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Abstract
Censor-Hillel, Cohen, Gelles, and Sela (PODC 2022 & Distributed Computing 2023) studied fully-
defective asynchronous networks, where communication channels may arbitrarily corrupt messages.
The model is equivalent to content-oblivious computation, where nodes communicate solely via
pulses. They showed that if the network is 2-edge-connected, then any algorithm for a noiseless
setting can be simulated in the fully-defective setting; otherwise, no non-trivial computation is
possible in the fully-defective setting. However, their simulation requires a predesignated leader,
which they conjectured to be necessary for any non-trivial content-oblivious task.

Recently, Frei, Gelles, Ghazy, and Nolin (DISC 2024) refuted this conjecture for the special
case of oriented ring topology. They designed two asynchronous content-oblivious leader election
algorithms with message complexity O(n · IDmax), where n is the number of nodes and IDmax is
the maximum ID. The first algorithm stabilizes in unoriented rings without termination detection.
The second algorithm quiescently terminates in oriented rings, thus enabling the execution of the
simulation algorithm after leader election. In this work, we present two results:
General 2-edge-connected topologies: First, we show an asynchronous content-oblivious leader

election algorithm that quiescently terminates in any 2-edge-connected network with message
complexity O(m ·N · IDmin), where m is the number of edges, N is a known upper bound on the
number of nodes, and IDmin is the smallest ID. Combined with the above simulation, this result
shows that whenever a size bound N is known, any noiseless algorithm can be simulated in the
fully-defective model without a preselected leader, fully refuting the conjecture.

Unoriented rings: We then show that the knowledge of N can be dropped in unoriented ring
topologies by presenting a quiescently terminating election algorithm with message complexity
O(n · IDmax) that matches the previous bound. Consequently, this result constitutes a strict
improvement over the previous state of the art and shows that, on rings, fully-defective and
noiseless communication are computationally equivalent, with no additional assumptions.
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1 Introduction

Fault tolerance is a cornerstone of distributed computing, enabling systems to remain
operational despite various failures, such as node crashes or channel noise [5, 17, 32, 38]. One
important category of faults, known as alteration errors, changes the content of messages but
does not create new messages or eliminate existing ones. Traditional methods for handling
such errors often rely on adding redundancy through coding techniques and assume bounds
on the frequency or severity of faults. However, in many practical settings, such assumptions
may not hold, limiting the effectiveness of these approaches.

Fully-defective networks. Censor-Hillel, Cohen, Gelles, and Sela [7] introduced fully-
defective asynchronous networks, in which all links are subject to severe alteration errors: The
content of every message can be arbitrarily modified, although the adversary cannot insert
new messages or remove existing messages. Since messages can no longer carry meaningful
information, the model is equivalent to content-oblivious computation, where communication
is reduced to sending and receiving pulses. Algorithms in this setting operate entirely based
on the patterns of pulse arrivals.

An impossibility result. A natural approach to designing a content-oblivious algorithm
is to use unary encoding, representing messages as sequences of pulses. However, in the
asynchronous setting, where no upper bound on message delivery time is known, there is
no reliable way to detect the end of a sequence. Censor-Hillel, Cohen, Gelles, and Sela [7]
established a strong impossibility result: Let f(x, y) be any non-constant function, then any
two-party deterministic asynchronous content-oblivious communication protocol, where one
party holds x and the other holds y, must fail to compute f correctly.

The impossibility result implies that, in a certain sense, no non-trivial computation is
possible in any network that is not 2-edge-connected – that is, any network containing an
edge e whose removal disconnects the graph into two components. By assigning control of
each component to a different party, the problem reduces to the two-party setting to which
the impossibility result applies.

Algorithm simulation over 2-edge-connected networks. Interestingly, Censor-Hillel, Cohen,
Gelles, and Sela [7] showed that in 2-edge-connected networks, any algorithm designed for
the noiseless setting can be simulated in a fully defective network. We briefly sketch the
main ideas underlying their approach below.

For the special case of an oriented ring, the challenge of termination detection can be
addressed. Suppose a node wishes to broadcast a message. It can send a sequence of pulses
that represents the unary encoding of the message in one direction and use the opposite
direction to signal termination. To allow all nodes the opportunity to communicate, a token
can be circulated in the ring, enabling each node to speak in turn.

To extend this approach to general 2-edge-connected networks, they leverage a result by
Robbins [39], which states that any 2-edge-connected undirected graph can be oriented to
form a strongly connected directed graph. This guarantees the existence of a Robbins cycle,
which is an oriented ring that traverses all nodes, possibly revisiting some nodes multiple
times. They designed a content-oblivious algorithm that uses a depth-first search (DFS) to
construct such a cycle.
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Preselected leader assumption. A key limitation of their result is that it inherently relies
on a preselected leader. For instance, a leader is needed to generate a unique token in a ring or
to select the root for the DFS. Censor-Hillel, Cohen, Gelles, and Sela [7] conjectured that the
preselected leader assumption is essential for any non-trivial content-oblivious computation,
leaving the following question open.

▶ Question 1. In 2-edge-connected networks, is it possible to simulate any algorithm designed
for a noiseless setting in the fully defective model without relying on a preselected leader?

Content-oblivious leader election on rings. To answer the above question affirmatively, it
suffices to design a content-oblivious leader election algorithm that possesses certain desirable
properties, enabling it to be composed with other algorithms. Recently, Frei, Gelles, Ghazy,
and Nolin [24] answered this question for the special case of oriented rings. They designed
two asynchronous content-oblivious leader election algorithms, both with message complexity
O(n · IDmax), where n is the number of nodes and IDmax is the maximum identifier. The
first algorithm stabilizes in unoriented rings, without termination detection. The second
algorithm quiescently terminates in oriented rings, ensuring that no further pulses are sent
to a node v after the algorithm on v declares termination.

The quiescent termination property enables the execution of the general simulation
algorithm discussed earlier, following their leader election algorithm, as each node can
correctly identify which pulses belong to which algorithm. As a result, this finding refutes
the conjecture of Censor-Hillel, Cohen, Gelles, and Sela [7] for the special case of oriented
ring topologies. Given the work by Frei, Gelles, Ghazy, and Nolin [24], the next question to
address is whether content-oblivious leader election is feasible for general 2-edge-connected
networks.

▶ Question 2. In 2-edge-connected networks, is it possible to design a quiescently terminating
content-oblivious leader election algorithm?

Existing approaches for content-oblivious leader election heavily rely on the oriented ring
structure, making use of its two orientations to handle two types of messages. We briefly
outline the key ideas behind the algorithms of Frei, Gelles, Ghazy, and Nolin [24] as follows.

A central building block of their algorithms is a stabilizing leader election algorithm on
oriented rings, which operates as follows. Each node generates a token, and all tokens travel
in the same direction. Each node v maintains a counter to track the number of tokens it
has passed. Once the counter reaches ID(v), node v destroys one token and temporarily
elects itself as leader. Any incoming token will cause it to relinquish leadership. All counters
eventually reach IDmax and stabilize. The node r with ID(r) = IDmax becomes the unique
leader. This algorithm is not terminating, as nodes cannot determine whether additional
tokens will arrive.

To achieve a quiescently terminating algorithm on oriented rings, they run the procedure
in both directions sequentially, using the moment when the two counter values match as the
termination condition. A node v begins the second run when its counter value from the first
run reaches ID(v).

We stress that orientation is a key assumption of the above algorithm. In fact, they
conjectured the impossibility of terminating leader election in unoriented rings [24].

To achieve a stabilizing algorithm on unoriented rings, they run the procedure in both
directions concurrently. The correctness follows from the observation that the same node is
selected as the leader in both executions.

DISC 2025
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1.1 Contributions
We answer Question 1 affirmatively under the assumption that an upper bound N ≥ n on
the number of nodes n = |V | is known, by presenting a content-oblivious leader election
algorithm that quiescently terminates on any 2-edge-connected network.

▶ Theorem 1. There is a quiescently terminating leader election algorithm with message
complexity O(m ·N · IDmin) in any 2-edge-connected network G = (V, E), where m = |E| is
the number of edges, N ≥ n is a known upper bound on the number of nodes n = |V |, and
IDmin is the smallest ID. Moreover, the leader is the last node to terminate.

Combined with the simulation result of Censor-Hillel, Cohen, Gelles, and Sela [7], our
finding implies that in any 2-edge-connected network, any algorithm designed for the noiseless
setting can be simulated in the fully-defective setting, without assuming a preselected leader.
More precisely, as established in the prior work [24], a sufficient condition for achieving this
objective consists of (1) quiescent termination and (2) the requirement that the leader is the
final node to terminate. This is because the algorithmic simulation in [7] is initiated by the
leader. Hence we answer Question 2 affirmatively, again under the assumption that an upper
bound N ≥ n is known. This refutes the original conjecture posed by [7].

For unoriented ring topologies, the knowledge of N is not required.

▶ Theorem 2. There exists a quiescently terminating leader election algorithm with message
complexity O(n·IDmax) in any unoriented ring, where IDmax is the largest identifier. Moreover,
the leader is the last node to terminate.

This result refutes the conjecture of Frei, Gelles, Ghazy, and Nolin [24], demonstrating
that orientation is not necessary for quiescently terminating leader election in rings.

Table 1 New and old results on content-oblivious leader election.

Topology Guarantee Messages Condition Reference
Unoriented rings Stabilizing O (n · IDmax) × [24]
Oriented rings Quiescently terminating O (n · IDmax) × [24]
Oriented rings Stabilizing Ω

(
n · log IDmax

n

)
× [24]

2-edge-connected Quiescently terminating O (m ·N · IDmin) Known N Theorem 1
Unoriented rings Quiescently terminating O (n · IDmax) × Theorem 2

See Table 1 for a comparison of our results and the results from prior work [24].
Our algorithm for general 2-edge-connected topologies has a higher message complexity

of O(m ·N · IDmin) compared to the previous O(n · IDmax) bound in terms of network size,
but it reduces the dependency on identifiers from IDmax to IDmin.

At first glance, the upper bound of O(m ·N · IDmin) may seem to contradict the lower
bound of Ω

(
n · log IDmax

n

)
established in previous work [24]. However, the two results are

consistent, as the lower bound does not make any assumptions about the value of IDmin.
Precisely, their bound is of the form Ω

(
n · log k

n

)
, where k is the number of distinct, assignable

identifiers in the network. In other words, k is the size of the ID space.
While our algorithm for Theorem 1 solves leader election in any 2-edge-connected topology,

it does require a mild assumption: All nodes must a priori agree on a known upper bound N

on the number of nodes n = |V | in the network, making it non-uniform. This assumption is
widely adopted in many existing leader election and distributed graph algorithms, as upper
bounds on network size are often available or can be estimated. In contrast, the terminating
algorithm from prior work [24] is uniform, but only works on oriented rings.
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Our leader election algorithm on rings requires neither orientation nor knowledge of
N , while matching the message complexity of the algorithms of Frei, Gelles, Ghazy, and
Nolin [24]. It therefore constitutes a strict improvement over the previous state of the art.

2 Preliminaries

We present the model and problem considered in the paper and overview some basic
terminology.

2.1 Content-Oblivious Model
The communication network is a graph G = (V, E), where each node v ∈ V is a computing
device and each edge e ∈ E is a bidirectional communication link. We write n = |V | and
m = |E|. Each node v has a unique identifier ID(v), and we define IDmax = maxv∈V ID(v)
and IDmin = minv∈V ID(v). Throughout the paper, we assume that G is 2-edge-connected:
removing one edge does not disconnect the graph.

General 2-edge-connected topologies. For our result on general 2-edge-connected topolo-
gies, we assume no prior knowledge of the network topology, except that each node is given
an upper bound N ≥ n on the total number of nodes. That is, the algorithm is non-uniform.

The degree of a node v, deg(v), is the number of edges incident to v. A node does not know
the identifiers of its neighbors, but can distinguish its incident edges using port numbering,
a bijection between the set of incident edges and the set {1, 2, . . . , deg(v)}. Therefore, we
use the term port to refer to the local endpoint of an edge, uniquely identified by its port
number, which is used to send and receive messages to and from a specific neighbour.

Unoriented rings. For our result on rings, we assume that the topology is an unoriented
ring. In this case, each node vi is connected to nodes vi−1 and vi+1 (indices taken modulo n)
by port 0 and port 1. These local labels do not induce a consistent orientation of the ring;
that is, the global assignment of labels 0 and 1 to ports is arbitrarily set by an adversary. A
correct algorithm must work for any possible assignment of port labels.

Content-Oblivious communication. In the content-oblivious setting, nodes communicate
by sending content-less pulses. We consider the asynchronous model, where node behavior is
event-driven: A node can act only upon initialization or upon receiving a pulse. Based on
the pattern of previously received pulses, each node decides its actions, which may include
sending any number of pulses through any subset of its ports. We emphasize that when
a node receives a pulse, it knows the port through which the pulse arrived. We restrict
our attention to the deterministic setting, in which nodes do not use randomness in their
decision-making.

Time. There is no upper bound on how long a pulse may take to traverse an edge, but
every pulse is guaranteed to be delivered after a finite delay. An equivalent way to model
this behavior is by assuming the presence of a scheduler. At each time step, as long as there
are pulses in transit, the scheduler arbitrarily selects one and delivers it.

We assume that upon receiving a pulse, all actions triggered by that pulse are performed
instantaneously, so that the system can be analyzed in discrete time steps. We focus only on
specific, well-defined moments in the execution of the algorithm – namely, the moments just

DISC 2025
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before the scheduler selects a pulse to deliver. At these times, all the actions resulting from
earlier pulse deliveries have been completed, and the system is in a stable state, awaiting the
next step. We do not analyze the system during any intermediate period in which a node is
still performing the actions triggered by a pulse arrival.

Counting the number of pulses. We write [s] = {1, 2, . . . , s}. In the algorithm description
and analysis for Theorem 1, for each node v ∈ V and each port number i ∈ [deg(v)], we use
the following notation to track the number of pulses sent and received so far:

σi(v) denotes the number of pulses sent on port i of node v.
ρi(v) denotes the number of pulses received on port i of node v.

2.2 Leader Election
We now define the leader election problem.

▶ Definition 3 (Leader election). The task of leader election requires that each node outputs
exactly one of Leader and Non-Leader, with the additional requirement that exactly one node
outputs Leader.

More precisely, each node maintains a binary internal variable isLeader to represent its
current output, taking the value Leader or Non-Leader. The value of isLeader may change
arbitrarily many times during the execution of the algorithm, but it must eventually stabilize
to a final value that remains unchanged thereafter. The final outputs of all nodes must
collectively satisfy the conditions of Definition 3.

Due to the asynchronous nature of our model, an algorithm can finish in various ways.
We hence classify algorithms into three types by the increasing strength of termination
guarantees.

▶ Definition 4 (Stabilization). A node stabilizes at time t if its output does not change after
time t. An algorithm is stabilizing if it guarantees that all nodes eventually stabilize.

▶ Definition 5 (Termination). A node terminates at time t if it explicitly declares termination
at time t. After declaring termination, the node ignores all incoming pulses and can no longer
change its output. An algorithm is terminating if it guarantees that all nodes eventually
terminate.

▶ Definition 6 (Quiescent termination). A node quiescently terminates at time t if it terminates
at time t and no further pulses arrive at the node thereafter. An algorithm is quiescently
terminating if it guarantees that all nodes eventually quiescently terminate.

Ideally, we aim to design leader election algorithms that are quiescently terminating,
as this property allows a second algorithm to be executed safely after leader election. In
contrast, if the algorithm guarantees only stabilization or termination, nodes may be unable
to distinguish whether an incoming pulse belongs to the leader election process or the
subsequent algorithm. This ambiguity can affect the correctness of both algorithms. For this
reason, prior work [24] establishes a general algorithm simulation result only for oriented
rings, but not for unoriented rings.

2.3 DFS and Strongly Connected Orientation
We describe a DFS tree TG of the graph G = (V, E) that is uniquely determined by the port
numbering and node identifiers. Based on this DFS tree, we describe an edge orientation of
G that transforms it into a strongly connected directed graph G⃗. Both the DFS tree and the
orientation play a critical role in the analysis of our algorithm for Theorem 1.
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DFS. Throughout this paper, we write r to denote the node with the smallest identifier.
Consider a DFS traversal rooted at r such that when a node selects the next edge to explore
among its unexplored incident edges, it chooses the one with the smallest port number. Let
TG = (V, ET ) be the resulting DFS tree. The edges in ET are called tree edges, and the
remaining edges EB = E \ ET are called back edges. The following observation is folklore.

▶ Observation 7. For any edge {u, v} ∈ EB, either u is an ancestor of v, or v is an ancestor
of u.

Proof. When a node u explores an incident edge e = {u, v} during the DFS, there are two
possibilities: Either v is an ancestor of u, or v has not been visited yet. In the first case,
{u, v} ∈ EB . In the second case, v is discovered for the first time, so {u, v} ∈ ET is added as
a tree edge in ET . ◀

▶ Definition 8 (Strongly connected orientation). The directed graph G⃗ = (V, E⃗T ∪ E⃗B) is
defined by

E⃗T = {(u, v) | {u, v} ∈ ET and u is the parent of v in TG},

E⃗B = {(u, v) | {u, v} ∈ EB and v is an ancestor of u in TG}.

A directed graph is strongly connected if for any two nodes u and v in the graph, there is
a directed path from u to v. We have the following observation. Due to page limit, the proof
of Observation 9 is deferred to the full version [9] of the paper.

▶ Observation 9. If G is 2-edge-connected, then G⃗ is strongly connected.

Shortest paths. Throughout the paper, for any two nodes u ∈ V and v ∈ V , we write Pu,v

to denote any shortest path from u to v in G⃗, whose existence is guaranteed by Observation 9.
We allow u = v, in which case Pu,v is a path of zero length consisting of a single node u = v.

3 Non-Uniform Leader Election for 2-Edge-Connected Topologies

In this section, we provide a high-level proof sketch for Theorem 1; the pseudocode is deferred
to Section B, and the complete proof is deferred to the full version [9] of the paper.

▶ Theorem 1. There is a quiescently terminating leader election algorithm with message
complexity O(m ·N · IDmin) in any 2-edge-connected network G = (V, E), where m = |E| is
the number of edges, N ≥ n is a known upper bound on the number of nodes n = |V |, and
IDmin is the smallest ID. Moreover, the leader is the last node to terminate.

Our algorithm aims to elect the node r with the smallest identifier as the leader. It
operates in two phases. In the first phase, each node maintains a counter that is incremented
in an almost synchronized manner using the α-synchronizer of Awerbuch [4]. A node v

declares itself the leader once its counter reaches ID(v). This first phase alone yields a simple
stabilizing leader election. To ensure quiescent termination, the second phase is executed, in
which the elected leader announces its leadership through a DFS traversal.

3.1 Synchronized Counting
Counting. To achieve an almost synchronized counting, we employ the α-synchronizer [4],
as follows. Each node maintains a counter variable Count(v), which is initialized to 0 at the
start of the algorithm. A node increments its counter by one after receiving a new pulse
from each of its neighbors. Formally, the counter value of a node v is given by

Count(v) = min
j∈[deg(v)]

ρj(v).

DISC 2025
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Each node broadcasts a pulse to all its neighbors upon initialization and immediately after
each counter increment. This process is non-blocking: In the absence of an exit condition,
nodes will continue counting together indefinitely. Furthermore, no node can advance
significantly faster than its neighbors: For any pair of adjacent nodes, their counter values
differ by at most one. A faster-counting node must wait for a pulse from a slower-counting
neighbor before it can increment its counter again.

Stabilizing leader election. A node v elects itself as the leader once Count(v) = ID(v), after
which node v freezes its counter and does not increment it further. This action caps the
counter value of any neighbor of v at most ID(v) + 1. More generally, in a graph of n ≤ N

nodes, the counter value of any node is upper bounded by ID(v) + N − 1, due to the diameter
upper bounded by N − 1.

To ensure that the algorithm elects the node r with the smallest identifier as the unique
leader, it suffices for any two identifiers to differ by at least N . This can be achieved by first
multiplying each identifier by N . This is where the a priori knowledge of N comes into play.

At this stage, we have a simple stabilizing leader election algorithm. However, it remains
insufficient for our purposes: We also want all non-leader nodes to recognize their non-leader
status and terminate in a quiescent manner.

3.2 DFS Notification
We proceed to describe the second phase of the algorithm. The leader must find a way to
notify all other nodes to settle as non-leaders. This seems challenging because the leader
can only send additional pulses, which appear indistinguishable from those in the first phase.
As we will see, assuming the network is 2-edge-connected, there is a simple and effective
approach: Just send many pulses to overwhelm the listener.

Notifying a neighbor. Let u be a neighbor of the leader r, and let the edge e = {u, r}
correspond to port i at r and port j at u. The leader r notifies u of its leadership as follows:
1. Wait until ρi(r) ≥ ID(r) + 1.
2. Send pulses to u until σi(r) = ID(r) + N + 2.

Since the graph G is 2-edge-connected, there exists a path P from u to r that avoids e,
implying

Count(u) ≤ Count(r) + length(P ) ≤ ID(r) + N − 1.

Eventually, u receives ID(r) + N + 2 pulses from r, so there must be a moment where

ρj(u) ≥ Count(u) + 3,

triggering anomaly detection. Under normal conditions in the first phase, u would expect

ρj(u) ≤ σi(r) = Count(r) + 1 ≤ Count(u) + 2,

so this deviation signals a violation.
Additionally, the waiting condition ρi(r) ≥ ID(r) + 1 ensures that Count(u) ≥ ID(r).

Thus, u not only recognizes that it is not the leader but can also deduce the exact value of
ID(r) using

ID(r) = N ·
⌊

Count(u)
N

⌋
,

since all node identifiers are integer multiples of N .
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DFS. Intuitively, the leader r is able to notify a neighbor u because the counter value of
node u is constrained by a chain P , whose other end is anchored at the leader r, whose
counter has already been frozen. To extend this notification process to the entire network,
we perform a DFS, using the same notification procedure to explore each new edge. When a
node finishes exploring all its remaining incident edges, it can notify its parent by sending
pulses until a total of ID(r) + N + 2 pulses have been sent through this port since the start of
the algorithm. When a node u explores a back edge {u, v}, the node v replies using the same
method. When a node decides which new incident edge to explore, it prioritizes the edge
with the smallest port number, so the resulting DFS tree is TG, as defined in Section 2.3.

Quiescent termination. To see that the algorithm achieves quiescent termination, observe
that by the end of the execution, for each edge e, the number of pulses sent in both directions
is exactly ID(r) + N + 2. Therefore, once a node observes that it has both sent and received
exactly ID(r) + N + 2 pulses along each of its ports and has completed all local computations,
it can safely terminate with a quiescent guarantee.

Correctness. A similar chain-and-anchor argument can be applied to analyze the correctness
of the DFS-based notification algorithm. We prove by induction that for each node u that
has been visited by DFS, its frozen counter value satisfies

Count(u) ≤ ID(r) + length(Pu,r).

Recall from Section 2.3 that Pa,b is a shortest path from a to b in the directed version G⃗ of
G defined in Definition 8.

Suppose during the DFS, a node x is about to explore an incident edge e = {x, y} using
the notification procedure, and that y has not yet been visited. Let w be the first node on
the path Py,r that is either x or an ancestor of x in the DFS tree TG, then we have

length(Py,r) = length(Py,w) + length(Pw,r).

We now apply the chain-and-anchor argument using the chain Py,w and anchor w. This
choice of chain is valid because the path Py,w cannot include the edge e, as e is oriented from
x to y in G⃗. This is precisely why the analysis is carried out in G⃗ rather than in G.

By the induction hypothesis, the frozen counter value at the anchor satisfies Count(w) ≤
ID(r) + length(Pw,r). It follows that

Count(y) ≤ Count(w) + length(Py,w)
≤ ID(r) + length(Pw,r) + length(Py,w)
= ID(r) + length(Py,r)
≤ ID(r) + N − 1.

Therefore, the chain-and-anchor argument works, allowing y to be successfully notified.
Moreover, the frozen counter value of y also satisfies the induction hypothesis.

In addition, we must ensure that the DFS procedure proceeds correctly and no event
is triggered unexpectedly. Once again, the chain-and-anchor argument implies that the
condition

Count(u) ≤ ID(r) + length(Pu,r) ≤ ID(r) + N − 1 < ID(u)

holds for all nodes u ∈ V \ {r} at all times. This ensures that no node other than r can be
mistakenly elected as a leader. It also guarantees that pulses sent by nodes still in the first
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phase cannot accidentally trigger a notification in the second phase. Specifically, if u is still
in the first phase, then for every port j ∈ [deg(u)], we have

σj(u) = Count(u) + 1 ≤ ID(r) + N,

which remains below the threshold of ID(r) + N + 2 pulses required to confirm receipt of a
notification.

Remark. One might wonder why the notification must follow a DFS instead of being
performed in parallel. A key reason is that doing so can break the chain-and-anchor argument
by eliminating anchors. For instance, in a ring topology, if the node r with the smallest
identifier simultaneously sends multiple pulses to both neighbors, all of the pulses might be
interpreted as part of the first phase, with no detectable anomaly, regardless of how many
pulses are sent.

Both our leader election algorithm and the simulation algorithm of [7] utilize DFS, but for
different purposes. They perform a DFS from a pre-selected leader to find a cycle, while we
use DFS to disseminate the identity of the elected leader to all nodes and to achieve quiescent
termination. Coincidentally, both approaches leverage the strongly connected orientation
of 2-edge-connected graphs. In our case, the orientation G⃗ is used solely in the analysis
to facilitate the chain-and-anchor argument. In their case, it guarantees the existence of a
Robbins cycle, which is critical to their algorithm.

4 Uniform Leader Election for Unoriented Rings

In this section, we prove our main theorem on rings.

▶ Theorem 2. There exists a quiescently terminating leader election algorithm with message
complexity O(n·IDmax) in any unoriented ring, where IDmax is the largest identifier. Moreover,
the leader is the last node to terminate.

The proof is given by our uniform algorithm, whose pseudocode is given in Algorithm 1.
We introduce a new action, RcvPulsei: Wait until a pulse is received from port i, where

i ∈ {0, 1, q}. When i = q, the procedure waits for the first pulse on any port and stores the
corresponding port number in the variable q. We also use SendPulsesi(k): send k pulses
through port i, where i ∈ {0, 1}.

We define the local variable Diff(v), which stores the difference between the number of
pulses node v received on port 1 and the number of pulses received on port 0.

Algorithm description. Our algorithm is decomposed into different phases that we describe
below.

The initialization. First, each node doubles its identifier ID (Line 1). The purpose of
this action is to ensure that no two nodes have consecutive identifiers. This allows us to
distinguish the different phases of the algorithm during the execution.
The competing phase (Lines 2 to 5 in blue). Every node starts by exchanging pulses with
both its neighbors in a pseudo-synchronous way (sending them pulses and waiting for
their responses). The number of times a node repeats this step is equal to the value of its
identifier ID.
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The solitude-checking phase (Lines 7 to 9 in orange). Once a node has finished the
competing phase, it wants to know if it was the last one competing. To do so, it sends
two pulses on port 0, receives one on port 1 and waits for another pulse. If this last pulse
arrives on port 1, it means that its own pulse has made a complete traversal of the cycle
and that all other nodes stopped competing. Otherwise (i.e., if it gets a pulse on port 0
before getting two pulses on port 1), it means that there is still another node executing
the competing phase.
The global termination phase (Lines 11 to 12 in green). If a node detects that all other
nodes stopped competing (i.e., if q = 1 on Line 10), then it knows it will be the leader.
Before terminating, it sends a pulse on port 0 to inform the other nodes that the execution
is over. This termination pulse will traverse the entire ring and come back through port
1. At this point, every other node will eventually be in state Non-Leader and there will
be no pulses in transit. Then the node can enter the state Leader and terminate.

Algorithm 1 Uniform leader election on unoriented rings for node v.
1 ID(v)← 2 ∗ ID(v)
2 for i← 1 to ID(v) do
3 SendAll(1) // send 1 pulse on both ports
4 RcvPulse0 // wait for a pulse from port 0
5 RcvPulse1 // wait for a pulse from port 1
6 end

/* Check if I am alone, i.e., if I have the largest identifier */
7 SendPulses0(2) // send 2 pulses on port 0
8 RcvPulse1 // wait for a pulse from port 1
9 RcvPulseq // wait for first pulse from any port; store port in q

10 if q = 1 then
/* I am the last one competing */

11 SendPulses0(1) // send termination pulse on port 0 – I’m leader
12 RcvPulse1 // wait for termination pulse to return from port 1
13 return Leader
14 else

/* There is someone with a larger identifier */
15 SendPulses1(2) // send 2 pulses on port 1 – balance line 7
16 RcvPulse0 // wait for a pulse from port 0
17 RcvPulse1 // wait for a pulse from port 1
18 Diff ← 0

/* Diff = pulses from port 1 minus pulses from port 0 */
19 repeat
20 RcvPulseq // wait for pulse from any port; store port in q
21 Diff ← Diff + 2 ∗ q − 1 // update difference counter
22 SendPulses1−q(1) // forward pulse to opposite port
23 until |Diff| ≥ 3
24 return Non-Leader
25 end

The rebalancing phase (Lines 15 to 17 in violet). If the node is not alone (i.e., if q = 0 on
Line 10), we want the node to relay pulses between its competing neighbors so that these
neighbors act as if there was no node between them. To do so, we have to ensure that it
sent the same number of pulses in both directions. So the node sends two pulses on port
1 (to balance the pulses sent on port 0 on Line 7). At this point, on each port, the node
has sent one more pulse than it has received. So it waits for one pulse on each port before
entering the relaying phase. For its neighbors, the node behaves as if it has executed
two more iterations of the competing phase: it has sent two pulses on each port and has
received two pulses on each port. Since no two nodes have consecutive identifiers (recall
that each node doubled its ID at Line 1), no other node can terminate its competition
phase before receiving both these pulses.
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The relaying phase (Lines 18 to 23 in red). In this phase, the node just relays the pulses
it gets on port 0 to port 1 and vice-versa. It also keeps a counter (Diff) to store the
difference between the numbers of pulses received on port 0 and on port 1. When this
counter reaches 3 or −3, then it means that one node has successfully passed the solitude
test and sent a termination pulse. The node can then enter the state Non-Leader and
terminate.

4.1 Correctness
We say that a node is active if it is executing an instruction between Lines 2 and 17. A node
is a relaying node if is executing an instruction between Lines 18 and 23.

Consider two rings: R of size n and R′ of size n− 1, where R′ is obtained by removing a
node v from R and connecting its neighbours w and u. We say that an execution on R is
indistinguishable from an execution on R′ if there exists an execution on R′ in which w and
u return from waiting on the RcvPulse actions at exactly the same times as they do in R.

In such executions, w and u do not perceive any difference between the execution of
the algorithm on R and on R′. This, in turn, implies that all other nodes also observe an
execution, when viewed in terms of RcvPulse events, that could occur in either R or R′.

▶ Proposition 10. Consider a ring of size n ≥ 2 with consecutive nodes v1, v2 and v3 (with
v1 = v3 if n = 2) such that v2 is the node with the smallest identifier on the entire ring. As
long as v2 does not stop, the execution of the algorithm on this ring is indistinguishable for
any node on the ring from a reduced ring of size n− 1, where v2 has been removed and v1 is
directly connected with v3.

Without loss of generality, let us assume that at v2, the port number to v1 is 0 and the
port number to v3 is 1. Let ID1, ID2, and ID3 be the respective identifiers of nodes v1, v2, v3.
To prove Proposition 10, we first establish several observations and lemmas.

▶ Observation 11. When a node ends the ith iteration of the loop of the competing phase, it
has sent i pulses to each of its neighbors and has received i pulses from each of them.

▶ Lemma 12. Consider two neighboring nodes, va and vb, executing the competing phase.
Given their respective indices, ia and ib, in the loop at Lines 2–5, we have |ia − ib| ≤ 1.
Moreover, if ib ≤ ia and vb has not executed the sends of its iteration ib then ib = ia.

Proof. Suppose w.l.o.g. that node va exchanges pulses with vb on port 1, while node vb

exchanges pulses with va on port 0.
If node va executed x times Line 5 (i.e., x + 1 ≥ ia ≥ x), then node vb executed y ≥ x

times Line 3 (i.e., ib ≥ y). From this ib ≥ ia − 1. By a symmetric argument we have
ia ≥ ib − 1 and this shows the first part of the lemma. Assume now that vb has not executed
its send, this means that y = (ib − 1) and thus x ≤ y ≤ ib − 1 therefore since ia ≤ x + 1 ≤ ib.
For the hypothesis we have ia = ib. ◀

▶ Lemma 13. Among nodes v1, v2 and v3, node v2 is the first to exit the competing phase.
Moreover, v1 (resp. v3) cannot exit its competing phase before it has received two pulses sent
by v2 after v2 has exited the competing phase (sent at Line 7 for v1 and at 15 for v3).

Proof. By Lemma 12 and Observation 11, we have that when v2 exits the loop, it has sent
ID2 pulses to both its neighbors and thus v1 and v3 are in iteration ID2 or ID2 + 1 of the
loop. Since their identifiers are at least ID2 + 2, they are still in their competing phase. Note
that, by Lemma 12 and Observation 11, they cannot complete iteration ID2 + 2 before they
have received at least ID2 + 2 pulses from v2. The last two of these pulses have to be sent by
v2 either at Line 7 or at Line 15. ◀
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▶ Lemma 14. Node v2 eventually executes Line 10, i.e., it receives a pulse on port 1 and
then another pulse on some port q. Moreover, the second pulse delivered arrives on port q = 0
and v2 enters the rebalancing phase.

Proof. Any node v ≠ v2 in the ring has an ID that is at least ID2 + 2. Consequently, by
Lemma 13 and Lemma 12, every node eventually completes ID2 iterations of the competing
phase and every node v ̸= v2 enters iteration ID2 + 1. Thus, in particular, v1 and v3 send
pulses to v2 in iteration ID2 + 1. Consequently, v2 will eventually receive a pulse from v3 on
port 1 (i.e., it will not be blocked at Line 8). Moreover, since v1 has sent a pulse p to v2
at iteration ID2 + 1, v2 will eventually receive a pulse on some port q (i.e., it will execute
Line 9). As long as v2 does not send a pulse to v3, v3 will not complete iteration ID2 + 1
of the competing phase, and it will thus not send another pulse to v2 before p is delivered.
Consequently, q = 0 and v2 enters the rebalancing phase. ◀

Notice that if v2 is only a local minimum among v1, v2, and v3, rather than a global one,
it is still possible to adapt the proof to obtain a weaker variant of the lemma. In this variant,
if v2 executes Line 10, it must do so with q = 0.

From Lemma 14 we have:

▶ Corollary 15. Node v2 does not enter the global termination phase and thus it cannot
terminate the algorithm in the Leader state.

The following observation follows from the fact that the second minimum identifier in the
ring is at least ID2 + 2. Recall that the reduced ring is obtained by removing node v2 and
directly connecting v1 and v3 while respecting the original port labeling.

▶ Observation 16. When the algorithm is executed on the reduced ring, v1 and v3 send at
least ID2 + 2 pulses to each other (and they receive these pulses) during their competing phase.

▶ Lemma 17. When node v2 completes the rebalancing phase, v2 has sent exactly ID2 + 2
pulses to node v1 and ID2 + 2 pulses to node v3. Moreover, at the end of the rebalancing
phase, v2 has received exactly ID2 + 2 pulses from v1 and ID2 + 2 pulses from v3.

Proof. Once v2 terminates its competing phase it has sent/received ID2 pulses to/from each
of its neighbors. At Line 7, it sends 2 pulses to v1 and at Line 15 it sends 2 pulses to v3.
Moreover, at Lines 8 and 17, it has received two pulses from v3 and at Lines 9 and 16 it has
received two pulses from v1 (recall, Lemma 14, that if Line 16 is executed then q = 0 at
Line 9). ◀

▶ Observation 18. From Observation 16 and Lemma 17, v1 and v3 cannot distinguish during
the first ID2 + 2 iterations of their competing phase if they are in the original ring or in the
reduced ring.

We are now ready to prove Proposition 10.

Proof of Proposition 10. By Observation 18, before node v2 completes its rebalancing phase,
nodes v1 and v3 are not able to distinguish this execution from the one on the reduced ring.
By Lemma 14, node v2 completes its rebalancing phase and it eventually enters the relaying
phase. It is easy to see that, from this point onward, v2 behaves as an asynchronous link
between v1 and v3 as long as v2 does not exit the loop at Lines 19–23. ◀
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From Proposition 10, it follows that as long as no node terminates and there are at least
two active nodes, the one with the minimum identifier will enter the relaying phase, and the
other active nodes will behave as if this node were not present in the ring.

Observe that the global minimality of ID2 is used only in the proof of Lemma 14, to
establish that v2 must enter the relaying phase, all the other lemmas, when needed, they
only require the identifier of v2 to be a local minimum among v1, v2, v3. As a matter of fact,
a node v′ may have an identifier that is a local minimum over a sufficiently long sequence of
nodes, allowing it, in some executions, to enter the relaying phase before the global minimum.
This does not affect the indistinguishability claimed in Proposition 10 that remains valid for
v′ and its two neighbours.

We now show that no node terminates before the one with the maximum identifier
exits its competing phase. Moreover, we show that this node eventually enters the global
termination phase, triggering the algorithm’s termination with the election of the node with
the maximum identifier. We will show that each node terminates when it has received three
more pulses on one port than the other. In the next lemma, we characterize when such an
event can happen.

▶ Lemma 19. During the execution, if at some point, some node v has sent three more
pulses on port q than it has sent on port 1− q, or if v has sent three more pulses on port q

than it has received on port q, then either v has executed Line 11, or v is a relaying node
and v has previously received three more pulses on port 1− q than on port q.

In any case, when this happens, the node v does not send any pulses afterwards.

Proof. During the competing phase, on each port, each node alternately sends a pulse on
each port and receives a pulse on each port. At the end of the competing phase, node with
identifier ID has sent and received ID pulses on each port. At Line 7, it sends two pulses
on port 0. Then, if the condition at Line 10 is true, it sends a third pulse on port 0 (i.e., it
executes Line 11) and stops sending pulses afterwards.

Suppose now that the condition at Line 10 is not satisfied. Then it means that at Line 9,
q = 0 and at this point, v has sent ID + 2 pulses on port 0, has sent ID pulses on port 1,
has received ID + 1 pulses on port 0, and has received ID + 1 pulses on port 1. After the
rebalancing phase (Lines 15 to 17), v has sent and received ID + 2 pulses on each port.

After that, it just relays the pulses in the order they arrive and stores the difference
between the number of pulses sent on each port in the variable Diff. Thus, after each iteration
of the loop of the relaying phase, the number of pulses it has sent on a port q is precisely the
number of pulses it has received on port 1− q. Thus, it will send three more pulses on port
q than on port 1− q only if it has received three more pulses on port 1− q than on port q.
When this happens, |Diff| = 3 and node v exits the loop and terminates. ◀

▶ Corollary 20. If a node v terminates the algorithm (i.e., executes Line 13 or 24), then
there is a node v′ that has executed Line 11, and v′ will eventually terminate in the Leader
state.

Proof. By contradiction, suppose that some node v terminates and that no node has executed
Line 11 before. Then v necessarily terminates the algorithm at Line 24, and thus at some
time t, v has received three more pulses on some port q than on port 1− q. Among all such
nodes, consider the node v such that this time t is minimal. Let v′ be the neighbor of v

behind port q. By Lemma 19, v is a relaying node, and v has received three more pulses
from v′ than it has sent to v′. Consequently, there exists a time t′ < t where v′ has sent at
least three more pulses to v than it has received from v. By Lemma 19 and since we assumed
that v′ has not executed Line 11, it implies that at time t′, v′ has received three more pulses
on one port than on the other. But this contradicts the definition of v and t. ◀
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By iteratively applying Corollary 15 and Proposition 10, and by observing that, by
Corollary 20, no node terminates early, we obtain the following corollary:

▶ Corollary 21. The node v with the maximum identifier eventually becomes the only
competing node. Moreover, any other node eventually becomes a relaying node and cannot
terminate the algorithm in the Leader state.

We now show that the node with the maximum identifier eventually enters the Leader
state and that, after this point, no more pulses are sent in the network, and every other node
eventually enters the Non-Leader state.

▶ Lemma 22. In a ring containing only one competing node v, the condition at Line 10
is true for v. Moreover, v will eventually execute Lines 11, 12, and 13, terminating the
algorithm in the Leader state. Furthermore, when v executes Line 13, there are no pulses in
transit and for every other node v′, we have |Diff(v′)| = 3 and thus v′ eventually terminates
in the Non-Leader state.

Proof. Suppose that there is a moment t where the ring contains only one competing node
v. Then, by Proposition 10, Corollary 15, and Corollary 20 applied iteratively to all nodes
except v, node v cannot distinguish the original ring from a ring containing only v.

Thus during the competing phase, v sends and receives ID(v) pulses to itself in each
direction. In the solitude-checking phase, v sends two pulses on port 0 that are eventually
delivered to itself on port 1. Once v has received both pulses, the condition at Line 10 is true
and v enters the global termination phase. It sends another pulse to itself on port 0 (Line 11)
that is eventually delivered on port 1 and v can then execute Lines 12 and 13 terminating in
the Leader state.

Note that by Corollary 15, when v exits its competing phase, every other node v′ is a
relaying node. Consequently, at this point, it has sent and received the same number of
pulses on each port by Observation 11. Therefore, at this point, there are no pulses in transit
in the network and, by Lemma 17, for each node v′ ̸= v, we have Diff(v′) = 0.

Once v has executed Line 7, there are two pulses in transit in the network that are
moving in the same direction and each node v′ ̸= v relays them (through the same port)
before they reach v on port 1. So when v executes Line 9, for each node v′ ≠ v, we have
|Diff(v′)| = 2. Then, when v executes Line 11, it sends a third pulse in the same direction
that will eventually reach v on port 1, at which point there are no pulses in transit. In
the meantime, every node v′ ̸= v will have relayed it and its variable Diff(v′) will satisfy
|Diff(v′)| = 3. Thus, after v′ has relayed this third pulse, v′ will exit the loop in the relaying
phase and it will terminate in the Non-Leader state. ◀

Proof of Theorem 2. It suffices to show that Algorithm 1 is a correct leader election algo-
rithm for all unoriented rings and it has a message complexity of O(nIDmax).

Correctness follows directly from Corollary 21 and Lemma 22. Regarding the message
complexity, take the node vmax with maximum identifier IDmax, by Corollary 21 and Lemma
22, this node will execute Lines 1–13, sending 4IDmax + 3 pulses (the factor 4 comes from
the fact that we initially double each identifier and send pulses in both directions) in the
process. Consider now any other node vj with identifier IDj ̸= IDmax, by Corollary 15 and
Lemma 17, vj first executes Lines 1–9 and Lines 15–17, the number of pulses sent at these
lines is 4IDj + 4, and then it executes Lines 19–23, but here it will only send a pulse when it
receives one. Therefore, Lemma 22 and the fact that vmax sends 4IDmax + 3 pulses show that
vj cannot send more than δj = (4IDmax + 3)− (4IDj + 4) pulses while relaying. The total
number of pulses sent by Algorithm 1 is therefore at most n(4IDmax + 3). ◀
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5 Conclusions and Open Questions

In this paper, we demonstrate that non-uniform quiescently terminating content-oblivious
leader election is achievable in general 2-edge-connected networks, and that uniform quies-
cently terminating content-oblivious leader election is achievable in unoriented rings.

Previously, such leader election was only known to be possible in ring topologies –
specifically, a quiescently terminating algorithm in oriented rings and a stabilizing algorithm
in unoriented rings [24]. Consequently, we remove the need for a preselected leader in the
general algorithm simulation result by Censor-Hillel, Cohen, Gelles, and Sela [7], trading this
requirement for the much weaker assumption of non-uniformity. For the special case of ring
topologies, we provide a definitive answer on the computational equivalence of fully-defective
communication and noiseless communication.

Several intriguing open questions remain. The foremost is whether uniform content-
oblivious leader election algorithm exists for general 2-edge-connected topologies. So far, this
has only been established for oriented rings [24] and later for unoriented rings (Theorem 2).
Our current algorithm requires an upper bound N on the number of nodes n, as node
identifiers must be spaced N apart to ensure that no node other than the leader r satisfies the
Leader exit condition Count(v) = ID(v). This reliance on N seems inherent to our approach,
where counters of adjacent nodes may differ by one.

Another important open question is whether the efficiency of our algorithms can be
improved. Our algorithm for general 2-edge-connected topologies is highly sequential due to
its use of DFS. A common way to measure time complexity of an asynchronous algorithm is
to assume that each message takes one unit of time to be delivered [3]. Under this model, the
time complexity of our algorithm is O(m ·N · IDmin), matching its message complexity, as
the DFS traverses the m edges sequentially, and the traversal of each edge requires sending
O(N · IDmin) pulses. It remains unknown whether we can make the algorithm less sequential.

Much less is known about message complexity lower bounds for content-oblivious leader
election. The only known result is a lower bound of Ω

(
n · log k

n

)
, where k is the number

of distinct, assignable identifiers in the network, due to Frei, Gelles, Ghazy, and Nolin [24].
Currently, there remains a significant gap between this lower bound and the upper bounds,
both in rings and in general 2-edge-connected networks. A key open question is whether the
message complexity for general 2-edge-connected networks is inherently higher than that of
ring topologies. If so, how can we leverage the structural properties of the hard instances to
establish such a lower bound?
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A Additional Related Work

Fault-tolerant distributed computing involves two main challenges. The first is message
corruption, which can occur due to factors such as channel noise. The second is the presence
of faulty nodes and edges, which can arise from issues like unreliable hardware or malicious
attacks.

To address message corruption, a common approach is to introduce additional redundancy
using coding techniques, known as interactive coding. The noise affecting the messages
can be either random or adversarial, and there is usually an upper bound on the level
of randomness or adversarial behavior. The study of interactive coding was initiated by
Schulman [41, 42, 43] in the two-party setting and later extended to the multi-party case by
Rajagopalan and Schulman [37]. For a comprehensive overview of interactive coding, see the
survey by Gelles [25].

For networks with n nodes, the maximum fraction of corrupted messages that a distributed
protocol can tolerate is Θ(1/n) [31]. If more than this fraction of messages are corrupted,
the adversary can fully disrupt the communication of the node that communicates the
fewest messages. Censor-Hillel, Gelles, and Haeupler [8] presented a distributed interactive
coding scheme that simulates any asynchronous distributed protocol while tolerating an
optimal corruption of Θ(1/n) of all messages. A key technique underlying their algorithm is
a content-oblivious BFS algorithm.

The celebrated impossibility theorem of Fischer, Lynch, and Paterson [21] states that
achieving consensus in an asynchronous distributed system is impossible for a deterministic
algorithm when one or more nodes may crash. Similar impossibility results on the solvability
of consensus have been found when processes are correct but may experience communication
failures, such as message omissions, insertions, and corruptions [40].

If the number of Byzantine edges is bounded by f , reliable communication can only be
achieved if the graph is at least 2f -edge-connected [15, 36].

A series of recent studies has focused on resilient and secure distributed graph algorithms
in the synchronous setting [35, 34, 28, 27, 29, 33, 22, 30]. These works have developed
compilation schemes that transform standard distributed algorithms into resilient and secure
versions. For instance, in a (2f +1)-edge-connected network, any distributed algorithm in the
CONGEST model can be adapted to remain resilient against up to f adversarial edges [28].

Content-oblivious computation has also been studied in the synchronous setting. In the
beeping model introduced by Cornejo and Kuhn [12], during each communication round, a
node can either beep or listen. If the node listens, it can distinguish between silence or the
presence of at least one beep. Several leader election algorithms have been developed for the
beeping model and its variations [13, 18, 23, 26, 45].
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Several additional distributed models have been designed with limited communication
capabilities to capture various real-world constraints. These include radio networks [11],
population protocols [2], and stone-age distributed computing [20]. Leader election has been
extensively studied in these models [1, 6, 13, 14, 10, 16, 19, 26, 44, 45].

B Pseudocode for Theorem 1

In this appendix, we present the pseudocode for leader election in general 2-edge-connected
networks. The algorithm for Theorem 1 is presented in Algorithm 2, with the DFS notification
subroutine detailed in Algorithm 3. There are five main variables used in our algorithm:
State(v): This variable represents the current state of v. We say a node v is in the

synchronized counting phase if State(v) = ⊥. Otherwise, the node is in the DFS notification
phase, and State(v) ∈ {Leader, Non-Leader} indicates the output of v. At the start, every
node is in the synchronized counting phase. Once a node advances to the DFS notification
phase, it fixes its output and cannot go back to the synchronized counting phase.

LeaderID(v): This variable stores the identifier of the leader as known by node v.
Parent(v): This variable stores the port number through which v connects to its parent in

TG.
Count(v): This variable implements the counter used in the synchronized counting phase.
P(v): This variable represents the remaining unexplored ports of v in the DFS notification

phase. Precisely, P(v) is the set of ports on which v has not yet received LeaderID + N + 2
pulses.

For ease of presentation, we define the following two actions:

SendPulsesUntili(k): Send pulses along port i until a total of k pulses have been sent from
the start of the algorithm (i.e., σi = k).

SendAll(1): Send one pulse along each port.

Events. For ease of analysis, several positions in Algorithm 2 and Algorithm 3 are annotated
with labels: StartDFS(v) (node v initiates the DFS), SendExplorei(v) (node v begins sending
an explore-notification on port i), ReceiveExplorei(v) (node v confirms receipt of an explore-
notification from port i), SendDonei(v) (node v begins sending a done-notification on port i),
and ReceiveDonei(v) (node v confirms receipt of a done-notification from port i). These
labels are treated as events in the analysis in the full version [9] of the paper.
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Algorithm 2 Leader election algorithm for node v.

1 ID(v)← ID(v) ·N // Forcing all IDs to be integer multiples of N

2 State← ⊥; LeaderID← ⊥; Parent← ⊥
3 Count← 0
4 SendAll(1)
5 while State = ⊥ do // Synchronized counting
6 on event ρi is incremented for some i ∈ [deg(v)] do
7 if ρi = minj∈[deg(v)] ρj then // Counter increment condition
8 Count← Count + 1
9 SendAll(1)

10 if Count = ID(v) then // Leader exit condition
11 State← Leader
12 LeaderID← ID(v)
13 Event: StartDFS(v)
14 else if ρi − σi > 1 then // Non-Leader exit condition
15 State← Non-Leader
16 Parent← i

17 LeaderID← ⌊Count/N⌋ ·N
18 wait until ρi = LeaderID + N + 2
19 Event: ReceiveExplorei(v)
20 end
21 end
22 Notify(State, LeaderID, Parent) // Algorithm 3
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Algorithm 3 Notify(State, LeaderID, Parent) for node v.

1 P = [deg(v)] // The set of all ports
2 if State = Non-Leader then
3 P ← P \ {Parent}
4 while P ≠ ∅ do
5 j ← min(P) // Traversal order: prioritizing smaller port numbers
6 Event: SendExplorej(v)
7 wait until ρj ≥ LeaderID + 1
8 SendPulsesUntilj(LeaderID + N + 2) // Continue DFS on port j

9 while j ∈ P do
10 on event ρh = LeaderID + N + 2 for some h ∈ P do
11 if j = h then // DFS returned from port j

12 P ← P \ {j}
13 Event: ReceiveDonej(v)
14 else // Incoming DFS from port h via a back edge
15 P ← P \ {h}
16 Event: ReceiveExploreh(v)
17 Event: SendDoneh(v)
18 SendPulsesUntilh(LeaderID + N + 2)
19 end
20 end
21 end
22 if State = Non-Leader then
23 Event: SendDoneParent(v)
24 SendPulsesUntilParent(LeaderID + N + 2) // Return DFS on parent port
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