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Abstract
Byzantine Agreement (BA) considers a setting of n parties, out of which up to t can exhibit byzantine
(malicious) behavior. Honest parties must decide on a common value (agreement), which must
belong to a set determined by the honest inputs (validity). Depending on the use case, this set
can grow or shrink, leading to various possible desiderata collectively known as validity conditions.
Varying the validity property requirement can affect the regime under which BA is solvable.

Our work investigates how the selected validity property impacts BA solvability in the network-
agnostic model, where the network can either be synchronous with up to ts byzantine parties or
asynchronous with up to ta ≤ ts byzantine parties. We give necessary and sufficient conditions for a
validity property to render BA solvable, both for the case with cryptographic setup and for the one
without. This traces the precise boundary of solvability in the network-agnostic model for every
validity property. Our proof of sufficiency provides a universal protocol, that achieves BA for a given
validity property whenever the provided conditions are satisfied.

We note that, for any non-trivial validity property, the condition 2 · ts + ta < n is necessary for
BA to be solvable, even with cryptographic setup. Specializing this claim to ta = 0 gives that t < n/2
is required whenever one expects a purely synchronous protocol to also work in an asynchronous
network when there are no corruptions. This is especially surprising given that, for some validity
properties, t < n is a sufficient condition without the last stipulation.
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1 Introduction

Achieving agreement among the parties involved in a distributed system is crucial for
maintaining consistent views. This becomes particularly challenging due to the potential
for parties’ failures, which can range from benign crashes to malicious (byzantine) behavior.
Byzantine Agreement (BA) is an extensively studied problem in distributed computing that
tackles this challenge. It seeks to establish a common value amongst a set of n parties even
when up to t parties exhibit byzantine behavior. A crucial aspect of BA lies in its validity
condition, which requires that the value agreed upon reflects the honest parties’ proposals
rather than being a default or arbitrary value. Standard BA definitions consider the so-called
strong unanimity (also known as strong validity): if all honest parties propose the same value v,
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24:2 Validity in Network-Agnostic Byzantine Agreement

the agreed-upon output must be v. This is a powerful guarantee in applications concerning
binary decisions, as it coincides with honest-input validity, which requires agreement on an
honest input. However, strong unanimity fails to provide meaningful outputs for larger input
spaces. For instance, consider a set of parties running a BA protocol to agree on a room’s
temperature: minor measurement errors are inherent, and hence strong unanimity allows
agreement on a corrupted party’s proposal. Similar issues arise in scenarios such as deciding
on a location using GPS coordinates [5] or when the map is modeled as a graph [11,30].

While achieving honest-input validity in scenarios where the input space is large (size
ω(n)) is impossible [29], the literature offers a plethora of weaker alternatives that are
stronger and more meaningful than strong unanimity. For instance, one may avoid corrupted
outputs by enhancing strong unanimity with an additional condition called intrusion tolerance
[13,22,23]: the honest parties either agree on an honest input or on a special symbol ⊥. In
the aforementioned scenarios of deciding on a measurement or a meeting point, a highly
suitable alternative is the so-called convex validity: the output agreed upon must be in the
honest parties’ inputs convex hull, i.e., within the range of honest inputs if the input space is
a subset of R [11,22,23,28,30,32]. Stronger variants for real values require the outputs to be
close to the honest inputs’ median [10, 31], or to the k-th lowest honest input [27]. However,
the honest-range approach is not a universal solution: this would carry no meaning in a
voting problem if we represented candidates with integers. Instead, approaches based on
social choice theory (Pareto validity) lead to more appropriate validity definitions [26].

The multitude of validity definitions leads to a natural question: what are the necessary
and sufficient conditions for achieving BA with a given validity property, i.e., to solve a given
validity property? This question can be concerned with multiple aspects, such as resilience
thresholds t, round complexity, or message complexity. In addition, the conditions may depend
on whether a cryptographic setup and randomization are available. The communication
model assumed also plays an important role: one extreme is the synchronous model, where all
parties have synchronized clocks, and all messages get delivered within a predefined amount
of time ∆. This enables elegant protocols that operate in rounds, but that may fail in a
real-life network where sporadic issues are possible. The other extreme is the asynchronous
model, which only assumes that messages get delivered eventually. The asynchronous model
comes with highly robust protocols, but also with important drawbacks: (a) lower resilience
threshold: e.g., t < n/3 as opposed to t < n/2 (assuming digital signatures) for strong
unanimity, or t < n/4 as opposed to t < n/3 for convex validity in R2; (b) randomization is
a requirement [19]. The middle ground between the two models has also been considered.
The partially synchronous model [17] bridges the gap between the two extremes by assuming
that the network is initially asynchronous and eventually becomes synchronous. In the
synchronous and partially synchronous models, the solvability of validity conditions using
deterministic protocols is completely understood [7, 8].

In this work, we are concerned with a different paradigm for bridging the gap between
synchrony and asynchrony, namely the network-agnostic model [4]: parties are initially
unaware of whether the network is synchronous or not: if it is synchronous, up to ts of the
parties involved may be corrupted, and otherwise only up to ta ≤ ts. Network-agnostic
protocols are designed to provide guarantees in both cases. We ask the following question:

Under what conditions can a validity property be solved in the network-agnostic model?

1.1 Our Contribution
We provide a complete characterization for achieving network-agnostic BA with a given
validity property, establishing tight necessary and sufficient conditions.
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We first show that, even if cryptographic setup is available, the condition n > 2 · ts + ta

is a requirement for any non-trivial validity condition to be solvable (i.e., a condition for
which simply outputting a default value does not suffice). When no cryptographic setup is
available, we show the stronger requirement of n > 3 · ts. Our proof for the latter, in fact,
works in the synchronous model and, therefore, strengthens the characterization provided
by [7] for the synchronous model. In particular, [7] only focuses on deterministic protocols,
while our proofs rely on different techniques that also apply to randomized protocols.

Afterwards, regardless of whether cryptographic setup is available or not, we add one
more necessary condition, which is an adaptation of the similarity condition of [8] and the
containment condition of [7] to the network-agnostic model. Roughly, this requires that
similar honest inputs’ configurations have a valid output in common. The term similar
captures that some of the proposed inputs may come from corrupted parties, and that, in
asynchronous networks, some honest inputs may be missing due to high network delays.

Finally, we show that, together, the aforementioned conditions are also sufficient by
providing a universal protocol, that achieves network-agnostic BA for a given validity property
whenever these conditions are satisfied. This is a more general variant of the protocol of
[11]. In particular, the requirement for solvability is precisely n > 2 · ts + ta together with
the similarity condition assuming cryptographic setup, and n > 3 · ts together with the
similarity condition assuming no cryptographic setup. Our protocol is randomized, which is
a requirement when the network may be asynchronous and ta > 0 [19].

1.2 Related Work
General validity conditions. The foundational investigation into general validity properties
was initiated by Civit et al. [8] for the partially synchronous model. Subsequently, Civit et al.
[7] embarked on a follow-up study, extending their analysis to the synchronous model. Both
works provide a complete characterization, identifying the necessary and sufficient conditions
for solving a validity property deterministically. We also note that the contributions of [7, 8]
extend beyond this characterization, an important side of these works lying in the exploration
of lower bounds on message complexity. This generalizes the well-established Dolev-Reischuk
bound on message complexity for BA with strong unanimity [15] to encompass the broader
landscape of non-trivial validity properties. Considerations of message complexity are outside
our scope. We also note that probabilistic validity properties are outside the scope of the
analysis of Civit et al, and also outside our scope. A notable example is qualitative validity,
introduced by Goren et al [25].

Network-Agnostic BA and particular validity conditions. Designing protocols that achieve
security guarantees in both synchronous and asynchronous networks has been the subject of
an extensive line of work. The network-agnostic paradigm was introduced by Blum, Katz and
Loss [4]. The work of [4] shows that, if a public key infrastructure is provided, BA with strong
unanimity can be achieved if and only if n > 2 · ts + ta. Further works on network-agnostic
BA with strong unanimity have focused on improving the efficiency guarantees [12,13].

Due to its broad applicability, convex validity within the network-agnostic communication
paradigm has attracted increased attention. Ghinea, Liu-Zhang and Wattenhofer [20,21] have
investigated the feasibility of achieving convex validity for a weaker variant of BA, known as
Approximate Agreement [1,14]. In particular, [20] shows that Approximate Agreement on
real numbers is solvable under the same necessary and sufficient condition n > 2 · ts + ta

assuming a public key infrastructure. Building on the previous, [21] gives sufficient conditions
for the multidimensional variant of the problem that match the known requirements in the
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24:4 Validity in Network-Agnostic Byzantine Agreement

pure synchronous and asynchronous models [28, 32]. Returning to the non-approximate
version, Constantinescu et al. [11] have provided the tight conditions for network-agnostic
BA with convex validity for abstract convex spaces. In this case, the conditions include
n > 2 · ts + ta or, if no cryptographic setup is available, n > 3 · ts, along with a few additional
conditions that depend on the Helly number of the convexity space.

Other takes on network-agnostic BA have been considered, such as scaling the validity
guarantees with the network conditions: for real-valued inputs, [10] proposes a protocol
for BA with median validity guaranteeing that the output is closer to the honest inputs’
median when the network is synchronous than when it is asynchronous. This protocol
simultaneously matches the optimal closeness guarantees for purely synchronous [27, 31] and
purely asynchronous [10] networks. Such validity properties that scale with the network
conditions are outside our scope.

Comparison to previous works. As outlined above, the conditions n > 2 · ts + ta and, if
no cryptographic setup is available, n > 3 · ts, have been proven to be necessary for strong
unanimity properties, i.e., stronger than strong unanimity [4]. Our work shows that this is
a requirement for weaker validity properties as well, i.e., for any non-trivial property. We
find this result surprising especially for weak validity: if all parties are honest and hold
input v, then the output agreed upon must be v. Assuming a public key infrastructure, this
property is solvable in the synchronous model for ts < n, as a straightforward application of
the Dolev-Strong broadcast protocol [16]. On the other hand, our result implies that if we
expect a BA protocol with weak validity to remain secure in the asynchronous model even
for no corruptions (i.e., ta = 0), then the synchronous resilience threshold steps down from
ts < n to ts < n/2.

In contrast to the work of [11] regarding network-agnostic BA with convex validity, our
results move the difficulty of proving such feasibility results as a whole to only verifying
whether a validity condition satisfies our similarity condition. That is, one can show that
convex validity satisfies this similarity condition if and only if the necessary Helly number-
based conditions of [11] hold. Our impossibility arguments diverge: we investigate these
under any validity property, while the work of [11] considers a fixed validity property but also
shows impossibility under weaker agreement requirements. On the other hand, our protocol
matching our lower bounds is a more general variant of the protocol of [11].

Our paper provides a characterization similar to those of [7, 8] for the synchronous and
partially synchronous settings, respectively. The key difference is that these two models
allow for deterministic protocols, while the network-agnostic model inherently requires
randomization for achieving BA when ta > 0 [19]. Consequently, the focus shifts towards
randomized protocols, requiring our proofs to employ different techniques. While the
arguments behind the containment condition of [7] can be easily adapted for randomized
protocols, this is not immediate for their proof that n > 3 · ts is necessary when no
cryptographic setup is available. Our proof for this lower bound, in fact, assumes the
synchronous setting and, therefore, strengthens the characterization of [7]. Summing up,
their necessary conditions now hold even for randomized protocols, and, as shown in their
paper, they can be matched by deterministic protocols.

2 Preliminaries

We consider a setting with n parties P = {P1, P2, . . . , Pn} running a protocol in a fully-
connected network, where links model authenticated channels. We will be working in the
network-agnostic model: the network may be synchronous, or asynchronous, and the parties
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are not aware a priori of the type of network. If the network is synchronous, the parties
hold perfectly synchronized clocks and each message is delivered within a publicly known
amount of time ∆. Otherwise, if the network is asynchronous, messages can get delayed for
an arbitrary amount of time, and clocks may not be synchronized.

Adversary. We assume a central adversary that may corrupt up to ts of the n parties if the
network is synchronous, and up to ta ≤ ts parties if the network is asynchronous. Corrupted
parties permanently become byzantine, and hence may deviate arbitrarily (maliciously) from
the protocol. The adversary additionally controls the message delivery schedule, subject to
the conditions of the network type. Our impossibility results assume a static adversary (i.e.,
chooses which parties to corrupt at the beginning of the protocol’s execution). Our protocol,
on the other hand, provides security even against an adaptive adversary (i.e., chooses which
parties to corrupt at any point in the protocol’s execution).

Cryptographic setup. We will consider both settings with and without cryptographic setup.
Protocols assuming a cryptographic setup will make use of a public key infrastructure (PKI)
and a secure signature scheme, and only hold against a computationally bounded adversary.
For simplicity of presentation, we assume that the signatures are perfectly unforgeable.

Byzantine Agreement and Validity. A Byzantine Agreement (BA) protocol assumes that
each (honest) party holds a value vin ∈ Vin as input, and enables the parties to agree on a
common output vout ∈ Vout satisfying a given validity condition. We assume that Vin is
at most countably infinite. In the full version of our paper [9, Section 7], we explain why
such an assumption is actually necessary to get any relevant result. In the following, we
present each property that a BA protocol needs to satisfy. The first property is termination,
which may be deterministic (for synchronous protocols) or probabilistic while the second is
agreement. We define them below:

(Termination) Every honest party decides on an output vout.
(Probabilistic Termination) As time goes to infinity, the probability that an honest
party has not yet decided on an output value vout tends to 0.
(Agreement) If two honest parties output vout and v′

out, then vout = v′
out.

Before describing the validity property, we need to define input configurations. Regardless
of the nature of the adversary, these are defined by looking at the honest parties’ inputs
after the adversary has decided which parties to corrupt. Hence, in impossibility results,
where we consider a static adversary, input configurations are defined before the protocol’s
execution. An input configuration is a set I ⊆ P × Vin consisting of pairs of honest parties
with their inputs: if (v, P ) ∈ I, then P is an honest party with input v. Naturally, no
party occurs twice in I (i.e., honest parties cannot simultaneously have two inputs). We
use the notation parties(I) to refer to the set of (honest) parties in the input configuration
I. Note that, if P /∈ parties(I), then P is corrupted in the input configuration I. Let
I = {input configurations I ⊆ P × Vin such that

∣∣I∣∣ ≥ n − ts} denote the set of all possible
input configurations. We also note the inclusion relation for input configurations: for
I, J ∈ I, J ⊆ I if and only if parties(J) ⊆ parties(I) and the parties in parties(J) have
the same input value in both I and J . We say that an input configuration I is maximal
if parties(I) = P. Moreover, as Vin is at most countably infinite, the size of I is at most
countably infinite. A validity property is then defined by a mapping val : I → 2Vout from
honest parties’ inputs to valid outputs:

DISC 2025



24:6 Validity in Network-Agnostic Byzantine Agreement

(Validity) If I ∈ I is the input configuration defined by the honest parties and their
inputs, then no honest party outputs vout /∈ val(I).
This validity definition matches the one used in [6, 7]. We say that a validity property

val is trivial if
⋂

I∈I val(I) ̸= ∅. Note that, if this condition holds, we can achieve validity,
agreement, and termination with no communication: parties output a value in

⋂
I∈I val(I).

A validity property val is solvable if there is a BA protocol solving val, as defined below.

▶ Definition 1. A protocol Π is a (ts, ta)-secure BA protocol solving a validity property val
if it achieves probabilistic termination, agreement, and validity for the given property val
even when up to ts parties are corrupted if it runs in a synchronous network, and even when
up to ta parties are corrupted if it runs in an asynchronous network.

▶ Definition 2. A protocol Π is a ts-secure BA protocol solving a validity property val if,
when running in a synchronous network, it achieves (probabilistic) termination, agreement,
and validity for the given property val even when up to ts parties are corrupted.

One might be tempted to believe that a (ts, 0)-secure protocol is simply a ts-secure
protocol, but the difference is rather subtle. Namely, a (ts, 0)-secure network-agnostic BA
protocol also provides guarantees in an asynchronous network if all parties are honest. On the
other hand, a ts-secure (synchronous) BA protocol is not required to provide any guarantees
if the synchrony assumptions fail, even if there are no corruptions. We add that this subtle
difference would not apply to a purely asynchronous variant of the definition, which is
equivalent to (ta, ta)-secure network-agnostic BA protocol.

Randomness. Our work covers BA protocols which can run in the asynchronous setting.
As a result of FLP [19], the protocol considered must be randomized. We consider the
randomness as a black box where, at each instant, a party can ask for one or multiple random
bits, each set to 0 or 1 uniformly and independently. So the randomness from a party’s point
of view can be seen as an infinite bitstring being progressively read. There may also be shared
randomness, which gives the same result to each party. Therefore, when running a protocol,
we can consider its behavior over a probabilistic space (Ω, F , µ) where Ω =

(
{0, 1}N

)k for
some k > 0 is the set of all possible random bits parties will read. F is the σ-algebra
generated by taking all possible prefixes from each bitstring, and µ is the resulting probability
measure from having each bit following independently a Bernoulli random variable B(0.5).
From this point on, when mentioning probabilities, like almost surely properties, we refer to
the probabilistic space given above.

Executions. For a protocol Π, we define an execution ε to be a particular feasible run of Π.
In particular, ε contains the input configuration I ∈ I from which the protocol started, the
behavior of the byzantine parties, and the scheduler’s behavior (including whether the network
was synchronous or asynchronous). Because an execution depends on the randomness, it is
actually a random variable ε(ω). We then say that an execution decides if all honest parties
in the execution eventually decide an output. We note that, given a protocol satisfying
probabilistic termination, including the scheduler and strategy of the adversary, an execution
for this protocol decides almost surely. We will also be using the term canonical to refer to
executions occurring in a synchronous network where all messages are delivered exactly ∆
units of time after being sent and where all corrupted parties crash right at the beginning
of the protocol (i.e., they do not send any messages). We add that, for any given input
configuration, there is a unique canonical execution (which, recall, is a random variable).
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For a given protocol Π and randomness ω ∈ Ω, we say that two executions ε1(ω) and
ε2(ω) cannot be distinguished by a party P that is honest in both executions if it has the
same initial state in ε1(ω) and ε2(ω) (i.e., input and randomness), and receives in both ε1(ω)
and ε2(ω) the same messages at the same times. As a consequence, if P cannot distinguish
between ε1(ω) and ε2(ω), then P is in exactly the same state at any time T in ε1(ω) and
ε2(ω). Hence, if P decides a value vout at time T in one of the two executions, then it also
decides vout at time T in the other. We also say that an execution ε(ω) is deciding if all
honest parties eventually decide when running with randomness ω. If a protocol satisfies
probabilistic termination, then an execution is almost surely deciding.

Validity in indistinguishable executions. Goren et al. [25] offer a framework to formalize
indistinguishability for randomized protocols. We instead decided to take a different approach
by looking at deterministic indistinguishability after fixing the randomness ω ∈ Ω. This
can allow for easier results as we do not have to consider the whole probabilistic space at a
time. For example, some of our proofs require us to define multiple executions depending
on ω and cannot be achieved with the framework above. The drawback is that all the
assumptions made must hold almost surely for the proofs to be correct. Indistinguishability
is a powerful tool, especially when considering scenarios where byzantine parties follow the
protocol correctly, but with inputs of their own choice. This leads us to the following lemma.
The proof is included in Appendix A.

▶ Lemma 3. Let val be a validity property and Π be a (ts, ta)-resilient BA protocol solving
val. Consider two input configurations I, J such that J ⊆ I. Then, the value agreed upon in
any execution of Π which decides and where the input configuration is I must be in val(J).

Intuitively, Lemma 3 ensures that honest parties cannot distinguish between a scenario where
all parties in parties(I) are honest, and one where the parties in parties(I) \ parties(J)
are, in fact, byzantine. With the lemma in mind, for any validity property val, we can define
a new validity property val′ such that val′(I) =

⋂
J⊆I val(J) for all I ∈ I. Property val′

is simultaneously a stronger version of val, in that for all I ∈ I we have val′(I) ⊆ val(I),
but it also has the property of being monotonically decreasing, in that for J ⊆ I we
have val′(I) ⊆ val′(J). Armed as such, the previous lemma has the following immediate
corollaries:

▶ Corollary 4. A solvable validity property val is trivial if and only if it permits deciding
the same value for all maximal input configurations, i.e.,

⋂
I∈I,parties(I)=P val(I) ̸= ∅.

We end by stating a technical lemma that will be of use in the proofs presented in the
subsequent sections. The proof of Lemma 5 is included in Appendix A.

▶ Lemma 5. Let val be a solvable validity property and Π a protocol solving val. Let I1 ∈ I
be a maximal input configuration. If, for every maximal input configuration I2 ∈ I, the
canonical executions of Π for I1 and I2 decide the same value almost surely, then val is
trivial.

3 Lower Bound on n

In this section, we prove that, for any non-trivial validity property, the condition n > 2 ·ts +ta

is necessary for it to be solvable in the network-agnostic model even if cryptographic setup
is available. Our proof will be organized as follows: we start with a preliminary lemma in
Section 3.1, which focuses on a simplified setting where n := 2. In this setting, at most one
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24:8 Validity in Network-Agnostic Byzantine Agreement

party can crash if the network is synchronous, and both parties are honest if the network
is asynchronous. Our preliminary lemma will show a somewhat counter-intuitive result:
roughly, the value decided upon in canonical executions is independent of the honest parties’
inputs. In Section 3.2, we move from the simplified setting with two parties to a warm-up
variant of our main proof. We will be working with n parties, but we will only consider the
particular case ta := 0. By reducing this case to our preliminary lemma, we show that the
condition n > 2 · ts is necessary in this setting. Finally, Section 3.3 focuses on the general
case, showing that n > 2 · ts + ta is necessary by reducing to our preliminary lemma. The
main proof will be a more general version of the warm-up proof.

We note that the proofs by Civit et al. [7] rely on reducing any non-trivial validity
property to weak validity, enabling lower bounds to focus solely on weak validity. However,
their reduction is invalid for randomized protocols and hence cannot be used in our setting.

3.1 Preliminary Lemma
As previously mentioned, our preliminary lemma focuses on a simplified setting with n := 2
parties in the network-agnostic model. When the network is synchronous, we allow the
adversary to corrupt up to one party (ts := 1). We restrict the adversary’s capabilities by
only allowing the corrupted party to crash. When the network is asynchronous, both parties
are honest (ta := 0). Then, we assume a protocol achieving (probabilistic) termination
and agreement in this setting. We show that, almost surely, once randomness is fixed, all
canonical executions decide the same value. Note that there may be a set of randomnesses
such that some canonical executions do not even decide, but the probability of picking a
randomness in this set is zero.

▶ Lemma 6. Assume n := 2, ts := 1, ta := 0, and that corrupted parties are only allowed to
crash. Consider a protocol A that achieves probabilistic termination and agreement in this
setting. Then, almost surely, there exists a value v such that all canonical executions of A

decide v when running.

Proof. Denote the two parties by P1 and P2. Let ω ∈ Ω. For every input configuration,
we will define a finite number of executions using randomness ω, including the required
canonical executions. Under the assumption that all executions defined for ω decide, we
show that all canonical executions using randomness ω decide the same value v. From here,
our proof proceeds as follows: individually, each defined execution decides almost surely (by
construction). The number of executions defined for each input configuration is finite, and the
set of input configurations is countable (since Vin is countable). A countable intersection of
events holding almost surely holds almost surely. Then, almost surely, all defined executions
for ω decide, i.e., our additional assumption holds almost surely, completing the proof.

Hence, from now on, we fix ω ∈ Ω and only consider executions running with this
randomness ω. We assume that all executions we consider decide, and we want to show that
all canonical executions decide the same value v.

We first consider canonical executions where one of the parties crashes. Let v1, v2 ∈ Vin be
two arbitrary values. First, we consider the canonical execution ε1(ω) of A (in a synchronous
network) where P1 is honest and has input v1. P2 is corrupted and crashes at the beginning
of the execution. We have assumed that ε1(ω) is deciding, hence P1 outputs some value v′

1
within a finite amount of time T1(ω) (note: without receiving any messages from P2). Second,
consider the canonical execution ε2(ω) of A (again, in a synchronous network) where P2 is
honest and has input v2. P1 is corrupted and crashes at the beginning of the execution. We
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have assumed that ε2(ω) is deciding, hence P2 outputs some value v′
2 within a finite amount

of time T2(ω). We prove that v′
1 = v′

2 by defining a third execution ε1,2(ω), but, this time, in
the asynchronous model. Here, both P1 and P2 are honest with inputs v1 and v2 respectively.
The scheduler delays any message between them until time max(T1(ω), T2(ω)). This way,
P1 cannot distinguish execution ε1,2(ω) from execution ε1(ω), and therefore it outputs v′

1 in
ε1,2(ω) as well. Similarly, P2 outputs v′

2 in ε1,2(ω). Recall that A achieves agreement, hence
v′

1 = v′
2. Note that the argument holds for arbitrary v1, v2 ∈ Vin, so we get that all canonical

executions where one of the parties crashes decide the same value, which we denote by v.
We now consider canonical executions where none of the parties crashes and show that all

such executions also decide v. Consider any v1, v2 ∈ Vin and the canonical execution εM (ω)
of A where both parties are honest and have inputs v1 and v2. We also define ε1,2(ω) as
before. From the previous part, it follows that ε1,2(ω) decides v. We will now show that
εM (ω) decides v as well. Based on our assumption, we already know that εM (ω) decides, so
it does so after a finite number of messages ℓ. For the next part of the proof, we first give an
intuitive outline. Roughly, we will build a chain of ℓ + 1 scenarios between execution ε1,2(ω)
and execution εM (ω): in each scenario 1 ≤ m < ℓ, the network is asynchronous, and the
scheduler ensures that the first m messages are received synchronously, while all subsequent
messages are delayed sufficiently long. Scenarios 0 and ℓ correspond to executions ε1,2(ω)
and εM (ω) respectively, and any two consecutive scenarios will be indistinguishable to the
party that sent the last message: this will imply that εM (ω) also decides v. In the following,
we write this idea formally.

𝑃1 𝑃2

1

2

3

𝑚

𝑚 + 2
𝑚 + 1

Figure 1 Example of execution εM,m(ω): Any messages sent after the first m messages get
delayed until after a value has been decided.

For 0 ≤ m ≤ ℓ, we consider an execution εM,m(ω) of A in the asynchronous model: both
P1 and P2 are honest, and they have inputs v1 and v2 respectively. In execution εM,0(ω),
the scheduler uses the same strategy as that of execution ε1,2(ω): the scheduler delays any
message in execution εM,0(ω) until time T = max(T1(ω), T2(ω)). Hence, P1 and P2 cannot
distinguish between executions εM,0(ω) and ε1,2(ω), implying that εM,0(ω) decides v by
some time T0. In execution εM,1(ω), the scheduler allows the first message to be delivered
after exactly ∆ time. Assume without loss of generality that this message is sent by P1. All
further messages are delayed until time T1 > T0 (we define the exact time later): hence,
P1 cannot distinguish from this execution and execution εM,0(ω), therefore it outputs v by
time T0, as in execution εM,0(ω). P2, on the other hand, can distinguish between ε1(ω)
and εM,0(ω): however, it cannot distinguish between εM,1(ω) and an execution where the
network is, in fact, synchronous, and P1 has crashed. If P1 has crashed, P2 has to output
eventually, hence by time T ′

1. Hence, the scheduler makes sure to delay all messages until
time T1 > max(T0, T ′

1). Consequently, P2 has to output v in εM,1(ω) by time T1. The next
executions are defined similarly: in execution εM,m(ω) with m > 0, the scheduler allows the
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first m messages to be delivered after exactly ∆ units of time. The remaining messages are
delivered sufficiently late to ensure that the last message’s sender is unable to distinguish
between εM,m(ω) and execution εM,m−1(ω). Thus, the last message’s sender outputs v in
execution εM,m(ω), which forces the other honest party to also output v.

We remark that executions εM,ℓ(ω) and εM (ω) are indistinguishable, so εM (ω) will decide
v. Since this holds for arbitrary values v1, v2, we have obtained that all canonical executions
where no party crashes also output v, hence completing the proof. ◀

3.2 Warm-up: ta := 0

As a warm-up towards the main result, we focus on the particular case ta := 0, and show
that the condition n > 2 · ts is necessary. Intuitively, when n ≤ 2 · ts, one cannot distinguish
between a scenario where half of the parties crash in a synchronous network, and a scenario
where half of the parties are honest but delayed in an asynchronous one. This way, the
presence of the asynchronous case, even with no corruptions, allows two disjoint sets of
honest parties to only run the protocol within their own set. Since the two sets run the
protocol independently, the honest parties agree on a valid value only if the given validity
property is trivial. Note that this is the case even for weak validity, which can be solved in
the synchronous model for up to ts < n corruptions. Our result implies that expecting a
synchronous protocol to provide guarantees when it runs in a corruption-free asynchronous
network impacts the overall resilience.

▶ Theorem 7. Assume ts > 0 and consider a validity property val. If n = 2 · ts and there is
a (ts, 0)-secure BA protocol solving val, then val is trivial.

Proof. Consider a (possibly randomized) (ts, 0)-secure BA protocol Π that solves val when
n = 2 · ts. Let I1 and I2 be two arbitrary maximal input configurations. We show that the
canonical executions of I1 and I2 almost surely decide on the same output when run using
the same randomness. Then, Lemma 5 ensures that val is trivial.

Figure 2 P1 simulates all parties of PL while P2 simulates all parties of PR. All the parties of P
communicate between one another not knowing they are being simulated.

We use Π to build a 2-party protocol A that matches the setting described in Lemma 6.
For protocol A, we consider the input set {0, 1} and output set Vout, and we denote the two
parties running A by P1 and P2. Since n = 2 · ts, we may partition the set of n parties P
into two sets PL and PR of ts parties each.

Then, as shown in Figure 2, P1 will simulate the parties in PL, while P2 will simulate the
parties in PR. Concretely, in protocol A, P1 proceeds as follows:

P1 simulates all ts parties of PL running Π.
If P1 has input 0, then the simulated parties in PL use their inputs from I1. Otherwise,
they use their inputs from I2.
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Messages between the simulated parties in PL are received after exactly ∆ units of time,
and P1 forwards to P2 every message sent by a simulated party in PL to a party in PR.
Once P2 receives this message, it immediately forwards it to the simulated receiver in PR.
As soon as a party in PL decides a value, P1 decides this value. P1 continues forwarding
messages as described above.
P2 proceeds identically to P1, switching PL and PR.
Note that running A in an asynchronous network where both P1 and P2 are honest

corresponds to running Π in an asynchronous network where all n parties are honest. In
addition, running A in a synchronous network where at most one party may crash corresponds
to running Π in a synchronous network where at most ts parties may crash. Then, since Π
is a (ts, 0)-secure BA protocol, A achieves probabilistic termination and agreement in the
setting described in Lemma 6. Then, applying Lemma 6, we obtain that: almost surely, there
is a value v such that all canonical executions of A decide on the same value v. Moreover,
the canonical execution of A with input values (0, 0) matches the canonical execution of
I1 for Π. Similarly, the canonical execution of A with input (1, 1) matches the canonical
execution of I2. As a consequence, canonical executions of I1 and I2 decide the same value
almost surely. Using Lemma 5, we can therefore conclude that val is trivial. ◀

3.3 General Result
We are now ready to prove the final statement of this section, presented below.

▶ Theorem 8. Consider a validity property val, and ts, ta such that ts > 0 and ts ≥ ta. If
there is a (ts, ta)-secure BA protocol solving val when n ≤ 2 · ts + ta, then val is trivial.

Proof. Assume n = 2 · ts + ta and that there is a (ts, ta)-secure BA protocol Π solving val.
We consider two input configurations I1 and I2 such that parties(I1) = parties(I2) = P
(i.e., all parties are honest). We show that, almost surely, the canonical executions of I1 and
I2 decide on the same output. Then, Lemma 5 ensures that val is trivial. Similarly to the
proof of Theorem 7, we use Π to build a two-party protocol A that matches the setting of
Lemma 6. For A, we consider the input space {0, 1} and the output space Vout.

This time, we partition P into three sets PL, PM and PR such that |PL| = |PR| = ts and
|PM | = ta. A crucial difference from the proof of Theorem 7 is that, as shown in Figure 3,
each party in P simulates its own copy of the parties in PM . Our construction will ensure
that, when A runs in the synchronous setting, the two simulated copies of each party in PM

will be in the exact same state at any point, maintaining the guarantees of Π when at most
ts of the parties are corrupted. Meanwhile, in the asynchronous setting, the copies of the ta

parties in PM may be in different states, but Π is able to tolerate ta byzantine parties in
this case. Concretely, in protocol A, party P1 proceeds as follows:

P1 simulates all ts + ta parties of PL ∪ PM running Π.
If P1 has input 0, then parties in PL ∪ PM take their input from I1. Otherwise, they take
their input from I2.
As depicted in Figure 4, the messages sent between the parties simulated by P1 are
exchanged as if all ts + ta parties are running independently: each such message is
delivered after exactly ∆ units of time. Additionally, once a simulated party in PL sends a
message to a simulated party in PM , P1 immediately forwards this message to P2 as well.
Once P2 receives this message, it immediately forwards it to its own simulated receiver in
PM . The message delay here depends on the type of network that A is running in.
Messages from a party in PL to PR are sent from P1 to P2. P2 then forwards each such
message to its simulated receiver in PR.
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Figure 3 a) P1 simulates all parties of PL and its own copies of the parties in PM . P2 simulates
all parties of PR, and its own copy of the parties PM . The arrows show which simulated group of
parties can send messages to which other group.
b) This is how the network looks like from the point of view of a party in PR or PM : they are
unaware of the second set PM being simulated in parallel.

P1 discards any messages sent by the simulated parties in PM to parties in PR.
As soon as a party in PL (but not PM ) decides a value, P1 decides this value. P1 continues
forwarding messages as described above until all its simulated parties terminate.

The behavior of P2 is the same as the behavior of P1, switching PL and PR.

Figure 4 Examples of how different messages are handled.
a) If a simulated party in PL wants to send a message to a party in PM , then two identical messages
are actually sent: the first one to the copy of the receiver simulated by P1, and the second to the
copy simulated by in P2.
b) If a party in PM wants to send a message to a party in PR, if the two parties are simulated by
the same entity (here P2), then the message gets received as expected. Otherwise, the message is
discarded and the party in PR never receives it.

We now need to analyze A in the setting described by Lemma 6. Running A in an
asynchronous network where both parties are honest corresponds to running Π in a network
where the communication between parties in PL and PR is asynchronous. While the
simulated copies in PM are not necessarily consistent, Π is resilient against ta =

∣∣PM

∣∣
byzantine corruptions, and therefore maintains its guarantees. Hence, A achieves agreement
and probabilistic termination in this setting. It remains to show that A also achieves these
guarantees in a synchronous network where one of the two parties may crash. Settings where
both P1 and P2 are honest correspond to running Π in a synchronous network where all n

parties are honest. We note that, in this case, for each party in PM , the copy simulated by
P1 and the copy simulated by P2 maintain the same state at all times. Settings where at
most one of P1 and P2 may crash correspond to running Π in a synchronous setting where
the ts parties meant to be simulated only by the party crashing in A are corrupted. As
Π tolerates ts corruptions, it maintains its guarantees. Hence, A achieves agreement and
probabilistic termination in this setting as well.
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We conclude the proof in an identical manner to the proof of Theorem 7. Applying
Lemma 6, we obtain that, almost surely, all canonical executions of A decide on the same
value. Moreover, the canonical execution of A with input values (0, 0) matches the canonical
execution of I1 for Π. Similarly, the canonical execution of A with input (1, 1) matches the
canonical execution of I2. As a consequence, canonical executions of I1 and I2 decide the
same value almost surely. Using Lemma 5, we can therefore conclude that val is trivial. ◀

4 Lower Bound on n Without Cryptographic Setup

The previous section has proven that the condition n > 2 · ts + ta is necessary regardless
of whether a cryptographic setup is available or not. We now focus on settings without
cryptographic setup and prove an even stronger condition. We show that, in such settings,
the condition n > 3 ·ts is necessary even in the synchronous model. Since a protocol achieving
(ts, ta)-secure BA in the network-agnostic model also achieves ts-secure BA in the synchronous
model, this bound immediately applies to the network-agnostic model. We add that our
result extends the requirement of n > 3 · ts provided by Civit et al. [7] for synchronous
deterministic protocols to cover randomized protocols as well.

4.1 Preliminary Lemma

Similarly to the outline of Section 3, we first consider a setting with three parties, out of
which at most one is byzantine. Afterwards, we focus on the general case. Lemma 9 is an
improvement over the result of Fischer, Lynch, and Merritt for weak validity [18]: the result
of [18] only applies for weak validity and protocols must always decide in a finite amount of
time, which is a lot stronger than probabilistic termination. Our proof uses the main core
idea but improves it to lift these restrictions. Roughly, we will be running A in a larger ring
containing multiple copies of each party, as depicted in Figure 5.

Figure 5 Defining the behavior of a byzantine party (here P1).

The ring is constructed from two canonical executions with different input configurations.
Parties adjacent in this ring cannot distinguish between the ring and the original setting of
three parties, as the third party may be byzantine and simulate the rest of the ring. This
forces parties adjacent in the ring to output the same value, which implies that the two
original executions lead to the same output. We defer the formal proof to Appendix B.1.

▶ Lemma 9. Consider n := 3 parties in a synchronous network, and assume a protocol A

that achieves (probabilistic) termination and agreement in this setting even when up to one
party is byzantine. Then, almost surely, all canonical executions of A decide the same value.
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4.2 General Result
To prove our main result in this setting, we use a strategy similar to the proof of Theorem 7.
Concretely, we assume an n-party protocol that achieves val whenever n ≥ 3 · ts and use it
to construct a three-party protocol that contradicts Lemma 9. We defer the formal proof to
Appendix B.2.

▶ Theorem 10. Assume ts > 0 and consider a validity property val. If there is a ts-secure
BA protocol solving val in the synchronous model when no cryptographic setup is available
and n ≤ 3 · ts, then val is trivial.

Then, as any lower bound in the synchronous model also holds in the network-agnostic
model, Theorem 10 immediately implies the following corollary.

▶ Corollary 11. Consider a validity property val, and let ts, ta such that ts > 0 and ts ≥ ta.
If there is a (ts, ta)-secure BA protocol solving val when no cryptographic setup is available
and n ≤ 3 · ts, then val is trivial.

5 Similarity Condition

The lower bounds on n presented in the previous sections are indeed necessary, but not yet
sufficient. We may instantiate, for instance, the input space as the (finite) set of vertices
of a (publicly known) labeled graph with maximum clique size ω ≥ 3. We consider convex
validity, under the so-called monophonic convexity. For this example, network-agnostic BA
requires the stronger lower bound n > max(ω · ts, ω · ta + ts, 2 · ts + ta) [11]. Roughly, if any
of the conditions n > ω · ts and n > ω · ta + ts fails to hold, one can find scenarios where the
simple presence of byzantine parties (following the protocol correctly, with inputs of their
choice) prevents the honest parties from obtaining a valid output. In this section, we prove
the need of one more condition that captures these validity-dependent requirements, and
enables the honest parties to find a valid output even if their view over the honest inputs
is not accurate. This additional condition matches the similarity condition of [8] for the
partially synchronous model, and the containment condition of [7] in the synchronous model.

We need to establish a few notions. The first is the notion of neighbors of an input
configuration. The neighbors of I, denoted by neighbors(I), are the input configurations
J such that the parties in parties(I) ∩ parties(J) hold the same input values in I and J .
Formally, neighbors(I) := {J ∈ I : ∀P ∈ P, if (v1, P ) ∈ I and (v2, P ) ∈ J then v1 = v2}.
The definition of neighbors is symmetric (if J ∈ neighbors(I) then I ∈ neighbors(J)).

The second notion is that of similar configurations of an input configuration I, denoted
by similar(I). These are input configurations that may be indistinguishable from I. In the
synchronous model, these are configurations J ∈ neighbors(I) such that J ⊆ I. Roughly,
this models scenarios where some of the parties are corrupted, but follow the protocol
correctly with inputs of their own choice. In the asynchronous model, these are configurations
J ∈ neighbors(I) containing n − ta parties: this additionally takes into account that at
most ta honest parties may be isolated due to network delays. Hence, we define similar(I)
as similar(I) = {J ∈ neighbors(I) : J ⊆ I}

⋃
{J ∈ neighbors(I) : |J | ≥ n − ta}.

We may now define the similarity condition, which Lemma 13 proves to be necessary for
the network-agnostic model. Lemma 13 adapts Theorem 2 of [8] and Lemma 8 of [7] to the
network-agnostic model, and it relies on standard indistinguishability arguments. We defer
the proof to Appendix C.
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▶ Definition 12 (Similarity condition). We say that a validity property val satisfies the
similarity condition if there is a Turing-computable function σ : I 7→ VO such that, for any
input configuration I ∈ I, σ(I) ∈

⋂
J∈similar(I) val(J).

Note that the existence of such a function σ also implies ∀I ∈ I,
⋂

J∈similar(I) val(J) ̸= ∅.

▶ Lemma 13. If a validity property val is solvable in the network-agnostic model, then val
satisfies the similarity condition.

It is worth noting that, in the proof of this lemma, the deterministic Turing function
σ is defined based on a randomized protocol that solves val. This is justified because, as
discussed in the proof, when time complexity is not taken into account, probabilistic Turing
machines are as expressive as deterministic ones.

6 Sufficiency and Main Result

We now show that the conditions presented in the previous sections are not only necessary,
but also sufficient, hence proving our main result, stated below.

▶ Theorem 14. Assume a non-trivial validity condition val. Then, there is a (ts, ta)-secure
protocol solving val if and only if the following conditions hold:

val satisfies the similarity condition.
n > 3 · ts or, if PKI is available, n > 2 · ts + ta.

The remainder of the section describes a protocol that matches our necessary conditions,
as stated in the lemma below. Theorem 14 then follows from combining Lemma 15 with
the requirements discussed previously: the lower bounds on n, described in Theorem 8 and
Corollary 11, plus the similarity condition, proven to be necessary in Lemma 13.

▶ Lemma 15. Assume a validity condition val that satisfies the similarity condition. Then,
if n > 3 · ts, or, assuming that PKI is available, if n > 2 · ts + ta, there is a (ts, ta)-secure
BA protocol solving val.

Our construction behind Lemma 15 generalizes the network-agnostic BA protocol of
[11] that solves convex validity. The parties distribute their input values using a protocol
achieving Agreement on a Core-Set (ACS), which provides them with an identical view over
the inputs, i.e., with a potential input configuration. This is a (randomized) communication
primitive enabling identical views in the pure asynchronous model [2, 3]. We make use of the
ACS definition of [11], included below, which differs from the standard definition by providing
stronger properties in the synchronous model: it additionally ensures that all honest inputs
are included in the common view if the network is synchronous. This property is essential for
matching the higher resilience threshold ts in a synchronous network. This way, the parties
can apply a deterministic decision over the view agreed upon in ACS and obtain an output.

▶ Definition 16. Let Π be a protocol where every party Pi holds an input vi and outputs a set
Ii ∈ I consisting of at least n − ts value-sender pairs. We consider the following properties
in addition to those presented in Section 2:

Integrity: If Pi and Pj are both honest and Pi ∈ parties(Ij), then (Pi, vi) ∈ Ij.
Honest Core: If an honest party outputs I, then parties(I) contains all honest parties.

Then, we say that Π is a (ts, ta)-secure ACS protocol if it achieves the following:
Probabilistic termination, agreement, integrity, and honest core when running in a
synchronous network where up to ts parties are corrupted;
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Probabilistic termination, agreement, and integrity when running in an asynchronous
network where up to ta parties are corrupted.

We make use of the ACS construction of [11], described by the result below.

▶ Theorem 17 ([11]). Consider n, ts, ta such that ta ≤ ts. If 3 · ts < n, or, if PKI is available
and 2 · ts + ta < n, there is a (ts, ta)-secure ACS protocol ΠACS.

We may now present the proof of Lemma 15, describing our protocol.

Proof of Lemma 15. Our BA protocol solving val proceeds as follows: the parties distribute
their input values using the protocol ΠACS described in Theorem 17. ΠACS provides the
parties with the same output set I ∈ I of at least n − ts value-sender pairs, representing a
potential input configuration. Once the parties obtain this set, they output σ(I), where σ is
the Turing-computable function provided by val satisfying the similarity condition.

(ts, ta)-secure BA solving val

Code for party Pi with input vi

1: Join ΠACS with input vi and obtain the output set I.
2: Output σ(I) and terminate.

Regardless of whether the network is synchronous or asynchronous, since ΠACS achieves
probabilistic termination, our BA protocol achieves probabilistic termination as well. In
addition, since ΠACS achieves agreement, the parties compute their output identically, and
therefore our BA protocol achieves agreement.

It remains to prove that the honest parties’ output is in val(H), where H denotes the
(actual) input configuration (containing only the honest parties and their inputs). Since
σ(I) ∈

⋂
J∈similar(I) val(J), it will be sufficient to show that H ∈ similar(I). Regardless

of the type of network, the integrity property of ΠACS ensures that H ∈ neighbors(I). If
the network is asynchronous,

∣∣H∣∣ ≥ n − ta and therefore H ∈ similar(I). Otherwise, if the
network is synchronous, the honest core property of ΠACS ensures that honest parties and
their inputs are included in I. Then, H ⊆ I and therefore H ∈ similar(I) in this case as
well. Thus, as σ(I) ∈

⋂
H∈similar(I) val(H), we get that the value agreed upon is in val(H),

which proves the validity of the protocol and concludes the proof. ◀

7 Conclusions and Future Work

We investigated the conditions that a validity property needs to satisfy in order to be
solvable in the network-agnostic model and established the necessary and sufficient conditions.
Our results demonstrate that solving a non-trivial validity property val requires (i) that
val satisfies the similarity condition, and (ii) that n > 2 · ts + ta assuming a public key
infrastructure, or n > 3 · ts otherwise. Further, we provided a universal protocol that solves a
given validity property whenever these established conditions are met. Our characterization
follows the line of works of [7, 8] focusing on the partially synchronous model and on the
synchronous model. At the same time, it generalizes prior results on when network-agnostic
BA can be achieved [4, 11] from fixed validity properties to arbitrary validity properties.

While our work provides a complete answer for solvability, we leave a number of exciting
problems open. Our results and approach do not hold if we allow the protocol to fail with
some probability ε > 0. Focusing on this weaker setting would likely allow more efficient
protocols. Future works could also extend our characterization to cover settings where both
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Vin and Vout are uncountable sets and consider proving message complexity lower bounds.
Other promising directions would aim to improve the efficiency of our universal protocol, or
to generalize our results further to network-dependent validity properties (that allow weaker
guarantees if the network is asynchronous) [10], or to weaker agreement definitions [11].
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Appendix

A Preliminaries: Missing Proofs

▶ Lemma 3. Let val be a validity property and Π be a (ts, ta)-resilient BA protocol solving
val. Consider two input configurations I, J such that J ⊆ I. Then, the value agreed upon in
any execution of Π which decides and where the input configuration is I must be in val(J).

Proof. Consider a deciding execution εI of Π for I. Construct the execution εJ , which is
identical to εI except that its input configuration is J instead of I. Observe that εJ is an
execution of Π for J . Indeed, parties in parties(I) \ parties(J) (which are byzantine) can
act as if they are honest and behave exactly as they do in εI . The honest parties in J cannot
distinguish between εI and εJ , so the agreed-upon value in both executions must be the
same. Since εJ is a valid execution of Π for J , this value must be in val(J). ◀

▶ Lemma 5. Let val be a solvable validity property and Π a protocol solving val. Let I1 ∈ I
be a maximal input configuration. If, for every maximal input configuration I2 ∈ I, the
canonical executions of Π for I1 and I2 decide the same value almost surely, then val is
trivial.

Proof. Note that a countable intersection of events that happen almost surely happens
almost surely. We assume the lemma’s condition and want to prove that val is trivial.
Because Vin is at most countably infinite, the number of maximal input configurations I2 ∈ I
is at most countably infinite. By taking an intersection of events, one for each maximal
I2 ∈ I, that happen almost surely by the lemma condition, we get that, almost surely, for all
I2 ∈ I the canonical executions of Π for I1 and I2 decide the same value. Hence, because it
happens with probability 1, it means we can find ω ∈ Ω such that this event happens. That
is, for all maximal I2 ∈ I, the canonical executions of Π for I1 and I2 with randomness ω

decide the same value. This implies that, for all maximal I ∈ I, the canonical execution of
Π on I with randomness ω decides the same value v ∈ Vout. Therefore, by Corollary 4, val
is trivial. ◀

B No Cryptographic Setup: Missing Proofs

B.1 Proof of Lemma 9
We describe the proof of Lemma 9, restated below.

▶ Lemma 9. Consider n := 3 parties in a synchronous network, and assume a protocol A

that achieves (probabilistic) termination and agreement in this setting even when up to one
party is byzantine. Then, almost surely, all canonical executions of A decide the same value.

To prove our statement, we will be running A in a larger ring containing multiple copies
of each party, as depicted in Figure 6. The ring is constructed from two canonical executions
with different input configurations. We will show that parties adjacent in this ring cannot
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Figure 6 Defining the behavior of a byzantine party (here P1).

distinguish between the ring and the original setting of three parties, as the third party may
be byzantine and simulate the rest of the ring. This will force parties adjacent in the ring to
output the same value, which, in turn, guarantees that the two original executions lead to
the same output.

Restricting the probabilistic space. In the following proof, we will consider a countable
amount of different executions. Since Π satisfies probabilistic termination, it means that each
of these executions are deciding almost surely. Because the countable union of almost surely
events happens almost surely, this means that the event E = {“all executions considered are
deciding”} happens almost surely. So it is enough to prove that all canonical execution of A

in E decide the same value to get the proof.

Constructing the ring. In order to formally describe the construction of the ring, we
have to fix two executions with the same randomness. We denote the three parties by
P = {P1, P2, P3}, and we consider two arbitrary maximal input configurations I1, I2. Let
ω ∈ E, and we consider a canonical execution ε1(ω) with input configuration I1, and
a canonical execution ε2(ω) with input configuration I2. By definition of E, these two
executions are deciding.

As ε1(ω) is a deciding execution, there is a number of rounds r1(ω) > 0 such that, in
ε1(ω), all honest parties have decided the same value within r1(ω) rounds. Similarly, there
is an r2(ω) such that, in the canonical execution ε2(ω), all honest parties have decided the
same value within r2(ω) rounds. Let r := max{r1(ω), r2(ω)}, r implicitly depends on ω.

To construct the ring depicted in Figure 6, we make 4(r + 1) copies of each party Pi. Out
of the 4(r + 1) copies of party Pi, 2(r + 1) will be the copies of Pi having its input value from
I1 and 2(r + 1) will be the copies of Pi with input from I2. The copies of Pi are then denoted
by Pk,i,j , where k ∈ {1, 2}, i ∈ {1, 2, 3}, and j ∈ {0, 1, . . . , 2r}. The copies indexed by k := 1
are the ones on the top row of Figure 6, while the copies indexed by k := 2 are the ones on
the bottom row. We now connect these copies via bidirectional communication channels:

For k ∈ {1, 2} and j ∈ {0, 1, . . . , 2r}, we add a channel between Pk,1,j and Pk,2,j , and
one between Pk,2,j and Pk,3,j .
Then, to complete the path on the row indicated by index k := 1, for every index
j ∈ {0, 1, . . . , 2r − 1}, we add a channel between P1,3,j and P1,1,j+1.
Similarly, to complete the path on the row indicated by k := 2, for each j ∈ {0, 1, . . . , 2r −
1}, we add a channel between P2,1,j and P2,3,j+1.
We now connect the two rows and hence complete the ring: we add a channel between
P1,1,0 and P2,3,0, and one between P1,3,2r and P2,1,2r.
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Outputs of adjacent copies. We consider a synchronous execution ε(ω) on the ring, where
each copy Pk,i,j runs A as party Pi, using the input value assigned to it in input configuration
Ik. We assume that messages are received exactly ∆ units of time after being sent. In the
lemma below, we show that adjacent copies in the ring, denoted by Q1 and Q2, obtain the
same output.

▶ Lemma 18. Consider two parties Q1 and Q2 that are adjacent in the ring. Then, in
execution ε(ω), Q1 and Q2 obtain outputs, and they output the same value.

Proof. Without loss of generality, assume that Q1 and Q2 are copies of P1 and P2. We
consider an execution ε′(ω) of A with three parties. In execution ε′(ω), P1 and P2 have the
same input values as Q1 and Q2. P3 is byzantine and simulates the additional parties in the
ring, so they have the same behavior as in execution ε(ω). All messages are delivered in
exactly ∆ time, similarly to execution ε(ω).

We remark that execution ε′(ω) and execution ε(ω) are identical. Hence, our execution
over the ring is equivalent to running A in a synchronous setting with three parties out
of which one is corrupted. Therefore, A maintains its properties, namely probabilistic
termination and agreement, on the ring as well. It follows that Q1 and Q2 both obtain
outputs, and they output the same value. ◀

Outputs on the entire ring. Lemma 18 establishes that adjacent copies in the ring output
the same value in execution ε′(ω). Using induction, we prove that all parties output the
same value v in ε(ω). As a consequence, the copies P1,i,r and P2,i,r of each party Pi output
v. This will imply that, in the two executions ε1(ω) and ε2(ω) we defined when constructing
the ring, all honest parties output the same value.

▶ Lemma 19. In execution ε(ω), all parties output, and they output the same value.

Proof. We prove by induction that, in execution ε(ω), after r′ ≤ r rounds, for i ∈ {1, 2, 3},
parties P1,i,j with j ∈ {r − (r − r′), . . . , r + (r − r′)} are in the same state as party Pi in
the canonical execution ε1(ω). The base case r′ := 0 considers the very beginning of the
executions ε(ω) and ε1(ω), where the parties have not yet received any messages. Their state
then is only defined by their input value and ω. Each party P1,i,0 takes its input from I1,
which the case for Pi in execution ε1(ω) as well. We thus obtain that parties P1,i,0 in the
ring have the same input state as party Pi.

For the induction step, assume that our claim holds for r′ < r, and we prove that it also
holds for r′ + 1. Let Pr′ denote the set of parties for which we proved they were in the same
state as in ε1(ω) after r′ rounds, and let Pr′+1 be the set of parties for which we want to
prove that the claim holds after r′ + 1 rounds. The set of direct neighbors of Pr′+1 (including
themselves) in the ring is Pr′ . Moreover, within one round, parties are only able to receive
messages from their direct neighbors. Using the induction hypothesis, we get that parties
in Pr′+1 receive exactly the same messages at the (r′ + 1)-th round in execution ε1(ω) and
ε(ω), therefore they stay in the same state after round r′ + 1.

As a consequence, Pi and P1,i,r are in the same state after the r-th round in executions
ε1(ω) and ε(ω) respectively. However, we have assumed that all parties in P output by round
r1 ≤ r in execution ε1(ω). Therefore, in execution ε(ω), P1,i,r outputs the same value v1 as
Pi in ε1(ω). With a symmetric argument, one can show that parties P2,i,r obtain the same
output v2 as P2 in ε2(ω). This enables us to conclude that ε1(ω) and ε2(ω) decide the same
value v1 = v2 using Lemma 18. ◀
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Assumption on deciding execution. Before concluding the proof of Lemma 9 using
Lemma 19, we need to discuss the assumptions over deciding executions and make sure
that event E happens almost surely. For every possible input configuration of size three,
we consider a finite amount of fixed executions. Moreover, we take into account that there
is only at most a countably infinite amount of input configurations (because we assumed
Vin was countable). Therefore, we consider in total a countable union of a finite amount of
executions, which is countable. Therefore, the event that all these executions are deciding E

happens almost surely, which concludes the proof of Lemma 9.

B.2 Proof of Theorem 10
We present the proof of Theorem 10, restated below.

▶ Theorem 10. Assume ts > 0 and consider a validity property val. If there is a ts-secure
BA protocol solving val in the synchronous model when no cryptographic setup is available
and n ≤ 3 · ts, then val is trivial.

Proof. Assume ts ≥ ⌊n/3⌋, and that there is a ts-secure BA protocol Π solving val in the
synchronous model.

We consider two arbitrary maximal input configurations I1 and I2. We show that all
canonical executions of I1 and I2 almost surely decide on the same output value. Then,
Lemma 5 ensures that val is trivial. Similarly to the proof of Theorem 7 and Theorem 8, we
use Π to build a protocol A for three parties, denoted by P1, P2, P3, that matches the setting
of Lemma 9. For protocol A, we consider the input space {0, 1} and the output space Vout.

To do so, we partition P into three sets P1, P2, P3 of size at most ts each. As shown in
Figure 7, in protocol A, Pi simulates all the parties in set Pi. Pi ensures that all messages
between the simulated parties in Pi get delivered within ∆ time. In addition, Pi forwards
any message sent from a party it simulates to a party in set Pj (j ̸= i) to Pj . When Pj

receives this message, it immediately forwards it to the simulated receiver. If Pi has input 0,
the simulated parties in Pi take their input from I1. Otherwise, they take their input from
I2. When a party in Pi outputs a value v, Pi outputs v.

Figure 7 Partitioning P into 3 sets P1, P2, P3 with n = 11.

Since Π is a ts-resilient BA protocol when n ≤ 3·ts, we obtain that A achieves probabilistic
termination and agreement even when one of the three parties is byzantine. Then, Lemma 9
ensures that, almost surely, all deciding canonical executions of A lead to the same output
value.

Moreover, we remark that, by construction, the canonical execution of A with input
values (0, 0, 0) matches the canonical execution of I1 for Π. Similarly, the canonical execution
of A with input (1, 1, 1) matches the canonical execution of I2. As a consequence, canonical
executions of I1 and I2 decide the same value almost surely. Applying Lemma 5, we conclude
that val is trivial. ◀
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C Similarity Condition: Missing Proof

▶ Lemma 13. If a validity property val is solvable in the network-agnostic model, then val
satisfies the similarity condition.

Proof. Assume that Π is a network-agnostic BA protocol solving val. Consider an input
configuration I.

In the following proof, we will consider a finite amount of different executions. Since Π
satisfies probabilistic termination, it means that each of these executions are deciding almost
surely. Because the finite union of almost surely events happens almost surely, all of these
executions will decide almost surely. So, there exists some ω ∈ Ω which we fix such that all
the executions below are deciding when ran with randomness ω.

We first consider the canonical execution ε1(ω) of Π on I. As Π achieves network-agnostic
BA, all honest parties output the same value v in execution ε1(ω). We want to prove that
v ∈

⋂
J∈similar(I) val(J), hence we show that v ∈ val(J) for every J ∈ similar(I). Using

the definition of similar(I), we split the analysis as follows:
(i) J ∈ neighbors(I) such that J ⊆ I. Consider an execution ε2(ω) where the input

configuration is J and the network is synchronous. Parties in parties(I) \ parties(J)
are byzantine, but follow the protocol correctly using the values assigned to them in I

as inputs. Parties in P \ parties(I) crash at the start of the execution. Parties in
parties(J) cannot distinguish between ε2(ω) and ε1(ω), so the output value v must
also satisfy v ∈ val(J).

(ii) J ∈ neighbors(I) such that |J | ≥ n−ta. First, note that I ∩J ̸= ∅: since |I| ≥ n−ts

and |J | ≥ n − ta, we obtain that
∣∣I ∩ J

∣∣ ≥ n − ts − ta. As val is solvable, Theorem 8
ensures that n > 2 · ts + ta, and allows us to conclude that

∣∣I ∩ J
∣∣ > 0.

Let P ∈ I ∩ J . We consider an execution ε3(ω) where the input configuration is J and
the network is asynchronous. Similarly to execution ε2(ω), parties in parties(I) \
parties(J) are byzantine, but follow the protocol correctly using the values assigned
to them in I as inputs, and parties in P \ (parties(I) ∪ parties(J)) crash at the very
beginning of the execution. All messages are delivered in a synchronous way, except
for the messages sent from parties in parties(J) \ parties(I). These are delayed
until after party P outputs: this is possible as P cannot distinguish between ε1(ω)
and ε3(ω) and therefore it has to obtain an output without receiving these messages.
In addition, the fact that P cannot distinguish between ε1(ω) and ε3(ω) ensures that
the output v agreed upon in ε1(ω) satisfies v ∈ val(J).

Therefore, the output v in execution ε1(ω) satisfies v ∈
⋂

J∈similar(I) val(J). So when
running ε1(ε), if this execution terminates (which happens almost surely), then this value
can be used for σ(I).

We now explain how to get a Turing computable function out of protocol Π and this
property. We first remark that Π is a randomized protocol, which can be simulated by a
probabilistic Turing machine. However, when time complexity is not taken into account, a
probabilistic Turing machine is as expressive as a regular deterministic Turing machine (see
Theorem 2 from [24]: for a given number of random bits used, we can try all of them in
exponential time). Therefore, we can simulate a deciding execution of ε1 using a deterministic
Turing machine. Because there are no byzantine parties, we can also remove the public-key
infrastructure assumption which was used as a black box (for example, one can replace the
signing function with one that returns the message concatenated with the id of the party).
This gives us a Turing function to compute σ(I). ◀
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