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—— Abstract

Payment channel networks (PCNs) are a promising technology that alleviates blockchain scalability
by shifting the transaction load from the blockchain to the PCN. Nevertheless, the network topology
has to be carefully designed to maximise the transaction throughput in PCNs. Additionally, users in
PCNs also have to make optimal decisions on which transactions to forward and which to reject to
prolong the lifetime of their channels. In this work, we consider an input sequence of transactions
over p parties. Each transaction consists of a transaction size, source, and target, and can be either
accepted or rejected (entailing a cost). The goal is to design a PCN topology among the p cooperating
parties, along with the channel capacities, and then output a decision for each transaction in the
sequence to minimise the cost of creating and augmenting channels, as well as the cost of rejecting
transactions. Our main contribution is an O(p) approximation algorithm for the problem with p
parties. We further show that with some assumptions on the distribution of transactions, we can
reduce the approximation ratio to O(,/p). We complement our theoretical analysis with an empirical
study of our assumptions and approach in the context of the Lightning Network.
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Topology Optimization and Transaction Selection in PCNs

1 Introduction

Blockchain scalability is one of the key bottlenecks in the mainstream adoption of cryptocur-
rencies [9, 12, 24]. For instance, Bitcoin can only process an average of 7 transactions per
second which is paltry compared to Visa’s 47,000 [26]. This makes it impractical as of yet
for the widespread usage of cryptocurrencies in everyday situations.

Some promising solutions to blockchain scalability are layer 2 solutions like payment
channel networks (PCNs) [13, 14, 25, 26], which allow users to bypass the blockchain and
transact directly with each other. To do so, two users have to first open a payment channel
between themselves in an initial funding transaction on the blockchain, thereby locking some
funds only to be used in the channel. Thereafter, the two users transact with each other
simply by updating the distribution of funds on each end of the channel to reflect the payment
amount. As compared to the tedious process of waiting for consensus on the blockchain,
these payments can be finalised almost instantaneously since they only involve exchanging
signatures between the two parties. As such, with only a constant number of blockchain
transactions, any two users can make an unbounded number of off-chain transactions in
the payment channel, consequently increasing the overall transaction throughput of the
blockchain.

A PCN is a network of payment channels and users, where two users that are not directly
connected to each other with a payment channel can still transact with each other in a
multi-hop fashion over a path of payment channels. To incentivize intermediary nodes on
payment paths to forward payments, PCNs allow these intermediary nodes to charge a small
transaction forwarding fee that is typically linear in the transaction amount. Two of the most
notable examples of PCNs are Bitcoin’s Lightning Network [26] and Ethereum’s Raiden [2].

Apart from joining a PCN in order to transact efficiently with other users, a secondary
consideration for users in PCNs is to whom they should establish channels and at which
capacities, as well as which transactions then to select for forwarding. Aside from the
opportunity cost of rejecting to forward transactions and thus missing out on the revenue
from transaction fees, users in PCNs also incur a cost whenever channels are created (the
on-chain transaction fee) as well as when additional capacity is injected into the channel.
As such, although it is tempting to accept to forward all transactions and thus profit from
the transaction fees, doing so would quickly deplete the nodes’ capacity on their incident
channels. A crucial optimisation problem that intermediary nodes in transaction paths would
therefore have to consider is deciding which transactions to accept and which to reject, given
a minimal injection of capacity into their channel.

In this work, we study the problem of both optimal topology design and transaction
selection over a PCN. The input to the problem is a sequence of transactions and a set
of p coordinating parties. Each transaction in the sequence is of a certain amount, and is
associated with a source and target from the set of parties. The problem then proceeds in
two stages: in the first stage, the goal is for the p parties to decide jointly on a PCN topology
over themselves. Each created channel in this stage incurs both a fixed channel creation cost
as well as a capacity cost that depends on the amount of funds injected into the channel.
The second stage involves processing the transactions in the transaction sequence, either
accepting or rejecting them (and in so doing incurring a rejection fee) along the created
paths in the network. The goal is to create a network and inject enough capacity into each
channel such as to maximise the number of transactions accepted while incurring the least
amount of cost (see the cost model in Section 2 for more details).
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1.1 Related work

To the best of our knowledge, our work is the first to consider the problem of designing an
optimal PCN topology for optimising the problem of transaction selection in PCNs. Our
work is closely related to the work of [28] which considers a similar problem over a single
payment channel and shows that the problem of deciding which transactions to accept or
reject over a single channel is already NP-hard. The main open question of [28] is how
to extend their proposed algorithm from a single channel to an entire network. Our work
addresses this problem by proposing a solution for network design as well as algorithms for
optimally accepting or rejecting transactions along paths in a network. Our work is also
related to the works of [4, 7] which consider a similar problem of transaction selection but in
the online setting and also limited to a single channel. Additionally, the works of [16, 17]
also study minimal-cost PCN topologies, but do not consider the complementary problem of
transaction selection.

Another related line of research is network creation games on cryptocurrency networks [5,
6, 15]. These works study how a node should connect to an existing cryptocurrency network
in a stable and optimal way, optimising the utility of the single node in a unilateral fashion.
In contrast, our work proposes a method of creating a network among any number of nodes
such as to jointly minimise the cost (over all nodes) of network creation and processing
transactions.

A crucial assumption in our model is coordination between the interested parties in
creating the network during the network creation stage. We stress that this is not an
impractical assumption and several works have made similar assumptions [5, 6, 7] where
optimal behaviour is analysed in the setting where some or all involved parties cooperate
and create certain network topologies together.

Further upfield but also related are works analysing the consensus number of a cryp-
tocurrency [20, 22]. The transactions studied in our work, and in general the sequential
nature of layer 2 transactions on PCNs, have consensus number 1, implying that expensive
consensus protocols are unnecessary in such settings. Additionally, our work is also related
to the classic works on theory of contention management in transactional memory [3, 18, 19].

More generally, our work is related to optimising flows and throughput in typical capaci-
tated communication networks [10, 27]. However, we stress a crucial difference between our
problem and problem over traditional communication networks: in traditional communication
networks, the capacity is usually independent in the two directions of the channel [21]. In our
case, the amount of transactions u sends to v in a channel (u,v) directly affects v’s capability
to send transactions, as each transaction u sends to v increases v’s capacity on (u,v).

1.2 Main challenges and our contributions

We generalise the model of processing transactions over a single channel proposed in [28] to
an entire network. The first challenge in shifting from optimising processing transactions
from a single channel to a network is deciding on the optimal network topology among the
cooperating parties. Here, we show in Theorem 2 in Section 3.2 that the star graph of size p
is a 2-approximation of the problem of creating an optimal PCN over p parties.

Once the optimal topology is decided, the next challenge would be to decide on which
transactions to accept to forward, given that transactions have to be accepted along the
entire payment path. In this setting, we leverage the star topology to generalise the existing
single channel algorithm in [28] to get an algorithm for transaction selection optimisation in
the star. Our main algorithm in this setting is described in Section 4 and we prove that it is
an O(p) approximation of the weighted transaction selection problem in general graphs.
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Topology Optimization and Transaction Selection in PCNs

We describe another algorithm in Section 5 that has an improved approximation ratio
of O(,/p) (see Theorem 10) for the transaction selection problem in general graphs. To
achieve this approximation ratio, we adopt an additional realistic and reasonable assumption
on the distribution of transactions in the transaction sequence. Namely, we assume that
transactions are clustered, following a stochastic block model.

Finally, we augment our theoretical analysis with a case study of the Lightning Network
in Section 6. Using simulations, we find that the network statistics correspond to and thus
justify our transaction distribution assumptions.

2 Model

Payment channels. A unique aspect of our problem is that we optimise the selection of
weighted transactions over payment channels. Payment channels can be formally modeled as
edges that satisfy the following three properties:

1. The capacity or weight of a channel (u,v) is the sum of the initial capacities b,, and b,
injected into the channel by users (or nodes) v and v. The capacities b, and b, correspond
to the initial amount of funds that users u and v choose to inject into the channel during
channel creation.

2. Given a capacitated channel (u,v) with weight w, the weight or capacity can be arbitrarily
split between both ends of the channel depending on the number and weight of transactions
processed by v and v. That is, b, and b, can be arbitrary as long as b, + b, = w and
by, by, > 0. For instance, given a payment channel (u,v) with an initial capacity split
of b, and b,, if u sends a payment of amount = to v, the capacity on u’s end of the
channel drops to b, — x and the capacity of v’s end increases to b, + x after processing
the transaction. See Figure 1 for more examples of how the capacities on each end of a
payment channel can vary in the course of processing transactions.

3. The total capacity of a payment channel is invariant throughout the lifetime of the channel.
That is, it is impossible for nodes to add to or remove any part of the capacity in the
channel. In particular, if a node is incident to more than one channel in the network, the
node cannot transfer part of its capacity in one channel to “top up” the capacity in the

other one.
B5 20 C B3 22 C
7T e———* 3 9 e—e |
r=2
10/ \ 8/ \}
Ao oD _____ » Ao oD
1\ /6 1\ /6
8 g 8 g

Figure 1 The diagram on the top shows the outcome of processing a transaction of size 2 going
from A to D along the path (A, B,C, D) in the graph. The diagram on the bottom shows the
outcome of processing a transaction of size 5 from A to D. The transaction has to be rejected as
the size of the transaction is larger than the sum of the capacities of C' in the channel (C, D) and
either A or E in the channel (A, F) or (E, D) respectively.
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Payment channel network. We model a PCN as a weighted, undirected graph G = (V, E)
where the vertices or nodes of G are users in the PCN and the edges of G are payment
channels between nodes. We denote the capacity of a channel (u,v) € E as w,,,, and the
capacity of nodes v and v on the channel (u,v) as b, , and b, , respectively.

Transaction sequence. Let V' denote a set of nodes (parties). We denote a finite ordered
sequence of transactions over V by X,, = ((s1,t1,21),...,(Sn,tn,Zn)), where s;,t; € V
represents the sender and target of the ith transaction respectively and x; € R represents
the weight or size of the i¢th transaction.

Processing transactions in PCNs. Let G = (V, E) be a connected PCN with some capacity
over all of its channels. Let X, be a sequence of transactions over V. Consider the ith element
of the sequence (s;, t;, ;) and suppose the transaction travels over some path m; = (s;,...,t;)
from the ith sender to the ith target. Let us call the first node along each channel in the
path m; the forwarding node. Each forwarding node in the path m; can choose to do the
following to the transaction:
Accept transaction. For a forwarding node u in a channel (u,v) € m;, node u can
accept to forward the transaction if their capacity in (u,v) is at least the size of the
transaction.
Reject transaction. Node u can also reject the transaction. This could happen if u’s
capacity is insufficient, or if accepting the transaction would incur a larger cost in the
future. For a transaction of weight z, the cost of rejecting the transaction is f -z +m
where f,m € RT. Apart from incurring some cost, rejecting a transaction does not alter
the capacity distribution on both ends of the channel (see the diagram on the bottom
of Figure 1 for an example of rejecting a transaction).
We note that node v does not need to take any action nor incur any cost when transactions
are going in the direction of u to v along a channel (u,v). Finally, we stress that decisions
on each channel in a transaction path need to be the same.

Problem definition. Suppose we have p coordinating parties that want to come together to
create a PCN that allows the processing of transactions between themselves. The input to
the problem is a transaction sequence over the p coordinating parties. The problem then
proceeds in 2 stages. The first stage of the problem is the network creation stage, where
the p parties have to firstly decide on a PCN topology over themselves. Once the PCN has
been created, the second stage of the problem is transaction selection, where the network
topology created in stage 1 determines the path the transactions travel over. In this stage of
the problem, the parties need to decide whether to accept or reject each transaction in the
sequence.

Hardness. We know from [28] that the transaction selection problem over a single channel
is NP-hard. Our problem includes p > 2 parties and we also need to find the optimal network
topology over these p parties (for two parties, it is only a channel). This means that our
problem is at least as hard as the problem on a single channel, and hence NP-hard as well.

Objective and costs. We consider three types of costs faced by the p parties:

1. Channel creation costs. We assume creating each channel incurs a fixed auxiliary cost
of k> 0.

23:5
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2. Capacity costs. For each channel (u,v) created between parties u and v, the capacity
cost of (u,v) is the sum of the capacities by, by, injected by u,v into the channel.

3. Rejection costs. These are costs incurred during transaction selection when a party
rejects a transaction.

The total cost incurred by the parties is the sum (over all channels in the PCN and transaction

decisions) of channel creation, capacity, and rejection costs. The objective of the p parties

is to create a PCN over themselves and output the decisions for each transaction in the

sequence such that the total cost is minimised.

3  Accepting all transactions

We begin our investigation of transaction selection over general graphs by first considering
the problem a restricted setting where all transactions in the input transaction sequence
need to be accepted. In this setting, the total cost consists only of channel creation and
capacity costs. We also assume here that we know the optimal PCN topology among the p
parties, which we denote by G = (V, E).

3.1 Linear program for a set of channels

We present a linear program (LP) that, for a given set of channels, computes the optimal
capacity that the parties need to lock into the channels of the network in order to accept all
transactions in the sequence. Indeed, if the channel creation cost k is small or if we want to
know a lower bound for our problem, we can assume the optimal graph G is complete. For a
node v € G, let Ne(v) denote its neighbours. Let S, denote the total balance of node v in
the graph, which is simply the sum of its balances on all its incident channels. For a channel
(u,v) € E, we denote the balance of node v (resp. u) after processing the ith transaction in
the sequence by bfju (resp. bi,u)» and we also denote the total balance of v after processing
the transaction by Si. Let AC(S, ) denote the optimal capacity cost for the graph G where
every transaction in the transaction sequence S := ((71,21),. .., (mn, n)) over G is accepted.
That is, the total capacity injected into the channels of the graph G.

Before describing the LP, we define a difference function 6,(s,t) between a source s and
target ¢ in a transaction path:

1 v=tand v #s
du(s,t) =< —1 v=sand v #t
0 otherwise

This function will be used in the LP to maintain the invariant that processing a transaction
can only affect the total balances of the source and target nodes in the transaction path, but
the total balance of every other node in the graph must not change.

Given G and a transaction sequence S over G, we construct the following LP.

minimise E Wy, y

(v,u)EE
- Y i
Yo, u, 1 : Wy,y = bmu + bu,v
. i
Yu,i : S = E by,

u€Ne(v)

Y, 1, (si,ti, @) : Si—6y(siti)z; = St
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For the sequence of transactions S and graph G, we denote the solution of the LP with
the respective parameters by LP(S,G). The following lemma (with proof in Section A.1)
proves that the solution of the LP is a lower bound on the capacity cost of the problem in
the setting where all transactions are to be accepted.

» Lemma 1. Given the sequence of transactions S, we have LP(S, K,) < AC(S,G).

3.2 Star as a 2-approximation

Although the capacity cost for the setting where all transactions are accepted is lowest in the
complete graph K, the complete graph has O(p?) edges. Thus, depending on the auxiliary
channel creation cost k, the cost of creating K, as well as injecting sufficient capacity into
all channels of K, might be large.

As a useful heuristic, we observe from the proof of Lemma 1 that the capacity cost is
related to the diameter of the graph: the smaller the diameter, the lower the cost. Thus, a
useful class of graphs to look at for the network creation stage of the problem are graphs
that have both a small diameter and a small number of channels. An example of a graph
that simultaneously satisfies both of these requirements is a star. In a star, one central node
is connected by a channel to all other nodes. Thus, the star has a small diameter of 2, and
p — 1 channels, which is minimal for a connected graph over p nodes. We denote the star on
p nodes as Ky p_1.

We first observe that for the star, it is easy to compute a lower bound on the amount of
capacity required in the setting where all transactions are accepted. This is due to the fact
that between any two nodes u,v in a star, there is only one unique path channeling v and v,
rendering transactions unsplittable. The capacity on the channel between any node v and the
centre of the star ¢, w, ¢, has to therefore be larger than max; <, | Zs,;,ti,mkgigj 0y (83, ;)"
x;|, as this quantity captures the largest difference in the balance between both users of the
channel.

We now show in Theorem 2 that we can upper bound the optimal capacity cost on the
star. The proof of Theorem 2 is in Section A.2.

» Theorem 2. For every graph G over p nodes, and any graph G' with diameter d, the
following inequality holds

AC(S,G') < d- AC(S,G).

» Corollary 3. For every graph G over p nodes, and graph Ki ,_1, the following inequality
holds

AC(S, Ky p_1) <2+ AC(S,G).

With these insights, we restrict the network created among the p parties during the
network creation stage of the weighted transaction problem to a star in Section 4, and a star
of stars (of diameter 4, see Figure 3 for an example) in Section 5.

4 A general setting approximation algorithm

We now present an approximation algorithm for the general setting where transactions can be
either accepted or rejected. We first reiterate that from Theorem 2 we can restrict ourselves
to the star graph at the network creation stage of the problem, and in doing so incur twice
as much capacity cost as the optimal capacity cost. Given that the channel creation cost for
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the star topology is fixed at k(p — 1), the focus of our algorithm in this section is to come up
with capacities that should be injected on both ends of each channel as well as a sequence of
transaction decisions so as to minimise the capacity and rejection costs.

4.1 LP for a star

We describe a LP that minimises the capacity cost as well as rejection cost over transactions
going between any two leaf nodes in the star. This LP is a relaxation of the general problem,
where we allow some transactions to be accepted fractionally. That is, for a transaction of
size x;, the LP does not have to accept the full transaction amount, but can accept some
portion y; such that 0 < y; < ;. Let us call transactions for which y; = x; in the LP solution
fully accepted transactions.

Let ¢ denote the central node of the star. For a leaf node v and ¢ € N, we use C,,; and
C’{M- to denote the capacity at the channel (v, c) after processing the i-th transaction on the
side of v and ¢ respectively. Let C, denote the total capacity of the channel (v,c). We can
now formulate the LP as follows:

T m\r; —Y;

minimise zu:Cu + Z flxs — ) + % (1)

K3

\V/(U, u, xz) :C’U) Cu Z £

Cv,i =Cu,i—-1 — ¥Yi

:z,i = Cq,;,i—l + Yi
C;,i = C;,ifl — Y
Cui =Cuic1+yi

» Lemma 4. The total cost of the star LP solution is a lower bound on the total cost of the
optimal solution.

Proof. The proof follows from the observation that the optimal integer solution is also a
feasible solution for the LP. |

» Remark 5. The solution of the LP assumes that the capacity cost and the transaction
rejection cost are equally large, i.e., we cannot aggressively optimise for one objective while
neglecting the other. An implication of this which motivates the design of our algorithms
in the following sections is that our algorithms should infrequently reject fully accepted
transactions, as these are transactions that do not incur any rejection cost and also change
the distribution of the capacity along channels in a more optimal way.

4.2 An O(p) approximation algorithm

Algorithm for a single channel. We summarize an algorithm from [28] that solves the
problem for a single channel, which we will call the channel algorithm. The channel algorithm
first approximates the capacity to be injected into the channel. Next, the channel algorithm
solves a LP (similar to Equation (1)). Given the solution of the LP, we denote by C,, and
C, the minimal capacity needed on each end of a channel (u,v) to mimic the (fractional)
transport of transactions as dictated by the LP. In addition to C,, and C,, the channel
algorithm allocates additional capacities on each end of the channel, which we call reserves,
and denote them by R, and R,,. These reserves are mainly used to ensure that all transactions
that are fully accepted by the LP are also accepted by the channel algorithm (a consequence
of Remark 5).
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Extending the channel algorithm to a star. We describe our algorithm that extends the
channel algorithm over 2 nodes to a star K ,_1 with central node c in Algorithm 1. The
key idea behind our algorithm is to first use the LP as described in Equation (1) to fix
initial capacities on each end of the channel for every channel in the network (for instance
the capacity C, for v in (v, ¢) in Figure 2). We also provide each leaf with p — 2 additional
reserves (to process transactions for each other leaf). For each leaf pair v and v, let M denote
the smallest change in the capacity as specified by the output of the LP after all interactions
between u and v. The additional reserve R}, of u for processing transactions of v would then
be of size @M (similarly for v). We leave details of Algorithm 1 to Section B.1.

w: - 4

- -

ol ] <

I rej wl
ject £2 v

v Y2 T2 — Y2 v

Figure 2 Movement of capacities and reserves from the perspective of node v in a star with centre
node ¢ and 2 other leaf nodes u and w. C, represents the capacity as specified by the output of the

LP. R, and R, denote the reserves stored by v to process transactions from u and w respectively.

The rightmost column represents the capacities and reserves of v after processing the transaction.

The next theorem shows that Algorithm 1 is an O(p) approximation of the optimal cost
on a star. The proof of Theorem 6 is in Section A.3

» Theorem 6. Given the transaction sequence Xy, let C be the optimal capacity cost and R
the optimal rejection cost on a star. Then Algorithm 1 run for every pair of nodes incurs a
rejection cost of at most (v/3 + 1)R and capacity cost of at most (1+ (p —1) - v/3)C.

In the next section, we show that if we impose some reasonable assumptions on the
distribution of the input transaction sequence in our model, we can design an algorithm with
a significantly lower approximation ratio of O(,/p).

5 An improved algorithm using the stochastic block model

Stochastic block model. In reality, users typically interact with each other in a structured
manner, resulting in spatial and temporal locality. For example, if two nodes that previously
transacted with each other are more likely to transact again in the near future. Our model for
how nodes interact and send transactions to each other is the stochastic block model [23], in
particular, the planted partition model [11]. The stochastic block model is a generative model
to create random graphs where nodes are partitioned into clusters (blocks). See Section C.1
for more details on the stochastic block model.

Clustering. We now define the way nodes are partitioned into clusters given an input
sequence of transactions. Given an input transaction sequence over a network, we say
that the nodes are (m,k,t)-clustered if there exists a partition of nodes to m clusters
C1,Cs, ..., C,, where each cluster has size at most k and the clusters satisfy the following

clustering conditions:
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Algorithm 1 Modified channel algorithm.

Input: nodes u and v, transaction sequence X, solution of LP indexed by #:C,,, C!,, C,, C..
Output: decisions to accept or reject for transactions between u and v

1: M+ min(C’mo + 0;70, Cv,O + 0;70)

2 R,=LM, R, =M

3: H <= CREATEHEAP()

4: for i € [t] do

5: if x; is transaction from u to v then

6: if Ry, — (z; —y;) > @M then

7 x; < Accept

8: R,, R, :Ru—(:vi—yi),Rv-i-(mi—yi)
9: else if z— < \/‘51 then

10: z; < Reject

11: R, R, =Ry +y;, Ry, —yi

12: else

13: r; <+ Accept

14: RU7R’U :Ru_(mz _yi)aRv+(xi_yi)
15: ADDTOHEAP(H, ;)

16: if R, <0 then

17 while R, < ¥3-1M do

18: xj < PoPHEAP(H)

19: z; < Reject

20: Ru,RU:Ru—FCCj,RU—ij

21:  if R, > ¥Y3-1M then

22: EmpTYHEAP(H)

1. The volume (sum of sizes of transactions) of transactions inside the cluster is t-times the
volume of transactions that go outside the cluster. That is,

Z szt- Z Zj

(s5.:t5,25)]85,t5€C; (s5,t5,25)|s;€C; and t;&C;
or s;¢C; and t;€C;

2. For every S C C; such that |S| < &, the volume of transactions between S and C; \ S is

at least 4‘\2‘"| the volume in the cluster C;. That is,
15|
4] Z Tj < Z L
z; inside C; z; between C;\S and S

3. For every S C C}, the ratio of volumes of transactions from S and C; \ S is at least %
That is,

Za:j:ci\Sas Lj S 1

> u;sscnsTi 3
These conditions need to be satisfied for every cluster C; and any contiguous subsequence of
transactions involving C; (i.e., source or target in C;) with volume at least C; - T a0, Where
Tmag 18 the weight of the biggest transaction in the input transaction sequence. In the rest
of this section, we assume that given an input sequence of transactions, the nodes can be
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(/D5 /P, 24,/p)-clustered. Looking ahead, this allows us to design an algorithm that gives us
an O(,/p) approximation of the optimal cost. In the general case, for an (m, k, t)-clustering,
for any ¢t > 24,/p, we have an O(m + k) approximation (by a similar analysis).

Double star. We define a double star as a graph of diameter d = 4 with one central node,
some middle nodes, and some leaf nodes. The central and middle nodes create a star and
the leaf nodes are connected to only one middle node, forming a cluster (see Figure 3 for an
example with 6 clusters). In each cluster, the leaf nodes are connected to the middle node
in a star topology. In our setting, given our aforementioned assumption on (/p, \/p, 24,/p)-
clustering, parties create a double star network topology during the network creation stage,
where each cluster represents a group of nodes of size ,/p that interact frequently with each
other.

Figure 3 Double star graph with 6 clusters in the dashed boxes. The node labelled c¢ is the centre
node, and the middle nodes are the square nodes.

5.1 An O(,/p) approximation algorithm

Main ideas. We describe our algorithm that gives an O(,/p) approximation of the optimal
cost of the problem in Algorithm 2. On a high level, Algorithm 2 consists of two main ideas.
The first idea is to again formulate and solve an LP on a double star to get the amount of
capacities nodes should inject on their ends of their incident links. This LP is similar to the
LP for a star described in Equation (1) and we detail it in Section C.2. From Theorem 2, we
know that the capacity cost of the double star is at worst a 4-approximation of the optimal
capacity cost.

The second idea is to split the processing of transactions into processing transactions
between clusters and processing transactions within clusters. Here, we use the specific double
star topology to ensure that we can apply Algorithm 1 (for processing transactions on a
single star) to process transactions between clusters as well as within each cluster. Finally,
we use our clustering assumptions to allocate enough reserve capacity for each cluster to
ensure that we can always shift the reserve capacities within a cluster from nodes with high
to low reserves. This ensures that each node always has sufficient reserve capacity to align
the decisions on their transactions (whether to accept or reject) as closely as possible to the
ideal decisions as output from the linear program.

Processing transactions between clusters. After running the linear program for the double
star, let us rewrite each transaction in the sequence as (s, t, z;, y;), where s is the source node,
t is the target node, x; is the weight of the transaction, and y; denotes the fractional amount
of the transaction accepted by the solution of the linear program. For processing transactions
between clusters, we look at the star created by the centre and middle nodes of the double
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Algorithm 2 Approximation algorithm for clustered nodes.

Input: Sequence of transactions X; with LP solution, clustering C = {C4,Cs,...}
Output: Decisions to accept or reject transactions

1: X; «+ BETWEENCLUSTERS(X;,C)

2: S; + SOLVE(Xj;)

3: for C € C do

4 X¢o « BALANCEINCLUSTER(X, S;, C)

5 Sc < SOLVE(X()

6: return S; U Sy U (Upce Xo)

star and treat these transactions as going only between these middle nodes. In Algorithm 2,
this is handled by the function BETWEENCLUSTERS which selects only transactions that go
between clusters and treats clusters as a single node. As this becomes processing transactions
on a star, this allows us to use Algorithm 1 to process transactions between different clusters.
In Algorithm 2, this is handled by the function SOLVE(X) in line 2 in Algorithm 2 which
outputs the decisions using Algorithm 1 for every pair of nodes. Recall that Algorithm 1
also gives us an upper bound on the reserve capacity requirement for each cluster (middle
node): for each middle node, we require reserves of size O(,/pM), where M is the maximum
of the capacity of the channel between the middle node and the centre of the double star ¢
and the capacities of the channels between the middle node and the leaf nodes in its cluster.
We call these reserves cluster reserves.

Processing transactions within clusters. Before processing transactions that go between
nodes in a cluster, it is imperative that the cluster reserves are first shifted around within
the cluster to ensure each leaf node in the cluster has enough reserves to process their
between-cluster transactions (line 2 in Algorithm 2). This is handled by the function
BALANCEINCLUSTER (described in Algorithm 3 in Section C.3), which modifies the solution
of the double star LP such that cluster reserves are transferred from well-funded to depleted
nodes. Finally, after balancing the reserve capacities, Algorithm 2 treats each cluster as an
independent star graph and uses Algorithm 1 to process transactions within each cluster
(function SOLVE in line 5). Using Algorithm 1 imposes a reserve capacity requirement of
O(\/pM’") times the capacity for every leaf node, where M’ is the capacity of the channel
between the leaf node and the middle node.

Properties of balancing reserve capacities. We now prove several important properties of
transporting reserve capacities within clusters as specified by BALANCEINCLUSTERS, ensuring
the correctness of BALANCEINCLUSTERS. First, Lemma 7 states that we can modify the
solution of the linear program (i.e., the fractional amount of transactions accepted by the
linear program) to move the reserves capacities from the source s to target ¢, see Figure 4.
From the statement of Lemma 7, we note that the only transactions that do not allow moving
reserves are transactions that are fully accepted (y; = x;) or rejected (y; = 0). Then, we
quantify how much capacity we can move from one set of nodes to another in Lemma 8.
Lastly, we show in Lemma 9 that we can always transport some reserves between any two
sets of nodes. We defer the proofs of these lemmas to Sections A.4—-A.6.

» Lemma 7. If there is a transaction (s,t,x;,y;), we can change it to
(s, t, s, y; + @) to simulate moving « reserves from s to t, and
(s,t, s, y; — @) to simulate moving « reserves from t to s.
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Figure 4 Movement of capacities, reserves and cluster reserves when accepting a transaction
x; from v to u where v,u € C; for some cluster C;. The case on the top represents the typical
movement of capacities and reserves when accepting z;. The case on the bottom represents the

treatment of the reserves (and cluster reserves) when the change in cluster reserves (RSY) is involved.

The highlighted reserves are on v’s side of the channel between v and the middle node. Similar
changes are made on u’s side of the channel between v and the middle node.

» Lemma 8. Let S be a set of nodes that is connected to C; \ S for some cluster C; by
volume of at least 6|S|- M. Then at least |S|M volume can be moved from S to C; \ S.

» Lemma 9. Let X] be a subsequence of transactions where transactions incident to C; have
volume at least tr > M, then Algorithm 3 can transport at least tr from any set of nodes

S C Cj to any other set T C C;. The LP solution is modified by volume at most O(,/p - tr).

We now have the requisite ingredients to state and prove (in Section A.7) the main
theorem of this section.

» Theorem 10. Algorithm 2is O(\/p) approzimation of the problem where given a transaction
sequence, the nodes are (\/p, \/p, 24,/p)-clustered.

We also get the following corollary as a direct consequence of the proof of Theorem 10.

» Corollary 11. Given (m, k,t)-clustered transaction sequence where t > 24,/p, Algorithm 2
is O(max(m, k))-approxzimation of the problem.

Finally, we end this section with two observations. The first observation effectively states
that our algorithm just needs to focus on the total volume of partially accepted transactions
and can ignore the volume of fully accepted and rejected transactions. The second observation

allows us to further reduce the approximation ratio if we assume clustering of a larger depth.

Practical relaxations. We observe that the proof of Theorem 10 requires a condition on the

partially accepted transactions (these are transactions which satisfy 0 < y; < z;). However,
we stress that the volume of fully accepted or rejected transactions can be arbitrary. Moreover,

in every cluster, the middle node can interact with other clusters arbitrarily and this also
does not affect the proof of Theorem 10.

Hierarchical clustering. We can use a similar idea to further reduce the approximation ratio
if we assume that within each cluster the clusters themselves are also clustered. Namely, we

first treat the top-level clusters as nodes and solve the problem as outlined by Algorithm 1.

Then, we have some transactions pre-accepted or pre-rejected and we now shift the focus to
the next level clusters. If these next-level clusters consist of other clusters, we treat them
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again as nodes. We do this recursively until we reach the lowest-level clusters and then
use Algorithm 2 to solve the problem within the lowest-level clusters. Note that we require
the strength of the clustering to be bigger in order to achieve a similar approximation ratio in
this setting. Nevertheless, assuming the nodes satisfy sufficiently strong clustering conditions,
we can achieve an approximation ratio of C’)(p%) for two nested clusterings, and, in general,
(’)(pk%rl) for k nested clusterings (if the nodes in clusters are well distributed). We stress
that although hierarchical clustering allows us to achieve a stronger approximation factor,
it also comes with additional structural assumptions. However, we believe there are strong
use cases of hierarchical clustering, for instance using a payment channel network to handle
payments among users in a large company. The clusters would naturally follow the clustering
of users into divisions and sub-divisions, with the head of each division being the centre of
the star in their corresponding cluster.

6 Case study: the Lightning Network

To justify our transactions distribution assumption in Section 5, we perform an empirical case
study of the largest and most commonly used PCN: Bitcoin’s Lightning Network. Specifically,
the research question we want to investigate is the following;:

Are transactions in the Lightning Network clustered according to the clustering conditions
stated in Section 5%

To address this question, we obtained the latest snapshot (dated September 2023) of the
Lightning Network from the Lightning Network gossip repository [1]. We further restrict our
examination to the largest connected component which contains 20, 348 users and 310, 657
channels. Figure 5 shows the distribution of degrees in the largest connected component,
where a large number of nodes (~ 10%) are of degree < 2.

Estimating the source and target of transactions. The main challenge in extracting
transactions data from the Lightning Network is that the Lightning Network, by design,
only provides information about the costs of transactions across channels, but does not
provide information about transactions between users. Nevertheless, it is reasonable to
assume that transactions between users are related to the channel capacities that connect
them. Furthermore, we are mainly concerned with finding out if the clustering conditions
hold for transactions between ordinary users with low degrees rather than between, e.g.,
large payment hubs with high degrees. We hence propose the following methodology: we
first remove high degree nodes (i.e., nodes with degree > 3) in the network and connect
their neighbours to each other. Let us denote this resulting reduced network by G. In G,
we assume nodes that are directly connected to each other transact with each other. Our
methodology of generating the reduced network G is detailed in Algorithm 4 in our extended
technical report [8].

Estimating the volume of transactions. Recall that a crucial clustering condition is that the
volume of transactions that stay within a cluster is larger than the volume of the transactions
that go between clusters. However, the privacy principles behind the design of the Lightning
Network renders such transaction volume information hidden. Thus, a second challenge
in our setting is extracting estimates of the size of transactions between users. In order
to estimate transaction volume, we assume that the volume of transactions between two
connected users in G is inversely proportional to the cost of a transaction. Namely, that the
volume of transactions between users i and j is 1/(¢; j + 1) where ¢; ; is the minimum cost
of sending a transactions of 100 milli-satoshi from ¢ to j.
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Note that the volume of transactions is estimated under the simplifying assumptions that
all transactions have the same fixed volume, and therefore the cost for a transaction between
a pair of users is fixed and specified using costy on input.

We start with the largest strongly connected component of H as it is the largest set of
users such that any user can send a transaction to any other. Also, to simplify the experiment,
we assume that the volume of transactions from a user u to another user v is the same as
the volume of transactions in the reverse order (from v to u).

This approach of computing costs for each pair of users runs in time linear with the
number of edges of G. Note that the number of updates of a cost is at most the number of
edges adjacent to the set users, which is bounded by O(|users|) as the degree of each vertex
is bounded.

Results. Figure 6 and Table 1 in our extended technical report [8] show that we obtain
18 clusters with average within-cluster transaction volume of 826.1, and between-cluster
transaction volume of 4.27. This gives us a ratio of 193.2 of within-cluster and between-cluster
transactions, which confirms our experimental hypothesis.

2000
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Figure 5 Degree distribution of the Figure 6 Clustering of the nodes in
nodes in the largest connected compo- the reduced network G. Each color rep-
nent of the Lightning Network. resents a different cluster.

7 Conclusion

In this work, we generalise a model from processing transactions over a single payment
channel to an entire PCN. To this end, we first define a network creation stage of the problem
which examines how to create a network with minimal capacity cost, and we show that the
star is a 2-approximation of the optimal capacity cost. We then propose two algorithms to
address weighted transaction processing over a network. The first algorithm assumes a star
topology over the p parties, but apart from that works without any further assumptions on
the transaction sequence, and gives an approximation ratio of O(p). The second algorithm
assumes a double star topology and a clustering of the transaction sequence, and gives an
approximation ratio of O(,/p). Finally, we also perform an empirical case study estimating
transaction information from the topology of the Lightning Network, and our estimates
suggest that our clustering assumptions regarding the input transaction sequence are close
to reality.
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We believe our work is an important first step in the direction of designing optimal networks

and algorithms for transaction processing in PCN. We highlight two interesting directions
for future work. First, it would be interesting to extend our model and algorithms to the
online setting, which will also complement the analysis of [4, 7]. Secondly, developing better
estimates regarding transaction information in real world PCNs would also be paramount to

developing better optimisation algorithms and heuristics.
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A  Omitted proofs

A.1 Proof of Lemma 1
» Lemma 1. Given the sequence of transactions S, we have LP(S, K,) < AC(S,G).

Proof. We first observe that adding channels to a graph can only decrease the capacity cost
(adding channels can only make the shortest paths shorter). This means that the capacity
cost is the lowest for the complete graph, no matter what is the optimal graph topology
(as computed by minimising the total cost of both capacity and channel creation). The LP
computes the optimal capacity for the complete graph K, which is a superset of every graph,
including the optimal graph. <

A.2 Proof of Theorem 2

» Theorem 2. For every graph G over p nodes, and any graph G' with diameter d, the
following inequality holds

AC(S,G') < d- AC(S,G).
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Proof. Since for the complete graph K,,, we have AC(S, K,,) < AC(S, G), we simply need to
show that AC(S,G’) < d-AC(S, G). We modify the solution of the LP for the complete graph
by adding at most d-times the capacity and prove that this graph processes all transactions.

We start with graph G’ with zero capacities. For all pairs of nodes v and u, let the
capacity between them be w,,. We find the shortest path between them in G, since the
diameter is at most d, the length of the path is at most d. Then, we increase the capacity of
every channel on the path by w, ,. We denote this capacity to a special bucket that will be
used to process transactions that the LP sends along u,v. At the start at edge k, [, where k
is closer to v and [ is to u, we increase the balance at the k’s side by Cg’u (and I’s balance is
Cgﬁv), the balance at the edge v, u at the start as given by the LP.

After we increase the capacities of G’ for every pair of nodes, we process the transactions.
Any time the transaction of size s was forwarded along some edge u, v, we can transfer s on
the shortest path between u and v from the bucket on the edge denoted u,v. If the bucket
for some edge becomes negative, the solution of LP is infeasible.

By this, we can process all transactions. Since the diameter is at most d, we know that
the increase in capacity is at most d-times. |

A.3 Proof of Theorem 6

» Theorem 6. Given the transaction sequence Xy, let C be the optimal capacity cost and R
the optimal rejection cost on a star. Then Algorithm 1 run for every pair of nodes incurs a
rejection cost of at most (v/3 + 1)R and capacity cost of at most (1+ (p — 1) - v/3)C.

Proof. Every node has p — 1 connections while the size of the channel is viewed as the
minimum of the two sizes as denoted by the LP. The reserves are /3 times that value.
Moreover, every channel in a star has funds amount as dictated by the LP. Altogether it
gives 1+ (p — 1) - v/3 times of C.

The algorithm ensures that the in every channel on the right side, there is at least the
amount prescribed by the LP. This means that all fully accepted (z; = y;) transactions are
accepted. Moreover, from [28], we know that the rejection cost between two nodes is at most
V/3 4 1 times the rejection cost of the optimal rejection cost R. Thus, Algorithm 1 incurs a
rejection cost of at most (v/3 + 1)R and capacity cost of at most (1+ (p — 1) - v/3)C. <

A.4 Proof of Lemma 7

» Lemma 7. If there is a transaction (s,t,z;,y;), we can change it to
(s, t, i, y; + @) to simulate moving « reserves from s to t, and

(s,t,2;,y; — ) to simulate moving « reserves from t to s.

Proof. Every node has p — 1 connections while the size of the channel is viewed as the
minimum of the two sizes as denoted by the LP. The reserves are V/3 times that value.
Moreover, every channel in a star has funds amount as dictated by the LP. Altogether it
gives 14 (p — 1) - v/3 times of C.

The algorithm ensures that the in every channel on the right side, there is at least the
amount prescribed by the LP. This means that all fully accepted (z; = y;) transactions are
accepted. Moreover, from [28], we know that the rejection cost between two nodes is at most
V/3 + 1 times the rejection cost of the optimal rejection cost R. Thus, Algorithm 1 incurs a
rejection cost of at most (v/3 + 1)R and capacity cost of at most (1 + (p — 1) - v/3)C. <
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A.5 Proof of Lemma 8

» Lemma 8. Let S be a set of nodes that is connected to C; \ S for some cluster C; by
volume of at least 6|S|- M. Then at least |S|M volume can be moved from S to C; \ S.

Proof. From the condition 3 of the clustering conditions, we know that at least 2|S|M volume
moves from the cluster and 2|S|M volume to the cluster. For the sake of contradiction,
suppose that we can move at most m < |S|M from S to C; \ S.

From Lemma 7, we know that we cannot move only on fully accepted transactions from
S and rejected transactions from C; \ S. Let m’ be the incoming volume to S that can be
moved. Then in the subsequence in the solution of LP, S receives m’ volume and gives up
2|S|M — (m —m') volume. That means on average it lost at least 2|S|M — (m —m/) —m/ =
2|S|M —m > |S|M. From the Dirichlet principle, at least one node lost more than M. This
is impossible since M is the highest capacity in C; and the solution of the LP ensures that
for any subsequence the difference is at most M. |

A.6 Proof of Lemma 9

» Lemma 9. Let X] be a subsequence of transactions where transactions incident to C; have
volume at least tr > M, then Algorithm 8 can transport at least tr from any set of nodes
S C Cj to any other set T C C;. The LP solution is modified by volume at most O(,/p - tr).

Proof. Since there was tr transported, inside the cluster there was at least 24 - tr - |C}]
transported, and next to S, there was at least 6tr|S| transported. From Lemma 8, that
means that at least tr|S| goes away from S to other nodes.

Let S = S and S; be the nodes that we can transport nonzero amount from S;_;.
Similarly, let Ty = T and T; be the nodes that we can transport nonzero amount to 7;_1.
Since the clustering conditions, we have that the size of S; and T; is increasing if their size is
at most half of the cluster. That means they intersect at some point.

We look at the minimum mn that can be transported and we change the transactions
such that in v the reserves are decreased by mn and in u they are increased by mn. After
the change, we know that the clustering conditions still hold, now we just need to decrease
the inequalities by mn. Therefore, we can find the path again. |

A.7 Proof of Theorem 10

» Theorem 10. Algorithm 2 is O(\/p) approzimation of the problem where given a transaction
sequence, the nodes are (\/p,\/p, 24,/p)-clustered.

Proof. We are using a double star, which means it is at least a 4 approximation of the
optimal topology from Theorem 2.

The algorithm uses Algorithm 1 for every pair of clusters (between middle nodes) to
accept and reject transactions between them. This incurs cost for additional capacity equal
O(,/p) times the cost of the capacity cost of the LP for the capacity between clusters. The
rejection cost is at most (v/3 + 1) times higher than the rejection cost between clusters. All
of this follows from Theorem 6.

Next, from Lemma 9, we know that we can transport reserves such that everything
between clusters is accepted or rejected from the previous algorithm. It changes the values
of the LP by at most O(,/p) times the volume of rejected transactions between clusters.

Finally, again from Theorem 6, we can solve the problem inside the clusters. This incurs
capacity cost O(,/p) times the capacity cost of the solution inside the clusters. Moreover,
the cost for rejection is (v/3 + 1) times the rejection cost in the modified solution of LP (X]).
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The modified rejection cost of solution of LP is the rejection cost of the original solution plus
at most O(,/p) times the rejection cost of transactions between clusters (from Lemma 9).
Altogether, we get that the algorithm is O(,/p) approximation algorithm. |

B  Omitted details of star topology solution

B.1 Moaodified channel algorithm details

We now describe the decision making process in Algorithm 1 for transactions going from u to
v (the other direction is symmetric). Algorithm 1 accepts a transaction as long as the reserve
R, is above a threshold (i.e., R, > %M , line 6). Accepting a transaction decreases the
capacities C,, and RY, of u by y; and x; —y; respectively (refer to the “accept” case in Figure 2).

If accepting the transaction would make R, decrease by too much and the LP demands to
V3

) V3+1’

Rejecting a transaction from say u to v decreases both C, and RY, of by y; (refer to the

“reject” case in Figure 2). If the reserve on u’s side after accepting the transaction would be
too small (i.e., R, < \/nglM , line 17), the algorithm looks at all subsequent transactions
between u and v in the transaction sequence. It accepts all transactions that increases R,,

accept the transaction weakly (i.e., £ < line 9), the algorithm rejects the transaction.

while rejecting weakly accepted transactions from wu to v (rejecting them also increases R,,).

From strongly accepted transactions (i.e., - > \/\5_ il
accept all of them while simulating the movement of capacities between the reserves until

either R, > %M or R, <0. If R, > \/52’1M , then all transactions can be accepted. If

R, < 0, the algorithm rejects strongly accepted transactions until R, > ‘/5’2’1M . The proof

in [28] shows that doing so maintains the approximation ratio at v/3 + 1 for the rejection

) from u to v, the algorithm tries to

cost.

Algorithm details. The simulating of the reserves is implemented by a heap. The heap is

empty while R, > Y3=1 M, and when R, < ¥3=11M it starts to fill up. When R, < 0, then

the decision is changed for transactions from the top of the heap until R, > @M again.

Observe that for Algorithm 1 the funds on both sides can shift and the reserves are not
affected. This allows us to compose the algorithm from pairwise reserves with shared funds
denoted by the linear program.

The algorithm describes decisions for the star, so a transaction goes from u to ¢ (star
center) and then from ¢ to v. That means it needs to traverse two channels. The algorithm
sees it as only pairwise interaction. Since the decisions for the two channels are always the
same for both channels (a transaction is either accepted or rejected for both), we can have
the reserves stored twice, once between u and ¢, the second time between v and ¢. The
value R, is then the reserves at u in channel u,c and at ¢ in the channel ¢,v. Both of these
reserves move in sync.

C Omitted details of clustering algorithm

C.1 Stochastic Block Model details

The planted partition model creates a random graph where nodes are partitioned into clusters.
Inside a cluster, two nodes are connected with probability ¢;, otherwise, they are connected
with probability ¢go. The planted partition model creates an unweighted and undirected
graph. Our graph created by the packets is directed, weighted, and temporal. These changes
call for modification of the planted partition model.
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The biggest change to the model is brought by the temporality. Some edges follow after
others, we require that all of the conditions hold for some continuous subsequence of edges
incident to some cluster of bigger size.

To make the graph weighted, we view ¢; and g2 as ratios between volumes of the packets
between the clusters and inside the cluster. This view is expressed by the condition 1 of the
clustering conditions.

To make the graph directed, we allow for arbitrary orientation of the edges with the
condition that at least % of the volume needs to be directed in both directions. It is expressed
by condition 2 of the clustering conditions. Note that % of the volume can be oriented in any
direction, no matter the other packets.

Finally, the condition 2 of the clustering conditions ensures that some volume is incident
to every node.

Note that all of the conditions would be satisfied with high probability in the stochastic
block model. Moreover, there are other conditions that would be satisfied (for instance any

two clusters would send packets between each other at the same rate) that we do not require.

From the above the graph generated by the planted partition model with ,/p partitions of
size /p and ¢ = zl) and ¢; = 1 — g2 satisfies all clustering conditions with high probability.

C.2 Linear program for double star

Let the set of leaf nodes be L and the set of middle nodes be M, and ¢ denote the central

node of the star. For a leaf node u, let M (u) be the middle node corresponding to u’s cluster.

For a leaf node v and natural number i, we use C,, ; and C, ; to denote the capacity at the
channel (v, M (v)) after processing the i-th transaction on the side of v and M (v) respectively.
Moreover let C,, denote the total capacity of the channel (v, M(v)), i.e., C, = Cy ;i + Cy ;.
For a middle node v and 4, we use M, ; and M, ; to denote the capacity at the channel (v, c)
after processing the i-th transaction on the side of v and ¢ respectively. Moreover, let M,

denote the total capacity of the channel (v, c).

minimise Z Cy + Z M, + (2)

Vi :0
V('U, U, .Ti) :va Cu Z Ty
Coi=Cric1 —Yi

' 1
Cv,i - Ov,i—l + Yi
I v )
Cu,i =Cui-1 — Y

Cui=Clui-1+Yi
V(v,u,x;) between clusters: My, Marw) > i
Muivy,i = Mar(vy,i-1 — Yi
Mz’w(v),i = MJ/M(U),Z'—l + i
MII\/[(u),i = MJIW(u),i—l —Yi
My, = Myr(wy,io1 + Yi
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Algorithm 3 Transporting reserves between nodes.

Input: Subsequence of transactions X; inside one cluster, two nodes v, u, amount A.
Output: Modified X; such that A in reserves is transported from v to u.
1: procedure TRANSPORT (X, v, u, A)
2 M + PATHBETWEEN (v, u)
3 mn < MINIMUMONPATH(M)
4: mn  min(mn, A)
5: for (dir,z,y,z;,y;) € M do
6 if dir from v to u then
7 Yi < yi —mn
8 else
9 Y; < yi +mn
10: if A—mn > 0 then
11: TRANSPORT(X¢, v, u, A — mn)

C.3 Algorithm to transport cluster reserves

Here we detail Algorithm 3, which transfers cluster reserves from well-funded to depleted
nodes within a cluster, so that the cluster nodes have sufficient reserves to handle transactions
that go between the clusters.
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