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—— Abstract

Constrained Forest Problems (CFPs) as introduced by Goemans and Williamson in 1995 capture a
wide range of network design problems with edge subsets as solutions, such as Minimum Spanning
Tree, Steiner Forest, and Point-to-Point Connection. While individual CFPs have been studied
extensively in individual computational models, a unified approach to solving general CFPs in multiple
computational models has been lacking. Against this background, we present the shell-decomposition
algorithm, a model-agnostic meta-algorithm that efficiently computes a (2+¢)-approximation to CFPs
for a broad class of forest functions. The shell-decomposition algorithm isolates the problem-specific
hardness of individual CFPs in a single computational subroutine, breaking the remainder of the
computation into fundamental tasks that are studied extensively in a wide range of computational
models. In contrast to prior work, our framework is compatible with the use of approximate distances.

To demonstrate the power and flexibility of this result, we instantiate our algorithm for three
fundamental, NP-hard CFPs (Steiner Forest, Point-to-Point Connection, and Facility Placement and

Connection) in three different computational models (CONGEST, PRAM, and Multi-Pass Streaming).

For constant e, we obtain the following (2 + ¢)-approximations in the CONGEST model:

(1) For Steiner Forest specified via input components (SF-IC), where each node knows the identifier
of one of k disjoint subsets of V' (the input components), we achieve a deterministic (2 + ¢€)-
approximation in 6(\/ﬁ+ D + k) rounds, where D is the hop diameter of the graph, significantly
improving over the state of the art.

(2) For Steiner Forest specified via symmetric connection requests (SF-SCR), where connection
requests are issued to pairs of nodes u,v € V', we leverage randomized equality testing to reduce
the running time to (5(\/5 + D), succeeding with high probability.

(3) For Point-to-Point Connection, we provide a (2 + ¢)-approximation in 6(\/ﬁ + D) rounds.

(4) For Facility Placement and Connection, a relative of non-metric Uncapacitated Facility Location,
we obtain a (2 + £)-approximation in 6(\/5 + D) rounds.

We further show how to replace the v/n + D term by the complexity of solving Partwise Aggregation,

achieving (near-)universal optimality in any setting in which a solution to Partwise Aggregation in

near-shortcut-quality time is known. Notably, all of our concrete results can be derived with relative
ease once our model-agnostic meta-algorithm has been specified. This demonstrates the power of
our modularization approach to algorithm design.
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Model-Agnostic Approximation of Constrained Forest Problems

1 Introduction

The classic approach to determining the computational complexity of a task consists in
deriving upper and lower bounds that are as tight as possible in a particular model of
computation. On the upper-bound side, this can result in solutions that are specifically
engineered toward the chosen computational model, such that the task at hand needs to be
reexamined for every relevant model. Worse still, one might end up with fragile solutions
that overcome only the challenges specifically represented by the model under study. At
first glance, lower bounds might appear more robust in this regard, since they highlight an
obstacle that any algorithm needs to overcome. However, many such lower bounds are shown
for very specific network topologies that are rarely observed in practice. This might lead to a
false sense of success in having classified the complexity of a given task — although the lower
bound merely indicates that the parameters used to capture the computational complexity
of the task are insufficient. In brief, traditional upper and lower bounds bear two limitations:
model specificity and existential optimality.

A textbook illustration of these limitations is provided by the Steiner Forest problem (SF),
which generalizes the well-known Steiner Tree problem (ST). In the classic SF formulation
using input components (SF-IC), we are given a weighted graph, along with disjoint subsets
of nodes Vi,..., Vi C V, and the goal is to determine a minimum-weight subgraph spanning
each V;, i € [k]. This general and fundamental connectivity problem has been studied in
depth in the classic centralized model of computation [1,8,16,19,28]. It is of significant
practical importance, both due to direct application, see e.g., [36, Sec. 18.5.5], and being
the key building block in variants of Steiner-type problems with broad real-world utility,
e.g., Steiner Tree reoptimization [5] and Multicommodity Rent-or-Buy [20]. The state of the
art in the CONGEST model is due to Lenzen and Patt-Shamir [30], who presented modified
and adapted variants of a well-known centralized algorithm by Agrawal et al. [1]. One might
suspect that algorithmic techniques underlying these tailored solutions could be transferred
to other computational models, but this cannot be readily determined from their specialized
solution (model specificity). Furthermore, for any fixed topology, there are inputs such that
even their fastest algorithm runs for ﬁ(\/ﬁ) rounds.! This is known to be necessary in the
worst case (existential optimality): the Minimum Spanning Tree (MST) problem is a special
case of the Steiner Forest Problem with k = 1 and V; = V, to which the Q(y/n) lower
bound by Das Sarma et al. [11] applies. However, the topology of the lower-bound graph is
highly contrived, and the technique of using low-congestion shortcuts has been demonstrated
to overcome the /n barrier for MST in many more realistic settings [13,14,24]. These
findings motivate us to revisit the Steiner Forest problem, along with a much broader class
of connectivity problems, in an attempt to overcome the abovementioned limitations.

Beyond Model Specificity and Existential Optimality

To go beyond of model specificity and existential optimality, two paradigms have emerged.
First, numerous works have pushed toward what we term model agnosticism, developing
algorithms that can be readily instantiated in many computational models [6,7,21,32, 35].
The individual steps of these algorithms are either core tasks like distance computation,
identifying connected components, and sorting, which are well-studied across a wide range of
models, or they are easily implemented at low cost in any notable model. Hence, we call

1 We use O and Q to suppress factors of log®™M) n.
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these algorithms model-agnostic (meta-)algorithms. Naturally, model-agnostic algorithms are
more robust against model variations, and by allowing us to plug in optimized model-specific
subroutines for the core computational problems, they sacrifice little performance over
model-specific solutions. Thus, model-agnostic algorithms can be viewed as model-agnostic
reductions to more basic computational tasks. Moreover, since these basic tasks can be
solved by model-specific subroutines, they improve whenever progress is made on the current
performance bottleneck in a given computational model.

Second, universal optimality, which was coined in the context of distributed computing,
pushes for the design of topology-adaptive algorithms that are asymptotically worst-case
optimal on every network topology, i.e., when varying input parameters other than the
underlying communication graph [15,27,37].2 One might argue that this idea is no different
than taking into account more parameters, such as the network diameter, the node connec-
tivity, or any other quantity meaningful for the computational task. However, parametrizing
complexity by the input graph is extremely general, subsuming a large number of parameters
that one might consider, and capturing any topology-specific obstacle for the task at hand in
a given computational model.

Our Contributions in Brief

In this work, we study a general class of connectivity problems called Constrained Forest
Problems (CFPs), introduced by Goemans and Williamson [16], through the lenses of model
agnosticism and universal optimality. Intuitively, a CFP is specified by a Boolean function
f that indicates, for each node subset S C V, whether it needs to be connected to its
complement, i.e., if the output must contain an edge from S to V' \ S. We require f to
be proper, i.e., (1) f(V) =0, (2) f(S) = f(V\S), and (3) f(A) = f(B) = 0 for disjoint
A, B C V implies that f(A U B) = 0. For example, the Steiner Forest problem can be
specified by setting f(S) = 1 if and only if, for given disjoint node subsets V; C V, there
exists some ¢ € [k] such that both V; NS and V; N (V'\ S) are non-empty.

Model-Agnostic Algorithm for CFPs

We devise the shell-decomposition algorithm, a generic approximation algorithm for CFPs
that is efficient if f can be evaluated efficiently.

» Theorem 1 (Model-Agnostic Complexity of Constrained Forest Problems). Given 0 <& <1
and a graph G = (V, E) with polynomially bounded edge weights c: E — WN, a (2 + ¢)-
approzimation to a CFP with proper forest function f: 2V — {0,1} can (up to book-keeping
operations) be obtained at complezity O ((aSSSP+ MST+ RPS+ FFE)e™"), with the terms
in the sum denoting the complexities of solving (1) aSSSP: (1 + ¢)-approzimate Set-Source
Shortest-Path Forest, (2) MST: Minimum Spanning Tree, (3) RPS: Root-Path Selection, and
(4) FFE: Forest-Function Evaluation for f.

By book-keeping operations, we denote simple steps that extract the input for the next
subroutine from the output of the previous ones and can be easily implemented at low
complexity, where the complexity measure(s) depend on the model at hand (e.g., round

2 Note that instance optimality, which requires that an algorithm is O(1)-competitive with any other
always-correct algorithm on each instance, including the best algorithm for the specific instance, is often
unachievable [27]. In particular, one can test whether the input matches an abritrary fixed instance in
D rounds. If so, a matching solution can be output without further computation; otherwise, a fallback
algorithm is executed.
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Table 1 CONGEST results for SF derived from our algorithm, for € € ©(1). Deterministic and
randomized results are marked with © and fR, respectively. Here, n is the number of nodes, D is
the (unweighted) hop diameter, s is the shortest-path diameter (which may be different from the
weighted diameter), ¢ is the number of terminals, k is the number of SF input components, and @ is
the shortcut quality of the input graph, cf. Table 3. In our results, the y/n+ D terms can be replaced
by TP4n°M | where TP4 € O(v/n+ D), T"* > Q, is the running time of Partwise Aggregation [25].
The n°™" factors can be removed conditionally on the existence of certain cycle-cover algorithms [35].
For any values of the other parameters, s and t can be linear in n.%

Problem | LB Previous Work Our Work
Ref. | APX Complexity Ref. | APX Complexity

o) | 8 (24+¢) D O(sk + y/min{st,n}) _
SECIO A RT 51061y ¢ Omings, v} + D+ k) C0 | ETED OWnt D)

2+e) D O(vn+D)
) [27] — (2+¢) D O(V/n+D)

PPC |
FPC | Q

complexity in CONGEST). MST is the special case of SF in which all nodes are to be
connected by a lightest possible tree. The task of aSSSP requires us, given € > 0 and S C V,
to compute a forest that preserves distances to S up to a factor of 1+ €, which ie equivalent
to computing a (1 + €)-approximate shortest-path tree in the graph obtained by identifying
all nodes in S. Finally, RPS (a special case of the more general transshipment problem)
demands that, given a rooted forest F' C F and a set of marked nodes, we select all edges on
paths from marked nodes to the roots of their respective trees.

MST, aSSSP, and RPS are well-understood in many models of computation. In contrast,
f can be (ab)used to force the evaluation of an arbitrarily hard function g on the entire
topology.® Thus, Theorem 1 can be viewed as confining the hardness of the task arising from
the choice of f to O(c¢~!logn) iterations of evaluating f(C) for all C' € C, where C is a set
of disjoint connected components. Because for any such C, one can enforce this evaluation
by assigning weight 1 to edges inside each C and a large weight, say n?, to all other edges,
this is the best possible up to an O(s~!logn) factor.

To illustrate the power and flexibility of our result, we apply our machinery in three
models of computation — CONGEST, Parallel Random-Access Machine (PRAM), and Multi-
Pass Streaming (MPS) — to three NP-hard CFPs: (1) Steiner Forest (SF); (2) Point-to-Point
Connection (PPC), i.e., given X, Y C V of equal cardinality, finding a lightest set of edges
such that each induced component the number of nodes from X is the same as the number of
nodes from Y; and (3) Facility Placement and Connection (FPC), i.e., minimizing the cost
of opening facilities at some nodes and connecting a set of clients C' C V' to them. Table 1
summarizes our results in CONGEST; for all problems, our PRAM algorithms require 6(5_3771)
work and O(¢3) depth, and our MPS algorithms need O(e~3) passes and O(n) memory.

3 For an input graph G = (V, E) with uniform edge weights and any function g mapping such a graph to
a desired range, choosing an arbitrary node v € V' and setting f(S) = 1 if and only if (i) S = {v} or
S =V \ {v}, and (ii) g(G) = 1 results in a proper forest function f.

4 Strictly speaking, the upper bounds from Lenzen and Patt-Shamir [30] are incomparable to ours, as it is
possible to construct instances in which s, ¢, and k are small, yet TP4 is not. This corresponds to “easy”
instances for the subroutines we use, so one could provide refined bounds. However, this is orthogonal
to our goals in this work, as we seek to derive bounds that depend on the topology (V, E) only.
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Table 2 CONGEST results for the four input variants of SF, with the notational conventions
from Table 1. Regardless of the input representation, on any graph, a lower bound of Q(Q) applies to
randomized algorithms; the listed lower bounds arising from the input representation are existential
(ex.). As before, v/n + D terms can be replaced by TPAReM,

Problem | Input ex. LB APX Complexity

SF-IC | Each node v is given its component ﬁ(k) R (24¢)D (5(\/77 + D+ k)
identifier A\, € [k]U{L}
SF-CIC | As in SF-IC, but node v knows A, Q(k) D (24+¢) R 5(n2/3 + D)
and [{u € V | Ay = A} (if Ay # L)

SF-CR | Each node v is given R, CV\{v} Q)R (24D OGH/n+D+1t)
SF-SCR | R C (‘2/), each node v knows Q) D 249 R O(y/n + D)
Ro={ueV|{uv}eR}

Approaching Universal Optimality

In our upper bounds for CONGEST, \/n + D can largely be replaced by T74n°M) | where
TP4 is the running time of an algorithm performing Partwise Aggregation (PA) [14,25]
— i.e., given a partition of V' into connected subsets of nodes, computing the result of an
aggregation function separately on each subset and outputting the result at each of its
constituent nodes. Due to the respective hardness results [27], this implies that the running
times of our solutions to PPC and FPC are universally optimal up to a factor of n°(1),

For SF-IC, this is true up to the additive term of k. Here, PA is insufficient: Evaluating
f requires us to determine, for each set V;, if it is contained in a single connected component
induced by the set of edges that have been selected into the current (partial) solution, but the
V; may not induce connected components in G. Existential lower bounds demonstrate that
this obstacle is unavoidable in general [30]. We suspect that studying Partwise Aggregation
with disjoint components that may be internally disconnected — i.e., Disjoint Aggregation
(DA) — is key to characterizing the universal complexity of SF-IC, but leave this to future
work, noting that an upper bound of O(k + D) arises from standard pipelining techniques.

An orthogonal consideration, however, yields surprising results, as summarized in Table 2.

For the SF problem, the input representation drives the problem complexity. It is known
that if nodes are given the identifiers of other nodes they must connect to in the output to
encode connectivity requirements (SF-CR), an existential lower bound of (¢) applies [30],

where t is the number of terminals, i.e., nodes that need to be connected to some other node.

In our corresponding upper bound, the additive & then becomes an additive ¢, again resulting
in existential but not universal optimality. Interestingly, this picture is turned upside down
when inputs are symmetric in the following sense: If u € V knows that it must connect to
v € V by the input, then also v knows that it must connect to u (SF-SCR). In this setting,
we can exploit symmetry to efficiently evaluate f using randomized equality testing. This
leads to an algorithm running in e -37F4n°M) rounds, which is close to universal optimality,
provided that an efficient partwise-aggregation routine is available. Similarly, we observe that
the ﬁ(k) bound can be circumvented if nodes receive not only the identifier of their input
component V;, but also the size |V;| of this input component (SF—-CIC). We then obtain a
randomized algorithm running in O(e~3(y/n + D) + e~ n??) time.

We note that a simple adaptation of the lower-bound construction from Lenzen and
Patt-Shamir [30] shows the same hardness (i.e., Q(t) for SF-SCR and Q(k) for SF-CIC,
respectively) for deterministic algorithms, based on a communication-complexity reduction
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Table 3 Main notation used in this work. All notation involving nodes and edges makes implicit

reference to the graph G.

Symbol Definition

Meaning

Kl
2°={X| X CS}

() ={xCS|IX| =k}
k|={i|ieN,i<k}

Cardinality of a set S

Set of all subsets (i.e., power set) of S

Set of k-element subsets of S

Set of nonnegative integers no larger than k

[kKlo={i| i€ No,i <k} Set of positive integers no larger than &
G=(V,E) Graph with node set V and edge set F
n=|V]| Number of nodes
m=|E| Number of edges

cle)e N={1,2,...} Cost of edge e

o(Z)=3 . cle) Cost of edge subset Z C E
p(u,v)=(e1,...,er) s.b. I(v1,...,ve41): £-hop path between u and v

€; = {Ui7Ui+1} e EVYie [4],
h(u,v) = mi:l{il|7 3 ;(uf;)l with |p(u,v)|
D =max{h(u,v) | {u,v} € (g)}
d(u,v) =min{i | H.p(u7 v) with ¢(p(u,v)
Plu.v) = plu,0) with c(p(u,v)) = d(u,

(distinct nodes and distinct edges)

Hop (= unweighted) distance between u and v
Hop diameter of G

Weighted distance between v and v

Shortest path between v and v

v
s = max{min{|P(u, v)| | {u,v} (
6(S)={e€eE|lensS| =1}
T={veV]|f({v}) =1} Terminals
t=|T]| Number of terminals
Number of input components in SF-1C

)} Shortest-path diameter of G
Set of edges with exactly one endpoint in S C V'

from 2-player equality testing. To the best of our knowledge, this is the first natural example
of a provably large gap between the randomized and deterministic complexity in the CONGEST
model for a global problem.

Structure

After introducing our main definitions in Section 2, we provide a technical overview of our
results in Section 3. To conclude the main text, we discuss open questions in Section 4. A
full specification of our model-agnostic algorithm and a detailed proof of its correctness are
given in Section A. Model descriptions, model-specific results, and further related work are
deferred to the additional appendices available in the extended version of this work [10].

2 Preliminaries

We begin by defining our basic notation as well as the class of problems we are interested in.

Basic Notation

Our basic notation is summarized in Table 3.

For a set S, we denote its cardinality by |S|, its power set by 2% = {X | X C S}, and
the set of its k-element subsets by (i) We extend functions f: .S — R to subsets X C §
in the natural way by setting f(X) = > .y f(z), and we write the sets of positive and
nonnegative integers no greater than k as [k] = {i € N | i < k} resp. [k]o = {i € No | i < k}.
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We consider weighted graphs G = (V, E) with n = |V| nodes, m = |E| edges, and edge
weights (edge costs) c¢: E — INg polynomially bounded in n.5 Each node is equipped with a
unique identifier of O(logn) bits, which is also used to break ties. An ¢-hop path from v € V
to v € V, denoted p(u,v), is a sequence of distinct edges (eq,...ey) arising from a sequence

of distinct nodes (vy, ..., vey1) such that e; = {v;,v;41} € E for i € [{], v1 = u, and vpy1 = v.

The (unweighted) hop distance between u and v is the smallest number of hops needed to
go from u to v, i.e., h(u,v) = min{i | 3 p(u,v) with |p(u,v)| =i}, and the hop diameter of G
is D = max{h(u,v) | {u,v} € (})}. The (weighted) shortest-path distance between u and v
is d(u,v) = min{i | 3 p(u,v) with e(p(u,v)) = i}. A shortest path between u and v, denoted
P(u,v), is a path from u to v of length d(u,v). The shortest-path diameter s of G is the
maximum over all {u,v} € (‘2/) of the minimum number of hops contained in a shortest path
from u to v, i.e., s = max{min{|P(u,v)| | {u,v} € (‘2/)}} Given a cut (S,V'\ 5), the set of
edges with exactly one endpoint in S is denoted as §(S) ={e € E| [en S| = 1}.

An event occurring with high probability (w.h.p.) has probability at least 1 — 1/n° for a
freely chosen constant ¢ > 1.

Constrained Forest Problems

We are interested in Constrained Forest Problems (CFPs) as introduced by Goemans and
Williamson [16].5 Given a graph G = (V, E) with edge costs ¢ : E — IN and a function
f:2Y —{0,1}, a CFP asks us to solve the integer program stated as Problem 1, whose dual
relaxation is provided as Problem 2.

» Problem 1 (CFP Primal IP). » Problem 2 (CFP Dual LP).
min Z c(e)xe max Z f(Sys
e€E scv
s.t. x(8(S)) > f(S) YO#ScCV st. Y ys<cle) YVe€kE
z.€{0,1} VeecFE S:e€d(S)
ys =20

That is, a CFP is a minimization problem whose optimal solution is a forest” of edges
from the input graph G that meets the constraints imposed by the forest function f. Like
Goemans and Williamson [16], we consider CFPs with proper functions f, which satisfy
(1) zero, ie., f(V) =0, (2) symmetry, i.e., f(S)= f(V\S), and (3) disjointness (also called
mazimality [17]), i.e., if AN B = ( for two sets A and B, then f(A) = f(B) = 0 implies
f(AuUB)=08

For a CFP with forest function f, a node v is called a terminal if f({v}) =1. Given a
forest function f, we denote the set of terminals as 7 = {{v} |v € V, f({v}) = 1} and the
number of terminals as ¢ = |T|.

Assuming polynomially bounded edge weights allows us to encode polynomial sums of edge weights
with O(logn) bits, which means that we can encode edge weights in a single message (CONGEST) or
memory word (PRAM and MPS). Zero-weight edges arise naturally when simulating contractions in
the distributed setting. We can handle them by scaling all non-zero edge weights by /e (where w.l.o.g.,
1/e is polynomially bounded as well), and assigning weight 1 to all previously zero-weight edges.

To simplify the technical exposition, like Goemans and Williamson [16], we disallow zero-weight edges.
However, it is straightforward to extend our approach to zero-weight edges by scaling edge weights as
discussed in Footnote 5.

For any cycle and node set S, §(S) cannot contain exactly one edge from the cycle. Hence, from any
solution with a cycle, we can remove an edge.

We also assume that f is nontrivial, i.e., that there exists at least one S C V such that f(S) = 1.

25:7
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Specific Constrained Forest Problems

To demonstrate the flexibility of our approach, we consider Survivable Network Design
Problems (SNDPs) that originate from three different real-world challenges.

» Definition 2 (Steiner Forest (SF)). Given a partition of the terminals T = V1U. ..UV, find
a minimum-cost edge subset connecting the nodes in each input component. The corresponding
forest function evaluates to 1 on S C V if and only if there is i € [k] such that O # V;NS # V.
We distinguish between several input representations:

SF-CR Terminal v is given the identifiers of other terminals as connection requests R,, C T .
SF-SCR As SF-CR, but connection requests are symmetric, i.e., u € R, < v € R,.
SF-IC Terminalv € V; is given a unique identifier (of size O(logn)) for its input component.

SF-CIC As SF-IC, but v € V; is also given the cardinality |V;| of its input component as
nput.

SF has practical relevance especially in infrastructure development [1], with MST (7 = V; =

V) and ST (T = V1 C V) as special cases. It is NP-complete [29] and APX-hard [9].

» Definition 3 (Point-to-Point Connection (PPC)). Given a set of sources X C V and a set
of targets Y C V', find a minimum-cost edge subset such that in each connected component,
the number of sources equals the number of targets. That is, for S CV, f(S) =1 if and only
if|SNX|#|SNY]|.

PPC is motivated by challenges from circuit switching and VLSI design, and the problem is
NP-complete [31].

Our last problem is Facility Placement and Connection (FPC), an NP-complete facility-
location-type problem arising, e.g., in operations research. Intuitively, FPC can be stated as
follows.

» Definition 4 (FPC [intuitive]). Given for each node v € V an opening cost o, € N and
indication whether it is in the set of clients C C 'V, identify a subset O CV of facilities to
open and an edge set F' C E such that each client is connected to a facility by F, minimizing

2 ove0 0v + 2cercle).

To turn this task into a CFP matching our framework, we add one additional node s ¢ V'
and, for each v € V, an edge {v, s} of weight ¢({v,s}) = 0,. The task then becomes to
determine a (low-weight) Steiner Tree spanning C' U {s}, i.e., the special case of SF with
k=1.

» Definition 5 (FPC [rephrased]). Given, for each node v € V', an opening cost o, € N and an
indication whether it is in the set of clients C CV, solve ST on G = (VU{s}, EU{{v,s} |v €
V1), with edge costs of c(e) for e € E and c({v, s}) = o, for v € V, where the terminals are
T =CuU{s}.

Even in CONGEST, we can solve ordinary ST instances efficiently, regardless of the specific
input representation. However, the virtual node s and its incident edges need to be simulated
in the chosen model of computation. This is trivial in PRAM (simply modify the input
representation in parallel) and Multi-Pass Streaming (since we use (nlogn) bits of memory
anyway) but nontrivial in CONGEST. For CONGEST, we show that we can simulate the
virtual node efficiently using Partwise Aggregation.
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Figure 1 Overview of our model-agnostic shell-decomposition algorithm for approximating
Constrained Forest Problems. Main tasks are colored; book-keeping operations are shaded in gray.

Partwise Aggregation and Shortcut Quality

Finally, we introduce a subroutine that we use as a black box to achieve near-universal
optimality in cases where efficient solutions are known.

» Definition 6 (Partwise Aggregation [13]). For disjoint node sets Vi,..., Vi, CV, suppose
that V; induces a connected subgraph. In the Partwise Aggregation (PA) problem, each v € V;
is given a unique identifier for V; (of size O(logn)) and a second O(logn)-bit value z(v) € X.
For a specified associative and commutative operator @: X x X — X, for each i € [k] and
each v € V;, v needs to compute its output Py, v(w).

» Definition 7 (Shortcut Quality). The shortcut quality of G, denoted by Q, is the mazimum
over all feasible operators @ and partitions of V' of the minimum number of rounds in which
a CONGEST algorithm with knowledge of the full topology can solve Partwise Aggregation. Put
differently, the algorithm may preprocess the graph and the operator, but must then compute
the output within QQ rounds after the nodes have been given their inputs to the PA instance.

Haeupler et al. [27] show that (Q) is a lower bound for MST (i.e., SF and ST with k = 1
and V3 = V) and shortest s-t path (the special case of PPC with | X| = |Y| = 1) — regardless
of the approximation ratio and also for randomized Las Vegas algorithms, i.e., those that
guarantee a feasible output. They further prove that PA can be solved in (5(@) rounds in the
Supported CONGEST model, which is CONGEST with the unweighted graph topology given as
part of the input.

3 Technical Overview

In this section, we outline our techniques and discuss the technical challenges to be overcome.
We also use this opportunity to discuss the most relevant related work in context.

Model-Agnostic Algorithm for Proper Constrained Forest Problems

Our shell-decomposition algorithm, depicted in Figure 1, is based on the primal-dual formu-
lation for general CFPs given by Goemans and Williamson [16] (GW algorithm), restated
as Algorithm 1, which yields a (2 — 2/t)-approximation [16] for CFPs with proper forest
functions. Our algorithm can also be seen as a model-agnostic generalization of the algorithm
by Agrawal et al. [1], ported to the distributed setting by Lenzen and Patt-Shamir [30].
These algorithms have also been called moat-growing algorithms [3,18,30].

Intuitively, our algorithm operates as follows. We maintain connected components C,
initialized to the singletons C = {{v} | v € V'}. A component C € C is active if f(C) = 1.
The algorithm concurrently grows balls around all active components, with respect to the
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Start Phase 1 Phase 2

— o o as
T2 T2
Phase 3 Identified Solution Optimal Solution
Figure 2 Illustration of our shell-decomposition argument on a small instance of Steiner Forest
(SF-IC). Gray lines indicate original edges, black lines indicate (parts of) selected edges, black circle
linings indicate active components, and node colors indicate input components. The illustrations

provided by Goemans and Williamson [16] (Figs. 2-5) are stylistically similar, but our drawings
clarify the phase-wise charging argument underlying our shell-decomposition algorithm.

O
O

metric induced by the then-current edge costs ¢’. In the growth process, two balls can touch
only when at least one of their associated components is active, and only when the balls of
two active components C, C’ touch, adding edges to merge the components can make the
resulting component inactive — otherwise, i.e., assuming f(C U C’) = f(C’) = 0, symmetry
implies f(V \ (CUC")) =0, disjointness implies f(V\ C) = f(V\(CUC"))UC’) =0, and
using symmetry again we get f(C) = 0, a contradiction.

As illustrated in Figure 2, until the balls around two components touch, they are disjoint,
witnessing that the dual problem has a solution with weight larger than the product of the
current radius times the number of currently active components. Accordingly, when merging
active components, we can afford to connect the terminals by adding a shortest path between
them to the primal solution, paying a cost of at most twice the radius at merge. Because
each merge we perform reduces the number of active components by at least one, the ball
growth always witnesses sufficient additional weight in a dual solution to pay for future
merges up to an approximation factor of 2. Upon termination, i.e., when all components are
inactive, the set of edges we selected constitutes a feasible solution.

The intuition sketched above already suggests that the ball-growing process allows for
substantial concurrency. To achieve high efficiency across the board in various models,
our shell-decomposition algorithm performs several modifications to the centralized GW
algorithm, which originally assumes a final filtering step to eliminate unneeded edges from
the solution, as well as exact distances and immediate forest-function evaluation.

(A) Incremental Solution-Set Construction. We merge active components that touch re-
gardless of whether this ultimately turns out to be necessary to satisfy connectivity
requirements. This does not impact the approximation guarantee, which was implicit
already in the contribution by Agrawal et al. [1] and is now made explicit in our reformu-
lation of the GW framework [16]. As a result, we need to determine if f imposes further
connectivity requirements only as often as we iterate through the loop in Figure 1.
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Figure 3 Operation of our shell-decomposition algorithm (Algorithm 2) on an s-t-shortest-path
instance seeking to connect the red nodes, starting with ro = 1/2 (cf. Line 7), and working over phases
0, 1, and 2. Panels are labeled with their phase number and the illustrated step of Algorithm 2.
Nodes absorbed by the SSSP forest are drawn in orange, edge-cost reduction is indicated in purple,
edges selected into the SSSP forest are marked in green, and edges selected into the solution are
marked in black. Distance approximations and deferred forest-function evaluation are not shown.

(B) Approxzimate Distance Computations. At the cost of a factor of 1+ ¢ in the approxima-
tion ratio, we replace exact distance computations with (1 + &)-approximate distance
computations. The challenge here is to ensure that we do not violate the dual constraints
when charging dual variables (corresponding to cuts) based on the progress of the primal
solution. This can be achieved by constructing the dual solution in the true metric
space, rather than reusing the approximate distances leveraged by the primal solution.
In contrast to the other modifications, this requires a comparatively involved argument,
and it is the main technical novelty and contribution in this part of our work.

(C) Deferred Forest-Function Fvaluation. Again at the cost of a factor of 1 + ¢ in the
approximation ratio, we let components grow to radii that are integer powers of 1+ ¢
before reevaluating our forest function to update their activity status. This technique was
introduced by Lenzen and Patt-Shamir [30] for the Steiner Forest problem specifically; we
show its general correctness in the context of the GW algorithm. Using this technique,
we can limit the number of loop iterations in Figure 1 to O(e !logn) (assuming
polynomially bounded edge weights).

The pseudocode of the resulting model-agnostic shell-decomposition algorithm is given
as Algorithm 2. Here, to increase clarity and highlight the primal-dual nature of our algorithm,
we also compute and output the lower bound LB on the cost of an optimal solution, which
is not required to determine the output forest F'. An example execution of Algorithm 2 is
depicted in Figure 3. In Section A, we prove that the algorithm maintains an approximation
ratio of 2 + ¢.

Leveraging the modifications specified in Items A—-C, to derive concrete algorithms in
specific models of computation, what remains is to implement the individual steps in Figure 1.
Up to simple book-keeping operations, this entails four main tasks (colored boxes in Figure 1):

(1) (Approzimate) Set-Source Shortest-Path Forest (aSSSP). This is essentially computing a
single-source shortest-path tree with a virtual source node, so we can plug in state-of-
the-art algorithms for each model of interest [4,35].
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Algorithm 1 GW Algorithm for (2 — 2/¢)-Approximation of Constrained Forest Prob-
lems [16].

Input: An undirected graph G = (V, E), edge costs ¢ : E — IN, and a proper function f
Output: A forest F' and a value LB
F +0
LB+ 0 // Implicitly set ys < 0 for all SCV
C+ {{v}|veV}
foreach v € V do
‘ r(v) <0
while 3C e C: f(C)=1do
Ec+ {{i,j}eFE|ieC;eC,j€C; €C,C; #Cy f(C:)+ f(C;) > 0}
¢ ¢ min, argmin { e8| €€ = cle) = 1) — (i)}
9 F' + F'U{e}
10 foreach v € C,. € C do
11 ‘ r(v) < r(v) +n- f(Cy)
12 LB+ LB+1n-Y o f(C) // Implicitly set yc < yc +n- f(C) VC eC
13 C(—(CU{CZUCJ})\{CZ,CJ}
14 F+ {ee€ F'| f(N) =1 for some connected component N of (V, F'\ {e})}
15 return F, LB

N O oA W N

®

Algorithm 2 Our Shell-Decomposition Algorithm for (24¢)-Approximation of Constrained
Forest Problems. To obtain the desired approximation guarantee, we choose €’,&” < ¢/a.

Input: A graph G = (V, E), edge costs ¢ : E — N, and a proper forest function f
Output: A forest F' and a value LB

1 F+«0

2 C+ {{v}|veV}

3 T {v]| f{v}) =1} // At the beginning, |T'| =t
4 foreach e € E do

5 | d(e) +cle) // ¢ keeps track of reduced costs
6 LB+ 0

7T ET” // For upper bound (edge selection), we could start with any r < 1/2
8 while 3C € C: f(C) =1do

9 U < Union of (1 + &’)-approx. balls of radius r around nodes in T under edge costs ¢’°
10 F’' < (1 +¢')-approx. SSSP forest for edge cost ¢’ with set source T, restricted to U
11 foreach e € E do

12 ‘ d(e) + max {0,c'(e) — cu(e)} /1 cule) =3, c max{r —dp (T",v),0}
13 Cu + Connected components of (V, F’) containing a (unique) 7 € T

14 M+ {{u,v} € E|ue Cy €Cy,v€Cy€Cy,Cu # Cy,d'({u,v}) =0} // Merge cand.
15 A «+ Arbitrary subset of M such that F’ U A is a forest spanning (V, F' U M)

16 F < FUAUU,c.caipo | po is the (unique) path in F’ from v to some 7 € T

// Merge

17 E« (E\{e€E|d(e)=0}))UF' UA // Remove unneeded edges contained in U
18 C < Connected components of (V, F) // Update connected components
19 T + {min{v € C| f({v}) =1} | f(C)=1,C € C} // Update active terminals
20 LB« LB+ (1+¢) 'r|T
21 r+ (14+¢&")r // Update ball radius

22 return F, LB

9

U as used in Line 9 contains all parts of edges in a (1 + ¢)-approximate SSSP forest that lie at distance
at most r from their respective roots. Note that U can also contain parts of edges, whereas F’
(Line 10), a (1 + €)-approximate SSSP forest truncated to U, only contains full edges.
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(2) Minimum Spanning Tree (MST). This is another well-studied task for which near-optimal
solutions are known in all prominent models [12,27, 33, 34].

(3) Root-Path Selection (RPS). Here, we are given a forest rooted at sources (where each
node knows its parent in its tree and its closest source), along with a number of marked
nodes. Our goal is to select the edges on the path from each marked node to its closest
source. This problem can be straightforwardly addressed by solving a much more general
flow problem: (Approzimate) Transshipment, in which flow demands are to be satisfied
at minimum cost. Again, we can plug in state-of-the-art algorithms for each model of
interest [4,35]. Note that in our case, the solution is restricted to containing the edges of
a predetermined forest, such that the solution is unique, edge weights play no role, and
the challenge becomes to determine the feasible flow quickly.

(4) Forest-Function Evaluation (FFE). The remaining subtask is to assess if f(C) = 1, for
each component C C V in a set of disjoint, internally connected components C— i.e., to
determine which of the components still need to be connected to others. This is the only
step that depends on f, requiring an implementation of f matching the given model of
computation.

Note that f is an arbitrary proper function, so evaluating it can be arbitrarily hard. Thus, our

algorithm confines the hardness of the task that comes from the choice of f to O(¢~!logn)

evaluations of f(C) for disjoint connected components C' € C (cf. ITtem A). In contrast, the

other three subtasks can be solved by state-of-the-art algorithms from the literature in a

black-box fashion.

To illustrate the power of our result, we apply our machinery in three models of compu-
tation — CONGEST, Parallel Random-Access Machine (PRAM), and Multi-Pass Streaming
(MPS) — to three Constrained Forest Problems. Our results follow from Theorem 1 with (1) the
referenced results on aSSSP, MST, and RPS, (2) model- and problem-specific subroutines for
FFE, and (3) model-specific subroutines for book-keeping operations.

In Table 1, we highlight the improvements over the state of the art achieved for our
example problems by instantiating the shell-decomposition algorithm in the CONGEST model.

(1) Steiner Forest (SF). From O(e = (sk+/min{st, n})) time!® for a (2+¢)-approximation
and O(min{s, /n} + D + k) time for an O(logn)-approximation to SF-IC obtained
by Lenzen and Patt-Shamir [30] to (2 4 ¢)-approximations in time (1) O(e—3(v/n +
D) + &~ 'k) for SF-IC, (2) O(e~3(\/n + D)) for SF-SCR, and (3) O(e~3(\/n+ D) +
e~ min{n?/3 k}) for SF-CIC. For SF-CR, we incur the same additive running-time
overhead of O(t) as Lenzen and Patt-Shamir [30], matching the existential lower bound
they showed.

(1) Point-to-Point Connection (PPC). We are not aware of prior work providing CON-
GEST algorithms for the PPC problem. Here, we obtain a (2 + €)-approximation in
O(e3(\/n + D)) time.

(1) Facility Placement and Connection (FPC). We do not know of any existing CONGEST
algorithms for the FPC problem, and we realize a (2+¢)-approximation in O(e~3(y/n+
D)) time.

We also derive algorithms for SF, PPC, and FPC in the PRAM and Multi-Pass Streaming

models, taking O(e~3m) work and O(¢~3) depth in the PRAM model, as well as O(e~3)

passes and 6(n) space in the Multi-Pass Streaming model. To the best of our knowledge,

10Recall that n denotes the number of nodes, k the number of input components, ¢ the number of terminals,
D the unweighted (hop) diameter, and s the shortest-path diameter. Both ¢ and s can be up to (n),
regardless of k or D.
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these algorithms are either the first ones to perform these tasks in their respective models
or they cover more general classes of instances than the state of the art (see extended
version). Notably, we obtain our diverse results with relative ease once the analysis of our
model-agnostic shell-decomposition algorithm is in place — which contrasts with the challenges
of directly designing specific algorithms for specific problems in specific models.

Taking Shortcuts

In the CONGEST model, the 1/n term in the complexity is due to the fact that, in general,
it is not possible to solve Partwise Aggregation (PA) in o(y/n) rounds. As formalized in
Definition 6, PA denotes the task of performing an aggregation and broadcast operation on
each subset in a partition of V' that induces connected components [14]. We can leverage
PA, inter alia, to determine a leader and distribute its ID, or to find and make known a
heaviest outgoing edge, for each component (a.k.a. part) in parallel. PA-type operations are
key to efficient MST construction, and any TF4-round solution to Partwise Aggregation lets
us solve MST in O(TP4 + D) = O(TP4) rounds [13,14].

As MST computation is a CFP, it might not surprise that Partwise Aggregation can serve
as a key subroutine for other CFPs in the CONGEST model as well. We show that the /n
term in the complexity of CFPs can be replaced by TF4. Since this is already known for
(1 4 e)-approximate Set-Source Shortest-Path Forest [35], Minimum Spanning Tree [13], and
(1 + €)-approximate Transshipment [35] (which can be used to solve Root-Path Selection),!!
again we need to show this for Forest-Function Evaluation only. This is straightforward for
PPC and FPC, and simple algorithms evaluate the forest function for SF-IC and SF-CR in
O(TTA + k) and O(TT4 + t) rounds, respectively.

The substantial literature on low-congestion shortcuts provides a large array of results on
solving Partwise Aggregation in time comparable to the shortcut quality of the input graph,
i.e., the best possible running time 774 for Partwise Aggregation [2,14,15,22,23,26,27,35,37).
In particular, 774 € 5(D) if the input graph does not contain a fixed 6(1)-dense minor,
without precomputations or further knowledge of G [14]. Examples of graphs without O(1)-
dense minors are planar graphs and, more generally, graphs of bounded genus. Moreover, in
Supported CONGEST (where (V, E) is known — or rather, can be preprocessed), 774 € 6(@),
i.e., within a polylogarithmic factor of the optimum. Due to the modular structure of
our results, any future results on Partwise Aggregation and low-congestion shortcuts will
automatically improve the state of the art for CFPs in the CONGEST model.

The Quest for Universal Optimality

In the CONGEST model, it is known that even on a fized network topology, (NZ(TP 4 rounds
are required to obtain any non-trivial approximation for a large class of problems. This class
includes MST, a special case of ST, which reduces to FPC by making all but the opening
cost of a single node very high, and shortest s-t-path [27], a special case of PPC. Thus, this
universal lower bound applies to our example tasks as well. In particular, our results on
PPC and FPC have almost universally tight running times.

In contrast, the additive terms of k£ and ¢ in the running times of our algorithms for SF-IC
and SF-CR, respectively, are only ezistentially optimal [30]: The lower-bound graph —a double
star — has shortcut quality O(1), but in a fully connected graph, it is trivial to evaluate f for

1 The results for approximate Set-Source Shortest-Path Forest and approximate Transshipment are

conditional on the existence of fast ((5(1)7 5(1))—cycle—cover algorithms; otherwise, we incur an n°™®
overhead (see Table 1).
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icA {2,568} =

Figure 4 Example of a lower-bound graph used to reduce Equality Testing to Steiner Forest, for
an instance with n = 8. Node colors indicate input components (SF—CIC) resp. connection requests
(SF-SRC), and node shapes indicate which nodes are simulated by which player.

all current components in two rounds. This motivates us to split Forest-Function Evaluation
for Steiner Forest into two parts: (1) determining, for each input component V; C V or
connection request r € R, respectively, whether the specified connectivity requirements
are met, and (2) determining, for each current component C' € C, whether it contains a
terminal whose connectivity requirements are not met. While the second part can be solved
via standard Partwise Aggregation, the first part requires aggregating information within k
(or t) disjoint components that may be internally disconnected. We call this task Disjoint
Aggregation on p parts, DA(p), achieve the trivial bound TP4®) ¢ O(D + p) via pipelining
over a BFS tree, and hypothesize that the universal complexity of DA(p) merits further
investigation in future work.

As an orthogonal approach, we explore the effect of the input specification on our SF
results. The assumptions that (1) pairs of terminals know that they need to be connected
(SF-SCR), or (2) the size of each input component is known to its constituent terminals
(SF—CIC) both are plausible, and they change the basis of the applicable existential lower
bounds from 2-party set disjointness [30] to 2-party equality, as depicted in Figure 4. We
provide the details in the extended version.

Assuming SF-SCR, we show how to achieve a running time of O(min{T74n°®, \/n+ D})
using efficient randomized 2-party equality testing. We sketch a solution assuming shared
randomness here; standard techniques achieve the same without shared randomness. For
each terminal-request pair {u,v}, we flip a fair independent coin and denote the result by
Cuwy € {0,1}. Now each component C aggregates >, cc > ,cr, C{uw} Mod 2. Observe

that if u,v € C for request pair {u, v}, then for SF-SCR, it holds that v € R,, and u € R,,.

Hence, if C contains, for each request pair, either both terminals or none of the terminals,
then the sum is guaranteed to be 0 modulo 2. Otherwise, fix a request pair {u, v} with u € C
and v € V'\ C. After evaluating the sum up to coin ¢, ,, it is either 0 or 1, and hence, by
independence of ¢, ,,, with probability /2, the sum is 1 modulo 2. Therefore, performing
the process O(logn) times in parallel, we can distinguish between f(C) =0 and f(C) =1
with high probability. This computation can be performed by a single aggregation, where
the aggregation operator € is given by bit-wise addition modulo 2.
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Our strategy for SF-CIC is similar, but results in a much weaker bound of (5(n2/ 3+ D);
our main point here is to demonstrate that the ﬁ(k) can be beaten. We distinguish three
cases. (1) Components C' of size at most n”/* are spanned by a rooted tree of size n”/*. Here,
we can aggregate the terminal counts, for all input components, within C' at C’s root in
O(n**) rounds to determine activity status. (2) For each input component of size at least
n'/?, we globally aggregate if there are two distinct component IDs with a terminal from
that input component. This requires one aggregation for each such input component, all
of which can be completed within O(n”* + D) rounds via a BFS tree, as there can be at
most n”/? input components of this size. (3) For input components of size s < n'/?, each
component C' of size larger than n*/? uses the same strategy as for SF-SCR. However, only
input components of the same size can be handled in a single aggregation, as the summation
is now modulo s. Hence, 5(711/ %) aggregations by at most n'/* components of size larger than
n”/* are required, which can again be performed in O(n?? + D) rounds.

4 Discussion

In this work, we presented a general model-agnostic framework for the (2 + ¢)-approximation

of Constrained Forest Problems (CFPs) and demonstrated its utility on three NP-hard CFPs

in three models of computation. We conclude with a number of open questions — beyond
applying our framework to other graph problems and computational models — in increasing
order of generality:

(Q1) Can the running time of SF—CIC in CONGEST be improved to nearly 7747

(Q2) Many of our results are near-universally optimal in CONGEST, even for Las Vegas
algorithms — i.e., randomized with guaranteed success — but our algorithms for SF-
SCR and SF-CIC are Monte Carlo. Due to existential lower bounds based on the
communication complexity of 2-party equality, this is required to (always) achieve
small running times w.h.p.

Is (NZ(Q) also a lower bound for Las Vegas CONGEST algorithms?

(Q3) How hard is Disjoint Aggregation, i.e., how can we characterize TDAMP)?

(Q4) The FPC problem minimizes the sum of opening and forest costs, disregarding the (often
distance-based) connection costs considered in other facility-location-type problems.
Does our approach to FPC generalize to problems with connection costs?

(Q5) As we reduce most of our tasks to few PA instances, in CONGEST, TF4 ~ @) rounds
are both necessary and sufficient to achieve near-universal optimality. Since PA can
be solved in O(n) work and O(logn) = O(1) depth in PRAM, PA-based algorithms
also yield good solutions in PRAM. However, in the streaming model, while PA can
be solved in (5(71) memory and two passes, it is unclear if this yields optimal results
(unless we insist that the output needs to be held in memory), as we are mostly limited
to existential (,/72) lower bounds.

Are there 6(n)-memory streaming algorithms with (5(1) passes? Better yet:
Is there an analog to universal optimality in the MPS model?

Note that TF4 seems inadequate as a parameter here, as each part will require some
memory for a few-pass implementation, but there may be 2(n) parts.

(Q6) Does our approach generalize to CFPs on hypergraphs?

(Q7) Beyond proper functions, the primal-dual method has proven useful for uncrossing
functions [17]. One of the main features of optimization problems with uncrossing
functions is that they are guaranteed to feature an optimal dual solution that is laminar.
Can our approach be extended to uncrossing or other non-proper functions?
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A Model-Agnostic Algorithm

A.1 Modified Centralized (2 + €)-Approximation

» Theorem 8. For a graph G = (V, E), edge costs c: E — IN, and proper function f, the
modified GW algorithm with incremental solution-set construction, (1 + &')-approzimate
distance computations, and (14 ")-deferred forest-function evaluation (Algorithm 2) yields a
(2 —2/t)(1 + &) (1 + €"”)%-approzimation to the optimal solution, i.e., a (2 + ¢)-approzimation
fore' e’ <efa <1/

Denote by i = 0, 1, . .. the iterations of the while loop in Algorithm 2, calling each iteration
a merge phase, and for each phase by (i) r; := (1 + ") - % the radius r at the beginning
of phase i (with r_y := (1+¢”)~'- ), (i) U;, ¢} Fy, F!, A;, E;, and T;' the values of
the respective variables at the end of phase 4, and (iii) a; := |T;}| the number of active
components at the end of the phase i (with a_; :=¢). We prepare our proof in five lemmas.
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» Lemma 9. For alli € Ny s.t. Algorithm 2 does not terminate at the end of phase i, we
have (i) ri = (1 +&")ri—1, (i) cjyq(e) < ci(e) < c(e) for each e € E;, (iii) U; is spanned by
F{UAZ‘, (Z’U) Ui CUits, (’U) F,L/ UA4,; C Fi/—i-l’ (UZ) F, C Fiyq, (U’L’L) F; UF{ = F{UA; and
(viii) (V, E;) is connected and the weighted diameter w.r.t. reduced costs ¢’ is decreasing.

Proof. The first and the second statement hold by construction due to Lines 21 and 12,
respectively. For the third statement, observe that F; connects each node in U; to some node
in 7;!, and the set M; includes all edges that are both contained in U; (i.e., whose reduced
cost has become 0) and connect different connectivity components with respect to F} of Us.
Thus, the choice of A; ensures that U; is spanned by F/ U A;. This readily implies the forth
statement, since F} U A; C E;, as well as the fifth, since all other edges e of reduced cost
c/(e) = 0 are removed to obtain E;, forcing any approximate SSSP solution to reselect the
edges from Fj U A; into Fy ;. The sixth statement holds because the algorithm only adds
edges to F', and the seventh statement holds by induction, using that F; = F;_1 UA; UX
for some set X C F/. Finally, for the eighth statement, observe that since U; is spanned
by F/ U A;, whose reduced cost is 0, and any edges not fully contained in U; remain in E;,
the shortest path between any pair of nodes w.r.t. ¢’ only becomes shorter: For any edge
contained in U;, there is now a path of reduced weight 0 between its endpoints, while any edge
e with reduced cost ¢}(e) > 0 is still present and retains at most its original cost c(e). <

logn

» Lemma 10. For ¢’,¢"” € n=%W | Algorithm 2 terminates in O(*%%

el

) dterations of its loop.

Proof. Since each of the operations within the loop terminate (assuming correct subroutines),
it suffices to show the claimed bound on the number of loop iterations. To exit the while-loop,
we must have f(C') =0 for each C € C, where C is the set of connected components induced
by our current edge set F'. Recall that edge weights and hence the weighted diameter of the
graph are polynomially bounded in n. As &”,&’ € n=9W), there is an j € O(losg,,”) for which
r;=(14¢")7- %, exceeds the weighted diameter of G times 1+ ¢’. By Lemma 9 (viii), this
entails that if we reach this phase, then U; contains the entire connected graph (V, E;). By
Lemma 9 (iii), U; (and thus V) is spanned by F U A;. The merge operation in Line 16
hence ensures that all terminals in 7;1_1 are connected by Fj. Denote by C' the connectivity
component of (V, F;) containing the nodes in 7;1_1 For each terminal 7 ¢ 7;1_1 \ C, T lies
in a connected component C’ of (V, Fj_) satisfying that f(C”) = 0. This entails that we
can partition V'\ C into two types of sets: (i) components C’ of (V, F;_1) satisfying that
f(C") =0, and (ii) non-terminals v € V' \ 7, which satisfy f({v}) = 0 by definition. By
disjointness of the proper forest function f, it follows that f(V \ C) = 0, and by symmetry
it follows that f(C) = 0. Finally, by Lemma 9 (vi), we have F,_; C F;. Therefore, each
connectivity component C’ of (V, F;) other than C' decomposes into connectivity components

of (V, F;_1), satistying that f(C’) = 0, and non-terminals, which again by disjointness implies
that f(C’) = 0. Thus, Algorithm 2 terminates by the end of phase j € O(1&™). <

el

» Lemma 11. The edge set F' output by Algorithm 2 is primal feasible.

Proof. When Algorithm 2 terminates, we must have exited its while-loop, implying that we
have f(C) =0 for each C € C, where C is the set of connected components induced by our
output set F'. Consider any set S C V. If S non-trivially intersects a component C' € C, i.e.,
) £ SNC # C, then there is an edge of F in the cut defined by S, i.e., [6(S)NF| > 1> f(S).
Otherwise, S = (Jocc, C for some Cg C C. As f satisfies disjointness and f(C) = 0 for each
C € Cg, it follows that |6(S)NF| > 0 = f(.59) in this case, too. Thus, F is primal feasible. <«
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» Lemma 12. The value LB output by Algorithm 2 is the cost of a feasible dual solution.

Proof. Recall that r =r; = (1 + s”)i%” in phase i, and denote by j the index of the final

phase Abbreviating A; := (1 +¢&’)~!r;, we can write the value LB as

//

J J
LB=(1+¢) 12 (14&")i=— (1+¢") Znaz ZAiai.
i=0 i=0

Denote the cost reduction of an edge achieved in phase i as ¢;(e) = cy,(e) = ¢}_,(e)—ci(e),
with ¢’ ;(e) := ¢(e), and the amount that y is increased in phase ¢ for some set S C V as
yi(S). Now observe that to construct a feasible dual solution of value LB, it suffices to, in
each phase ¢ € [j]o, for each component C' surviving phase i, increase the dual variables
associated with the subsets S C C in sum by A;, while ensuring that for each e € F, we
maintain » g, 5)5. ¥i(S) < Cife).

Since f is proper, we know that for each component C surviving phase i, there exists at
least one component C’ active in phase i such that C/ C C. Therefore, to allocate A; to dual
variables associated with C, we can trace the construction of C' from the set of components
C'={C"CC| f(C") =1, C"is a connected component of (V, F;_1)} (where F_; = 0)
as follows. Starting with C’ as it resulted from phase i — 1, we increase the radii of all
components C' € C" at rate p and the y-variables of C' € C' at rate 1/-;. Thus, we gradually
construct U; and reduce the costs of all edges in the affected cuts (i.e., increase cy, = ¢;(e))
until the first edge achieves ¢}(e) = 0 (or the phase ends). This happens at the latest when
the first dual constraint in phase i becomes tight — it can happen earlier as the edge cost

reductions associated with our radius increases are based on (1 4 ¢’)-approximate distances.

When an edge achieves ¢(e) = 0, we update F and C’ to ensure that both endpoints of e lie
in the same component, and we iterate the process described above.

Since C' survived phase ¢, this process does not add an edge to F' that lies in the cut
(C,V \ C) until we have increased the radius by r;. We claim that at no point in this
process, C' becomes empty. Assuming otherwise, we would have that C' = (Jg/ o €7 with
f(C") = 0 at the respective point of the process, implying the contradiction that f(C) = 0 by
disjointness of f. Accordingly, the total increase of y-variables that we attribute to C during
phase i is at least A;, as desired. Moreover, our direct coupling of the y-variable increases
with edge-cost reductions further ensures that the y-variables relevant for any individual
edge e increase by at most ¢;(e), i.e., its cost reduction in phase i, guaranteeing feasibility.

Summing over the a; components surviving phase i, we increase the dual variables by at
least A;a; per merge phase, concluding the proof. |

» Lemma 13. Denoting by j the phase after which Algorithm 2 terminates, it holds that
c(F)<(2-2)(1+e")2 X0, ra; .

Proof. Recall that merge phase i > 0 is the phase in which r = r; = (1 +¢”)* - 54 ,
the number of active components surviving phase i. Moreover, note that all edges e added to

and a; is

F satisfy that ¢/(e) = 0 on termination, and that the cost reduction for each edge in phase i
is at most 2r;, as each endpoint of the edge is contained in at most one tree of F’. Hence, the
cost of each edge in F' can be amortized over the phases ¢ in which its cost is reduced by the
algorithm, i.e., which it starts with ¢,_;(e) > 0, and in which it intersects U;. Accordingly,
F decomposes into a set of nested shells U; \ U;—1 (with U_1 := (), which the algorithm
iteratively and implicitly constructs around active components. This shell-decomposition
argument is illustrated in Figure 2.
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Since in phase i, the remaining edges F'\ F;_; (where F_; := (}) to be added to F form a
forest with a; active components as nodes, and the average degree of such a forest is at most
2 — 2/a;, we can bound the cost of the forest F' output by Algorithm 2 from above as

c(F)Sgnai1 (2_(11271) (2—7) (1+¢ )zjjn 104i—1 = (2—7> (1—|—£”)Znaz,

1=0 i=—1

where a_; :=t. Since F' is a feasible primal solution by Lemma 11, each terminal must be
incident with at least one edge from F', and the minimum edge weight is at least 1, we have
that ¢(F) > t/2. On the other hand, a_ir_1 = 4(1+5,,), yielding that

e(F) < (1 +eMe(F) — 5t = (1+")(c(F) —2a_1r_1) < (2— 2) 1+ ") S0 ria;. <
Using the above lemmas, we can now prove Theorem 8.

Proof of Theorem 8. Assume that Algorithm 2 terminates at the end of phase j, i.e., a; = 0;
by Lemma 10, such a phase exists. Observe that the Value LB output by Algorithm 2 then
satisfies LB = (1 +¢)"' 27 ria; = (1 + €)' 207  ria; . By Lemma 11, F is a feasible
primal solution. As LB is the cost of a feasible dual solution by Lemma 12, using Lemma 13,
we obtain the desired approximation guarantee as

(F) _(2—=2/k)(1+¢&")? Zl 07’1(11
LB (1+¢)-1 Z Oria

IN

_ (2 - f) (1+e)(1+")2 <

A.2 Specification of our Model-Agnostic Meta-Algorithm

The task of (2 + ¢)-approximating CFPs in any specific model reduces to simulating Algo-

log n

rithm 2. By Lemma 10, we can divide the computation into O(~% ) phases, where, starting
at phase 0, phase i grows components by radius r; = (1 +¢”)" - &-. Each phase tackles six

abstract problems, corresponding to the six building blocks of our algorithm (see Figure 1).

A.2.1 Problems Used as Building Blocks

» Problem 3 (a-approximate Set-Source Shortest-Path Forest). Given a connected graph G =
(V, E) with edge costs c: E — Ny and a set of sources S C V', compute a forest F' spanning
G such that for all nodes v € V., dp/(S,v) < ad(S,v), where d(S,v) = min,es{d(u,v)}, and
dp(u,v) is the weighted distance between u and v in F.

Note that in phase ¢, we can confine ourselves to computing an a-approximate set-source
shortest-path forest up to distance r; (see Algorithm 2, Lines 9-10).

» Problem 4 (Candidate-Merge ldentification). Given a graph G = (V,E), edge costs
c: E — Ny, and a rooted forest F' with a subset of its trees marked such that each node v in
a marked tree knows that its tree is marked as well as the identity of its root T,, identify all
edges e = {u,v} that are in distinct marked trees and satisfy c(e) = 0.

» Problem 5 (Minimum Spanning Tree). Given a graph G = (V, E) with edge costs ¢: E — IN,
compute the Minimum Spanning Tree of G.
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» Problem 6 (Root-Path Selection). Given a graph G = (V, E) with edge costs c¢: E — Iy,
a rooted forest, and a set of marked nodes S C V', select the forest edges connecting each
marked node to its root.'?

» Problem 7 (Edge-Cost Reduction). Given a graph G = (V, E) with edge costs ¢: E —
No, a radius v, and an output of Problem 3, compute, for each edge e € E, '(e) =
max {0,c(e) — >, . max{r — dg/(S,v),0}} .

» Problem 8 (Forest-Function Evaluation). Given a graph G = (V, E), a partition C of the
node set such that each C' € C is connected, and a proper forest function f: 2V — {0,1},
evaluate f(C') for each component C € C.

A.2.2 Meta-Algorithm Using the Building Blocks

Initialize F, C, T, ¢/, and r as in Algorithm 2. Throughout our algorithm, we maintain

a set of connected components C with activity statuses f(C) for each C € C. At the

beginning of phase 0, C contains exactly the singleton sets corresponding to all nodes,

ie, C = {{v} | v € V}, and the active components are the terminals. Each phase i of
our algorithm (i.e., one loop iteration in Figure 1, simulating one while-loop iteration of

Algorithm 2) then consists of the following steps, executed for 7 = (1 + )% - %”.

(1) Approxzimate Set-Source Shortest-Path Forest (aSSSP). Assign as temporary edge weight
to e € E the reduced cost ¢/(e) if ¢/(e) > 0 or e € F U F’ (where F’ := () in phase 0).
Compute a (1+ ¢&’)-approximate (r-restricted) SSSP forest F’, using the active terminals
T' ={min{v |ve TNC}|CeC,f(C)=1} as sources, i.e., for each active component,
T contains the terminal with the minimum identifier. After Step 1, for each node
v €V \ T, we know its parent in the truncated SSSP forest, its closest source u € 7!
in the respective shortest-path tree (if any), and its distance dps (u,v) to that source.

(2) Edge-Cost Reduction (ECR). Using the approximate r-restricted SSSP forest and the
distances computed in Step 1, update the edge costs in accordance with Problem 7.'3

(3) Candidate-Merge Identification (CMI). Using that nodes’ parents and reduced edge costs
are known, identify candidate merges M for adjacent trees of the aSSSP forest (Step 1).

(4) Minimum Spanning Tree (MST). Compute a Minimum Spanning Tree T' of G with the
following edge weights: (i) 0 for edges in F’, i.e., the tree edges in the output of Step 1,
(i) 1 for edges in M, i.e., those determined in Step 3, and (iii) +oo (or a large value)
for all other edges. Mark all selected edges of T' that are also in the set M known from
Step 3, i.e., the edges constituting A, and add them to F' (thus excluding all edges
with temporary weight greater than 1). For each connected component C’ of the forest
constituted by the selected edges of temporary weight 0 or 1 that contains a terminal
7€ ', set min{v € C' | f({v}) = 1} as the new identifier of the component C to be
created from €/, making it known to all v € C".

12Root-Path Selection can be reduced to approzimate transshipment as follows: (i) count the number of
marked nodes in each tree; (ii) set the demand of each marked node to —1 and the demand of the root
of each tree to the number of marked nodes in the tree; (iii) set edge costs to 0 for tree edges and to +oo
for all other edges; (iv) solve the approximate transshipment problem for these demands and edge
weights; and (v) select all edges with non-zero flow in the output. Note that the only non-trivial step of
the reduction is the computation of the demand, which boils down to a single Partwise Aggregation.

13We can keep the edge costs in INg by making sure that phases end with integral values of r. Note that
e’ >n~ %M or distance computations must be exact. Scale all weights by [1/e"]. Now rounding r up to
the next integer has marginal impact on the approximation guarantee, as overgrowing by factor (1 + €’)
plus an additive 1 is not worse than overgrowing by factor (1 + 2¢’).
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(5) Root-Path Selection (RPS). Connect the marked edges identified in Step 4 to the roots
(i.e., the node with the same identifier as the component) of the components they connect
by adding the necessary edges to F'.

(6) Forest-Function Evaluation (FFE). Using the new component memberships known from
Step 4, update the set C and evaluate f(C) for each updated C € C. If f(C) = 0 for all
such components, terminate and output F— else, continue with the next loop iteration.

A.3 Correctness and Complexity of our Model-Agnostic Meta-Algorithm

» Theorem 14 (Model-Agnostic Shell-Decomposition Algorithm). Fore,e’,e” as in Theorem 8,
a graph G = (V,E), edge costs c: E — IN, and proper function f, the modular shell-
decomposition algorithm (A.2.2) yields a feasible (24 ¢)-approzimation to the optimal solution.

Proof. We prove the claim by induction on the phase i, going step by step through the
algorithm given in Section A.2.2 and arguing why the computed objects, in particular F,
match those of Algorithm 2. We augment the induction hypothesis by the claim that at the
beginning of a phase, in Algorithm 2, F contains exactly the edges of non-zero reduced cost
and F;_1 U F!_;. The induction anchor (phase i = —1) is given by the identical initialization
of objects. For the step to phase i € Ny, observe first that by the induction hypothesis (in
particular the additional claim), Step 1 computes the same F; and the same distances as
Algorithm 2, and hence Step 2 yields the same ¢}. It follows that Step 3 computes the same
set M of candidate merges, implying that Step 4 correctly determines A; and adds it to F'.
Note that the latter step also updates component memberships and component identifiers,
but does not yet evaluate whether f(C) =1 for the new components. This is finally done in
Step 6, such that in Step 1 of the next phase, the correct set 7, will be used. It remains to
prove the additional claim that E; contains exactly the edges of non-zero reduced cost and
F;_, UF;_,, which now is immediate from Line 17 and Lemma 9 (vii).

We conclude that both algorithms terminate at the end of the same phase j, returning
the same forest F' = F};, which by Theorem 8 is a (2 + ¢)-approximation. <

The proof of our main theorem now follows immediately.

Proof of Theorem 1. By Theorem 14, our modular shell-decomposition algorithm (Algo-
rithm 2) delivers the desired approximation guarantee. Without loss of generality, we may
assume that e € n~°M) | as this is enough to enforce that ¢ times the cost of an optimal
solution is smaller than 1, i.e., a 2-approximation is guaranteed. Thus, it is sufficient to
instantiate the algorithm with &’,¢” € n=?M such that by Lemma 10, the algorithm will
terminate after O( 105,") = O(IO%) = O(e~1) while-loop iterations. In each of these iterations
(up to bookkeeping operations), aSSSP, MST, RPS, and FFE computations are performed
exactly once, yielding the desired model-agnostic complexity. |
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