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—— Abstract

Bonne and Censor-Hillel (ICALP 2019) initiated the study of distributed subgraph finding in dynamic
networks of limited bandwidth. For the case where the target subgraph is a clique, they determined

the tight bandwidth complexity bounds in nearly all settings. However, several open questions
remain, and very little is known about finding subgraphs beyond cliques. In this work, we consider
these questions and explore subgraphs beyond cliques in the deterministic setting.

For finding cliques, we establish an 2(log log n) bandwidth lower bound for one-round membership-
detection under edge insertions only and an Q(logloglogn) bandwidth lower bound for one-round
detection under both edge insertions and node insertions. Moreover, we demonstrate new algorithms
to show that our lower bounds are tight in bounded-degree networks when the target subgraph is a
triangle. Prior to our work, no lower bounds were known for these problems.

For finding subgraphs beyond cliques, we present a complete characterization of the bandwidth
complexity of the membership-listing problem for every target subgraph, every number of rounds,
and every type of topological change: node insertions, node deletions, edge insertions, and edge
deletions. We also show partial characterizations for one-round membership-detection and listing.
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1 Introduction

Detecting small subgraphs in distributed networks has recently attracted significant research
interest [6, 9, 12, 16, 17, 20, 22, 25, 26, 27, 33, 30, 36]. Distributed subgraph finding plays
an important role in understanding the bandwidth limitation in distributed networks: It
is a classical problem where a straightforward O(1)-round solution exists with unlimited
bandwidth, but becomes significantly more complex when bandwidth constraints are imposed.

© Yi-Jun Chang, Lyuting Chen, Yanyu Chen, Gopinath Mishra, and Mingyang Yang;
oY licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).

Editor: Dariusz R. Kowalski; Article No. 22; pp. 22:1-22:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:cyijun@nus.edu.sg
https://orcid.org/0000-0002-0109-2432
mailto:e0726582@u.nus.edu.sg
https://orcid.org/0009-0002-8836-6607
mailto:yanyu.chen@u.nus.edu
https://orcid.org/0009-0008-8068-1649
mailto:gopinath@nus.edu.sg
https://orcid.org/0000-0003-0540-0292
mailto:myangat@u.nus.edu
https://orcid.org/0009-0006-8971-2064
https://doi.org/10.4230/LIPIcs.DISC.2025.22
https://arxiv.org/abs/2411.11544
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

22:2

The Complexity Landscape of Dynamic Distributed Subgraph Finding

Previous works on distributed subgraph findings mostly assumed a model in which the
underlying network is static. However, distributed systems in real life may undergo topological
changes over time: A node might crash, and a new connection might be formed between
two existing nodes. To address this gap, Bonne and Censor-Hillel [6] initiated the study of
distributed subgraph finding in dynamic networks to better capture the real-world behavior
of networks of limited bandwidth. For the case where the target subgraph is a clique, they
determined the tight bandwidth complexity bounds in nearly all settings. Later, Liu [36]
extended this study to dynamic graphs with batched updates and resolved an open question
of Bonne and Censor-Hillel [6, Open question 4]. However, several open questions remain,
and very little is known about finding subgraphs beyond cliques. In this paper, we build
upon their works [6, 36] to consider the remaining open questions and explore other target
subgraphs beyond cliques.

1.1 Models

We now formally describe the models considered in this paper, which were introduced by
Bonne and Censor-Hillel [6]. A dynamic network G is a sequence of graphs G = {G°, G, .. .}.
The superscript notation should not be confused with graph powers. The initial graph G°
represents the state of the network at some starting point. For each i > 1, the graph G? is
either identical to its preceding graph G*~! or obtained from G*~! by a single topological
change.

Each node u in the network is equipped with a unique identifier ID(u), and it knows the
list of identifiers of all its neighbors. The communication is synchronous. In each round of
communication, each node can send to each of its neighbors a message of B bits, where B
denotes the bandwidth of the network.

We assume that each node initially knows the entire topology of the initial graph G°. In
particular, the set of all identifiers is global knowledge, so we may assume that the range of
the identifiers is exactly [n], where n is the number of nodes in the network.

Topological changes. We consider four types of topological changes: node insertions, node
deletions, edge insertions, and edge deletions. In the case of a node insertion, the adversary
may connect the new node to an arbitrary subset of the existing nodes. Each node u can only
indirectly deduce that a topological change has occurred by comparing its list of neighbors
Ngi(u) in the current round ¢ and its list of neighbors Ngi-1(u) in the previous round i — 1.
At most one topological change can occur in each round. Suppose at some round i, node
u detects that exactly one new node v appears in its neighborhood list, then from this
information only, node u cannot distinguish whether edge {u, v} is added or node v is added
in round ¢, if we are in the model where both edge insertions and node insertions are allowed.
Similarly, suppose node u detects that exactly one node v disappears in its list. In that case,
u cannot distinguish whether edge {u, v} is deleted or node v is deleted, if we are in the
model where both edge deletions and node deletions are allowed.

Algorithms. An algorithm can be designed to handle only one type of topological change or
any combination of them. Throughout this paper, we only consider deterministic algorithms.
We say an algorithm A is an r-round algorithm if A works in the following setting.
Each topological change is followed with at least 7 — 1 quiet rounds. Specifically, if a
topological change occurs in round i, then we must have G = Gl = ... = G+r—1,
Rounds i + 1,...,7+r — 1 are quiet in the sense that no topological changes occur in
these rounds.
The output w.r.t. G* must be computed correctly by round i + r — 1.
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A one-round algorithm is not called a zero-round algorithm because, within each round,
topological change occurs before any communication takes place. This setup allows the nodes
to have one round of communication between the topological change and deciding the output
within a single round. For example, if an edge {u, v} is inserted in a round, then u and v
can immediately communicate with each other along this edge within the same round.

We emphasize that all our algorithms and lower bounds in this paper are deterministic,
although many of our lower bounds also extend to the randomized setting, as shown in the
full version [15] of the paper.

1.2 Problems

We consider the four types of distributed subgraph finding problems introduced by Bonne
and Censor-Hillel [6].

Membership Listing For the membership-listing (MEMLIST(H)) problem, each node v lists
all the copies of H containing v. In other words, for each copy of H and each node u in
H, node u lists H.

Membership Detection For the membership-detection (MEMDETECT(H)) problem, each
node v decides whether v belongs to at least one copy of H.

Listing For the listing (L1sT(H)) problem, every appearance of H is listed by at least one
node in the network. In other words, for each copy of H, there exists some node u that
lists H.

Detection For the detection (DETECT(H)) problem, the existence of any H must be detected
by at least one node. Specifically, if the network does not contain H as a subgraph, then
all nodes must output NoO. Otherwise, at least one node must output YES.

For both membership-detection and detection, the output of each node is binary (YES/NO)
only, with no requirement to report the actual target subgraph. For both membership-listing
and listing, each node outputs a list of the target subgraphs, using the node identifiers in the
network. For the listing problem, the node u responsible for listing H is not required to be
in H, and it is allowed that each copy of H is listed by multiple nodes.

In the literature, the problem of deciding whether a subgraph isomorphic to H exists is
often referred to as H -freeness, whereas detection sometimes denotes the task of outputting
a copy of H. We emphasize that our use of detection differs from this convention: In both
MEMDETECT(H) and DETECT(H ), outputting a copy of H is not required.

Bandwidth complexities. The r-round bandwidth complexity of a problem is defined as the
minimum bandwidth B for which there exists an r-round algorithm solving that problem
with bandwidth B. Fix a target subgraph H, a round number r, and some type of topological
changes. Let Bygunists BMemDerser, BList, and Bpgrger denote the r-round bandwidth
complexities of MEMLIST(H ), MEMDETECT(H), L1ST(H), and DETECT(H ), respectively.
The following observations were made by Bonne and Censor-Hillel [6].

» Observation 1.1 ([6]). Given any target subgraph H and any integer r,
Bpereer < Brisr < BupuList

under any type of topological change.

» Observation 1.2 ([6]). Given any target subgraph H and any integer r,
Bpereer < Buevberser < BMesList

under any type of topological change.

DISC 2025
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Nontrivial target subgraphs. In this paper, we only focus on nontrivial target subgraphs H,
meaning that we implicitly assume that H is connected and contains at least three nodes:

If H is not connected, then all four problems are trivially impossible to solve, as we allow
the network to be disconnected.

If H is connected with exactly two nodes, then all four problems are trivially solvable
with zero communication.

For example, when we say that the one-round bandwidth complexity of MEMDETECT(K)
under edge insertions is Q(loglogn), we implicitly assume that s > 3.

1.3 Our Contributions

While Bonne and Censor-Hillel [6] settled most of the bandwidth complexity bounds for
clique finding, they left five open questions, one of which [6, Open question 4] was resolved
by Liu [36]. In this paper, we investigate the remaining ones.

Finding cliques under edge insertions. In [6, Open question 1] and [6, Open question 3],
Bonne and Censor-Hillel asked for the tight bound on the one-round bandwidth complexity of
membership-detection for triangles and larger cliques under edge insertions only. For triangles,
they obtained two upper bounds O(logn) and O(y/Alogn) [6]. For larger cliques, they
obtained an upper bound O(y/n) which works even for the membership-listing problem [6].
In this work, we show that these problems admit a bandwidth lower bound of Q(loglogn),
which holds even in bounded-degree networks.

» Theorem 1.3. For any constant s > 3, the one-round bandwidth complexity of
MEMDETECT(K) under edge insertions is Q(loglogn), even in bounded-degree dynamic
networks.

Prior to our work, no lower bound was known for this problem. Moreover, we complement
our lower bound with a new O(loglogn)-bandwidth triangle finding algorithm in bounded-
degree networks, which is capable of solving the more challenging problem of membership-
listing.

» Theorem 1.4. There exists a one-round algorithm of MEMLIST(K3) under edge insertions
with bandwidth O(A?loglogn), where A is the maxzimum degree of the dynamic network.

Combining Theorem 1.3 and Theorem 1.4, we obtain a tight bound of membership-
detection for triangles in bounded-degree dynamic networks.

» Corollary 1.5. The one-round bandwidth complexity of MEMDETECT(K3) under edge
insertions is ©(loglogn) in bounded-degree dynamic networks.

Finding cliques under edge insertions and node insertions. The remaining two open
questions of Bonne and Censor-Hillel [6] considered the model where two types of topological
changes are allowed. Specifically, [6, Open question 2] and [6, Open question 5] asked for the
tight bound on the one-round bandwidth complexity of the listing problem for triangles and
larger cliques under both edge insertions and node insertions. Previously, these problems
were known to have an upper bound of O(logn) [6]. In this work, we show that these
problems admit a bandwidth lower bound of Q(logloglogn), which applies to the easier
problem of detection and holds in bounded-degree networks.



Y.-J. Chang, L. Chen, Y. Chen, G. Mishra, and M. Yang

» Theorem 1.6. For any constant s > 3, the one-round bandwidth complexity of DETECT(K )
under both node insertions and edge insertions is Q(logloglogn), even in bounded-degree
dynamic networks.

Same as Theorem 1.3, prior to our work, no lower bound was known for this problem.
Interestingly, we are also able to match this lower bound with a new O(log log log n)-bandwidth
algorithm for listing triangles in bounded-degree networks.

» Theorem 1.7. There exists a one-round algorithm of LIST(K3) under edge insertions and
node insertions with bandwidth O(Alogloglogn), where A is the mazimum degree of the
dynamic network.

Combining Theorem 1.6 and Theorem 1.7, we obtain a tight bound for triangle detection
in bounded-degree dynamic networks.

» Corollary 1.8. The one-round bandwidth complexity of DETECT(K3) under edge insertions
and node insertions is O(logloglogn) in bounded-degree dynamic networks.

Beyond cliques. It appears to be a challenging task to extend the current results beyond
cliques. In the static setting, while the round complexity for k-clique listing has been
settled [9, 12, 16, 17, 22, 30], far less is known about target subgraphs that are not cliques.
In the dynamic setting, Bonne and Censor-Hillel [6] highlighted that cliques are unique in
that they can be found trivially in one round if bandwidth is unrestricted.

In this work, we demonstrate that it is possible to achieve meaningful results beyond
cliques, despite the inherent difficulties. For subgraph finding beyond cliques, we present a
complete characterization of the bandwidth complexity for the membership-listing problem
across all target subgraphs, all numbers of rounds, and all four types of topological changes:
node insertions, node deletions, edge insertions, and edge deletions (Table 1). Moreover,
we show partial characterizations for one-round membership-detection (Table 2) and listing
(Table 3).

Our contribution lies in finding structures in the apparent chaos: We identify relevant
graph classes (e.g., complete multipartite graphs) and parameters (e.g., node-edge versions of
distance, radius, and diameter) in the area of dynamic distributed subgraph finding. For the
cases where a full characterization has yet to be achieved, we identify remaining challenging
open problems and outline future research directions. Addressing these challenges will likely
require developing novel techniques.

1.4 Additional Related Work

Konig and Wattenhofer [32] conducted a systematic study of classical network problems under
various types of topological changes, such as node or edge insertions and deletions. They
said that a combination of a problem and a topological change is locally fizable if an existing
solution can be repaired in O(1) rounds following a topological change in the network. Several
subsequent studies have investigated dynamic distributed algorithms for local problems, such
as independent set [3, 13], matching [39], and coloring [37]. The dynamic-LOCAL model
was formalized in [1]. Distributed algorithms for highly dynamic networks, where multiple

topological changes can occur within a single communication round, were examined in [4, 10].

Global distributed problems, such as consensus and information dissemination, have also been
studied in the dynamic setting [18, 21, 28, 31, 34, 35, 40]. Dynamic distributed algorithms
are closely related to the concept of self-stabilization — a key notion in distributed computing
— where a distributed network undergoes various changes and must rapidly return to a stable
state after some quiet time [19].

22:5
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There is a long line of research studying distributed subgraph finding in the CONGEST
model. The first breakthrough in triangle detection was achieved by Izumi and Le Gall [30],
who demonstrated that triangle detection and listing can be completed in O(n?/3) and O(n3/4)
rounds, respectively. After a series of work [9, 12, 14, 16, 17, 22], it was shown that ©(n!~2/F)
is the tight bound for k-clique listing via the use of expander decomposition and routing.
Distributed cycle findings have also been extensively studied [20, 22, 25, 33]. Property-testing
variants of the distributed subgraph finding problem have been explored [7, 11, 24, 26, 27].
The subgraph finding problem has also been investigated in other computational models
beyond distributed and parallel computing [2, 5, 23]. For more on the distributed subgraph
finding problem, see the survey by Censor-Hillel [8].

The study of distributed subgraph finding is partially motivated by the fact that many
algorithms can be significantly improved if the underlying network does not contain certain
small subgraphs. For instance, Pettie and Su showed distributed coloring algorithms for
triangle-free graphs using fewer colors and rounds [38]. Similarly, Hirvonen, Rybicki, Schmid,
and Suomela developed an efficient distributed algorithm to find large cuts in triangle-free
graphs [29].

1.5 Roadmap

In Section 2, we review essential graph terminology and parameters and demonstrate how
certain graph parameters determine the minimum number of rounds required for certain
subgraph-finding tasks. In Section 3, we present a technical overview of our proofs. In
Section 4, we conclude the paper with some open questions. In Section A, we provide tables
that summarize our results for subgraph finding beyond cliques.

2 Preliminaries

In this section, we present the basic definitions used in the paper. In Section 2.1, we review
essential graph terminology and parameters. In Section 2.2, we discuss some basic properties
of these graph parameters. In Section 2.3, we demonstrate how specific graph parameters
determine the minimum number of rounds required for MEMLIST(H) and MEMDETECT(H),
independent of any bandwidth constraints.

2.1 Graph Terminology

Given a graph H, an edge e = {u,v} € E(H), and a node subset S C V(H), we write H[S)|
to denote the subgraph of H induced by node set S, write H — .S to denote the subgraph of
H induced by node set V(H) \ S, and write H — e to denote the subgraph of H induced by
edge set E(H) \ {e}.

For a graph G = (V, E), we have the following definitions.

» Definition 2.1 (Eccentricity, diameter, radius, and center).

Eccentricity of u: ecci(u) = max{distg(u,v) : v € V}
Diameter of G: diam(G) = max{eccg(u) : u € V}
Radius of G: rad(G) = min{eccg(u) : u € V}
Center of G: center(G) = {u € V : eccg(u) = rad(G)}
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In other words, the eccentricity of a node is the maximum of its distance to other nodes,
the diameter of a graph is the maximum eccentricity of its nodes, the radius of a graph is
the minimum eccentricity of its nodes, and the center of a graph is a node subset containing
all nodes with eccentricity equal to the radius.

We consider the “node-edge” version of the definitions above.

» Definition 2.2 (Node-edge distance). For any u € V and any e = {v,w} € E, the node-edge
distance between them is defined as distg(u,e) := 1 + min {distg(u, w), diste (u, v)}.

We overload the notation dist(-, ) since it is easy to distinguish dist(u,v) and dist(u, €).

» Definition 2.3 (Node-edge eccentricity, diameter, radius, and center).

Node-edge eccentricity of u: eccg (u) = max{distg(u,e) : e € E}
Node-edge diameter of G: cﬁarr/n(G) = max{eccg(u) :u € V}
= max max distg (u, e)
Node-edge radius of G: Q(G) = min{eccg(u) :u € V}
= min max distg(u, €)
Node-edge center of G: cen/_\fe/r(G) ={u eV :eccg(u) = rfeﬁ(G)}
={ueV: max distg(u, e) = ;;;a(G)}
ec

The node-edge distance definition is needed to capture the complexity bounds for various
problems discussed in this paper. For example, in Cy, any node can detect an edge deletion
within one round, whereas in Cs, the node opposite the deleted edge cannot detect the
topological change in a single round. This is reflected by the fact that E&(C&;) =2<3=
rad(Cs), while the standard radius definition rad(Cy) = 2 = rad(C5) is insufficient to capture
the difference.

2.2 Properties of Graph Parameters

These distance-based parameters and their node-edge versions are closely related. Specifically,
we have the following observation.

» Observation 2.4. For any connected graph H, diam(H) < cﬁz\lr/n(H) < diam(H) + 1.

Proof. Since for any node u and any edge {v,w}, |disty(u,w) — distgy(u,v)| < 1, the

—

observation follows directly from the definition of diam and diam.

diam(H) = max max dist g (u, v)
ueV veV

< max max 1+ min {distz (u,w),disty (u,v)} = diam(H)
ueV {v,w}eE

< 1+ max maxdist g (u,v) = diam(H) + 1. <
ueV veVv

The class of complete multipartite graphs plays a crucial role in the study of the complexity
landscape of dynamic distributed subgraph finding, as it can be characterized in terms of
node-edge diameter or node-edge independence.

» Definition 2.5 (Complete multipartite graphs). A graph G is complete k-partite if its node
set V(G) can be partitioned into k independent sets Sy, S, ..., Sk such that for any two
nodes u,v € V(G), {u,v} € E(GQ) if and only if u € S; and v € S; for some i # j. For any
k, a complete k-partite graph is called a complete multipartite graph.

22:7
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» Definition 2.6 (Node-edge independence). In a graph G, a node w and an edge {u,v} are
independent if w is adjacent to neither u nor v in G. A graph G is node-edge independent
if at least one of its node-edge pairs are independent.

In other words, a graph G is node-edge independent if and only if it contains a co-Ps
(complement of a path with three nodes) as an induced subgraph. See Figure 1.

» Lemma 2.7. A graph G has no induced Ps if and only if its connected components are
cliques.

Proof. If every connected component of G is a clique, then any three nodes selected cannot
induce a P3. Conversely, suppose a graph G has no induced P3 and there is a connected
component that is not a clique, then there is a pair of disconnected nodes u and v in the
same component. The two nodes u and v must be connected by some minimum-length path
P,, whose length is at least 2, since they are in the same connected component. Any three
consecutive nodes on the path induce a Pz, which is a contradiction. |

» Lemma 2.8. A graph G is complete multipartite if and only if it is not node-edge inde-
pendent.

Proof. Observe that a graph is complete multipartite if and only if its complement is a disjoint
union of cliques. Hence Lemma 2.7 implies that a graph G is not node-edge independent
<= G does not contain a co-Ps as an induced subgraph <= complement of G is Ps-free
<= G is complete multipartite. |

Figure 1 Co-Ps (left, dotted lines denote non-edges) and a complete multi-partite graph (right).

Now we characterize complete multipartite graphs in terms of node-edge diameter.

» Observation 2.9. For any connected graph H with at least three nodes, (EE;_I;I(H) =2 if
and only if H is complete multipartite.

Proof. If Ml(H ) = 2, then H is not node-edge independent, since if node w is independent
of edge e = {u, v}, then disty (w,e) > 3. Hence, H is complete multipartite by Lemma 2.8.
Conversely, suppose H is complete multipartite, then it is not node-edge independent, and
dist g (w,e) < 2 for all w € V(H) and e € E(H). Hence, m(H) < 2. Since H has at least
three nodes, for any edge e, there is a node w such that w ¢ e. We have disty(w,e) > 2 and
dfizi/n(H ) > 2. <

2.3 Locality Constraints

In this section, we investigate the minimum number of rounds required for the two problems
MEMLIST(H) and MEMDETECT(H) regardless of any bandwidth constraints, for any given
target subgraph H. Due to the local nature of topological changes, the appearance or
disappearance of a copy of H might not be detectable for some nodes in H in the same round
or even after several rounds of communication.
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See Figure 2 for an example. Suppose at some round r, edge {u, v} is inserted, so the
current graph is C5. Assuming unlimited bandwidth, after one round of messaging, all the
nodes highlighted can detect the appearance of C5 due to the messages from u or v. The only
remaining node w is unable to detect the appearance of C5 after one round of messaging, as
the information about the topological change has not reached w.

() ()
@ @)
(w] - (w]
© ©
® ®

Figure 2 Locality constraint for MEMDETECT(C5).

In the subsequent discussion, we define two graph parameters 7y and r4;, and use them
to show the locality constraints for MEMLIST(H ) and MEMDETECT(H).

First, we define threshold rg and show that ry is a lower bound on the number of rounds
needed for MEMLIST(H) or MEMDETECT(H ) under edge insertions or under edge deletions.

» Definition 2.10 (Threshold r). For any given graph H, define ry = (Tl_e\m;l(H) —1.

» Theorem 2.11 (Locality constraints, edge insertions/deletions). Given any graph H, for any
T < rpg, there exists no T-round algorithm for MEMLIST(H) or MEMDETECT(H ) under
edge insertions or under edge deletions.

Proof. Suppose disty(w,e) = dfiz\u/n(H), for a node w € V(H) and an edge e = {u,u'} €
E(H). Consider the following dynamic graph G under edge insertions:
1. Initially, G° = H — e.
2. At round 1, consider two cases:
a. The edge {u,u'} is inserted. Thus G' = H.
b. There is no change. Thus G' does not contain any subgraph isomorphic to H.

Since T < rg = %(H) — 1 = min{disty (w,u), dist g (w,w)}, within T rounds of
communication, node w must receive identical messages in both cases and cannot distinguish
two cases, so any correct algorithm requires at least vy rounds.

A similar proof applies to the case of edge deletion. The only required modification is to
start with G° = H and then replace the insertion of e with the deletion of e. |

Next, we define the threshold 77; and show that r; is a lower bound on the number of
rounds needed for MEMLIST(H) or MEMDETECT(H) under node insertions or under node
deletions.

» Definition 2.12 (Threshold ;). For any given graph H, define vy = diam(H) — 1.

» Theorem 2.13 (Locality constraints, node insertions/deletions). Given any graph H, for any
T < 1y, there exists no T-round algorithm for MEMLIST(H) or MEMDETECT(H) under
node insertions or under node deletions.

Proof. Suppose disty(u,w) = diam(H) for nodes u,w € V(H). For node insertions, we
start with the graph G° = H — {u}, the subgraph of H induced by V(H) \ {u}. Consider
two cases:

22:9
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1. Insert node u, along with all its incident edges in H. Thus G' = H.

2. No topological change.

Since T < 1y = diam(H) — 1 = min{dist g (w, ') : v’ € Ng(u)}, node w receives the same
information within 7" rounds in both cases. Therefore, for any T-round algorithm, w is
unable to correctly decide whether H appears. We can use a similar design to prove the
case of node deletions: Start with graph H, and then at round 1, either delete node w or
do nothing. Since T’ < rf; = min{disty (w,v’) : v’ € Ny (u)}, the same analysis shows that
node w cannot decide whether H disappears. <

We show a tighter bound in terms of rg for the case of node insertions. We remark that
the same argument does work for node deletion since nodes are assumed to know the entire
topology before any deletion and hence may decide based on one-sided information along the
shortest path from u to x in the following example.

» Theorem 2.14 (Locality constraints, node insertions). Given any graph H, for any T <
rm, there exists no T-round algorithm for MEMLIST(H) or MEMDETECT(H ) under node
insertions.

Proof. According to Observation 2.4, we have either ry = (TI—E;EI(H) —1=diam(H)—-1=r}
or rg = (ﬂz;r/n(H) —1=diam(H) = ry + 1. If ry = 7%, then the proof follows from
Theorem 2.13. For the rest of the proof, we focus on the case where rg = (ﬂr/n(H) —-1=
diam(H) = 7% + 1.

Suppose dist g (z, e) = (iz;;l(H) = diam(H) +1 for node x € V(H) and edge e = {u,v} €
E(H). We must have disty(z,u) = disty(x,v) = diam(H). Otherwise, if disty(z,u) <
diam(H) — 1, then disty (z,e) < diam(H ), contradicting our assumption. Now, consider the
following dynamic graph G.

1. Initially G° = H — {u}.
2. At round 1, consider two cases:

a. Node u is inserted with all its incident edges in H. Thus G' = H.

b. Node u is inserted with all its incident edges in H excluding {u,v}. Thus G = H — .
For any T' < rg = diam(H), node z receives the same information within 7" rounds in both
cases. Therefore, for any 7T-round algorithm, x cannot distinguish the two cases and cannot
output correctly. |

One-round solvability and complete multipartite graphs. By Theorems 2.11 and 2.14 with
T =1, we know that ry < 1, or equivalently (TI_E\%_I/H(H ) < 2, characterizes the class of target
subgraphs H that permits one-round MEMLIST(H) and MEMDETECT(H ) algorithms for
edge insertions, edge deletions, and node insertions. Observe that cﬂz:r;l(H ) =1 if and only
if H is a single edge, so all non-trivial target subgraphs H satisfy %(H ) > 2. Therefore,
Observation 2.9 implies that, excluding trivial target subgraphs, complete multipartite graphs
are exactly the class of graphs that permits one-round MEMLIST(H) and MEMDETECT(H)
algorithms for edge insertions, edge deletions, and node insertions.

3 Technical Overview

In this section, we present a technical overview of our proofs.

3.1 Lower Bounds for Finding Cliques

We start with the lower bounds for finding cliques.
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Q(loglogn) lower bound. We present the core idea underlying the Q(loglogn) bandwidth
lower bound for one-round MEMDETECT (K ) under edge insertions, as shown in Theorem 1.3.
For simplicity and clarity, we focus on the case of membership-detecting triangles (K3).
We start by describing the hard instance. Consider a set of ¢t = log”!n nodes
{z1,22,...,2:} and an independent set I. By connecting each z; to two distinct nodes
from I, we form t disjoint paths of length two, each resembling a triangle missing one edge.
The graph is constructed by edge insertions over 2t rounds.
After constructing these paths, a single edge e is inserted. Two scenarios are possible:
Edge e connects the two endpoints of one of the constructed paths, completing a triangle.
Edge e connects endpoints from two different paths, forming no triangle.

Let (a,z;,b) be one such path, and suppose a is one endpoint of the newly inserted
edge e. To correctly detect whether a triangle has been formed, node a must determine
whether the other endpoint of e is node b. We show that if the bandwidth of the algorithm
is B = o(loglogn), then no mechanism exists for a to reliably make this distinction.

Before the insertion of e, node a might try to learn ID(b) through ; during the initial 2¢
rounds. However, due to bandwidth limitations, a can receive only O(Bt) = o(logn) bits,
which is far too little to uniquely identify b from the space of possible identifiers [n].
After the insertion of e, the two endpoints of e can exchange B-bit messages. However,
distinguishing whether they are part of the same path among ¢ candidates requires Q(log t)
bits, while B = o(loglogn) = o(logt) is again insufficient.

Q(logloglog n) lower bound. We now turn to the proof of Theorem 1.6, which establishes
that the one-round bandwidth complexity of DETECT(K ;) under both node insertions and
edge insertions is Q(logloglogn). For clarity, we again focus on the case of membership-
detecting triangles.

The key reason this lower bound is exponentially smaller than the previous one is that
DETECT(K) is inherently a much simpler problem than MEMDETECT(K). In particular, if
only edge insertions are allowed, then triangle detection is solvable with bandwidth B = O(1):
When an edge is inserted, its endpoints can simply broadcast a signal to their neighbors,
and any node receiving two such signals can locally infer the existence of a triangle.

However, this strategy breaks down when node insertions are also permitted. Again,
consider a path of the form (a,z;,b). Now, it is impossible to distinguish whether an edge
{a, b} has been inserted — completing a triangle — or whether a new node ¢ has been inserted
with incident edges {a,c} and {b,c}, where no triangle is created. The ambiguity arises
because both scenarios lead to x; receiving signals from a and b.

To formalize this, we use a construction similar to the one from the previous lower bound,
but with a smaller parameter: ¢ = logo'1 logn. We show that distinguishing the two scenarios
requires Q(logloglogn) bits of bandwidth.

Here is a brief sketch of the argument. We label each pair (a, b), for a,b € I, according to
the messages transmitted across the edges {a,z;} and {b, x;} in the first 2¢ rounds, under
the assumption that the path (a,z;,b) is formed. Since each message consists of B bits and
communication lasts 2¢ rounds, the total number of distinct labels is s = 20(B).
insertion is allowed, nodes in I without incident edges are considered as not yet inserted.

A Ramsey-type argument then implies the existence of a subset {a, b, c} C I such that
all of (a,b), (a,c), (¢,b) receive the same label. This means that, from the perspective of
node z;, the insertion of an edge e = {a, b} versus the insertion of a node ¢ with two incident
edges {a,c} and {b, ¢} becomes indistinguishable.

Since node
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For the proof to work, the set I must be sufficiently large relative to the number of
distinct labels, which is s = 2°(B%)_ This requirement is precisely why we set t = log®! logn
instead of the larger value ¢ = log®! n used in the previous argument, resulting in a weaker
lower bound of Q(logloglogn). The full proof of Theorem 1.6 is more intricate, as it involves
analyzing not only the perspective of each x;, but also the views of the endpoints of the
newly inserted edge e. For instance, the actual labeling in the proof requires quantifying
over all i € [t], which increases the number of distinct labels to 20(B%),

3.2 Upper Bounds for Finding Triangles

We now discuss our two triangle-finding algorithms, both of which achieve optimal bandwidth
complexity in bounded-degree networks, matching our lower bounds.

Our algorithms build upon the one-round algorithm for MEMDETECT(K3) under edge
insertions by Bonne and Censor-Hillel [6], which operates with bandwidth B = O(1/Alogn).

Their approach uses two types of messages: one with d bits, and another with O (%)
bits. The overall bandwidth complexity is optimized by choosing d = y/Alogn.

O(loglogn) upper bound. To prove Theorem 1.4, we extend the algorithm of Bonne and
Censor-Hillel to design a one-round algorithm for MEMLIST(K3) under edge insertions with a
bandwidth complexity of O(A%loglogn). In their original algorithm for MEMDETECT(K3),
each d-bit message is a binary string where the i¢th bit indicates whether an incident edge was
inserted ¢ rounds ago. We observe that this binary string can be compactly represented using
O(Alogd) bits: For each recently inserted incident edge, use a number in [d] to indicate
its insertion time. Setting d = logn gives a bandwidth complexity of O(Aloglogn) for
MEMDETECT(K3).

To handle the more demanding MEMLIST(K3) problem, we introduce several modifications
to the algorithm. Most notably, we must account not only for the edges incident to a node but
also for those incident to its neighbors. This additional layer of information increases the size
of the message by a factor of A, resulting in a total bandwidth complexity of O(A%loglogn).

O(logloglogn) upper bound. We now turn to the proof of Theorem 1.7, where we
design a one-round algorithm for LiST(K3) that handles both edge and node insertions with
bandwidth O(A logloglogn). The exponential improvement stems from improving the size of

the O % -bit message in the algorithm of Bonne and Censor-Hillel [6] to O (%
bits. The purpose of this message is to transmit the list of neighborhood IDs, which contains
O(Alogn) bits of information. As the transmission is done in d rounds, the required message
size is O (% .

Our key idea lies in a new method for identifying triangles. Recall that a core challenge
in our Q(logloglogn) lower bound proof is to understand the inherent difficulty for a node
x, with two non-adjacent neighbors a and b, to distinguish between the insertion of an edge
{a,b} and the insertion of a node ¢ with two incident edges {a,c} and {b, c}.

We develop a new algorithm to handle this instance. We let x select an index ¢ such that
the ith bits of ID(a) and ID(b) differ. Nodes a and b then report the ith bit of the identifier
of their new neighbor. If an edge {a, b} is inserted, then the reported bits will differ. If a
node ¢, along with two incident edges {a, c} and {b, c}, is inserted, then the bits will match.
This comparison allows z to distinguish between the two cases.
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Sending an index requires only O(loglogn) bits, which is exponentially more efficient
than sending the full identifier, which requires O(logn) bits. Consequently, the size of

the O (%)—bit message in the algorithm of Bonne and Censor-Hillel [6] is reduced to

0] %) bits. Setting d = loglogn then yields the improved bandwidth complexity

O(Alogloglogn).

3.3 Membership-Listing

We obtain a complete characterization of the bandwidth complexity of MEMLIST(H) for
every target subgraph H, every number of rounds r, and every type of topological change:
node insertions, node deletions, edge insertions, and edge deletions. The full characterization
is summarized in Table 1. In this overview, we omit node insertions and deletions, as they
closely mirror the respective cases of edge insertions and deletions.

We begin with the case of edge insertions. For r < ry, we have an impossibility result
from Theorem 2.11. For r > rg, the r-round bandwidth complexity depends on the structure
of H:

If H is a complete multipartite graph that is not a clique, the complexity is ©(n/r).

If H is not a complete multipartite graph, the complexity increases to ©(n?/r).

Upper bounds. The upper bounds follow from the observation that a node v can list all

subgraphs H that contain it once it has an accurate view of its rgy-radius neighborhood.

A brute-force approach would be to flood the entire graph topology using messages of size
O(n?) after each topological change. Within 7z rounds, this ensures all nodes acquire the
required local view. If r > rg, this communication can be spread over multiple rounds,
reducing the bandwidth requirement to O(n?/r).

For the special case where H is a complete multipartite graph, we have ry = 1. This
allows a more efficient approach: Each node simply broadcasts its list of neighbors as a
binary string of length n, leading to a reduced bandwidth complexity of O(n/r).

Lower bounds. We first discuss a general Q(n/r) lower bound for any non-clique subgraph
H. Let {u,v} be a non-edge in H. Consider the graph resulting from replacing v with an
independent set U’, so each member of U’ corresponds to a copy of H. We then construct
the graph via edge insertions, ensuring that the edges incident to v are added last, leaving v
only O(r) rounds to gather information about the graph. For v to list all copies of H, it must

learn the set U’, which requires Q(n) bits of information, yielding a lower bound of Q(n/r).

To strengthen the bound to ©(n?/r) when H is not a complete multipartite graph, we
use the fact that such a graph H must contain an edge e and a node v such that neither
endpoint of e is adjacent to v. Now we apply a similar construction where e is replaced with
a bipartite graph, forcing v to learn the bipartite graph in order to list all copies of H, which
requires ©(n?) bits of information.

Edge deletions. We now consider the case of edge deletions. As with insertions, we have
an impossibility result for r < ry from Theorem 2.11. For r > rg, the r-round bandwidth
complexity is ©(n/r) whenever H is not a clique.

A key difference between insertions and deletions is that edge insertions can merge disjoint
components, potentially introducing many new subgraphs and requiring extensive information
dissemination. In contrast, to handle deletions, it suffices to propagate the identifiers of the
two endpoints of the deleted edge to a radius of rg, which requires only O(logn) bits of
information. This yields an upper bound of O((logn)/r).
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To prove a matching lower bound, we reuse the construction from the Q(n/r) lower
bound. Suppose an edge deletion causes one of the |U’| copies of H to disappear. For a node
v to correctly identify which copy was affected, it must learn Q(log |U’|) bits. By letting U’
contain a polynomial number of nodes, this yields the desired Q((logn)/r) lower bound.

3.4 One-Round Membership-Detection

We now turn to the one-round bandwidth complexity of the MEMDETECT(H) problem,
for which we provide a partial characterization, see Table 2. Compared to MEMLIST(H ),
establishing lower bounds for MEMDETECT(H) is more challenging, as it is harder to quantify
the minimum information a node must obtain to detect the presence of a subgraph. On the
algorithmic side, obtaining optimal upper bounds is also trickier: Since detection does not
require listing the subgraph, there is greater flexibility in how the subgraph can be found.
This flexibility enables a wider range of algorithmic techniques. In this overview, we focus
on two representative results.

Lower bound. We show that the one-round bandwidth complexity of MEMDETECT(H )
under edge insertions is 2(n) for any complete multipartite graph H that is neither a star nor
a clique. While the corresponding Q(n/r) lower bound for MEMLIST(H ) appears inherently
tied to the listing requirement, we demonstrate that, with suitable modifications, the core
idea can be adapted to the detection setting.

Since we cannot require a node v to list all copies of H in the constructed graph, we
instead frame the argument in a preprocessing-plus-query model. We first build a graph
that initially contains no copy of H, but is structured so that a copy can be formed in many
different ways. The goal is to ensure that, in order for v to detect the presence of H following
an edge insertion, it must have already learned a significant amount of information about
the initial graph during the construction phase.

Specifically, we identify two non-adjacent nodes v and v in H that share a common
neighbor w. We construct a graph by removing the edge {u,w} from H and replacing node
u with an independent set U’. The graph is built via edge insertions, with the edges incident
to v and w added at the end, leaving them only O(1) rounds to learn about U’. We then
insert a new edge e incident to w, creating two possible scenarios: If the other endpoint of
e lies in U’, a copy of H is formed; otherwise, it is not. For v to decide correctly, v and w
must learn the set U’ before the insertion of e, which requires £2(n) bits of information.

Upper bound. As in the case of MEMLIST(H ), membership-detection becomes significantly
easier when the allowed topological change is a deletion rather than an insertion. In
particular, we present a one-round O(1)-bandwidth algorithm for MEMDETECT(H) that
applies to any complete multipartite graph H, improving upon the O(logn) bound required
for MEMLIST(H) under the same conditions.

For clarity, we describe our algorithm for the special case H = Cy, which captures the key
ideas behind the more general algorithm that works for an arbitrary complete multipartite
graph H. The core observation is that to detect a Cly, it suffices for each node w to maintain,
for every pair of its neighbors u and v, the number of common neighbors they share, excluding
w. Each such shared neighbor corresponds to a distinct copy of Cj containing w, u, and v.

Maintaining these counters requires only one-bit messages. When a node detects that one
of its neighbors has been deleted, it sends a one-bit signal to all its remaining neighbors. If a
node w receives such a signal from two neighbors v and v in the same round, it decrements
the counter for the pair {u,v} by one.
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3.5 One-Round Listing

We study the one-round bandwidth complexity of the LisT(H ) problem for edge deletions
and node deletions. See Table 3 for a summary of our results. In this overview, we focus on
the case of edge deletions, as the case of node deletions is analogous.

We begin with the simpler cases. When EH(H) =1, H is a star, so LIST(H) is trivially
solvable with zero bandwidth by allowing the star center to handle the listing. When
rad(H) = 3, LisT(H) cannot be solved in one round, since there exists at least one edge e in
H whose deletion cannot be communicated to all nodes within one round.

When rad(H) = 1, the graph H has a center node v adjacent to all other nodes, enabling
a simple one-round one-bit algorithm: Whenever an edge is deleted, its endpoints send a
signal to all their neighbors, allowing the center of H to determine whether H still exists.

We now turn to the remaining nontrivial case, where ;z;a(H )=2and rad(H) = 2. In
this setting, we prove a tight ©(logn) bound. The upper bound is achieved by a simple
protocol: When an edge e = {u,v} is deleted, both v and v broadcast ID(u) and ID(v) to
all their neighbors. This guarantees that if the deletion eliminates a copy of H, its center,
who is responsible for listing the subgraph, can detect the change.

The lower bound is more involved and requires a novel construction. Let V(H) = {uq,
U2, ..., Um}. We replace each node u; in H with an independent set of n nodes S; =
{vi1,...,vin}. Moreover, we assume, based on the structure of H, that there exists a path
of length two from w; to u,, via u,_1, but no direct edge between u; and u,,.

Using symmetry and the pigeonhole principle, we can assume that node v; ; must list
at least Q(n) distinct copies of H of the form {v1 ;,v2,1,v31,...,Vm—1,1,Um,; } for 4,5 € [n].
Among these copies of H, there must be at least Q(/n) copies with distinct i-values, or at
least Q(y/n) with distinct j-values.

Assume the former holds, and let I be the set of distinct ¢ values. Now consider deleting
the edge {v1,4+,Vm—1,1} for some ¢* € I\ {1}. Node v, 1 must then stop listing all copies of
H that include this edge. Since there is no direct connection between vy ; and vy ;-, it must
receive a message from v,,_1 1 that uniquely identifies * among (y/n) candidates, which
requires Q(logn) bits. The argument for the latter case (distinct j-values) is similar.

4 Conclusions and Open Problems

In this work, we substantially extend the study of dynamic distributed subgraph finding initi-
ated by Bonne and Censor-Hillel [6] in the deterministic setting. We establish tight one-round
bandwidth bounds for triangle finding in bounded-degree dynamic networks: ©(loglogn)
for membership-detection under edge insertions only (Corollary 1.5), and ©(logloglogn)
for detection when both edge and node insertions are allowed (Corollary 1.8). Before our
work, no lower bound was known for these two problems. Moreover, we provide a complete
characterization of the r-round bandwidth complexity of the membership-listing problem
across all subgraphs and types of topological changes (Table 1). Despite these advances,
many intriguing open problems remain.

Beyond bounded-degree networks While we obtain tight bounds for triangle finding in
bounded-degree networks, the current upper and lower bounds remain unmatched for
general unbounded-degree networks. Can stronger lower bounds be established for
networks with higher degrees?

Specifically, for membership-detection, in Theorem 1.3, we establish a new lower bound
of Q(loglogn) for the one-round bandwidth complexity of MEMDETECT(K) under edge
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insertions for any s > 3. While we provide a matching upper bound for MEMLIST(K3) in
bounded-degree networks in Theorem 1.4, this lower bound is not yet known to be tight
for unbounded-degree networks, where the current best upper bound is O(logn) for s =3
and O(y/n) for s > 4 [6]. Closing these gaps remains an intriguing open question.

Randomized algorithms While we focus on deterministic algorithms in this paper, many of

our lower bounds extend to randomized algorithms, as shown in the full version [15] of
the paper. Yet the role of randomness in reducing bandwidth complexity for dynamic
distributed subgraph finding is not well understood: Which problems exhibit an advantage
for randomized over deterministic algorithms?

Round-bandwidth tradeoffs While our complete characterization of the membership-listing

problem applies to r-round algorithms with an arbitrary round number 7, the remainder
of our results — and much of the existing literature — primarily focuses on the one-round
scenario.

A particularly illustrative case is the membership-listing of cliques: In the one-round
setting, the bandwidth complexity is ©(y/n), whereas allowing two rounds reduces the
bandwidth complexity to ©(1) [6]. This stark contrast shows the potential benefits of
additional communication rounds in lowering bandwidth requirements. Exploring how
increased round numbers influence bandwidth complexity remains an interesting avenue
for future research.

Toward complete characterizations of the remaining problems In this work, we provide
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A Tables

In the appendix, we provide tables that summarize our results for subgraph finding beyond
cliques.

A.1 Membership-Listing

We establish a complete characterization of the bandwidth complexity of r-round dynamic
MEMLIST(H) for any target subgraph H, for any number of rounds r, under any single type
of topological change. We emphasize that, while H is assumed to be a constant-size graph,
here we allow 7 to be a function of n. See Table 1 for a summary of our results. Refer to
Definitions 2.10 and 2.12 for the definition of r and r’;.

Table 1 The bandwidth complexity of r-round MEMLIST(H).

r>rg
Complete multipartite graphs (rg = 1)
Cliques Ty > 2 r<rH
d Others =
r=1 r>2
p) :
Edge insertions O(vn) | 6(1) O(n/r) ©(n"/r) | Impossible
[6] [6] [New] [New] [2.11][2.14]
p)
Node insertions On/r) (n/r) O(n”/r)
[6] [New] [New]
Edge deletions o) O((logn)/r)
[6] [New]
rry r < rh
Cliques (ry = 0) | Others (rfy > 1) "
Node deletions 0 ©((logn)/) Impossible
[6] [New] [2.13]

A.2 One-Round Membership-Detection

We investigate the one-round bandwidth complexity of the MEMDETECT(H ) problem under
any single type of topological change. A summary of our results is provided in Table 2. For
the definitions of rad, diam, and ai_a\mﬁl, see Definitions 2.1 and 2.3.

To see that the table for node deletions covers all cases, observe that diam = 2 implies
rad € {1, 2} because rad < diam, and from Observation 2.4 we infer that diam = 2 implies
diam € {2,3}. In the table for the remaining three types of topological changes, refer to
the paragraph at the end of Section 2.3 for why complete multipartite graphs characterize
one-round solvability.

For node deletions, our O(1)-bandwidth algorithm for the case where diam(H) =
rad(H) = cﬂaTrﬁ(H ) = 2 works for all complete multipartite graphs H. Recall from Obser-
vation 2.9 that a connected graph H with at least three nodes is complete multipartite if
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Table 2 The bandwidth complexity of one-round MEMDETECT(H).

Complete multipartite graphs
-cli Oth
Stars sedues Others s
s=3 s>3
Edge insertions O(1) O(logn) | O(y/n) | Q(loglogn) | ©(n) Impossible
[New] [6] [6] [1.3] [New] [2.9]
Node insertions o) o) [2.11]
[6] [New] [2.14]
Edge deletions o) Oflogn)
[6] [New]
diam = 2
diam =1 rad = 2 diam > 3
rad =1
diam = 2 diam = 3
Node deletions 0 o(1) @v(l) O(logn) | Impossible
[6] [New] [New] [New] [New]

and only if m(H ) = 2. For node deletions, the only case where we are unable to obtain a
tight bound is when diam(H) = rad(H) = 2 and diam(H) = 3. A notable example of such a
graph H is the 5-cycle Cs.

A.3 One-Round Listing

We investigate the one-round bandwidth complexity of the problem of LisT(H) for edge
deletions and node deletions. For edge deletions, we obtain a complete characterization. For
node deletions, we obtain an almost complete characterization, except for the case where
rad(H) = diam(H) = 2. See Table 3 for a summary of our results. Refer to Definitions 2.1
and 2.3 for the definition of rad, ﬁ, and diam.

Table 3 The bandwidth complexity of one-round Li1sT(H).

ad—1 [2d=2 rad > 3
rad= rad =1 rad = 2 rad =
1 1 I ibl
Edge deletions 0 o) ©(logn) Hpossibie
[New] [New] [New] [New]
d=2
rad =1 r;? - rad > 3
diam =2 | diam > 3
1 1 I ibl
Node deletions 0 Oflogn) | O(logn) IPOSSIBIe
[New] [New] [New] [New]
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