorithm of LDCs is inherently random.
Indeed, if a fixed (small) number of codeword symbols are queried during a decoding attempt
and these symbols are corrupted, then decoding is certainly impossible. If so, the code cannot
correct a constant fraction of corruptions, as would be normally expected. In particular, given
a budget of an node crashes, an all-knowledgeable adversary may be able to crash a subset
of nodes in a way that prevents any meaningful progress of the deterministic computation.

K. Censor-Hillel, O. Fischer, R. Gelles, and P. Soto

Despite the above conundrum, our robust algorithm is fully deterministic. In particular,
we derandomize the LDC decodings performed throughout the computation while maintaining
resilience to an node crashes. Our derandomization relies on two important properties,
specific to our model. First, when a node crashes, all other nodes are aware of this event

because the crashed node does not send any messages from the round in which it crashed.

This allows the remaining nodes to maintain a consistent view of the crashed and alive set of
nodes. Second, crashed nodes that are queried for their respective parts of the LDC codeword
do not reply, and thus the LDC decoding algorithm is missing some parts of the queried
codeword, known as erasure corruptions. These are easier to correct than when the codeword
contains incorrect information. The combination of erasure corruptions and knowledge of
which nodes have crashed in each round allows a decoder to predict whether a specific set of
queries will result in successful decoding. Thus the decoder can pick a set of queries that is
guaranteed to succeed if no further nodes crash.

While the above idea derandomizes the (inherently random) LDC decoding algorithm,
it creates a new challenge regarding the resulting congestion. To illustrate this challenge,
suppose that a node performs the above deterministic selection of queries separately for each
piece of information it wants to retrieve. Then, it may end up querying the same subset of
nodes over and over again, thus causing a large congestion. Randomized decoding averts
this issue by querying a set of nodes in a near-uniform distribution. However, even if we
could deterministically replicate this querying distribution, we face again the issue mentioned
above, where many of these queries are erased and do not lead to a correct decoding.

Nevertheless, our analysis, which is based on the probabilistic method, shows that it
is possible to select query sets for multiple (independent) LDC-decoding instances in the
presence of a constant fraction of erasures in positions known to the decoding algorithm, so
that the following hold simultaneously: (i) each decoding instance successfully decodes the
correct information, and (ii) the congestion per queried node is small, i.e., the queries are
well-distributed over the network. To show the latter, we analyze an equivalent bins-into-balls
experiment, showing that the event that too many balls (queries) aggregate in one specific bin
(node) happens with small probability. Union-bounding over all nodes keeps the probability
of the bad event below 1, thus proving the existence of good query sets that avoid congestion.

Overcoming Crashes Il. The above discussion implies that the adversary cannot select a
set of an nodes to crash for invalidating many of the LDC decoding attempts throughout the
computation, as long as these indices are known to the nodes. However, the adversary may
decide to crash nodes after a decoder fixes its selection of nodes to query in a given round, as
this selection depends only on nodes that are crashed prior to that round. To overcome this
problem, the nodes dynamically increase the number of times they attempt to LDC decode
each piece of information, according to corruptions made so far. Namely, if the decoding of
some LDC-encoded information fails due to new corruptions of the queried nodes, then the
decoding node performs two independent decoding attempts. These new queries depend on
all the crashes so far, and in particular, on the “new” crashes that invalidated the original
decoding attempt. If these two attempts fail as well (due to new crashes that occur after the
nodes queried by these two attempts are decided), the decoding node doubles its number of
attempts again, and so on. Overall, after a logarithmic number of doublings, this approach
potentially causes a large, near-linear number of LDC decoding attempts, and the adversary
can only fail a constant fraction of them without exceeding its budget. Note that it only
takes one successful attempt to move on, so the adversary must fail all attempts of a single
codeword to prevent progress.

20:5

DISC 2025

20:6

Deterministic LDC—Based Robust Computation in Congested Clique

Recap. We can now summarize the overview of our robust circuit computation. For a given
circuit C, the computation goes layer by layer, where computing a layer of C' means: (1)
assigning uncomputed gates of the layer to non-crashed nodes; (2) retrieving the inputs to
the gates of this layer, that are stored in the network via an LDC during the computation
of previous layers; (3) computing the gates; (4) storing the outputs of the gates via an
LDC. Technically speaking, this computation of each layer is done in two nested loops: The
external loop doubles, in each iteration, the number of nodes responsible for computing
some uncomputed gate (we call this loop the NodeDoubling loop). The internal loop doubles,
in each iteration, the number of independent decoding attempts each node makes for each
uncomputed gate assigned to it (we call this loop the AttemptDoubling loop). Section 3 fully
details our algorithm. The algorithm’s analysis and the derandomization of the LDC in our
setup appear in the full version of the paper [8].

1.2 Additional Related Work

Since its introduction for faster MST computation [36], the Congested Clique model has
been extensively explored during recent decades for various tasks. The MST complexity
was eventually shown to be constant [40] following a beautiful line of work [26, 28,30, 32].
Additional examples include routing [35], coloring [4, 14,16, 17,42, 43], subgraph finding
[7,9,10,19,21,29,41], and many more. Hardness of obtaining lower bounds in this model is
established in [20].

Fault-tolerance in the Congested Clique model was explored by [33,34] for graph realization
problems under crash-faults, by [3,15] for recognizing connectivity and hereditary properties
under Byzantine faults, and by [23,24] for general computations under edge faults. In
particular, [24] employs LDCs as means to concentrate information from many nodes into few.

Coding theory, in various forms, has been extensively used in many other areas of
distributed computing, including: distributed zero-knowledge [5,27], proof labeling schemes
[11,22], the beeping model [1,18,25], and distributed interactive proofs [39].

2 Preliminaries

For an integer n > 1 we denote [n] = {1,2,...,n}. All logarithms are taken to base 2 unless
otherwise mentioned. We say that an event occurs with high probability (in n, which is
usually implicit) if its probability is at least 1 — 1/n'%. For a string and for any i € [|z]],
let z[i] denote the i-th symbol of .

2.1 Computation Model

Suppose a Congested Clique network, where n nodes, v1, ..., v,, communicate in synchronous
rounds by exchanging blog n-bit messages in an all-to-all fashion, for some constant b € N.
Throughout the computation, an adversary may choose to crash up to an nodes, where
the constant o € [0,1) is a parameter of the model. A crashed node does not send any
messages starting from the round in which it is crashed. The corruption is worst case: an
all-knowledgeable adversary bases its decision on which nodes to fail on all its available
information, including the algorithm that the nodes execute, their inputs, and their local
randomness (if any). Note that all nodes know which nodes are non-faulty at the end of each
round, denoted as the set A (to indicate that they are alive).

The compiler of Algorithm 5 is completely deterministic, in the sense that it does not
add any new randomness. In particular, The robust algorithm ALG’ remains deterministic if
ALG was deterministic, and similarly, it is randomized if ALG was so. In the latter case, we
assume that the randomness of ALG is given to the representing circuit C' as input.

K. Censor-Hillel, O. Fischer, R. Gelles, and P. Soto

Coded inputs and outputs. In the Congested Clique model, it is common to refer to
problems in which each node holds a private input = of O(nlogn) bits. As explained in the
introduction, in our faulty model, the inputs must be coded in a way that prevents them from
being lost if some node crashes before the first round of communication. We thus consider
inputs as encoded via an LDC code (see Definition 4 in Section 2.3 below), and the respective
codeword is distributed across the nodes of the network. We employ a (g, d, €)-LDC code
with block length n, whose parameters will be specified later. Such a code guarantees that
every bit of the input = (of each node) can be retrieved by querying ¢ nodes with probability

1 — € over a uniform choice of the randomness string, even if dn of the nodes have crashed.

It will be the case that o < §.

We require the output to be stored in the network in a similar way: the outputs should
be encoded via an LDC code whose resulting codewords are split among the nodes, so that
it is possible to retrieve each bit of the output despite dn crashes. This choice allows the

composition of computations, where the outputs of one computation are the inputs of the next.

2.2 Layered Circuits

We identify a circuit C with a directed acyclic graph C = (V¢, F¢) in which every gate is
associated with a node, and every wire connecting gates is associated with an edge. Each
bit-input to the circuit (an input gate) is associated with a leaf node and each output of the
circuit (an output gate) with a root node. Other nodes are associated with the computational
gates of the circuit. We say that a node g € V¢ depends on a node g’ € Vi if there is a
directed path from ¢’ to g. The notion of gate dependencies induces layers in the circuit,
where all input gates are in layer 0, and a gate g is placed in layer ¢ if ¢ is the minimal integer
such that g depends only on nodes in layers at most ¢ — 1. For a gate g € Vi, we denote by
layer(g) the layer of g, and let gates(i) = {g € Vo | layer(g) = i} be the set of all the gates in
layer ¢. The depth of C, denoted d = d(C), is defined to be max4cy, layer(g). We denote by

wires(i) = {(u,v) € E¢ | layer(u) = i} the set of all wires that go out of the gates in layer 7.

Note that wires(0) are the inputs to the circuit. For a gate g, denote by fan-in(g) its in-degree
and by fan-out(g) its out-degree; let fan(g) = fan-in(g) +fan-out(g) be its total fan. The width
of the circuit, w = w(C), is defined as the maximal number of outgoing wires of any layer,
w = max;(wires(i)). We assume throughout that all parameters of the circuit are polynomial
in the size of the network, i.e. d,w, A = O(poly(n)). This fits the case where C represents a
Congested Clique algorithm with O(nlogn) bits of input per node. We note, however, that
the statement of Theorem 2 holds, up to logarithmic terms, for any parameters d, w, and A.

2.3 Error Correcting Codes and Locally Decodable Codes

For an alphabet ¥, the Hamming distance of two strings x,y € (X U L)* of the same
length, i.e., |z| = |y, is the number of indices for which z and y differ and is denoted by
Hamm(z,y) = {4 | z[{] # y[i]}|. For two strings z € ¥*, y € (XU {L})* and value ¢ € (0,1),
we say that y can be obtained by a c-fraction of erasures from x if |z| = |y|, and for all
i € [|z|], it holds that either z[i] = y[i] or y[i] = L, where the latter case happens at most
c|lz| times. An index ¢ in which y[i] = L is called an erasure.

For a prime power p, we denote by I, the finite field of size p. An error correcting code is
a mapping Enc :]Fff —]F;’)V that takes K symbols of the alphabet I, into NV symbols of the
alphabet F,.! The value N is called the block length of the code. The ratio K/N is called

! We can map [p] and F,, with a fixed isomorphism, so that Enc : [p]* — [p]".

20:7

DISC 2025

20:8

Deterministic LDC—Based Robust Computation in Congested Clique

< --- wires(1)

Figure 1 An example of a circuit C' of depth d = 3 and width w = 6. We have gates(1) = {g1, g2}
and gates(2) = {gs}. The gate g2 has fan-in = 4 and fan-out = 1 giving fan = 5, while the gate in;
has fan-out = 2 and fan = 2. The set wires(0) and wires(1) are indicated on the figure.

the rate of the code. The relative distance of a code is the normalized Hamming distance
between any two codewords, denoted § = min,, ., +Hamm(Enc(m), Enc(m’)).

Next, we formally define the notion of locally decodable codes. For the purposes of
our work, we only consider the erasure setting, in which we are given access to a possibly
corrupted codeword y, obtained by erasing at most d-fraction of some Enc(z) for some
T € Fé{, and an index i € [K], and our goal is to find the i-th symbol of z.

» Definition 4 (Locally Decodable Codes (LDCs) for erasures). An error correcting code
Enc:]Ff —]FI],V is said to be a (q, 9, €)-LDC if there exists a randomized decoding algorithm Dec
that receives as input a stringy € (F,U{L})"N and an indexi € [K], performs at most q queries
to y, and outputs a value with the following guarantee: if there exists x € IFff such that y can
be obtained by at most a §-fraction of erasures from Enc(z), then Pr(Dec(y,i) = z[i]) > 1 —e.

» Definition 5 (Non-adaptiveness). An LDC is called non-adaptive if for every call to its
decoding algorithm Dec, the set of queries it performs given input index i is only a function
of the randomness and the index i. In particular, a query does not depend on the outcome of
PTEVIOUS queries.

We can think of the decoding algorithm of a non-adaptive LDC code Dec(-, %) as an algorithm
with oracle access to the codeword, that first generates ¢ indices to query, and then, once
provided these (possibly corrupt) ¢ symbols, returns the decoded message symbol.

The following smoothness property of LDCs means that decoding an index requires
querying the codeword in a “smooth” (near-uniform) way. This property is important in
order to avoid congestion when a node decodes multiple values.

» Definition 6 (Smoothness). An LDC' is called s-smooth if there exists a decoding algo-
rithm Dec, such that during any call to Dec, any entry j € [N] of the codeword is queried
with probability at most s.

The following theorem suggests that smoothness is an inherent property of LDCs, since
any decoding algorithm can be transformed into a smooth one.

» Theorem 7 ([31, Theorem 1]). Every (q,d,€)-LDC of block length N is q/dN-smooth.

K. Censor-Hillel, O. Fischer, R. Gelles, and P. Soto

3 Computing a Circuit in the presence of crashes

We show how to efficiently and deterministically compute a specified circuit C' in the Congested
Clique model, in the presence of up to an crashes. We start, in Section 3.1, by describing the
procedures Store, Retrieve, and BulkRetrieve used to store and retrieve information in our
algorithm. In section Section 3.2 we describe another procedure, Allocate, that assigns gates
to nodes in a balanced-manner. Finally, in Section 3.3, we describe our circuit computation
algorithm based on these procedures.

3.1 The Store, Retrieve, and BulkRetrieve Procedures

As mentioned above, any information that may get lost due to node crash is stored in the
network via an LDC. We first describe the LDC we use and then detail the store and retrieve
procedures.

The LDC instantiation

We assume a fixed LDC code, whose exact details appear in the full version of the paper [8].

Specifically, for some power of prime g = 20(10g7) anq p such that p~! = 90(y/log nloglog n,
our LDC has an encoding function Enc : [¢]*™ — [¢]™ and a decoding function Dec which,
given an input index i € [n], smoothly queries ¢ indices of the codeword and decodes correctly
even if up to d-fraction of the ¢ queried symbols are erased, for some predetermined constant
distance o < 6 < 1. We assume that n = ¢" for some integer r (specified in the detailed
construction); this assumption can be lifted using standard methods. Note that Definition 4
says that Dec is randomized, but our goal is to compute the circuit deterministically. We
thus treat any randomness used by Dec as originating from some randomness string, but
our implementation of obtaining such randomness strings will be deterministic rather than
randomized which will render our implementation of Dec, and hence our circuit computation
algorithm, deterministic.

The Store Procedure

The Store procedure “saves” information in the network in a robust way, by encoding it with
an LDC and distributing the codeword among the nodes of the network.

Each node v; begins the Store procedure with a bit-string U; it wishes to store in the
network. It first splits U; into parts of size pn|log ¢] bits each (so that each can be represented
by a string of pn symbols over the alphabet [¢]), padding with zeros as necessary. Set
last; = [|U;|/(pn|logq])] and denote these parts Uy, ..., Ujl-aStj. The node v; then encodes
each U} using Enc to obtain a codeword Enc(U}) = L} of size |L}| = n symbols.

Next, v; distributes the codewords to the network nodes. Specifically, in round ¢ =
1,...,last;, it sends the symbols of L; — one symbol to each node in the network. This takes
a single round of communication because each symbol in the LDC codeword comes from
the alphabet [¢] with ¢ = 20(\/@), hence it can be encoded in log ¢ = O(logn) bits. The
formal description is depicted in Algorithm 1.

We say that v; stored U; in the network if v; completed the Store procedure without
crashing. The following is straightforward from Algorithm 1.

» Observation 8. Storing a string U; takes O([|U;|/(pn|logq])]) rounds of communication.

20:9

DISC 2025

20:10

Deterministic LDC—Based Robust Computation in Congested Clique

Algorithm 1 Store (for node v;).

Input: A bit-string U;.

1. Partition U; into consecutive parts of size pn|log ¢| bits, padding the last part if necessary;

denote these substrings Uy, ..., U;aStj. > last; = [|U;|/(pn|logq])]
2: fori=1,...,last; do
3 Li+ Enc(U}).
4: For all € [n] in parallel, send Lj[t] to v;.
5: end for

The Retrieve and BulkRetrieve Procedures

In the Retrieve procedure, a node v; is given as input an index w of some string U that was
previously stored in the network using the Store procedure. Node v; is additionally given a
string R called the randomness string. One can think of this procedure as randomized, with R
as its randomness, but in all our invocations of Retrieve, the string R is set deterministically,
as will be explained later.

The goal of the Retrieve procedure is to retrieve the value of the w-th bit of the previously
stored U. To that end, v; first identifies the codeword that contains the bit w: recall that
the Store procedure splits U into parts of size =~ pnlog ¢ bits. Denote by U® the respective
part and by i’ the index of the symbol in U? that contains the bit-value U[w] in which we are
interested. In the following, we say “decode Ulw]” to actually mean decoding the respective
index i’ of the possibly corrupted codeword Enc(U*) that contains the respective value.

To retrieve the value of Ulw] from the (stored) codeword Enc(U?), the node v; executes
Dec(.) using the randomness string R and obtains indices of random ¢ symbols of Enc(U*)
needed for the decoding. It is possible to learn these ¢ indices in advance because the LDC is
non-adaptive (Definition 5). The node v; then queries the respective nodes for their stored
symbols and provides Dec(.) with their replies. Note that crashed nodes do not reply, which
translates to erasures given to Dec(.). Further, in hindsight, the randomness string R will be
derandomized, which has the effect that all nodes know R. It will follow that v; does not
actually need to send any message in order to query any node; the ¢ nodes will know that
they are the nodes that should give information back to v;, since they will know the identity
of i',U? and the value of R to begin with. See Lemma 14.

Under some circumstances, we allow the retrieval to fail, in which case the output is L.
This could happen in two cases: (i) when there are too many erasures and Dec(.) returns L,
or (ii) if one of the nodes queried during this Retrieve invocation crashes during the execution
of this Retrieve invocation. For the former, our derandomization will guarantee that this
event cannot happen if at most an nodes have crashed. For the latter, in this case we set
the output to be L even if the decoding Dec successfully retrieves the symbol. This decision
does not affect the correctness of the algorithm, but rather simplifies its analysis.

The BulkRetrieve procedure generalizes the above to allow retrieving multiple previously
stored bits. Now, v; is given as input a collection of indices W}, where each index w € W;
refers to some (predetermined) U(,,) that was previously stored in the network via a Store. The
strings Uy,,) may be different for different values of w, or they may be the same. Additionally,
the procedure gets a multiplicity parameter ¢. The goal is to output the value of the bit in
index w of Uy, for each index w € Wj.

K. Censor-Hillel, O. Fischer, R. Gelles, and P. Soto

Algorithm 2 Retrieve (for node v;).

Inputs: An index w to some string U previously stored in the network via the Store
procedure and a randomness string R.

1: Identify the part U? used by Store to encode Ufw] and the respective index 4’ in it that
contains that value, i.e., the symbol U*[i’] contains the bit Ulw].

2: Execute Dec(-,4') with randomness string R, to obtain the ¢ indices needed to decode
Ut[i']. Set S C V to be the nodes that hold these respective symbols.

3: Query the respective nodes in S. Treat symbols associated with crashed nodes as erasures.

Output:

4: If some node v € S crashes during the execution of Line 3, output L.

5: Otherwise, output the bit U[w] contained in Dec(Enc(U?,4’)) by providing the g replies
(including erasures) when Dec queries the codeword Enc(U?).

Towards this goal, all nodes in the network first deterministically compute a set of
randomness strings R(v;) = {Ru, w,i | i € [2],w € W;} for each v; € V, with good properties,
which we define and discuss in detail later in the section (see Definition 9). The deterministic
generation of these strings is given by Lemma 10. After this step, all nodes v € V know
R(v;) for every v;.

Next, v; performs, for each index w € Wy, a batch of 2¢ Retrieve procedures, where the
i-th invocation uses randomness string Ry, w,i- Similar to the case of Retrieve, we allow some
retrieves to fail and output L. If at least one of the 2¢ invocations of Retrieve(w, Rvj}w,i)
succeeds, its output becomes the output of BulkRetrieve for the index w; otherwise, the
respective output is L.

All the |[W;]| - 2¢ Retrieve invocations are executed in parallel. However, in order to avoid
congestion, v; pipelines requests targeted to the same node. That is, it sends at most one
query to any node in any given round. Similar to above, the set of strings {U(,)}wew, is
predetermined and known to all nodes, and the identities of the ¢ nodes that are queried in
a specific Retrieve(w, Rv].,wyi) are generated using Ry, «,;, which is also known to all nodes.
Hence, each queried node can infer the respective U, for each query, without the need for
v; to communicate this data. The formal procedure is depicted in Algorithm 3.

Consider a specific instance of BulkRetrieve(W;,¢). The selection of randomness
strings R(v;) that v; uses has a tremendous effect on the induced congestion. Indeed, assume
that R(v;) is such that all Retrieves query some v;, implying 2¢|W;| rounds of communica-
tion where in each round a single LDC symbol is communicated. This should be contrasted
with the fully randomized case, where each node is queried in a near-uniform distribution
(implied by the smoothness of LDC codes, Theorem 7), implying that each v; is queried
2Z|Wj| - g/n times, in expectation. Standard tail bounds show that the number of queries of
the maximal node (and hence the round complexity) is bounded by 2¢|W;| - ¢/n - O(logn).
This gives that there exists a way to select the randomness strings R (v;) while maintaining
the same round complexity.

However, while the above gives uniform query locations for the goal of controlling
congestion, it does not address the problem that many locations might be erased. To
illustrate this point, assume that out of the 2¢ Retrieve instances, all but one are querying
mostly erased symbols (crashed nodes), and only one Retrieve correctly decodes the value.
The output of BulkRetrieve would be correct in this case, but in this scenario the adversary
needs to crash only a single additional node in order to fail it.

20:11

DISC 2025

20:12

Deterministic LDC—Based Robust Computation in Congested Clique

Algorithm 3 BulkRetrieve (for node v;).

Inputs: An ordered collection W; of indices, where each w € W) refers to a predetermined
string Uy, that was previously stored by some node executing Store. A multiplicity
parameter £.

1: Compute a collection of randomness strings R(v;) = {Ry, w,i | w € Wj,i € [2°]} using

Lemma 10.
2: parallel for each w € W; do
parallel for i = 1,...,2¢ times do

Run Retrieve(w, Ry, w,i). If v; needs to query the same node multiple times
in all of these parallel instances, send at most one query per round, until all
queries are sent.
end parallel for
6: end parallel for

7: Output: For each w, the output is the output of the first successful Retrieve(w, Ry, i),
if any, or L otherwise.

Indeed, what we show is even stronger than mimicking a fully randomized case by some
naive load balancing. The following Lemma 10 shows that we can find a set of randomness
strings that maintains a similar round complexity even if each codeword has an symbols
erased, and furthermore, each individual Retrieve succeeds decoding the respective value, as
long as no new crashes happened during that Retrieve. In other words, we can de-randomize
the random sampling of codeword symbols to query while (i) maintaining complexity (by
controlling congestion) and (ii) performing only “useful” queries, hence maintaining our
resilience to an all-knowledgeable adversary. Our choice of randomness strings guarantees
that the adversary must waste 2¢ of its crashing budget in order to fail the BulkRetrieve,
which is crucial for the correctness proof.

We now define the notion of good randomness strings, namely, strings that provide the
above properties for the BulkRetrieve procedure.

» Definition 9 (Good randomness strings). Fiz a node v;, parameters W;, £, and the set of

non-crashed nodes A. A collection of randomness strings R(vj) = {Ru, w.ifwew, ic[2¢] 5

called good for an instance of BulkRetrieve(W;, ¢), if the following holds:

(1) Each node is queried at most O([%] logn) times in total by v;, and

(2) For allw € W; and i € [2°], the invocation of Retrieve(w, R, i) succeeds (given no
further changes in A).

In the full version of the paper [8], we prove the following,.
» Lemma 10. There is a zero-round deterministic algorithm which, given the set of non-
crashed nodes A, a collection of indices W;, and a multiplicity parameter £, computes a good

collection of randomness strings R(v;) for v;.

With the above, the following is immediate.

» Lemma 11. BulkRetrieve(W;, () takes O([%L‘q] logn) rounds.

K. Censor-Hillel, O. Fischer, R. Gelles, and P. Soto

3.2 The Allocate Procedure

The purpose of the Allocate procedure is to assign a set of given gates that need to be
computed to non-crashed nodes. The procedure is deterministic and runs locally on each
node, without any communication. However, all nodes reach the same allocation, since they
all have the same knowledge regarding crashed nodes and regarding failed LDC queries, where
the latter is due to the randomness strings being generated deterministically by all nodes and
known to all (due to Lemma 10 above and the upcoming Lemma 14 which essentially says that
the nodes are able to keep a consistent view of all of these variables by careful bookkeeping).

In more detail, the procedure is given as input the current set of non-crashed nodes A, a set
of gates G C V¢ (of the circuit C = (V¢, E¢), known to all), and a multiplicity parameter ;.
For each gate g € G, Allocate assigns g to a set of min(2°,|.A|) nodes from A using the
following sequential “greedy” process: Sort the gates in G by their total fan (denoted fan), in
descending order. Assign the gates one by one to a set of min(2%, |.A|) distinct nodes in A
whose loads are minimal (break symmetry by node IDs). The load of a node v, denoted A(v),
is defined as the sum of the total fan of all gates assigned to it so far during this Allocate
instance. See Algorithm 4.

Algorithm 4 Allocate (for node vj).

Inputs: A set G of gates and a multiplicity parameter ¢;.

1: Let g1,...,9|q be the gates of G, sorted in descending order of fan (break ties consis-
tently).

2: Set A(v) + 0 for all nodes v € A.

3: Gj +~ 0.

4: L <+ min(2%, |A|).

5. fori=1,...,|G| do

6: Let uq,...,ur, be the L nodes in A with the minimal loads (break ties by IDs).

7: for each node u € {us,...,ur} do

8: Assign g; to the node u.

9: A(u) A(u) + fan(g;).

10: if u= Vj then Gj — Gj U {gi}-

11: end if

12: end for

13: end for

14: Output: The set G; of gates assigned to v;.

The assignment can be computed locally in a consistent manner across all non-crashed
nodes without any communication, since all relevant information, namely G, ¢;, and A, is
known to all nodes in 4. Note that since this is a local computation procedure, we can
assume that set A does not change throughout the computation, and that all nodes use the
same set A representing the non-crashed nodes at the beginning of that round.

The following lemma bounds the load assigned to each node, and is proven in Section B.

» Lemma 12. Let L = min(2%,|A|), P = > gec fan(g), and assume maxgec fan(g) < A.
Then, Allocate(G, £1) puts a mazimal load of max(4PL/|A|, A) on each node.

20:13

DISC 2025

20:14

Deterministic LDC—Based Robust Computation in Congested Clique

3.3 The Circuit Computation Algorithm

We can now complete the description of our circuit computation algorithm, presented in
Algorithm 5. The algorithm takes as input a circuit C' whose inputs (the wires wires(0)) are
already stored in the network.

The algorithm computes the gates of C' layer by layer, in a sequence of d steps referred
to as layer-steps. For layer-step i = 1,...,d, we assume that wires(0), ..., wires(i — 1) have
already been stored by previous iterations, and the goal is to compute and store wires(z).
To this end, the nodes execute Allocate, which assigns to each non-crashed node v; a set of
gates G, C gates(i) to compute and store their output wires (line 5).

Then, each node v; tries to retrieve the input wires of the gates G; assigned to it via
the BulkRetrieve procedure (line 8). If successful, the node computes the gates assigned to it
(line 12) and obtains the values of all output wires U; of the gates G;. The node then stores
these wires in the network (line 13).

However, crashes that occur during this computation may hinder the computation of
some wires. To overcome this issue, the computation of layer i consists of two nested loops.
The outer loop, which we call the NodeDoubling-loop, iterates over ¢; = 1,..., [logn| and
doubles the number of nodes that try to compute a given gate. The inner loop, called the
AttemptDoubling-loop, iterates over ¢35 = 1,..., [log A] for some parameter A (fixed in the
analysis), and doubles the number of retrieval attempts a given node performs for each input
wire assigned to it.

If during the computation of layer ¢, more than cyn/(glogn) new crashes have occurred,
for some sufficiently small constant ¢y > 0 determined later, we re-start the computation of
that layer with the remaining nodes. Namely, we maintain a counter f; ., of newly crashed
nodes in the layer-step, which is initialized at the start of the layer-step to be 0. Once it passes
csn/(glogn), we reset the counter to 0, reset the multiplicity parameters ¢1,¢> to 1, and
retry to compute and store all remaining unstored wires in wires(z). This action is captured
in lines 1620, assisted by the variable rep, that counts the number of repetition attempts of
computing layer i. We call such a repetition of a layer-step overwhelmingly faulty:

» Definition 13. Let cy > 0 be a sufficiently small constant. A repetition of a layer-step is
called overwhelmingly faulty if cyn/(qlogn) new crashes occur during this step.

9

The next lemma captures the following observation: the nodes are capable of “bookkeeping’
the progress of the computation at any given round of Algorithm 5. This bookkeeping
information includes gates that were computed and stored, gates that still need to be
computed, Retrieve calls that succeeded and those that failed, etc. In particular, when a
node needs to access some wire w, that was previously stored, the node knows exactly which
LDC codeword contains it, and which index of that codeword it should decode in order to
retrieve w.

» Lemma 14 (Bookkeeping). Any non-crashed node knows, at the start of any round, the
following information: (1) the set S of gates whose outputs were stored in the network, and
(2) for any g € S and any output w of g, the LDC' codeword that contains w (namely, the
node v; that stored it and the round in which it was stored) and the index of w in the string U
that v; stored.

Proof. Recall that, by definition, since a crashed node does not send any messages starting
from the round in which it crashes, all nodes know the set A of non-crashed nodes at the
beginning of every round.

K. Censor-Hillel, O. Fischer, R. Gelles, and P. Soto

Algorithm 5 Robust Circuit Computation (for node vjy).

Inputs:

A globally known circuit C.

The inputs wires(0) to the circuit C are stored in the network via the Store procedure.
Global parameters A, maxRetTime and maxStoreTime (to be set later).

1: for Layer i =1,...,d do > The layer-loop
2 rep 1,5+ 0

3 for /1 =1,...,[logn] do > The NodeDoubling-loop
4: G + gates(i) \ S

5: G < Allocate(G, ¢4)

6 Let W; be the set of wires required for computing all gates in G.

7 for ¢o=1,...,[logA] do > The AttemptDoubling-loop
8 Execute BulkRetrieve(W;, £3). > Idle until maxRetTime rounds pass
9: Remove from W; all wires that were successfully retrieved in line 8.

10: if W; = 0 then > Otherwise, idle
11: Let U; be the output wires of G.

12: Locally compute the values of U; using the retrieved values.

13: Execute Store(U;). > Idle until maxStoreTime rounds pass
14: end if

15: Update S to include gates whose output wires were stored by at least one node.

> If too many failures have occurred, repeat layer i

16: Let f;rep be the number of crashes since the last execution of line 2 or 19.
17: if firep > cyn/(glogn) then

18: rep < rep+1

19: continue from line 3, re-setting ¢; < 1.
20: end if
21: end for
22: end for
23: end for

We prove Items (1) and (2) by induction on the round number. At initialization (the
beginning of the first round, r = 1), the inputs to the circuit C' are assumed to be stored,
hence (1) and (2) hold for the input gates gates(0).

Next, we assume the statement holds at the beginning of some NodeDoubling-step, and
we show it holds in every round until the end of this NodeDoubling-step. Note that all
nodes execute Algorithm 5 in synchrony and, specifically, they all perform BulkRetrieve or
Store at the same rounds (other actions do not involve communication as they are purely
computational and thus take zero rounds).

If round r is not the final round of a Store procedure, then the set of stored wires is
unchanged. Otherwise, each node knows the set S of stored gates at the beginning of the
Store, by the induction hypothesis, and thus it also knows the set G = gates(i) \ S. Since
Allocate is deterministic and depends only on C, ¢, GG, and S, then all nodes learn the same
output of Allocate(G, ¢1). In particular, they all learn the gates G; that each v; € A is
assigned to compute in this NodeDoubling-step.

With this knowledge, all nodes can (locally) generate the good randomness strings that
are used by some v; for each of its BulkRetrieve invocations (Lemma 10). Further, all nodes
have the same knowledge about Retrieve calls that failed in previous rounds due to new

20:15

DISC 2025

20:16

Deterministic LDC—Based Robust Computation in Congested Clique

crashes. They can thus infer which nodes v; have successfully retrieved all input wires of G;
(i.e., those for which W; = () and satisfy the condition of in Algorithm 5. Only these nodes
perform the Store that completes in that round 7.

Out of the nodes that perform Store, any node v; that does not crash before round r,
succeeds in storing all the wires in U; (i.e., all the output wires of G;).

Therefore, at the start of round r + 1, all the nodes in A learn the set of nodes that
performed a successful Store. They also know the set U; of each v; that completed a Store,
in particular, which wires it contains and their internal order.? This implies Item (2). It also
follows that all nodes in A can update their set S of stored gates in a consistent manner
(line 15), which implies Ttem (1). <

As a result of this careful bookkeeping, v; does not need to send any “metadata” infor-
mation to the nodes it needs to query — they already have all the needed information (in
the notations of BulkRetrieve, they know w and U,,), the randomness strings R(v;), and the
specific round(s) in which v; queries them (i.e., is expecting a symbol from them).

This concludes the description of the algorithm. The algorithm’s analysis, the description
of the LDC we construct for the purpose of deterministic local decoding, and the proof of
Lemma 10 are deferred to the full version of the paper [8].

——— References

1 Yagel Ashkenazi, Ran Gelles, and Amir Leshem. Noisy beeping networks. Information and
Computation, 289:104925, 2022. doi:10.1016/j.ic.2022.104925.

2 Hagit Attiya and Jennifer L. Welch. Distributed computing - fundamentals, simulations, and
advanced topics (2. ed.). Wiley series on parallel and distributed computing. Wiley, 2004.

3 John Augustine, Anisur Rahaman Molla, Gopal Pandurangan, and Yadu Vasudev. Byzantine
connectivity testing in the congested clique. In 36th International Symposium on Distributed
Computing (DISC), volume 246, pages 7:1-7:21, 2022. doi:10.4230/LIPIcs.DISC.2022.7.

4 Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient deterministic distributed
coloring with small bandwidth. In ACM Symposium on Principles of Distributed Computing
(PODC), pages 243-252, 2020. doi:10.1145/3382734.3404504.

5 Aviv Bick, Gillat Kol, and Rotem Oshman. Distributed zero-knowledge proofs over networks.
In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2426-2458, 2022. d0i:10.1137/1.9781611977073.97.

6 Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast approximate
shortest paths in the congested clique. Distributed Computing, 34(6):463-487, 2021. doi:
10.1007/s00446-020-00380-5.

7 Keren Censor-Hillel, Orr Fischer, Frangois Le Gall, Dean Leitersdorf, and Rotem Oshman.
Quantum distributed algorithms for detection of cliques. In 13th Innovations in Theoretical
Computer Science Conference (ITCS), volume 215, pages 35:1-35:25, 2022. doi:10.4230/
LIPIcs.ITCS.2022.35.

8 Keren Censor-Hillel, Orr Fischer, Ran Gelles, and Pedro Soto. Two for one, one for all:
Deterministic ldc-based robust computation in congested clique, 2025. doi:10.48550/arXiv.
2508.08740.

9 Keren Censor-Hillel, Orr Fischer, Tzlil Gonen, Frangois Le Gall, Dean Leitersdorf, and
Rotem Oshman. Fast distributed algorithms for girth, cycles and small subgraphs. In 34th
International Symposium on Distributed Computing (DISC), volume 179, pages 33:1-33:17,
2020. doi:10.4230/LIPIcs.DISC.2020.33.

2 While U ; is a set of wire-values, the Store procedure expects a bitstring, hence we induce some standard
order on the set U; that maps it into a bitstring, and this ordering is known by all nodes.

https://doi.org/10.1016/j.ic.2022.104925
https://doi.org/10.4230/LIPIcs.DISC.2022.7
https://doi.org/10.1145/3382734.3404504
https://doi.org/10.1137/1.9781611977073.97
https://doi.org/10.1007/s00446-020-00380-5
https://doi.org/10.1007/s00446-020-00380-5
https://doi.org/10.4230/LIPIcs.ITCS.2022.35
https://doi.org/10.4230/LIPIcs.ITCS.2022.35
https://doi.org/10.48550/arXiv.2508.08740
https://doi.org/10.48550/arXiv.2508.08740
https://doi.org/10.4230/LIPIcs.DISC.2020.33

K. Censor-Hillel, O. Fischer, R. Gelles, and P. Soto

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Keren Censor-Hillel, Francois Le Gall, and Dean Leitersdorf. On distributed listing of
cliques. In Symposium on Principles of Distributed Computing (PODC), pages 474-482, 2020.
doi:10.1145/3382734.3405742.

Keren Censor-Hillel and Einav Huberman. Near-optimal resilient labeling schemes. In 28th
International Conference on Principles of Distributed Systems (OPODIS), volume 324, pages
35:1-35:22, 2024. doi:10.4230/LIPIcs.0PODIS.2024.35.

Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the congested clique. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing (PODC), pages 143-152, 2015.
do0i:10.1145/2767386.2767414.

Keren Censor-Hillel and Pedro Soto. Computing in a faulty congested clique. CoRR,
abs/2505.11430, 2025. doi:10.48550/arXiv.2505.11430.

Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The com-
plexity of (A+1) coloring in congested clique, massively parallel computation, and centralized
local computation. In Proceedings of the ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 471-480, 2019. doi:10.1145/3293611.3331607.

David Cifuentes-Nuifiez, Pedro Montealegre, and Ivan Rapaport. Recognizing hereditary
properties in the presence of byzantine nodes. CoRR, abs/2312.07747, 2023. doi:10.48550/
arXiv.2312.07747.

Sam Coy, Artur Czumayj, Peter Davies, and Gopinath Mishra. Optimal (degree+1)-coloring in
congested clique. In 50th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 261, pages 46:1-46:20, 2023. doi:10.4230/LIPIcs.ICALP.2023.46.

Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round
coloring in congested clique and MPC. SIAM J. on Computing, 50(5):1603-1626, 2021.
doi:10.1137/20M1366502.

Peter Davies. Optimal message-passing with noisy beeps. In Proceedings of the 2023 ACM
Symposium on Principles of Distributed Computing (PODC), pages 300-309, 2023. doi:
10.1145/3583668.3594594.

Danny Dolev, Christoph Lenzen, and Shir Peled. “tri, tri again”: Finding triangles and small
subgraphs in a distributed setting. In Distributed Computing, volume 7611, pages 195-209.
Springer, 2012. doi:10.1007/978-3-642-33651-5_14.

Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In ACM Symposium on Principles of Distributed Computing (PODC), pages 367-376,
2014. doi:10.1145/2611462.2611493.

Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities and impossibilities
for distributed subgraph detection. In Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 153-162, 2018. doi:10.1145/3210377.3210401.
Orr Fischer, Rotem Oshman, and Dana Shamir. Explicit space-time tradeoffs for proof
labeling schemes in graphs with small separators. In 25th International Conference on
Principles of Distributed Systems (OPODIS 2021), volume 217, pages 21:1-21:22, 2021.
doi:10.4230/LIPIcs.0P0ODIS.2021.21.

Orr Fischer and Merav Parter. Distributed CONGEST algorithms against mobile adversaries.
In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages
262-273, 2023. doi:10.1145/3583668.3594578.

Orr Fischer and Merav Parter. All-to-all communication with mobile edge adversary: Almost
linearly more faults, for free. CoRR, abs/2505.05735, 2025. doi:10.48550/arXiv.2505.05735.
Pawel Garncarek, Dariusz R. Kowalski, Shay Kutten, and Miguel A. Mosteiro. Beeping
deterministic congest algorithms in graphs. CoRR, abs/2502.13424, 2025. doi:10.48550/
arXiv.2502.13424.

Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique. In Proceedings
of the 2016 ACM Symposium on Principles of Distributed Computing (PODC), pages 19-28,
2016. doi:10.1145/2933057.2933103.

20:17

DISC 2025

https://doi.org/10.1145/3382734.3405742
https://doi.org/10.4230/LIPIcs.OPODIS.2024.35
https://doi.org/10.1145/2767386.2767414
https://doi.org/10.48550/arXiv.2505.11430
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.48550/arXiv.2312.07747
https://doi.org/10.48550/arXiv.2312.07747
https://doi.org/10.4230/LIPIcs.ICALP.2023.46
https://doi.org/10.1137/20M1366502
https://doi.org/10.1145/3583668.3594594
https://doi.org/10.1145/3583668.3594594
https://doi.org/10.1007/978-3-642-33651-5_14
https://doi.org/10.1145/2611462.2611493
https://doi.org/10.1145/3210377.3210401
https://doi.org/10.4230/LIPIcs.OPODIS.2021.21
https://doi.org/10.1145/3583668.3594578
https://doi.org/10.48550/arXiv.2505.05735
https://doi.org/10.48550/arXiv.2502.13424
https://doi.org/10.48550/arXiv.2502.13424
https://doi.org/10.1145/2933057.2933103

20:18

Deterministic LDC—Based Robust Computation in Congested Clique

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

Alex B. Grilo, Ami Paz, and Mor Perry. Distributed non-interactive zero-knowledge proofs.
CoRR, abs/2502.07594, 2025. doi:10.48550/arXiv.2502.07594.

James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh,
and Michele Scquizzato. Toward optimal bounds in the congested clique: Graph connectivity
and MST. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), pages 91-100, 2015. doi:10.1145/2767386.2767434.

Taisuke Izumi and Frangois Le Gall. Triangle finding and listing in CONGEST networks. In
Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages
381-389, 2017. doi:10.1145/3087801.3087811.

Tomasz Jurdzinski and Krzysztof Nowicki. MST in O(1) rounds of congested clique. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2620-2632, 2018. doi:10.1137/1.9781611975031.167.

Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing (STOC), pages 80-86, 2000. doi:10.1145/335305.335315.

Janne H. Korhonen. Deterministic MST sparsification in the congested clique. CoRR,
abs/1605.02022, 2016. doi:10.48550/arXiv.1605.02022.

Manish Kumar. Fault-tolerant graph realizations in the congested clique, revisited. In
Distributed Computing and Intelligent Technology, volume 13776, pages 84-97. Springer, 2023.
doi:10.1007/978-3-031-24848-1_6.

Manish Kumar, Anisur Rahaman Molla, and Sumathi Sivasubramaniam. Fault-tolerant graph
realizations in the congested clique. In Algorithmics of Wireless Networks, volume 13707,
pages 108-122, 2022. doi:10.1007/978-3-031-22050-0_8.

Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing (PODC),
pages 42-50, 2013. doi:10.1145/2484239.2501983.

Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning tree
construction in O(log log n) communication rounds. SIAM J. on Computing, 35(1):120-131,
2005. doi:10.1137/50097539704441848.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and proba-
bilistic techniques in algorithms and data analysis. Cambridge university press, 2017.

Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive
proofs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1096-115, 2020. doi:10.1137/1.9781611975994.67.

Krzysztof Nowicki. A deterministic algorithm for the MST problem in constant rounds of
congested clique. In 58rd Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 1154-1165, 2021. doi:10.1145/3406325.3451136.

Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. On the distributed complexity
of large-scale graph computations. In Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 405-414, 2018. doi:10.1145/3210377.3210409.
Merav Parter. (delta+1) coloring in the congested clique model. In 45th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 107, pages 160:1—
160:14, 2018. doi:10.4230/LIPIcs.ICALP.2018.160.

Merav Parter and Hsin-Hao Su. Randomized (Delta+1)-coloring in O(log* Delta) congested
clique rounds. In 32nd International Symposium on Distributed Computing (DISC), volume
121, pages 39:1-39:18, 2018. doi:10.4230/LIPIcs.DISC.2018.39.

David Peleg. Distributed computing: a locality-sensitive approach. STAM, 2000.

Daniel A. Spielman. Highly fault-tolerant parallel computation. In Proceedings of 37th
Conference on Foundations of Computer Science (FOCS), pages 154-163, 1996. doi:10.1109/
SFCS.1996.548474.

Sergey Yekhanin. Locally decodable codes. Foundations and Trends® in Theoretical Computer
Science, 6(3):139-255, 2012. doi:10.1561/0400000030.

https://doi.org/10.48550/arXiv.2502.07594
https://doi.org/10.1145/2767386.2767434
https://doi.org/10.1145/3087801.3087811
https://doi.org/10.1137/1.9781611975031.167
https://doi.org/10.1145/335305.335315
https://doi.org/10.48550/arXiv.1605.02022
https://doi.org/10.1007/978-3-031-24848-1_6
https://doi.org/10.1007/978-3-031-22050-0_8
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1137/S0097539704441848
https://doi.org/10.1137/1.9781611975994.67
https://doi.org/10.1145/3406325.3451136
https://doi.org/10.1145/3210377.3210409
https://doi.org/10.4230/LIPIcs.ICALP.2018.160
https://doi.org/10.4230/LIPIcs.DISC.2018.39
https://doi.org/10.1109/SFCS.1996.548474
https://doi.org/10.1109/SFCS.1996.548474
https://doi.org/10.1561/0400000030

K. Censor-Hillel, O. Fischer, R. Gelles, and P. Soto

A Chernoff Bounds

» Theorem 15 (Chernoff inequality for independent Bernoulli variables). Let X1,...,X,, be
mutually independent 01 random variables with Pr(X; =1) =p;. Let X =" | X; and set
w= E[X]. The following holds,

m
1. forany 6 >0, Pr(X > (1+6)p) < (ﬁ)

2. for0<d<1,Pr(X >(14d0)p) < e—Ho°/3
3. for R > 6u, Pr(X > R) < 2—R
For proof, see Theorem 4.4 in [38].

B Missing Proofs from Section 3

Proof of Lemma 12. Set » = |G|. let ¢1,...,g, be the gates in G sorted in a decreasing
order of their fan. For any i € [r], set d; = fan(g;), then,

drSdr71§~c-§d1§A~

First, we analyze the case where |A|/2 < L < |A]. We notice that the load of each
vertex v is trivially bounded by A(v) < 37, d; (which is obtained if all gates are allocated
to v). On the other hand, by assumption that |A|/2 < L it follows that

Av) <Y di =P <2PLJ| A

i=1

and the claim for the case of |A|/2 < L < |A] follows.
We assume in the remainder of the proof that L < |.A|/2. First, we make the very simple
observation that at all times during the procedure, it holds that

ZA(U)gzr:di-L:PL. (1)

veV =1

We split the analysis into two phases of the greedy allocation procedure: we say that the
procedure is in its first phase while d; > 2PL/|A| and we say that it is in its second phase
while d; < 2PL/|A|. In each phase, we show that following a gate being allocated to batch
of L vertices, all vertices have load at most max(4PL/|A[, A).

While d; > 2PL/|A|, we must have at least |.A|/2 vertices with no load. Assume otherwise,
then we notice that since the gates g1, ..., g, are sorted in descending order according to
dy,...,d,, then each vertex with an allocated gate has load at least d; > 2PL/|A|. Summing
the loads of all vertices, we conclude that the total load is at least %(% +1) > PL,
contradicting Equation (1). Hence, after any allocation where d; > 2PL/|A|, we only pick
vertices with A(v) = 0, and the load of any such vertex v is therefore at most A.

Next, we consider the phase where d; < 2PL/|A|. By an averaging argument on
Equation (1), at any point of time of the procedure we have at least |.4|/2 vertices with load
at most 2PL/|A|. Since L < |A|/2, the new load of a vertex v that is assigned a new gate is
at most

2PL 4PL
Aw) <di + —— < —,
| Al | Al
and the claim follows. <

20:19

DISC 2025

	1 Introduction
	1.1 Technical Overview
	1.2 Additional Related Work

	2 Preliminaries
	2.1 Computation Model
	2.2 Layered Circuits
	2.3 Error Correcting Codes and Locally Decodable Codes

	3 Computing a Circuit in the presence of crashes
	3.1 The Store, Retrieve and BulkRetrieve Procedures
	3.2 The Allocate Procedure
	3.3 The Circuit Computation Algorithm

	A Chernoff Bounds
	B Missing Proofs from Section 3

